
Implementing Fault-Tolerant Services Using
State Machines: Beyond Replication

Vijay K. Garg
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, TX 78712-1084, USA

garg@ece.utexas.edu

Abstract—This paper describes a method to implement fault-
tolerant services in distributed systems based on the idea of
fused state machines. The theory of fused state machines uses a
combination of coding theory and replication to ensure efficiency
as well as savings in power and storage during normal operations.
Fused state machines may incur higher overhead during recovery
from crash or Byzantine faults, but that may be acceptable if the
probability of fault is low. Assuming k different state machines,
pure replication based schemes require k(f + 1) replicas to
tolerate f crash faults in a system and k(2f + 1) replicas to
tolerate f Byzantine faults. For crash faults, we give an algorithm
that requires the optimal f backup state machines for tolerating
f faults in the system of k machines. For Byzantine faults, we
propose an algorithm that requires only kf + f additional state
machines, as opposed to 2kf state machines. Our algorithm
combines ideas from coding theory with replication to provide
low overhead during normal operation while keeping the number
of copies required to tolerate f faults small.

I. INTRODUCTION

The replicated state machine approach is a general method
for implementing a fault-tolerant service by replicating servers
and coordinating client interactions with server replicas. This
approach proposed by Lamport in [Lam78], [Lam84a] and
further elaborated by Schneider in [Sch90] are considered
the standard solutions to the problem of fault-tolerance in
distributed systems. Note that replication has been considered
wasteful in the context of fault-tolerance of data (in commu-
nication and storage) for many decades, but in the distributed
systems community replication continues to be the dominant
approach for fault-tolerance [TDOK04], [SSPvS04]. In this
paper, we give an alternate method for fault-tolerance that
combines ideas from replication with coding theory [MS81],
[vL98] to get main advantages of both the approaches. We
use (sufficient) replication to guarantee low overhead during
normal operations and coding theory to reduce the number of
copies to get space and power savings.

We depart from the standard model of fault-tolerance in
distributed systems in which the problem is to tolerate faults
in functioning of a single state machine. We will be concerned
with fault-tolerance in a set of state machines where the
size of the set will usually be greater than one. While this
assumption makes the problem different from the usual set-up,
we argue that our set-up is practically useful. Any large system
is generally constructed as a set of state machines rather than

a single monolithic state machine. Even when the server is
constructed as a single state machine, it is quite natural to
have multiple instances of the state machines deployed for
different departments of the organization. As an analogy from
the coding theory, consider the problem of fault tolerance when
a message is being communicated. Our assumption is akin to
requiring that the message should have multiple symbols to
reap the benefits of the techniques (such as Reed-Solomon).

Pursuing the analogy with the coding theory further, assume
that k symbols drawn from a fixed alphabet need to be
communicated over a noisy channel. Suppose that we are
interested in tolerating f erasures (i.e. detectable corruption of
the symbols). It is easy to see that by sending every symbol
f+1 times, any f erasures can be tolerated. However, the rate
of such a scheme is quite low and it is well known that instead
of sending additional kf symbols, it is necessary and sufficient
to send f symbols to tolerate f erasures under a reasonable set
of assumptions (for example, by using Reed-Solomon coding).
Replication is simple to implement but grossly wasteful.

In this paper, we show how services in a distributed system
can be made fault-tolerant using fusion. Given k different state
machines we focus on tolerating f faults. We focus on two
types of faults: crash faults and Byzantine faults. For crash
faults, faulty state machines lose their state. We assume that
crash faults are detectable and the problem that remains is
to recover the lost state of state machines. For Byzantine
faults [PSL80], the state machine may go to an incorrect state
spontaneously and the algorithm must continue to provide
correct responses to the client in spite of these faults.

For crash faults, we give a technique to construct additional
f state machines (called fused state machines) such that the
system of n = k + f machines can tolerate crash of any
f machines in the system. We illustrate our technique on
the resource allocation service from [Sch90]. The fused state
machines use a combination of erasure coding and replication
to ensure that during normal operations, the message and
computation overhead on primary state machines is close to
that for replicated state machines. The updates of fused state
machines are made efficient using linearity of erasure coding
scheme employed and sufficient replication.

For Byzantine faults, the problem of detection is harder
from the perspective of computation and communication com-



plexity. Here we use a hybrid of replication and coding
theory to achieve low overhead during normal operations
while reducing the overall storage, power and computation
requirement. In particular, we give an algorithm that keeps
the overhead of the replicated state machine approach during
normal operations but requires only kf + f additional state
machines (as opposed to 2kf state machines). Our algorithm
is based on the following observation that if there are f + 1
copies of a state machine, then at least one of them is correct.
In case of a fault, we only need to determine which of these
copies is correct. The traditional method of keeping 2f + 1
copies (and then using majority) is wasteful for the task.

It is important to note that there are at least two advantages
of running fewer backup processes. First, the amount of state
and therefore the storage maintained at back up processes is
reduced. Second, by reducing the number of processes running
in the system we also save on the power required to run the
servers that execute the backup processes.

In our earlier work, we have given algorithms for fusible
data structures. In particular, [GO07] gives algorithms for
arrays, stacks, queues, linked lists etc. This work has been
generalized to tolerate multiple faults in [BG09]. In contrast,
the goal of the current work is to focus on the differences
between the replicated state machine approach and the fused
state machine approach. In [OBG09], an algorithm has been
provided to generate fused finite state machines. That algo-
rithm assumes that the state space of the primary machines is
finite. In this paper, we give techniques that are suitable even
for infinite state space.

In data storage and communication, coding theory is exten-
sively used to recover from faults. For example, RAID disks
use disk striping and parity based schemes (or erasure codes)
to recover from the disk faults [PGK88], [CLG+94], [Pla97].
As another example, network coding [LMS+97], [BLMR98]
has been used for recovering from packet loss or to reduce
communication overhead for multicast. In these applications,
the data is viewed as a set of data entities such as disk blocks
for storage applications and packets for network applications.
By using coding theory techniques [vL98] one can get much
better space utilization than, for example, simple replication.
These techniques are oblivious to the structure of the data.
The details of actual operations on the data are ignored and
the coding techniques simply recompute the encoded backups
after any write update. To tolerate crash failures for servers,
one can view the memory of the server as a set of pages and
apply coding theory to maintain code words. This approach,
however, many not be practical because a small change in
data may require recomputation of the backup for one or more
pages. This results in a high computational and communication
overhead. We show in this paper that with data structure-aware
programming and partial state replication, back up machines
can be designed so that they provide fault-tolerance in an
efficient manner.

II. FUSIBLE STATE MACHINES

We consider the usual model of a distributed system. In this
paper, we will be concerned only with process faults. There are
k deterministic primary state machines, P (i), where i ranges
from 1 to k. Throughout the paper, we will use i as an index for
the primary state machines with fixed range 1..k. Each state
machine receives an input from the client (or environment).
On receiving the input, the state machine applies the state
transition function to change its state. The set of states and
inputs may be infinite.

We require state machines to be deterministic just as re-
quired by the replicated state machine (RSM) approach. Given
the state of a machine and the sequence of inputs, the behavior
of the state machine is required to be unique. This assumption
is crucial in both the replicated and the fusion approach.

Throughout this paper we assume that channels are reliable
and FIFO. We also assume that the messaging system is
synchronous, i.e., there is a fixed upper bound for all mes-
sage arrivals. This assumption makes the crash detection of
processes quite simple.

A. Event Counter

To concretize our discussion, we start with k simple state
machines, P (i)’s, shown in Fig. 1. Each of these k machines
accept two types of input: entry(v) and exit(v). These state
machines may, for example, be counting the number of people
of type i entering a room. Each state machine has a variable
count with domain as non-negative integers. When P (i)
receives an event entry(v), it increments its count if v is equal
to i and decrements it when it receives similar exit(v) event.

P (i) :: i = 1..k
int counti = 0;

On event entry(v):
if (v == i) counti = counti + 1;

On event exit(v):
if (v == i) counti = counti − 1;

Fig. 1. Event Counter State Machines

First consider the case when f equals one, i.e., we are required
to tolerate at most one fault. Since there are k different ma-
chines, each with possibly different count, the RSM approach
will require k additional machines {Q(i), i = 1..k}. The
machine Q(i) is identical to P (i) and if any of the machine
P (i) crashes we can recover it using Q(i).

The Fused-SM based approach for this problem requires a
single machine that can recover fault of any of P (i). The
machine F (1) is shown in Fig. 2. Instead of tracking all
the count variables as in the RSM approach, the fused state
machine F (1) tracks the sum of all counts. It increments the
variable fCount1 on entry(i) for any i and decrements it for



F (1)::
int fCount1 = 0;

On event entry(i), i = 1..k:
fCount1 = fCount1 + 1;

On event exit(i) i = 1..k:
fCount1 = fCount1 − 1;

Fig. 2. Fusion of Counter State Machines

any exit(i). The recovery procedure is more complex than for
replication. It crucially depends on the fact that if any of P (i)
crashes, the rest of the machines are still available. If P (c)
has failed, then its state countc can be recovered as

countc = fCount1 −
∑
i 6=c

counti

The reader may object to the above method on many grounds.
First, the example works for one fault. Can it work for
multiple faults? Keeping two copies of F (1) does not tolerate
two faults. Second, the state space for each of the machines
is infinite. The state-space of the backup machine is also
infinite. Are there any real savings? What if the counters are
represented using a fixed number of bits? Third, the example
is simplistic. Can we do this for any general state machine?
We address each of these objections next.

We now show the scheme for tolerating f concurrent faults.
For RSM approach, we would have to add kf additional
machines. For fusion, we add just f additional machines,
F (1)..F (f) as shown in Fig. 3. The code for F (j) is shown
in Figure 3. Instead of incrementing the count by one, F (j)
increments its count by ij−1.

F (j) :: j = 1..f
int fCountj = 0;

On event entry(i), for any i
fCountj = fCountj + ij−1;

On event exit(i) for any i
fCountj = fCountj − ij−1;

Fig. 3. Fused State Machine

It can be verified that fCountj satisfies the following
invariant:

fCountj =
∑

i

ij−1 ∗ counti for all j = 1..f

We can easily recover states of any f failed state ma-
chines using fCountj , j = 1..f . For example, consider
the case when f is two and the machines that crashed
are P (c) and P (d). Using fusion machine F (1) and the
remaining counts we can get the value of countc + countd.
Using fCount2, we can also get the value of c ∗ countc +
d ∗ countd. We have two linearly independent equations

in two variables which can be solved to get the values
of countc and countd. More generally, recovery from f
faults reduces to solving f linearly independent equations
in f variables. A reader well-versed in coding theory would
realize that if (count1, count2, , countk) is viewed as data,
(count1,count2,..countk,fCount1, fCount2,..fCountf ) can
be viewed as a code word. The code word obtained is
equivalent to one obtained by multiplying data vector by the
identity matrix adjoined with the transpose of the Vander-
monde matrix[MS81]. The unique solvability of all the counts
is easy to show.

Theorem 1: Suppose x = (count1, count2, , countk) is the
state of the primary state machines. Assume

fCountj =
∑

i

ij−1 ∗ counti for all j = 1..f

Given any k values out of y =
(count1, count2, ..countk,fCount1, fCount2, ..fCountf )
the remaining values in x can be uniquely determined.

Proof: View the state of the primary state machines as x,
a 1×k vector. The vector y is a (k+f)×1 vector consisting
of the current state of the primary machines adjoined with
the states of the fused machines. By definition of fCount,
we can view the system as y = xG where G is k × (k +
f) matrix which is k × k identity matrix adjoined with the
transpose of Vandermonde matrix. Let f values of y be erased.
By supressing the indices corresponding to the lost values in
y, we get the vector y′ of size k. By deleting corresponding
columns in G, we get a square matrix M of size k × k.
We know that y′ = xM . Furthermore, when elements of G
are from the (infinite) field of real numbers, it is known that
M is a nonsingular matrix for all choices of the columns in
G[MS81]. Hence M is invertible, and x can be obtained as
y′M−1.

So far we had assumed that by adding numbers we do not
get overflow. However, in real computers the count would be
stored using a fixed number of bits. While the counts in the
primary processes may be represented using this fixed size,
the value of fCount’s may overflow. There are two possible
approaches to tackle this problem. The first possibility is to do
all the arithmetic, i.e. addition (subtraction), and multiplication
(division) in finite Galois field as typically done in coding
theory [MS81]. In that case the matrix G can either be chosen
as a Cauchy Matrix or a Vandermonde matrix reduced using
elementary transformations so that the first k rows form an
identity matrix [P05]. Note that finding the inverses of the
special matrices, such as Cauchy or Vandermonde, does not
require the cubic time complexity and can be achieved in
quadratic time complexity.

The other possibility is to guarantee that there is never any
overflow in any computation. This can be done, for example,
by using BigInteger package in Java. Alternatively, in
many applications, the semantics of the variable may dictate
that we do not get overflow. For example, suppose that we have
23 = 8 primary processes and we want to tolerate two crashes.
Suppose we also know that counts never exceeds 220. Then,



the value of fCount2 is at most
∑

i i∗220 ≤ 8∗8∗220 which
requires only 26 bits. We can then use standard arithmetic
instead of Galois arithmetic. Standard arithmetic may be
faster than Galois arithmetic in standard current processor
architectures.

B. Causal Ordering

Another objection to program F (1) is that it may not
generalize to arbitrary events. We show in this section that any
set of state machines with similar structure can be fused. The
overhead associated with maintaining the fused state machines
depend upon the specific application.

We first generalize our primary programs to contain not one
variable but a set of data structures. We continue to assume that
all primary machines are instances of similar state machines
and therefore every state machine has an instance of that
variable. A more general state machine is shown in Fig. 4.

P (i) :: i = 1..k
var1, var2...varv: set of variables;

On receiving an event(arg1, arg2, ...argr):
update variables;
send (UPDATE, varList, list of δ) to F (j)’s;

F (j) :: j = 1..f
fV ar1, fV ar2...fV arv: set of variables;

On receiving UPDATE from P (i);
for all varq in varList with change δ

fV arq = fV arq + ij−1 ∗ δ

Fig. 4. A General Fusible State Machine Approach for Simple Variables

The above method will work when the state machine
manipulates simple variables or arrays where the number of
variables (or the number of entries in the array) changed due
to event is small. For example, suppose that we are running a
causal ordering algorithm [BJ87] in a group of k processes.
Consider the version described by Raynal, Schiper, and Toueg
[RST91]. Each process maintains a matrix M of integers. The
entry M [q, r] at P (i) records the number of messages sent
by process P (q) to process P (r) as known by process P (i).
Whenever a message is sent from P (i) to P (r), the matrix
M is piggybacked with the message. The entry M [i, r] is
incremented to reflect the fact that one more message has been
sent from P (i) to P (r). Whenever messages are received by
the communication system at P (i), they are first checked for
eligibility before delivery to P (i). If a message is not eligible
it is simply buffered until it becomes eligible. A message is
eligible to be received when the number of messages sent
from any process P (q) to P (i), as indicated by the matrix W
received in the message, is less than or equal to the number
recorded in the matrix M .

Suppose, we would like the system to be able to tolerate f
crash faults. The algorithm for process P (i) and fused process
F (j) is given in Fig. 5. It only requires P (i)’s to send an ”M-
Update” message with incremental changes in entries of the
matrix.

P (i) :: i = 1..k
M :array[1..k, 1..k] of int initially ∀q, r : M [q, r] = 0;

To send a message to P (r):
piggyback M as part of the message;
M [i, r] := M [i, r] + 1;
send(M-Update, {(i, r, 1)}) to F (j);

To receive a message with matrix W from P (r)
enabled if ∀q : M [q, i] ≥W [q, i]
M := max(M,W );
M [r, i] := M [r, i] + 1;
send(M-Update, list of δ) to F (j);

F (j) :: j = 1..f
M :array[1..k, 1..k] of int initially ∀q, r : M [q, r] = 0;

On receiving (M-Update, list of δ) from P (i)
for all (q, r) with change δ

M [q, r] = M [q, r] + ij−1 ∗ δ

Fig. 5. A fault-tolerant algorithm for causal ordering of messages

Note that the storage requirement for fused processes is
O(fk2) as opposed to O(fk3) required by a replication
based algorithm. A similar algorithm can be used to recover
vector clocks[Mat89], [Fid89] of faulty processes in distributed
systems. The same approach will also work for Memory State
Machine Server in [Sch90].

C. Resource Allocator
The technique outlined in previous section may not be

practical when a simple change in data structure results in
a significant change in the state. We show that by analysis of
the data structure, and by selective replication the size of the
messages from primary messages to fusion processes can be
reduced significantly.

To illustrate this point, we apply the method of fusion to
the resource allocator state machine in [Sch90]. Assume that
there are k different type of resources that can only be used in
mutually exclusive fashion. The state machine P (i) shown in
Fig. 6 handles clients requesting resource i. It maintains two
variables: user, an integer which records the current user of
the resource if any, and waiting, a queue of integers which
stores the id’s of clients waiting for the resource. The pid of a
real user is assumed to be positive and the value of 0 denotes
that the resource is currently idle.

Suppose that we want to tolerate one fault in any of these
k machines. Whenever, the variable user changes we can



P (i) :: i = 1..k
user: int initially 0;
waiting: queue of int initially null;

On receiving acquire from client pid
if (user == 0) {

send(OK) to client pid; user = pid;}
else append(waiting, pid);

On receiving release
if (waiting.isEmpty()) user = 0;
else { user = waiting.head();

send(OK) to user;
waiting.removeHead(); }

Fig. 6. Resource Allocator State Machine from [Sch90]

send the incremental change to fusion processes. But, what
should we do about the waiting list? If we view the bit
representation of waiting list as an integer (a big integer), then
computing the code at fusion processes after every change
would be very inefficient. We use the technique from fusible
data structures[GO07]. Instead of sending the change in state,
we send the event that allows the fused structure to be
maintained efficiently. The primary state machine that uses
fused-SM approach is shown in Fig. 7. Whenever any data
structure changes, it sends to the fused machines the change
that needs to be made in the data structure in a manner
that is tailored to the data structure. It uses three types of
messages: USER, ADD-WAITING, and DEL-WAITING. The
message type USER includes any incremental change in the
user variable. The message type ADD-WAITING includes the
id of the user that has been added to the queue and similarly
the DEL-WAITING message includes the user that has been
deleted from the queue (and allocated the resource). Note that
the primary machine does not send the changed queue or even
the incremental difference from the old queue and the new
queue. It only sends enough information so that the fused
queues can carry out the state change.

The code for the fused state machine is shown in Fig. 8. In
F (j) we have used fwaiting as a fused queue. For simplicity,
we use a circular array based implementation (a linked list
based implementation is in [GO07]).

The above method has reduced the number of backup
state machines kf to f and yet it can tolerate any f faults
from P (1)..P (k). The recovery process is more complex than
replication but the significant savings (k-fold) in the reduced
number of active processes may justify this added complexity
especially when the probability of faults is small.

D. Algorithm B: Alternative Design of Fusion Machines

So far we had assumed that the clients interact only with
the primary machines which, in turn, interacted with fusion
machines to keep them up-to-date. In many examples, an
alternate design is possible which is closer to the structure of

P (i) :: i = 1..k
On receiving acquire from client pid

if (user == 0) { send(OK) to client pid;
user = pid;
send(USER, i, user) to F (j)’s;}

else { append(waiting, pid);
send(ADD-WAITING, i, pid) to F (j)’s;}

On receiving release
if (waiting.isEmpty()) { olduser = user;

user = 0;
send(USER, i, user − olduser) to F (j)’s }

else { olduser = user;
user = waiting.head();
send(OK) to waiting.head();
waiting.removeHead();
send(USER, i, user − olduser) to F (j)’s
send(DEL-WAITING, i, user) to F (j)’s ; }

Fig. 7. Algorithm A: Primary State Machine

RSM. Suppose that the commands to the primary machines
are also issued to the fusion machines. In the alternative
design, the primary machines do not send all the incremental
changes to the fusion machines. They only send minimal
change in state that cannot be determined by the fusion
machines themselves. In the resource allocator example, the
fused machine will be required to send the update only of
the user variable when it is extracted from the waiting list.
Since fusion processes keep the lists in fused form, they cannot
determine it directly without the help of primary processes. In
this design, the primary processes will be same as in Fig. 6
used for RSM approach except that the statement “send(OK)
to waiting.head();” will be changed to “ send(OK, user) to
user and fusion processes;”

The fusion process G(1) is shown in Figure 9.
We now do overhead analysis for both RSM and the fused-

SM approach. It is important to make a distinction between
two cases: the normal case and the worst case. As well-known
in system design, it is important to be fast for the normal case
whereas it is sufficient to guarantee recovery for the worst case
[Lam84b].

Overhead Under Normal Operation: As before, we consider
the case when there are k primary state machines and are
required to tolerate f faults. For replication, we require addi-
tional kf machines, f replicas for each of the primary state
machine. Each operation requires a message to the primary
state machine and f replicas.

For fused-SM approach, we require additional f machines.
Each operation still requires f+1 messages, one to the primary
state machine and f messages from the primary to fused state
machines. The message to the primary state machine is same
as for the RSM approach, however messages to the fused
state machines may contain additional state information so
that fused machines can execute the event despite availability



F (j) :: j = 1..f
fuser:int initially 0;
fwaiting:fused queue initially 0;

On receiving (USER, i, val)
fuser = fuser + ij−1 ∗ val;

On receiving (ADD-WAITING, i, pid)
fwaiting.append(i, pid);

On receiving (DEL-WAITING, i, user)
fwaiting.deleteHead(i, user);

// Fused queue implemented using array ;
fQueue: array[0..M − 1] of int initially 0;
head, tail, size: array[1..k] of int initially 0;

append(i, pid);
if (size[i] == M )

throw Exception(”Full Queue”);
fQueue[tail[i]] = fQueue[tail[i]] + ij−1 ∗ pid;
tail[i] = (tail[i] + 1)%M ;
size[i] = size[i] + 1;

deleteHead(i, pid);
if (size[i] == 0)

throw Exception(”Empty Queue”);
fQueue[head[i]] = fQueue[head[i]] - ij−1 ∗pid;
head[i] = (head[i] + 1)%M ;
size[i] = size[i]− 1;

isEmpty(i);
return (size[i] == 0);

Fig. 8. Algorithm A: Fused State Machine for Resource Allocation

only of fused data structures. In the example of resource
allocator, for Algorithm A, the primary machine sends an
additional message of size O(log k) every event (for the
release event, our code shows two messages for clarity, but
these two messages can easily be combined into a single
message). For Algorithm B, the clients send f + 1 messages
as for RSM; however, additional f messages may be required
to communicate “crucial” state to the fused state machines.

Let us analyze the space overhead for the RSM approach
for the resource allocator example. Assume that the waiting
list can have size at most O(m). The RSM approach will
require O(kfm) space to tolerate f faults among k machines.
The fused-SM approach requires O(fm + kf) space. The
component O(kf) is required because we allow O(1) state
information for each of the k state machines at the fused state
machines. In the example, we kept head[i], tail[i] and size[i]
for each state machine.

The number of events and messages required to be pro-
cessed at the fused state machine is k times more than the

G(j) :: j = 1..f
gUser:int initially 0;
gWaiting: fused queue; (see Fig. 8)

On receiving acquire resource i from client pid
if (gWaiting.isEmpty(i))

gUser = gUser + pid ∗ ij−1;
else gWaiting.append(i, pid);

On receiving release resource i from client pid
gUser = gUser − pid ∗ ij−1;

On receiving (OK, pid) from P (i)
gWaiting.deleteHead(i, pid);
gUser = gUser + pid ∗ ij−1;

Fig. 9. Algorithm B: Alternative Design of Fused State Machines

number of events processed by a replica. Thus, if k is large
the fused state machines may become bottleneck. In these
cases, one could easily use a hybrid of replicated and fused-
SM approach.

Complexity for Recovery after Failure: The RSM approach
has minimal overhead for recovery after failure. As soon as
a primary machine is detected to be crashed, the replica with
the highest id that survives can take over and start functioning
as primary. Note that the recovery time is independent of the
number of state machines k in the system.

The recovery overhead in the fused-SM approach is cru-
cuially dependent on the number of actual faults t. Let the
state of any primary state machine be O(m). First consider
the most probable case, i.e. t equals 1. The recovery algorithm
will require O(k) messages, one from each of the surviving
machines of size O(m). It will take O(km) time to recover
the state of the crashed machine. For t > 1 faults, we
would be required to solve t linearly independent equations.
Equivalently, it can be viewed as multiplying the fusion vector
with the inverse of the equation matrix. Since m is large
compared to t, we ignore the one time cost of computing the
inverse. Thus, we get the overall cost as O(m(kt+ t2)).

E. Alternative Methods for Systematic Coding
In this section, we briefly outline some other systematic

linear coding algorithms that can be employed in our setting.
In Section II-A, we had used transpose of Vandermonde ma-
trix. When the value of the variable counti changed by δ, we
simply added ij−1δ to the code stored at F (j). Alternatively,
we could add ji−1δ to the code stored at F (j) (i.e., switch
the roles of i and j).

It can be verified that fCountj now satisfies the invariant:

fCountj =
∑

i

ji−1 ∗ counti for all j = 1..f

Another way to look at fCountj is to consider the poly-
nomial

p(x) =
∑

i

counti ∗ xi−1



Then, fCountj is just the evaluation of the polynomial p(x)
on j. It can be verified that this method also allows the
system to recover from f faults. However, we have preferred
the transpose of the Vandermonde rather than Vandermonde
matrix for the following reason. We expect that for practical
applications k would be much larger than f . In our original
proposal the computation required for smaller number of faults
is much simpler. For small values of f , the value of fCountj
would be at most O(f log k+m) bits where m is the maximum
number of bits required to store any counti.

Another possibility is to use Cauchy Matrices as used in
[Rab89]. It is well known that any square submatrix of a
Cauchy Matrix is also a Cauchy matrix (and therefore non-
singular). The advantage of Cauchy Matrices is that they allow
systematic coding for finite fields. We can choose the generator
matrix G for coding as [I|C] where C is a Cauchy Matrix. Ev-
ery square submatrix of G is invertible. Vandermonde matrices
do not satisfy this property for finite fields. However, variants
of these matrices do satisy the required property[LF03]. We
have chosen to use transpose of Vandemonde matrices for their
simplicity in explaining the concepts in the context for infinite
precision fields and the discussion will carry over to variants
such as Cauchy Matrices.

III. BYZANTINE FAULTS

So far we had focused on crash faults. We now discuss
Byzantine faults where any state machine may change its
state arbitrarily. The RSM approach requires that there be 2f
backup replicas for each primary state machine. Since there
are 2f + 1 values available, even if f of them are faulty,
the majority will always be correct. When this approach is
applied to k different servers, the RSM approach requires
additional 2kf replicas. For data coding, it is well known that
by appending 2f parity check symbols, one can recover from
f unknown data errors. Can the same ideas be applied to fault-
tolerance of state machines?

The additional constraint we have for tolerating Byzantine
faults in state machines is that during normal (fault-free)
operation, we would like to have as little overhead as possible.
Specifically, we would like to avoid the overhead of decoding
the state during normal operations. To achieve this goal,
we give an algorithm that combines replication with coding
theory. We first consider the case of a single Byzantine fault.
Next we generalize the algorithm to tolerate f Byzantine faults
but assume that each state machine has O(1) state. Finally, we
give the algorithm that tolerates f Byzantine faults and each
primary state machine may have O(m) state.

A. Tolerating Single Byzantine Fault

We start with the case of detecting and tolerating a single
Byzantine fault among k primary state machines. The pure
RSM approach will require two replicas for every primary
machine resulting in 3k state machines in all. The pure Fused
SM approach would require k + 2 machines in all. However,
in the pure Fused SM approach, even the normal operations
may be inefficient. For crash faults, the decoding was required

only when there was a failure, a low probability event. For
Byzantine faults, a pure Fused SM approach would require
decoding even during normal operations just to detect if one
of the primary machines is faulty. We now show a hybrid
approach that is efficient during normal operation and still
requires less number of processes than the RSM approach.

Our algorithm is based on two observations. First, if we
have two copies of a primary state machine P (i), then one of
these copies is guaranteed to be correct. The RSM approach
relies on keeping an additional copy so that majority can be
used to determine which is correct. In our approach, we use the
concept of liar detection. We use the fused state machines to
determine which of the two copies is faulty. The liar detection
approach is more efficient in terms of the total number of
copies required. The second observation we use is that if
two copies of P (i) agree on some value, then that value is
guaranteed to be correct (because, there can be at most one
Byzantine fault).

Theorem 2: Let there be k primary state machines, each
with O(m) data structures. There exists an algorithm with
additional k + 1 state machines that can tolerate a single
Byzantine fault and has the same overhead as the RSM
approach during normal operation and additional O(m + k)
overhead during recovery.

Proof: We keep one replica Q(i) for every primary state
machine P (i) and a fused state machine F (1) for the entire
system. Thus, we keep 2k + 1 state machines in all. During
normal operation (when there is no fault), the value of any
output at P (i) and Q(i) must be identical. In this case, we
do not decode the value from F (1). As soon as P (i) and
Q(i) differ for any i, we have detected Byzantine fault in the
system. At this point, we know that either P (i) is correct or
Q(i) is correct, but do not know the identity of the liar yet.
We now invoke the liar detection algorithm as follows. Given
the state of P (i) and Q(i), in O(m) time we can determine
the data of size O(1) that is different in them and therefore
responsible for different outputs. We use the fused process
F (1) to determine which of these values is correct. This step
will require messages of size O(1) from other k − 1 primary
processes. In O(k) time the correct value of the data can be
determined. We now have the identity and therefore the state
of the correct process. The liar process can be killed and a
new copy of the correct process can be started.

Observe that in the above algorithm we never decode the
data structure at the fused state machine. During normal oper-
ations, we only do the encoding. Whenever there is Byzantine
fault detected, we use F (1) only to determine which of the
copies is correct. We can encode O(1) crucial information to
determine whether P (i) or Q(i) is a liar. Also observe that if
the fault occurs in the fused machine, it does not affect the
overall operation of the system and it is not even detected. If
early detection of fault in the fused machine is important for
some application, then periodically (or during off-peak period)
one could simply reset and recompute the fused process data.
Thus, decoding of the fused state machine is not required.



B. Tolerating f Byzantine faults in State Machines with O(1)
State

To generalize the above algorithm for f faults, we maintain
the invariant that there is at least one correct copy in spite of
f faults. Therefore, we keep f copies of each of the primary
server and f fused copies. Thus, we have total of k ∗ f + f
state machines in addition to k primary machines. The only
requirement on the fused copies {H(j), j = 1..f}is that if
H(j) is not faulty and if we have k − 1 correct values of the
primary machines, then the remaining one can be determined
using H(j). Thus, a simple xor or sum based fused state
machine is sufficient. Even though we are tolerating f faults,
the requirement on the fused copy is only for a single fault
(because we are also using replication).

The primary copy together with its f replicas are called
unfused copies. If any of f + 1 unfused copies differ, we call
the primary server mismatched. Let the value of one of the
copies be v. The number of unfused copies with value v is
called the multiplicity of that copy.

We now generalize Theorem 2 for f ≥ 1 faults. At first, we
will assume that the state space of each of the state machines
is small. Later, we generalize it to the case when each of the
state machine has O(m) state.

Theorem 3: There exists an algorithm with fk+ f backup
state machines that can tolerate f Byzantine faults and has the
same overhead as the RSM approach during normal operation
and additional O(kf) overhead during recovery.

Proof: We keep f copies for each primary state machine
and f overall fused machines. This results in additional kf+f
state machines in the system. If there are no faults among
unfused copies, all f +1 copies will result in the same output
and therefore the system will incur same overhead as the RSM
approach.

Our algorithm first checks the number of primary state
machines that are mismatched. First consider the case when
there is a mismatch between primary state machine P (i) and
its replica for at most one value of i = 1..k. Let that primary
machine be P (c). Since there are at most f faults, we can
conclude that we have the correct state of all other primary
state machines P (i), i 6= c. Now given the correct state of all
other primary machines, we can successively retrieve the state
of P (c) from fused machines H(j), j = 1..f till we find one
of the unfused machine that has f + 1 multiplicity. We will
have to decode at most f fused machines each at cost of O(k).

Now consider the case when there is a mismatch for at least
two primary state machines, say P (c) and P (d). Let α(c) and
α(d) be the largest multiplicity among unfused copies of P (c)
and P (d) respectively. Without loss of generality, assume that
α(c) ≥ α(d). We show that the copy with multiplicity α(c) is
correct.

If this copy is not correct, then there are at least α(c) liars
among unfused copies of P (c). We now claim that there are at
least f + 1−α(d) liars among unfused copies of P (d) which
gives us the total number of liars as α(c) + f + 1 − α(d) ≥
f+1 contradicting the assumption on the maximum number of
liars. Consider the copy among unfused copies of P (d) with

multiplicity α(d). If this copy is correct we have f +1−α(d)
liars. If this value is false, we know that the correct value has
multiplicity less than or equal to α(d) and therefore there are
at least f + 1− α(d) liars among unfused copies of P (d).

By identifying the correct value, we have reduced the
number of mismatched primary state machines by 1. By
repeating this argument, we get to the case when there is
exactly one mismatched primary machine.

Remark: In the proof of Theorem 3, whenever there are
more than one mismatched primary machines c and d, such
that α(c) ≥ α(d), it can be shown that α(c) ≥ df/2e + 1.
The claim follows because either the unfused copies of P (c)
or P (d) has at least df/2e + 1 correct copies; otherwise we
show that the system has more than f faults. There are 2f+2
unfused copies of P (c) and P (d). Since there are at most f
faults; there are at least f +2 correct copies. Therefore, either
there are df/2e + 1 correct copies among unfused copies of
P (c) or those for P (d). Hence, there is at least one copy with
multiplicity at least df/2e+ 1.

Based on the proof of Theorem 3, we get the algorithm C
shown in Figure 10, to tolerate f Byzantine faults with kf
replicated and f fused state machines.

In Algorithm C, we had to decode the fused state machines
during the recovery algorithm. The algorithm requires at most
f fusion processes to be decoded in the worst case. If there
are t ≤ f faults, we are guaranteed that after decoding t fused
state machines we will have f + 1 + t unfused copies. At
least one of these copies will have multiplicity of f + 1 or
more. Alternatively, we can try out all the values of unfused
copies of P (c) and {P (i), i 6= c} to compute H and thereby
determine multiplicity of various copies.

C. Tolerating f Byzantine faults for State Machines with
O(m) state

We now extend the algorithm to the case when each of
the primary state machine has O(m) state. We would like
to avoid decoding or encoding the entire fused process. As
observed earlier, one of the f+1 unfused copies is guaranteed
to be correct and it is sufficient to locate this copy using
fused copies. We give an algorithm with O(mf + kt2) time
complexity to locate the correct copy. Assume that we are
trying to locate the correct copy among unfused copies of
P (c).

In the algorithm shown in Fig. 11, the set Z maintains the
invariant that it includes all the correct unfused copies (and
may include incorrect copies as well). The invariant is initially
true because all indices from 1..f + 1 are in Z. Since the set
has f +1 indices and there are at most f faults, we know that
the set Z always contains at least one correct copy.

The outer while loop iterates until all copies are identical.
If all copies in Z are identical, from the invariant it follows
that all of them must be correct and we can simply return any
of the copies in Z. Otherwise, there exist at least two different
copies in Z, say p and q. Let w be the first index in which



Unfused Copies:
On receiving any message from client

Update local copy;
send state update to fused processes;
send response to the client;

Client:
send event to all unfused f + 1 copies;
if (all f + 1 responses identical)

use the response;
else

invoke recovery algorithm;

Fused Copies:
On receiving any update from unfused copy

if (all f + 1 updates identical)
carry out the update

else invoke recovery algorithm;

Recovery Algorithm:
Let t be the number of mismatched state machines;
while t > 1 do

choose the copy with largest multiplicity;
kill all incorrect unfused copies;
restart killed processes with the chosen copy;
t = t− 1;

// Can assume that t equals one.
// Let the mismatched machine be P (c)
for (j = 1; j ≤ f ; j + +)

create new copy using H(j) and P (i), i 6= c;
if (any copy has multiplicity f + 1)

recover to that copy and return;

Fig. 10. Algorithm C: Tolerating f Byzantine faults

states of copies p and q differ 1. Either copy p or the copy q
(or both) are liars. We now use the fused machines to recreate
copies of state[w]. Since we have the correct copies of all
other primary machines P (i), i 6= c, we can use them with
the fused copies H(j), j = 1..f . Note that the fused copies
may themselves be wrong so it is necessary to get enough
multiplicty for any value to determine if some copy is faulty.
Suppose that for some v, we get multiplicity of f + 1. This
implies that any copy with state[w] 6= v must be faulty and
therefore can safely be deleted from Z. We are guaranteed
to get a value with multiplicity f + 1 out of total 2f + 1
copies. Further, since copies p and q differ in state[w], we
are guaranteed to delete at least one of them in each iteration
of while. Eventually, the set Z would either be singleton or
will contain only identical copies. In either case, the while
loop terminates and we have located a correct copy.

1For simplicity, we view the state of machines as an O(m) array (though
in practice it could be any structure with size O(m)).

locate(int c)::
Z:set of copies initially {1..f + 1};

while (all unfused copies in Z not identical)
w = min{r : ∃p, q ∈ Z : statep[r] 6= stateq[r]};
j = 1;
while (no copy with multiplicity f + 1)

create state[w] using H(j) and P (i), i 6= c;
j = j + 1;

endwhile;
delete other copies from Z;

endwhile;
return any copy from Z;

Fig. 11. Locating A Correct Unfused Copy

We now analyze the time complexity of the procedure
locate. Assume that there are t ≤ f actual faults that occured.
We delete at least one index in each iteration of the outer
while loop and there are at most t faulty processes giving us
the bound of t for the number of iterations of the while loop.
In each iteration, creating state[w] requires at most O(1) state
to be decoded for each fusion process at the cost of O(k). The
maximum number of fused processes that would be required
is t. Thus, O(kt) work is required for a single iteration before
a copy is deleted from Z. To determine w in incremental
fashion requires O(mf) work cumulative over all iterations.
Combining these costs we get the complexity of the algorithm
to be O(mf + kt2).

By using the method locate, in the recovery algorithm we
get the following result.

Theorem 4: Let there be k primary state machines, each
with O(m) data structures. There exists an algorithm with
additional kf+f state machines that can tolerate f Byzantine
faults and has the same overhead as the RSM approach during
the normal operation and additional O(mf + kt2)) overhead
during recovery where t is the actual number of faults that
occured in the system.

Theorem 4 combines advantages of replication and coding
theory. We have enough replication to guarantee that there is
at least one correct copy at all time and therefore we do not
need to decode the entire state machine but only locate the
correct copy. We have also taken advantage of coding theory
to reduce the number of copies from 2f to f .

It can be seen that our algorithm is optimal in the number of
unfused and fused copies it maintains to guarantee that there
is at least one correct unfused copy and that faults of any f
machines can be tolerated. The first requirement dictates that
there be at least f + 1 unfused copies and the recovery from
Byzantine fault requires that there be at least 2f + 1 fused or
unfused copies in all.

IV. CONCLUSIONS

We have presented efficient distributed algorithms to tolerate
crash and Byzantine faults of state machines in distributed



systems. Our algorithms use a combination of replication and
coding theory to achieve efficiency in detection and correction
of faults. Our algorithms use fewer backup processes while
providing the same level of fault-tolerance.

V. ACKNOWLEDGEMENTS

I am thankful to Bharath Balasubramanian, Vinit Ogale and
Yogish Sabharwal for discussions on the topic. This research
was supported in part by the NSF Grants CNS-0718990, CNS-
0509024, Texas Education Board Grant 781, SRC Grant 2006-
TJ-1426, and Cullen Trust for Higher Education Endowed
Professorship.

REFERENCES

[BG09] Bharath Balasubramanian and Vijay K. Garg. A fusion-based
approach for handling multiple faults in data structures. Technical
Report ECE-PDS-2009-001, Parallel and Distributed Systems
Laboratory, ECE Dept. University of Texas at Austin, 2009.

[BJ87] K. P. Birman and T. A. Joseph. Reliable communication in the
presence of failures. ACM Transactions on Computer Systems,
5(1):47–76, 1987.

[BLMR98] John W. Byers, Michael Luby, Michael Mitzenmacher, and
Ashutosh Rege. A digital fountain approach to reliable distribu-
tion of bulk data. SIGCOMM Comput. Commun. Rev., 28(4):56–
67, 1998.

[CLG+94] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H.
Katz, and David A. Patterson. Raid: high-performance, reliable
secondary storage. ACM Comput. Surv., 26(2):145–185, 1994.

[Fid89] C. J. Fidge. Partial orders for parallel debugging. Proceed-
ings of the ACM SIGPLAN/SIGOPS Workshop on Parallel and
Distributed Debugging, published in ACM SIGPLAN Notices,
24(1):183–194, January 1989.

[GO07] Vijay K. Garg and Vinit A. Ogale. Fusible data structures for
fault-tolerance. In ICDCS, page 20. IEEE Computer Society,
2007.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM, 21(7):558–565, 1978.

[Lam84a] Leslie Lamport. Using time instead of timeout for fault-tolerant
distributed systems. ACM Trans. Program. Lang. Syst., 6(2):254–
280, 1984.

[Lam84b] Butler W. Lampson. Hints for computer system design. IEEE
Software, 1(1):11–28, 1984.

[LF03] Jérôme Lacan and Jérôme Fimes. A construction of matrices
with no singular square submatrices. In Gary L. Mullen, Alain
Poli, and Henning Stichtenoth, editors, International Conference
on Finite Fields and Applications, volume 2948 of Lecture Notes
in Computer Science, pages 145–147. Springer, 2003.

[LMS+97] Michael G. Luby, Michael Mitzenmacher, M. Amin Shokrollahi,
Daniel A. Spielman, and Volker Stemann. Practical loss-resilient
codes. In STOC ’97: Proceedings of the twenty-ninth annual
ACM symposium on Theory of computing, pages 150–159, New
York, NY, USA, 1997. ACM Press.

[Mat89] F. Mattern. Virtual time and global states of distributed systems.
In Parallel and Distributed Algorithms: Proc. of the International
Workshop on Parallel and Distributed Algorithms, pages 215–
226. Elsevier Science Publishers B.V. (North-Holland), 1989.

[MS81] F J MacWilliams and N J A Sloane. The Theory of Error-
Correcting Codes. 1981.

[OBG09] Vinit A. Ogale, Bharath Balasubramanian, and Vijay K. Garg.
A fusion-based approach for tolerating faults in finite state
machines. In IPDPS, pages 1–11. IEEE, 2009.

[P05] James S. Plank and Ying Ding 0002. Note: Correction to the 1997
tutorial on reed-solomon coding. Softw., Pract. Exper., 35(2):189–
194, 2005.

[PGK88] David A. Patterson, Garth Gibson, and Randy H. Katz. A case
for redundant arrays of inexpensive disks (raid). In SIGMOD ’88:
Proceedings of the 1988 ACM SIGMOD international conference
on Management of data, pages 109–116, New York, NY, USA,
1988. ACM Press.

[Pla97] J. S. Plank. A tutorial on Reed-Solomon coding for fault-tolerance
in RAID-like systems. Software – Practice & Experience,
27(9):995–1012, September 1997.

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching agreements in
the presence of faults. Journal of the ACM, 27(2):228–234, April
1980.

[Rab89] Michael O. Rabin. Efficient dispersal of information for security,
load balancing, and fault tolerance. J. ACM, 36(2):335–348, 1989.

[RST91] M. Raynal, A. Schiper, and S. Toueg. The causal ordering
abstraction and a simple way to implement it. Information
Processing Letters, 39(6):343–350, July 1991.

[Sch90] Fred B. Schneider. Implementing fault-tolerant services using
the state machine approach: A tutorial. ACM Comput. Surv.,
22(4):299–319, 1990.

[SSPvS04] Swaminathan Sivasubramanian, Michal Szymaniak, Guillaume
Pierre, and Maarten van Steen. Replication for web hosting
systems. ACM Comput. Surv., 36(3):291–334, 2004.

[TDOK04] Fathi Tenzakhti, Khaled Day, and M. Ould-Khaoua. Replication
algorithms for the world-wide web. J. Syst. Archit., 50(10):591–
605, 2004.

[vL98] J. H. van Lint. Introduction to Coding Theory. Springer-Verlag,
1998.


