
Exploiting Symmetry for Analysis of Distributed Systems1Vijay K. Garg2Department of Electrical and Computer Engineering,University of Texas, Austin, TX 78712-1084email: vijay@pine.ece.utexas.eduAbstractDistributed systems are di�cult to design and the simplest of them can have subtleerrors. Conventional automatic analysis techniques to catch these errors may be infea-sible because the system may have a large, or even an unknown, number of processes.These techniques, which are based on state space exploration, run into the state ex-plosion problem. Since most distributed systems have one or more sets of identicalprocesses, we exploit the symmetry to reduce the state space for automatic analysistechniques. We describe a model called Decomposed Petri Net that facilitates suchanalysis. We present symbolic and induction techniques to analyze concurrent systemsdescribed using Decomposed Petri Net. We illustrate our techniques by analyzing sev-eral examples: 2-out-of-3 problem, dining philosophers problem and mutual exclusionproblem. These techniques are applicable to systems that are con�gured either in astar topology or a ring topology. We also show how to extend these techniques foranalysis of systems that use asynchronous communication. In particular, we show thatfor many problems, multiple unbounded reliable channels can be reduced to a singlechannel for veri�cation purposes.Index Terms Automatic veri�cation, identical processes, symmetry, Petri Nets, concur-rent systems, ring networks.1 IntroductionDespite its economic bene�ts, distributed software has not gained wide acceptance mainlybecause of the di�culty involved in analyzing multiple processes. Research e�orts in rea-soning about programs can be divided into two groups - manual and automatic. Mostresearchers in distributed algorithms use manual reasoning based on the behavior of thesystem. Many proof systems have been developed for reasoning about safety and livenessproperties [Apt 80, Hoare 85, Milner 80, Misra 81, Lamport 84, Chandy 88]. Manual anal-ysis is error-prone and cumbersome; therefore we will restrict our attention to automaticanalysis of distributed programs.1A preliminary version of this paper appeared in 8th IEEE International Conference on DistributedComputing Systems, San Jose, CA 1988, pp 358-365.2supported in part by NSF Grant CCR 9110605, Navy Grant N00039-88-C-0082, TRW faculty assis-tantship award, and IBM Agreement 153. 1

Automatic analysis of concurrent systems consists of computer exploration of all possi-ble behaviors of the system. Many concurrent systems are based on �nite state machines,making them particularly amenable to computer analysis. This approach has been used bymany researchers, especially for the veri�cation of communication protocols [Gerhart 80,Aggarwal 84, Blumer 86, West 78, Za�rolpulo 80]. There are many existing algorithms tocheck if a given temporal logic formula is true in the global state transition graph[Clarke86a, Dill 86] There are two main hurdles to this approach - the number of processes maynot be known initially, and the number of states may be too large. For illustration of di�-culties involved in this approach consider the mutual exclusion algorithm in a ring network[Dijkstra 85, Clarke 86b]. If we know the number of processes initially (say 5), then wecould construct the global state graph and check for any property in the graph. However,this approach becomes infeasible if the number of processes is not known initially or islarge (say 100).There have been many e�orts to contain the state explosion problem. Many researchers[Dong 83, Kurshan 85] have studied this problem in the context of automatic protocolveri�cation, where this problem is dealt with by collapsing multiple states into a singlestate while preserving properties that are important for veri�cation. These e�orts, however,are not very general and can be applied only for some speci�c properties such as deadlock-freedom. Moreover, they cannot be used for reasoning in networks with an unknownnumber of identical processes. Clarke et. al.[Clarke 86b] propose inductive techniques toprove properties of networks with identical �nite state processes. Their approach consists ofestablishing a correspondence relationship between the global graph of n processes and theglobal graph of n+1 processes. They show that if the correspondence can be established,then any formula expressed in Indexed Computation Tree Logic (ICTL) (a proper subsetof CTL temporal logic) which holds in the initial state of a network with a small numberof processes will hold for the network with a large number of processes. However, thestep of establishing the correspondence is manual and could be di�cult enough to defeatthe original purpose of avoiding manual analysis. Our aim in this research is to minimizehuman involvement during the analysis. In their later paper[Clarke 87], they de�ne a notionof closure of a process P denoted as P �. Using this notion, they show that if two systemswith r and r + 1 processes are equivalent under P �, then any system containing morethan r processes will also be equivalent for formulas expressed in ICTL. Again, the processof obtaining P � is manual, and may require creativity from the veri�er. Kurshan andMcMillian [Kurshan 89] have also considered this problem. Their method requires �ndinga correct process invariant, and then checking that it satis�es the induction requirements(base case, and induction case) and the speci�cation for which the system is being analyzed.If the invariant is known, then all above steps can be carried out manually. However, theprocess of �nding an appropriate invariant is manual. Our techniques are much simpler,and do not require as much human involvement.In this paper, we present algorithmic techniques for the analysis of distributed systemswhich have many identical processes. As most distributed systems have one or more setsof identical processes, these techniques have wide applicability, especially to the networkswith a star, or a ring topology. A star topology consists of a server (master) process anda set of identical client (slave) processes. Client processes interact only with the server2

process forming a star topology. This topology is common in centralized systems andvarious network servers such as name servers and printer servers. A ring topology consistsof a set of identical processes communicating in a circular fashion. Each process hastwo neighbors and all messages originating at the process must go through either of theneighbors. This topology of processes is common for local area networks with token ringsuch as the Cambridge Ring Network [Needham 84].All of the above networks show symmetry and it is desirable to have methods to reducethe global state space by exploiting this symmetry. We propose the following methods inthis paper.1. Symbolic Analysis : Instead of computing the actual global state, this method ex-presses the global state in terms of symbols. These symbols are then manipulatedto compute other reachable global states. A symbol could stand for any unspeci�edcomponent of the system such as the number of processes. With this method, onesymbolic state represents multiple computed states thus reducing the state spacesubstantially. We also show that when the number of processes is large, it may bemore useful to treat the system as containing an unbounded number of processes.This analysis also cuts down the search-space signi�cantly.2. Induction Analysis : Instead of studying the system with a large or an unknownnumber of processes, this method analyzes it with a small number of processes andthen the invariance of assertions is analyzed with the increase in the the number ofprocesses. Since the analysis is done for a small number of processes, the reductionin the global state space is substantial.This paper is organized as follows. Section 2 describes our formal model of processescalled Decomposed Petri Net (DPN). This model facilitates symbolic and asymptotic anal-ysis due to its ability of modeling multiple processes through multiple tokens, and its use ofin�nite number of tokens to model unbounded resources. Section 3 discusses symbolic tech-niques for analysis of systems expressed in the DPN with star topology. It illustrates thesetechniques for 2-out-of-3 problem. We extend these techniques for asynchronous commu-nication. We show that multiple unbounded channels may be treated as a single channelfor the purposes of logical analysis. Section 4 presents induction techniques applicableto a ring topology. Application of these techniques is shown to the dining philosophersproblem, and the mutual exclusion problem in a ring. We also discuss how induction tech-niques can be applied when asynchronous messages are used. Section 5 makes concludingobservations and discusses some future directions of research in this area.We use calculational style of proofs for many of our theorems. A proof that [A � C]will be rendered in our format asA= f hint why [A � B] gB= f hint why [B � C] gC 3

We also allow implies ()) in the leftmost column. For a thorough treatment of this proofformat we refer interested readers to [Dijkstra 90].2 Decomposed Petri Net(DPN) ModelWe �rst describe our formal model of computation. Since we are interested in automaticanalysis, and most interesting properties for Turing-equivalent models are undecidable, weuse Decomposed Petri Net model for our formal analysis[Garg 88b, 91b]. DPN is equivalentto Petri nets, but have the added advantage of possessing modularity. To decompose a Petrinet, it is partitioned into multiple units which share the transitions of the Petri net. Eachunit contains some of the places of the original Petri net. Intuitively, the decompositionis such that the tokens within a unit need to synchronize only with tokens in other units.A unit is a generalization of a �nite state machine. Formally, a DPN (Decomposed PetriNet) D is a tuple (�; U) where� � = a �nite set of symbols called transition alphabet� U = a set of units (U1; U2::Un); each unit is a �ve tuple, i.e., Ui = (Pi; C0i ;�i; �i; Fi)where:{ Pi is a �nite set of places{ C0i an initial con�guration, also called marking, is a function from the set ofplaces to nonnegative integers N and a special symbol `*'. i.e.,C0i : Pi !(N Sf�g). The symbol `*' represents an unbounded number of tokens. A placewhich has * tokens is called a *-place. This component of a unit is the only onethat changes as DPN executes. We use Ci to represent the con�guration at anypoint of computation.{ �i is a �nite set of transition labels such that �i � �.{ �i is a relation between Pi � (�i [f�g) and Pi, i.e., �i � (Pi � (�i [f�g)) � Pi.� represents null transition. �i represents all transition arcs in the unit.{ Fi is a set of �nal places, Fi � Pi.The con�guration of a DPN can change when a transition is �red. A transition withthe label a is said to be enabled if for all units Ui = (Pi; Ci;�i; �i; Fi) such that a 2 �ithere exists a transition (pk; a; pl) with Ci(pk) � 1. Informally, a transition a is enabled ifall the units that have a transition labeled a, have at least one place with non-zero tokensand an outgoing edge labeled a. For example, in Figure 1 get-item is enabled only if bothp4 and p5 have tokens. A transition may �re if it is enabled. The �ring will result in anew marking C 0i for all participating units. Based on this, we de�ne the next-con�gurationfunction i : N n � �! N n for a Unit Ui (with jPij = n) as i(Ci; a) = C 0i where:C 0i(pk) = Ci(pk)� 1C 0i(pl) = Ci(pl) + 1:C 0i(p) = Ci(p) for other p: 4

Figure 1: A DPN machine for the Producer Consumer ProblemA *-place remains the same after addition or deletion of tokens.As an example of a DPN machine, consider the producer consumer problem. Theproducer produces items which are kept in a bu�er. The consumer takes these items fromthe bu�er and consumes them. The solution requires that the consumer wait if no itemexists in the bu�er. The consumer can execute get-item only if there is a token in the placep4. Note how the *-place is used to represent an unbounded number of tokens.We can extend the i function to a sequence of transitions as follows:i(�; tj�) = i(i(�; tj); �);i(�; �) = �where � represents the null sequence, and tj� represents the sequence tj followed by �.The language L of a Decomposed Petri net D = (�; U) is de�ned asL = fx 2 ��j8i : C 0i = i(C0; x=�i) : C 0i(p) = 0 for all p 2 Pi � FigThus, all the tokens in a �nal con�guration must be in �nal places. The class of lan-guages de�ned by DPN can alternatively be characterized by concurrent regular expres-sions[Garg 88b, 89, 91b]. These expressions are more powerful than regular expressions,and are de�ned using operations of choice (+), concatenation (.) , Kleene closure (*),interleaving (k), interleaving-closure (�), and synchronous composition (2). As we will beusing these operators in this paper for some of our examples, we de�ne them below:Let L1 and L2 be two languages de�ned over �1 and �2. Then,� L1 + L2 = L1 [L2 .� L1:L2 = fx1x2jx1 2 L1; x2 2 L2g� L� = Si=0;1;::Li where Li = L:L:::i times� Interleaving between two strings is de�ned as follows:ak� = �ka = fag 8a 2 � 5

a:skb:t = a:(skb:t) [b:(a:skt) 8a; b 2 �; s; t 2 ��Thus, abkac = fabac; aabc; aacb; acabg:This de�nition can be extended to interleaving between two languages in a naturalway, i.e. L1kL2 = fwj9s 2 L1 ^ t 2 L2; w 2 sktg Note that similar to L1kL2, we alsoget L1kL1 denoted by L(2)1 .� Taking repeated interleaving of any language gives us its interleaving closure. Intu-itively, the interleaving closure lets us model the behavior of an unbounded numberof identical independent sequential agents. It is formally de�ned as L� = Si=0;1;::L(i):� L12L2 = fwjw=�1 2 L1; w=�2 2 L2g where w=S denotes the restriction of the stringw to the symbols in S. Intuitively, synchronous composition ensures that all eventsthat belong to two sets occur simultaneously.The de�nition of concurrent regular expressions and their relationship with DecomposedPetri nets is summarized in Appendix A. For further details of DPNs and its comparisonwith Petri nets [Peterson 81, Reisig 85], readers are referred to [Garg 88a,b, Garg 91].In this paper, we will assume that all places in a DPN are �nal, and therefore thelanguage L accepted by any DPN is pre�x-closed, i.e. if t 2 L, then all pre�xes of t arealso in L. We say that s � t if s is a pre�x of t, and s < t if s is a pre�x of t and notequal to t. We treat two processes identical if their language is the same. This requiresan assumption of determinism in processes. For non-deterministic systems, the languageaccepted (or the set of traces) may not be su�cient and more general structures such asset of failures[Hoare 85] are required. Similarly, we have assumed the interleaving modelof concurrency as opposed to the model of partial orders[Pratt 86].We now describe methods to analyze processes described using DPN for various net-works.3 Symbolic Analysis: Star TopologyIn these networks there is one server process that communicates with multiple clients. Weassume that each of the clients has identical behavior. One of the advantages of the notionof token in a DPN is that it can represent a process; therefore, multiple identical processesare represented by multiple tokens in some state. If the number of processes is large or isunknown initially, we may use a symbol (say n) in a state to represent the unknown numberof processes. Now we do the rest of the analysis in terms of these symbols. Alternatively,we may use � instead of n, which would tell us the behavior of the system when n is verylarge.We use symbolic analysis for networks with star-topology. A DPN representation ofsuch a network would generally have two units - one for the server process and one formultiple clients. The multiplicity of clients is represented by the presence of multipletokens in some state. In this section, we �rst show how symbolic analysis can be donefor a system with synchronous messages. We then show how our methods can be used forsystems with asynchronous messages. 6

3.1 Synchronous MessagesWe do symbolic reachability of a system with synchronous messages by constructing areachability graph of its con�gurations. A reachability graph is a directed graph with eachnode representing a marking, and a directed edge from one marking (say M1) to another(say M2) if there is a transition that takes the DPN from marking M1 to M2. The edge islabeled with the name of the transition. We allow coordinates of a marking to be symbolic.As an example of symbolic analysis consider the 2-out-of-3 problem.
Figure 2: Example of symbolic analysis of DPNThe 2-out-of-3 problem is a good abstraction of many resource contention problems.Assume that a memory scheduler has three memory blocks and that any process requirestwo memory blocks to execute. A non-preemptive procedure for such a system with nprocesses is given in Figure 2. We place n tokens in the state p1 to signify n processes andthree tokens in the state p5 to signify availability of three memory blocks. To analyze thesolution, we draw a reachability graph of its con�gurations. The initial con�guration is(n; 0; 0; 0; 3; 0). With this con�guration only a mem transition can take place, resulting inthe con�guration (n � 1; 1; 0; 0; 2; 1) which is explored next. This procedure is continueduntil all nodes in the graph have been explored. Following it in our example, we �nd thata deadlock exists if the number of processes is greater than or equal to 3 (see Figure 2).As in the above example, assume that symbolic reachability graph G is �nite. G canalso be viewed as a �nite state automata. Let C(k) represent interleaving of k clients, andS represent the server. The above system, then can be written as C(k)2S. Let j be thehighest index such that n�j is one of the component in one of the states of the reachabilitygraph. Then, L(G) = L(C(k)2S) 8k � jTo see this, consider any k � j. On substituting for n, the value of k, all the coordinates7

of states in G will be legal. Now consider any string s. By virtue of the construction of G,s can be simulated in G if and only if it can also be simulated in S and C(k).Alternatively, we can do asymptotic analysis by replacing n with �. Doing a simplereachability indicates that the system can deadlock.With the brute force method of taking the cross product of all possible states of allprocesses, there would be 425 states for a system with 25 processes, in contrast to 9 statesthat need to be explored if the symmetry is exploited. We note here that the saving resultsfrom two sources. Firstly, we do not make any distinction between identical processes.Hence, a con�guration in which process 1 is in state 1 and process 2 is in state 2 istreated equivalent to the con�guration in which the states of both processes are switched.Secondly, if the number of processes is treated as one of the parameters and the size ofthe symbolic reachability graph is �nite, then we have used the fact that the con�guration(n� 1; 1; 0; 0; 2; 1) is valid for all n � 1.Since the change in the con�guration of a DPN is always additive to coordinates, theabove construction of the symbolic reachability graph can be carried out automatically.It is su�cient to keep the negative term for each place with a symbolic coordinate. Thechief disadvantage of this method is that the reachability graph may not be �nite. !-notation[Karp 68] can be used to make the graph �nite but due to the loss of informationit can only solve the coverability problem[Peterson 81]. As this method is independentof the issues that arise due to the symbolic nature of coordinates, we do not discuss thismethod here and refer interested readers to [Peterson 81].3.2 Asynchronous MessagesWe will be interested in the input-output behavior of processes using asynchronous mes-sages. We adapt our model for input-output behavior as follows. We pre�x each transitionwith a + or a �. A + before some symbol represents that it is an input (or a receive)event, and a � represents an output (or send) event. Thus, +a represents input a, and�a represents output a. Given any string s of such symbols we can break it into its inputand output parts, called in(s) and out(s). For example, if s = +a + b � a + c � c, thenin(s) = abc, and out(s) = ac. This de�nition can be extended to languages in a naturalmanner. We de�ne a function B : 2�� ! 2����� as follows:B(L) = f(i; o)j9x 2 L : i = in(x) ^ o = out(x)g.This functions takes a language as input and returns a set of input-output pairs for thatlanguage (its i/o behavior).Two di�erent languages may have the same i/o behavior as shown by the followingexample:L1 = (�;+b;+b � c;�c)L2 = (�;+b;+b � c;�c;�c+ b)However, i/o behavior for both languages is given byf(�; �); (b; �); (b; c); (�; c)gTwo languages are identi�ed with the same input-output behavior because we lose se-8

quencing relationship between events in input and output channels. In the above example,we know that if the input is b, then output is c. However, we do not know which happens�rst. In both cases, however, if the entire input i is present at the input channel, thenthe output o of the process will always be such that (i; o) is in the input-output behavior.This characterization is su�cient for many practical purposes. In particular, input-outputcharacterization is very useful to model the situation in which output of one process be-comes input of the other. We formally de�ne input-output semantics of a process on �Pas BehP � (�P)� � (�P)�, with the following constraint:(i) (x; y) 2 BehP) 8x0 � x 9y0 � y : (x0; y0) 2 BehP .(ii) (x; y) 2 BehP) 8y0 � y 9x0 � x : (x0; y0) 2 BehPThe constraint (i) simply says that input is considered to a�ect a system as a streamof events. Thus, if input x produced y, then any pre�x of x must also produce a pre�x ofy. Similarly, (ii) says that output is also a stream of atomic events. If y is produced as aresult of x, then every pre�x of y must be a possible output of some pre�x of x.We note that we have concerned ourselves only with the �nitary behavior of processes.Thus, input-output behavior is described using �nite strings. As a result, this modelcannot be used to analyze properties such as fairness which require speci�cation of in�nitebehavior of processes[Manna 90]. Since many properties of systems can be analyzed usingonly �nite sequences, we do not consider this as a serious limitation of our model.Some examples of i/o-processes are:ZEROA = (A;�); process that does nothingIDENTA = (A; f(x; x)jx 2 A�g); process that copies input to the outputRUNA = (A; f(x; y)jx; y 2 A�g); process that can do anythingEPSA = (A; (�; �)); process that accepts only �BUFA = (A; f(x; y)jy � xg; process that copies input to output with delay.Our main motivation for de�ning input-output composition is to formalize and exploitthe notion of serial composition in which the output of one process becomes input of theother. We de�ne serial product between two processes denoted by P;Q as(x; y) 2 BehP ;Q if and only if 9z : (x; z) 2 BehP ^ (z; y) 2 BehQIt can be easily shown that ; is an associative operation with ZERO as its zero, and IDENTas its identity. We now assume that processes are connected through unbounded reliableFIFO channels. We use P o as a short form for P ;BUF . We note that(x; y) 2 BehP o= (x; y) 2 BehP ;BUF= 9z : (x; z) 2 BehP ^ (z; y) 2 BehBUF= 9z : (x; z) 2 BehP ^ y � z= 9v : (x; yv) 2 BehPIt is the last condition that we will use as the de�nition of P o. Considering o as a unaryoperator, it is easy to see that it is idempotent, i.e., (P o)o = P o.As shown in Figure 3, our system consists of multiple clients operating in parallel. Theinput-output behavior of two processes is given by the following Lemma. From now onwe will treat a process P equivalent to its BehP . Thus, instead of writing (x; y) 2 BehP ,we will write (x; y) 2 P . We �rst derive an expression for input-output behavior of two9

Figure 3: Asynchronous System with Multiple Bu�er Processesprocesses running asynchronously.Lemma 1 PkQ = f(x; y)j9xp; xq; yp; yq : (xp; yp) 2 P; (xq; yq) 2 Q;x 2 xpkxq; y 2 ypkyqgProof:(x; y) 2 B(L(P)kL(Q))=fde�nition B g9s 2 L(P)kL(Q) : in(s) = x ^ out(s) = y=fde�nition k g9sp 2 L(P); sq 2 L(Q) : s 2 (spksq) ^ in(s) = x ^ out(s) = y= f breaking s g9sp 2 L(P); sq 2 L(Q); xp; yp; xq; yq : in(sp) = xp ^ in(sq) = xq^ out(sp) = yp ^ out(sq) = yq ^ x 2 xpkxq ^ y 2 ypkyq=fde�nition B g9xp; yp; xq; yq : (xp; yq) 2 P ^ (xq; yq) 2 Q ^ x 2 xpkxq ^ y 2 ypkyqThe above Lemma shows that during interleaving of two processes, an input symbol isexecuted by either of the process. Similarly, output of both machines are also interleaved.We next show that an asynchronous execution of two processes with independent bu�ersis equivalent to their execution with a single bu�er.Lemma 2 (PkQ)o = P okQoProof:(x; y) 2 (PkQ)o= f de�nition o g9v : (x; yv) 2 (PkQ)= f Lemma 1 g9v; xp; xq; yp; yq : (xp; yp) 2 P ^ (xq; yq) 2 Q ^ (x 2 xpkxq) ^ (yv 2 ypkyq)) f property k; og9xp; xq; y0p; y0q : (xp; y0p) 2 P o ^ (xq; y0q) 2 Qo ^ (x 2 xpkxq) ^ (y 2 y0pky0q)= f Lemma 1 g(x; y) 2 P okQo= f Lemma 1 g 10

9xp; xq; yp; yq : (xp; yp) 2 P o ^ (xq; yq) 2 Qo ^ (x 2 xpkxq) ^ (y 2 ypkyq)) f property of o g9xp; xq; yp; yq; vp; vq : (xp; ypvp) 2 P ^ (xq; yqvq) 2 Q ^ (x 2 xpkxq) ^ (y 2 ypkyq)) fv 2 vpkvqg9xp; xq; yp; yq; vp; vq; v : (xp; ypvp) 2 P ^ (xq; yqvq) 2 Q^ (x 2 xpkxq)^ (yv 2 ypvpkyqvq)= f Lemma 1 g9v : (x; yv) 2 (PkQ)= f de�nition o g(x; y) 2 (PkQ)oThe above Lemma can be easily generalized to the following Theorem.Theorem 3 Let P0; :::; Pn�1 be any n processes. Then, (P0k:::kPn�1)o = P o0 k:::kP on�1Proof: Using induction on n.Theorem 3 can be used to reduce the state-space of a system considerably. Insteadof analyzing the system with k FIFO channels, it may be su�cient to do so with onlyone channel. This is illustrated in Figure 3. This theorem may be used to analyze anasynchronous version of the 2-out-of-3 problem with each client having an independentchannel to the server.4 Induction Analysis: Ring TopologyAs the number of processes in a ring may be a large, variable or unknown quantity, theconstruction of the global state graph is not feasible. It is desirable to have a methodthat analyzes the network with a small number of processes, and then generalize resultsto the network with a larger number of processes. The key idea that can be frequentlyapplied for ring topology is that of induction. The principle of induction states that if anobserver cannot distinguish between two systems with i and i+1 processes with any inputto both systems, then he also cannot distinguish between a system with i processes andany other system with more than i processes. It follows that it is su�cient to analyze thenetwork with i+1 processes for any input-output assertion on more than i processes. Weillustrate this by analyzing the dining philosopher's problem. If the number of philosophersis large, a simple reachability technique will run into a state explosion problem. Symbolictechniques are not applicable to this problem because the behavior of each philosopher isnot identical as they interact with di�erent entities as opposed to a client-server model inwhich all servers interact with the same entity - the server. To analyze the problem witha large number of philosophers, we analyze it for a small number of dining philosophers(two in our example). We then show that the same analysis will hold for any number ofphilosophers. We next describe the problem, a deadlock-free solution and its automaticanalysis. 11

4.1 The Dining Philosophers ProblemThis problem, due to Dijkstra, requires an algorithm for philosophers who are sitting ona circular table. There are �ve philosophers and �ve forks, each of which is betweentwo philosophers. There is a bowl of spaghetti in the center which can be eaten by anyphilosopher but its tangled nature requires that a philosopher use both his left and rightforks.A solution to this problem which assumes synchronous communication is as follows. Aphilosopher when hungry either picks up both the forks simultaneously or waits for themto be available. This way of picking forks guarantees that there will not be any deadlock.To express our solution, we assume that philosopher i owns fork i and needs to ask onlythe right neighbor for the use of i + 1th fork. For convenience we will use ui;j to denotethat philosopheri picks up forkj and di;j to denote that philosopheri puts down forkj .With this notation, Figure 4 shows the solution expressed in the DPN model.
Figure 4: Dining Philosophers: AnalysisTo show that the solution is free from deadlock, we could use a computer to explore thereachable states. Automatic analysis, in the past, meant exploring the cross product of allpossible states of �ve philosophers and �ve forks (or hundred philosophers and hundredforks for a hundred philosopher problem). Our technique, in contrast, exploits the sym-metry in the problem so that the complexity of analysis for �ve philosophers is the sameas that of, say, one hundred philosophers. Various steps in our technique are as follows:� Let SY Sk = (PHILi2::2PHILi+k�1). Find the smallest value of k for whichSY Sk = SY Sk+1. For most symmetric cases k = 1 or 2 will su�ce. For diningphilosopher SY S1 = SY S2 as shown in Figure 4.12

� To analyze a ring with any number of units, say n, it is su�cient to analyze itwith k + 1 units. Thus, for our case it is su�cient to analyze the system withtwo philosophers to make any assertion about a system with �ve or one hundredphilosophers.� We next construct a reachability graph for two philosophers and �nd that there isno state with out-degree equal to zero (see Figure 4). We conclude from this thatthe system with �ve philosophers will also be deadlock free.4.2 Induction Analysis with FiltersObserve that simple induction required that the observer not be able to detect the di�erenceon any input. This constraint may prove too restrictive to apply induction techniques forcertain problems. Therefore, we relax the condition using the concept of �lters. Filterscapture the condition that not all inputs may be possible for the system, and therefore weare willing to call two systems equivalent as long as their outputs do not di�er on possibleinputs.
Figure 5: Mutual Exclusion in a RingWe illustrate the use of �lters by a mutual exclusion algorithm in a ring network. Clarkeet.al.[Clarke 86] use the same example to illustrate their manual induction technique.Dijkstra[Dijkstra 86] also uses the same example to show how regular expressions can beused to prove the correctness of certain algorithms. His proof, again, is manual. Themutual exclusion problem in a ring of processes is as follows. The machines are connectedin a ring fashion and can communicate with their neighbors. Each process can be in one ofthe three states: normal (n), delayed (d) or critical (c). A process can execute the criticalregion only if it is in the critical state. The objective is to ensure that at most one machine13

at a time is in a critical state. We introduce the notion of a token which is held by asingle machine. To avoid passing tokens unnecessarily, we introduce a request signal whichindicates an interest in the token. A process that wants to execute the critical region, anddoes not have the token, gets delayed. Following the algorithm, tokens are sent to the left,whereas request signals are sent to the right (see Figure 5). We will also color each of theprocess as white or black depending upon whether an interest in the token exists to theleft. Figure 5 shows the example of a distributed mutual exclusion algorithm in a ringnetwork expressed in the DPN model.If we try to apply the induction technique that was used for dining philosophers we�nd that step 1 is not applicable, that is, there does not exist any k for which SY Sk isthe same as SY Sk+1. This can also be seen intuitively from the algorithm. An observercan detect the number of processes he is connected to by sending multiple token messages.The number of processes in a system would be equal to the maximum number of tokenmessages that are absorbed by the system.

Figure 6: (a) Composition of Two Processes with Filter (b) FilterTo solve this problem, we use the notion of �lters to constrain the observer to send atmost one more token message than it receives from the output. We now show the steps inthe modi�ed induction technique using the mutual ring example.� Model all the constraints on the input output behavior through a process calledFILTER. Figure 6 shows such a �lter for our example.14

� Verify that a process in the system indeed satis�es the constraint imposed by the�lter. If we substitute all request messages in an ENTITY by �, ti�1 by tI and ti bytO we do get the �lter as a result.� Find the smallest k such that a �ltered system with k units is identical to a �lteredsystem with k + 1 units. That is,FILTSY Sk = (ENTITYi2::::2ENTITYi+k�12FILTER). For our example we�nd that FILTSY S1 6= FILTSY S2 but FILTSY S2 = FILTSY S3. It is easy tocheck that SY Sk 6= SY Sk+1 for any value of k.� Thus, from the principle of induction we deduce that it is su�cient to analyze thealgorithm with three processes to make an input-output assertion on any number ofprocesses greater than three.4.3 Asynchronous MessagesIn this section, we consider a ring of processes in which process i may receive messagesfrom process i � 1, and it can send messages only to the process i + 1. We assume thatthe link between processes is asynchronous, FIFO and reliable. We use the transition(q; a=b; r) as an abbreviation for two transitions, one after another, representing (q;+a; q0)and (q0;�b; r). This convention enables us to specify each process as a �nite state machinewith each transition labeled with input and output.A process P is called complete i� (x; y) 2 P) 8x0 � x 9y0 � y : (x0; y0) 2 P: Thisproperty may not be true for all processes, but may be desirable if the process is requiredto respond to all inputs. We also say that P � Q if BehP � BehQ.Our aim is to analyze a ring of processes connected through reliable FIFO links (BUFprocesses). The following Lemma results in simpli�cation of such networks by combiningmany channels into one.Lemma 4 (P ;Q)o � P o;QoProof:(x; y) 2 (P ;Q)o= f de�nition of o g9v : (x; yv) 2 (P ;Q)= f de�nition of ; g9v9z : (x; z) 2 P ^ (z; yv) 2 Q= f exchange quanti�cation g9z9v : (x; z) 2 P ^ (z; yv) 2 Q) f Property of og9z : (x; z) 2 P o ^ (z; y) 2 Qo= f de�nition of ; g(x; y) 2 (P o;Qo)The inequality in the other direction require Q to be complete.15

Lemma 5 If Q is complete, then P o;Qo � (P ;Q)oProof:(x; y) 2 (P o;Qo)= f de�nition of ; g9z : (x; z) 2 P o ^ (z; y) 2 Qo= f de�nition og9z; u; v : (x; zu) 2 P ^ (z; yv) 2 Q)f Q is complete g9z; u; v0 : (x; zu) 2 P ^ (zu; yv0) 2 Q= f de�nition of ; g9v0 : (x; yv0) 2 P ;Q= f de�nition og(x; y) 2 (P ;Q)oTo see that the lemma does not hold if Q is not complete, consider the following ex-ample:P = f(�; �); (a; p); (ab; pq)gQ = f(�; �); (p; c)g(P ;Q)o = f(�; �); (a; �); (a; c)gP o;Qo = f(�; �); (a; �); (a; c); (ab; �); (ab; c)gThe generalization of the above Lemma for any number of processes requires the fol-lowing observation.Lemma 6 If P and Q are complete, then P;Q is complete.Proof:Consider (x; y) 2 P . Let x0 � x(x; y) 2 P= f de�nition ; g9z : (x; z) 2 P ^ (z; y) 2 Q) fP is complete g9z; z0 � z : (x0; z0) 2 P ^ (z; y) 2 Q) fQ is complete g9z0; y0 � y : (x0; z0) 2 P ^ (z0; y0) 2 Q= f de�nition ; g9y0 � y : (x0; y0) 2 P ;QLemma 7 Let Pi for i = 1::n� 1 be complete processes. Then,(P0;P1; :::;Pn�1)o = P o0 ;P o1 ; :::;P on�1Proof: Using induction on n and Lemmas 4, 5, and 6.Now, we can analyze any chain of identical processes using the following Theorem. Inthis section we use P i to mean P ;P ; :::i times.16

Theorem 8 Let P be any process such that P k = P k+1 for some k. Assume that (P k)osatis�es some input-output constraint. Then so does (P o)n for any n � k.Proof: Using induction on n. Assume that the theorem is true for n = m which is at leastk. Then,(P o)m+1= f Lemma 7 g(Pm+1)o= f de�nition exponent g(P k+1;Pm�k)o= f Hypothesis P k = P k+1g(P k;Pm�k)o= f de�nition exponentg(Pm)o= f Lemma 7 g(P o)mWe can use Theorem 8 to analyze a ring of n processes connected to each other withbu�ers. From the theorem, we know that the input/output behavior is the same as thatof k processes with a bu�er at the end.We illustrate an application of the theorem using a fault-tolerant token ring sys-tem[Misra 83]. There are two tokens owing in the system - green and red. Each processexpects to see them alternating one after another. If any of them sees the same coloredtoken twice, it assumes that the other token is lost and generates it. Figure 7(a) showsthe state machine representation of the process. We �nd that P = P 2. Therefore, givena chain of any number of processes, we analyze it with just one process followed by abu�er. In this example, we can easily show that the response on any string is correct. Forexample, the output of the system is always in (gr)�We now extend our model of the system to incorporate faults. We will assume that abu�er can never lose two consecutive messages. We model unreliable bu�er as compositionof two processes - ERR and BUF. ERR as shown in the Figure 7(b) models losing of atoken. Since composition is associative, we associate ERR with P instead of BUF. Thus,the system can be represented as n number of Q processes connected through reliableasynchronous bu�ers, where Q = P ;ERR. Q is shown in Figure 7(c). It can again beseen that Q = Q;Q. Therefore, we conclude that it is su�cient to analyze the process Qconnected to itself through a bu�er. We do this analysis through simple reachability whereeach node in the reachability tree denotes the state of the process Q and the state of thechannel. It can again be checked that the output is always in (gr)� in spite of any loss ofnon-consecutive messages.Another example of a property that we can check is the unstability of the network, thatis, whether the number of messages in the channel can grow in an unbounded manner.Doing the analysis for a single process, we �nd that the reachability tree terminates andtherefore the system is stable (see Figure 7(d)).We note that most of ring networks exhibit some asymmetry; initially all machines,17

Figure 7: Fault-Tolerant Token Ring Systemexcept one, are in the same state. The machine that has di�erent initial state may be inpossession of a token, or responsible for initiating computation in the network. Instead ofkeeping asymmetry in the system, we assume that input channel of the one of the processis non-empty and contains messages such as \token" or \initiate".5 Conclusions and Future WorkThere is an acute need for systems that can analyze distributed systems. Automaticanalysis of even �nite state systems runs into the problem of state space explosion. Sincemost distributed systems show symmetry, we suggest techniques that exploit symmetry toreduce the state space. DPN is a useful model to represent symmetric distributed systems.We use symbolic reachability to analyze systems with a star topology expressed in the DPNmodel. We also use induction to reduce the number of process that need to be analyzedin a ring network. In this paper, we have shown application of these techniques to manyexamples. Some other examples are discussed in [Garg 88c].Many interesting questions arise from this work. In this paper, we saw how machinesconnected in a star or a ring topology can be analyzed. Some of the other interestingtopologies are regular graphs such as hypercubes. An interesting task for investigationis the generalization of these techniques for identical processes connected in such regulartopologies. For application of the induction technique, we need to �nd a k such that thesystem with k processes is equivalent to a system with k + 1 processes. It is easy in ourexamples where k had small values (1 and 2). There needs to be a more general algorithmfor selecting k. 18

6 References[Aggarwal 84] S.Aggarwal, R.P.Kurshan, \Automated Implementation from Formal Spec-i�cation" Protocol Speci�cation, Testing, and Veri�cation, IV, North Holland 1984.[Apt 80] K.Apt, N.Francez, W.de Roever,\A Proof System for Communicating Sequen-tial Processes,"ACMTrans. on Programming Languages and Systems , Vol. 2,3(July1980) pp 359-385.[Blumer 86] T.P.Blumer and D.P.Sidhu, \Mechanical Veri�cation of Automatic Imple-mentation of Communication Protocols," IEEE Trans. on Softw. Engg., Vol 12, 8August 1986, pp 827-843.[Chandy 88] K.M.Chandy and J. Misra, Parallel Program Design, Addison-Wesley, 1988.[Clarke 86a] E.M.Clarke, E.A.Emerson, A.P.Sistla, \Automatic Veri�cation of Finite-State Concurrent Systems using Temporal Logic Speci�cations", ACM Trans. onProgramming Languages and Systems 8,2 (1986), 244-263.[Clarke 86b] E.M.Clarke, O. Grumberg and M.C.Browne, \Reasoning about Networkswith many Identical Finite-State Processes," Proc. Symposium on Principles ofDistributed Computing, 1986, pp 240-248.[Clarke 87] E.M.Clarke, O. Grumberg, \Avoiding The State Explosion Problem in Tem-poral Logic Model Checking Algorithms," Proc. Symposium on Principles of Dis-tributed Computing, 1987 pp 294-303.[Dijkstra 85] E.W. Dijkstra, \Invariance and Non-determinacy,"Mathematical Logic andProgramming Languages, C.A.R. Hoare and J.C. Shepherdson, Eds. Prentice-Hall,1985, pp 157-163.[Dijkstra 90] E.W. Dijkstra, C.S.Scholten, Predicate Calculus and Program SemanticsSpringer-Verlag, 1990.[Dill 86] D.L.Dill, E.M.Clarke, \Automatic Veri�cation of Asynchronous Circuits usingTemporal Logic ", IEE Proceedings 133, pt. E (Sept. 1986), 244-263.[Dong 83] S.T.Dong, \The Modeling, Analysis, and Synthesis of Communication Proto-cols," Ph.D. Dissertation, University of California at Berkeley, 1983.[Garg 88a] V.K.Garg, \Speci�cation and Analysis of Concurrent Systems Using the STOCSmodel," Proc. of Computer Networking Symposium, Washington D.C. 1988, pp. 192-200.[Garg 88b] V.K.Garg, \Speci�cation and Analysis of Distributed Systems with a Largenumber of Processes," Ph.D. Dissertation, University of California, Berkeley, 1988.[Garg 88c] V.K. Garg, \Analysis of Distributed Systems with Many Identical Processes",8th IEEE International Conference on Distributed Computing Systemspp 358-365,San Jose, California, June 1988. 19

[Garg 89] V. K. Garg, \Modeling of Distributed Systems by Concurrent Regular Ex-pressions", Proc. 2nd International Conference on Formal Description Techniquesfor Distributed Systems and Communication Protocols, Vancouver, Dec 1989. Alsopublished by North-Holland, 1990, pp. 313-327.[Garg 91a] V. K. Garg, C.V. Ramamoorthy, \ConC: A Language for Concurrent Pro-gramming", Computer Languages Journal Vol. 16, No. 1, January 1991 pp 5-18. apreliminary version appeared in IEEE International Conference on Computer Lan-guages, Miami, Florida, Oct 1988.[Garg 91b] V. K. Garg, M.T. Raghunath \Concurrent Regular Expressions and theirRelationship to Petri Net Languages," to appear Theoretical Computer Science Sept.1991.[Gerhart 80] S.L.Gerhart, et al., \An Overview of A�rm: A Speci�cation and Veri�ca-tion System," Proc. IFIP 80, pp 343-348, Australia, October 1980.[Hoare 85] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, Inc., En-glewood Cli�s, New Jersey 1985.[Karp 68] R.Karp, and R.Miller, \Parallel Program Schemata," RC-2053, IBM T.J. Wat-son Research Center, Yorktown Heights, New York (April 1968).[Kurshan 85] R.P.Kurshan, \Modeling Concurrent Processes," Proc. of Symposia inApplied Mathematics, 1985.[Kurshan 89] R.P.Kurshan, Ken McMillian, \A Structure Induction Theorem for Pro-cesses," Proc. Eighth Annual ACM Symposium on Principles of Distributed Com-puting, Edmonton, Canada, Aug 1989, pp 239-248.[Lamport 84] L.Lamport, F.B. Schneider, \The 'Hoare Logic' of CSP and All That,"ACM Trans. on Programming Languages and Systems, 6,2(April 1984).[Manna 90] Z. Manna, A. Pnueli, \A Hierarchy of Temporal Properties," Proc. NinthAnnual ACM Symposium on Principles of Distributed Computing, Quebec, Canada,Aug 1990, pp 377-408.[Milner 80] A Calculus of Communicating Systems, Lecture Notes in Computer Science,Vol 92, Springer-Verlag 1980.[Misra 81] J.Misra, K.M.Chandy, \Proofs of Networks of Processes," IEEE Trans. onSoftw. Engg. SE-7,4(July 1981) pp 417-426.[Misra 83] J.Misra, \Detecting Termination of Distributed Computations Using Mark-ers," Proc. of the 2nd ACM Symposium on Principles of Distributed Computing,Montreal, Aug. 1983, pp. 290-294.[Murata 84] T. Murata, \Modeling and Analysis of Concurrent Systems," in Handbookof Software Engineering, ed. C.R.Vick and C.V.Ramamoorthy, Publ.Van NostrandReinhold, pp 39-63, 1984. 20

[Needham 84] R.M. Needham,A.J.Herbert, \The CambridgeDistributed Computing Sys-tem," Publ. Addison-Wesley Publishing Company, 1984.[Peterson 81] J. Peterson, Petri-Net Theory and Modeling of Systems, Prentice Hall,Inc., Englewood Cli�s, New Jersey 1981.[Pratt 86] V. Pratt, \Modeling Concurrency with Partial Orders," International Journalon Parallel Programming, Vol. 15, No. 1, Plenum Publishing Corporation, Belgium,Feb 1986, pp 33-71.[Reisig 85] W. Reisig, Petri Nets, An Introduction, Lecture notes in Computer Science,Springer-Verlag, 1985.[West 78] C. West, \An Automated Technique of communication protocol validation,"IEEE Trans. on Communications, vol. 26, no. 8, pp. 1271-1275, August 1978.[Za�rolpulo 80] P. Za�rolpulo, C. West, H. Rudin et al., \Towards analyzing and syn-thesizing protocols," IEEE Trans. on Communications, vol. 28, no. 4, pp. 651-660,April 1980.7 Appendix AA concurrent regular expression is any expression consisting of symbols from a �nite set �and +; :; �;2; k; �, and � with certain constraints as summarized by the following de�nition.� Any a that belongs to � is a regular expression (r.e.). A special symbol called � isalso a regular expression. If A and B are r.e.'s, then so are A.B (concatenation),A+B (or), A� (Kleene closure).� A regular expression is also a unit expression. If A and B are unit expressions thenso are AkB (Interleaving) and A� (Inde�nite Interleaving closure).� A unit expression is also a concurrent regular expression (cre). If A and B are cre'sthen so is A2B (synchronous composition).Many examples of systems that can be modeled by concurrent regular expressions aredescribed in [Garg 89, 91a]. We now state the following result without proof.Theorem 9 [Garg 91b]: The class of languages described by concurrent regular expres-sions is the same as that described by DPN.21

