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Abstract

Distributed systems are difficult to design and the simplest of them can have subtle
errors. Conventional automatic analysis techniques to catch these errors may be infea-
sible because the system may have a large, or even an unknown, number of processes.
These techniques, which are based on state space exploration, run into the state ex-
plosion problem. Since most distributed systems have one or more sets of identical
processes, we exploit the symmetry to reduce the state space for automatic analysis
techniques. We describe a model called Decomposed Petri Net that facilitates such
analysis. We present symbolic and induction techniques to analyze concurrent systems
described using Decomposed Petri Net. We illustrate our techniques by analyzing sev-
eral examples: 2-out-of-3 problem, dining philosophers problem and mutual exclusion
problem. These techniques are applicable to systems that are configured either in a
star topology or a ring topology. We also show how to extend these techniques for
analysis of systems that use asynchronous communication. In particular, we show that
for many problems, multiple unbounded reliable channels can be reduced to a single
channel for verification purposes.

Index Terms Automatic verification, identical processes, symmetry, Petri Nets, concur-
rent systems, ring networks.

1 Introduction

Despite its economic benefits, distributed software has not gained wide acceptance mainly
because of the difficulty involved in analyzing multiple processes. Research efforts in rea-
soning about programs can be divided into two groups - manual and automatic. Most
researchers in distributed algorithms use manual reasoning based on the behavior of the
system. Many proof systems have been developed for reasoning about safety and liveness
properties [Apt 80, Hoare 85, Milner 80, Misra 81, Lamport 84, Chandy 88]. Manual anal-
ysis is error-prone and cumbersome; therefore we will restrict our attention to automatic
analysis of distributed programs.

'A preliminary version of this paper appeared in 8th IEEE International Conference on Distributed
Computing Systems, San Jose, CA 1988, pp 358-365.
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Automatic analysis of concurrent systems consists of computer exploration of all possi-
ble behaviors of the system. Many concurrent systems are based on finite state machines,
making them particularly amenable to computer analysis. This approach has been used by
many researchers, especially for the verification of communication protocols [Gerhart 80,
Aggarwal 84, Blumer 86, West 78, Zafirolpulo 80]. There are many existing algorithms to
check if a given temporal logic formula is true in the global state transition graph[Clarke
86a, Dill 86] There are two main hurdles to this approach - the number of processes may
not be known initially, and the number of states may be too large. For illustration of diffi-
culties involved in this approach consider the mutual exclusion algorithm in a ring network
[Dijkstra 85, Clarke 86b]. If we know the number of processes initially (say 5), then we
could construct the global state graph and check for any property in the graph. However,
this approach becomes infeasible if the number of processes is not known initially or is
large (say 100).

There have been many efforts to contain the state explosion problem. Many researchers
[Dong 83, Kurshan 85] have studied this problem in the context of automatic protocol
verification, where this problem is dealt with by collapsing multiple states into a single
state while preserving properties that are important for verification. These efforts, however,
are not very general and can be applied only for some specific properties such as deadlock-
freedom. Moreover, they cannot be used for reasoning in networks with an unknown
number of identical processes. Clarke et. al.[Clarke 86b] propose inductive techniques to
prove properties of networks with identical finite state processes. Their approach consists of
establishing a correspondence relationship between the global graph of n processes and the
global graph of n 4 1 processes. They show that if the correspondence can be established,
then any formula expressed in Indexed Computation Tree Logic (ICTL) (a proper subset
of CTL temporal logic) which holds in the initial state of a network with a small number
of processes will hold for the network with a large number of processes. However, the
step of establishing the correspondence is manual and could be difficult enough to defeat
the original purpose of avoiding manual analysis. Our aim in this research is to minimize
human involvement during the analysis. In their later paper[Clarke 87], they define a notion
of closure of a process P denoted as P*. Using this notion, they show that if two systems
with r and r + 1 processes are equivalent under P*, then any system containing more
than r processes will also be equivalent for formulas expressed in ICTL. Again, the process
of obtaining P* is manual, and may require creativity from the verifier. Kurshan and
MecMillian [KKurshan 89] have also considered this problem. Their method requires finding
a correct process invariant, and then checking that it satisfies the induction requirements
(base case, and induction case) and the specification for which the system is being analyzed.
If the invariant is known, then all above steps can be carried out manually. However, the
process of finding an appropriate invariant is manual. Our techniques are much simpler,
and do not require as much human involvement.

In this paper, we present algorithmic techniques for the analysis of distributed systems
which have many identical processes. As most distributed systems have one or more sets
of identical processes, these techniques have wide applicability, especially to the networks
with a star, or a ring topology. A star topology consists of a server (master) process and
a set of identical client (slave) processes. Client processes interact only with the server



process forming a star topology. This topology is common in centralized systems and
various network servers such as name servers and printer servers. A ring topology consists
of a set of identical processes communicating in a circular fashion. Each process has
two neighbors and all messages originating at the process must go through either of the

neighbors. This topology of processes is common for local area networks with token ring
such as the Cambridge Ring Network [Needham 84].

All of the above networks show symmetry and it is desirable to have methods to reduce
the global state space by exploiting this symmetry. We propose the following methods in
this paper.

1. Symbolic Analysis : Instead of computing the actual global state, this method ex-
presses the global state in terms of symbols. These symbols are then manipulated
to compute other reachable global states. A symbol could stand for any unspecified
component of the system such as the number of processes. With this method, one
symbolic state represents multiple computed states thus reducing the state space
substantially. We also show that when the number of processes is large, it may be
more useful to treat the system as containing an unbounded number of processes.
This analysis also cuts down the search-space significantly.

2. Induction Analysis : Instead of studying the system with a large or an unknown
number of processes, this method analyzes it with a small number of processes and
then the invariance of assertions is analyzed with the increase in the the number of
processes. Since the analysis is done for a small number of processes, the reduction
in the global state space is substantial.

This paper is organized as follows. Section 2 describes our formal model of processes
called Decomposed Petri Net (DPN). This model facilitates symbolic and asymptotic anal-
ysis due to its ability of modeling multiple processes through multiple tokens, and its use of
infinite number of tokens to model unbounded resources. Section 3 discusses symbolic tech-
niques for analysis of systems expressed in the DPN with star topology. It illustrates these
techniques for 2-out-of-3 problem. We extend these techniques for asynchronous commu-
nication. We show that multiple unbounded channels may be treated as a single channel
for the purposes of logical analysis. Section 4 presents induction techniques applicable
to a ring topology. Application of these techniques is shown to the dining philosophers
problem, and the mutual exclusion problem in a ring. We also discuss how induction tech-
niques can be applied when asynchronous messages are used. Section 5 makes concluding
observations and discusses some future directions of research in this area.

We use calculational style of proofs for many of our theorems. A proof that [A = C]
will be rendered in our format as

A

= { hint why [A = B] }
B

= { hint why [B =] }
C



We also allow implies (=) in the leftmost column. For a thorough treatment of this proof
format we refer interested readers to [Dijkstra 90].

2 Decomposed Petri Net(DPN) Model

We first describe our formal model of computation. Since we are interested in automatic
analysis, and most interesting properties for Turing-equivalent models are undecidable, we
use Decomposed Petri Net model for our formal analysis|Garg 83b, 91b]. DPN is equivalent
to Petri nets, but have the added advantage of possessing modularity. To decompose a Petri
net, it is partitioned into multiple units which share the transitions of the Petri net. Each
unit contains some of the places of the original Petri net. Intuitively, the decomposition
is such that the tokens within a unit need to synchronize only with tokens in other units.
A unit is a generalization of a finite state machine. Formally, a DPN (Decomposed Petri

Net) D is a tuple (X,U) where

e Y = a finite set of symbols called transition alphabet

e U = a set of units (Uy, Us..U,.); each unit is a five tuple, i.e., U; = (P;,C?, %, 6;, F})

where:

— P; is a finite set of places

— C? an initial configuration, also called marking, is a function from the set of
places to nonnegative integers A and a special symbol ‘*’. ie.,C? : P; —
(N U{*}). The symbol ‘*’ represents an unbounded number of tokens. A place
which has * tokens is called a *-place. This component of a unit is the only one
that changes as DPN executes. We use C; to represent the configuration at any
point of computation.

— 3, 1s a finite set of transition labels such that X; C X.
— 6; is a relation between P; x (X; U {e}) and P;, i.e., 6; C (P, x (¥; U {e})) x P.

e represents null transition. ¢; represents all transition arcs in the unit.

— F; is a set of final places, F; C P,.

The configuration of a DPN can change when a transition is fired. A transition with
the label a is said to be enabled if for all units U, = (P, C;, %, 6;, F;) such that a € %;
there exists a transition (pg,a,p;) with C;(pg) > 1. Informally, a transition a is enabled if
all the units that have a transition labeled a, have at least one place with non-zero tokens
and an outgoing edge labeled a. For example, in Figure 1 get-item is enabled only if both
ps and p; have tokens. A transition may fire if it is enabled. The firing will result in a
new marking C/ for all participating units. Based on this, we define the next-configuration
function v, : N x ¥ — N for a Unit U; (with |P;| = n) as 7;(C;, a) = C! where:

Cilpr) = Ci(pr) — 1
Ci(p) = Ci(p) + 1.
C!(p) = Ci(p) for other p.



Figure 1: A DPN machine for the Producer Consumer Problem

A *-place remains the same after addition or deletion of tokens.

As an example of a DPN machine, consider the producer consumer problem. The
producer produces items which are kept in a buffer. The consumer takes these items from
the buffer and consumes them. The solution requires that the consumer wait if no item
exists in the buffer. The consumer can execute get-item only if there is a token in the place
p4. Note how the *-place is used to represent an unbounded number of tokens.

We can extend the ~; function to a sequence of transitions as follows:
72(/“L7 t]‘O') = 72(72(/~L7 tj)v 0)7
Yilp,€) = p
where € represents the null sequence, and t;0 represents the sequence t; followed by o.

The language L of a Decomposed Petri net D = (3,U) is defined as

L={z e X*|Vi:Cl =~i(Co,2/%;): C(p) =0 for all p e P, — F,}

Thus, all the tokens in a final configuration must be in final places. The class of lan-
guages defined by DPN can alternatively be characterized by concurrent regular expres-
sions[Garg 88b, 89, 91b]|. These expressions are more powerful than regular expressions,
and are defined using operations of choice (+), concatenation (.) , Kleene closure (*),
interleaving (||), interleaving-closure («), and synchronous composition (0). As we will be
using these operators in this paper for some of our examples, we define them below:

Let Ly and Ly be two languages defined over ¥; and X,. Then,

.L1—|—L2:L1UL2.
® Ll.L2 = {$1$2|$1 - Ll,l'z € LQ}
o L* =U—o,.. L' where L' = L.L...i times

o Interleaving between two strings is defined as follows:

alle = €|la = {a} Vae X



a.s||b.t = a.(s||b.t) Ub.(a.s||t) Va,be X, s,te X

Thus, abl|ac = {abac, aabe, aach, acab}.

This definition can be extended to interleaving between two languages in a natural
way, i.e. L1]|Ly = {w|ds € Ly At € Ly, w € s|[t} Note that similar to Lq||Lq, we also
get Li||Ly denoted by L§2).

o Taking repeated interleaving of any language gives us its interleaving closure. Intu-
itively, the interleaving closure lets us model the behavior of an unbounded number
of identical independent sequential agents. It is formally defined as L® = U;—¢ 1. L.

o [,OLy, ={w|w/Zy € L1, w/Xs € Ly} where w/S denotes the restriction of the string
w to the symbols in S. Intuitively, synchronous composition ensures that all events
that belong to two sets occur simultaneously.

The definition of concurrent regular expressions and their relationship with Decomposed
Petri nets is summarized in Appendix A. For further details of DPNs and its comparison
with Petri nets [Peterson 81, Reisig 85], readers are referred to [Garg 88a,b, Garg 91].

In this paper, we will assume that all places in a DPN are final, and therefore the
language L accepted by any DPN is prefix-closed, 1.e. if ¢ € L, then all prefixes of ¢ are
also in L. We say that s < ¢ if s is a prefix of #, and s < ¢ if s is a prefix of ¢ and not
equal to t. We treat two processes identical if their language is the same. This requires
an assumption of determinism in processes. For non-deterministic systems, the language
accepted (or the set of traces) may not be sufficient and more general structures such as
set of failures[Hoare 85] are required. Similarly, we have assumed the interleaving model
of concurrency as opposed to the model of partial orders[Pratt 86].

We now describe methods to analyze processes described using DPN for various net-
works.

3 Symbolic Analysis: Star Topology

In these networks there is one server process that communicates with multiple clients. We
assume that each of the clients has identical behavior. One of the advantages of the notion
of token in a DPN is that it can represent a process; therefore, multiple identical processes
are represented by multiple tokens in some state. If the number of processes is large or is
unknown initially, we may use a symbol (say n) in a state to represent the unknown number
of processes. Now we do the rest of the analysis in terms of these symbols. Alternatively,
we may use * instead of n, which would tell us the behavior of the system when n is very
large.

We use symbolic analysis for networks with star-topology. A DPN representation of
such a network would generally have two units - one for the server process and one for
multiple clients. The multiplicity of clients is represented by the presence of multiple
tokens in some state. In this section, we first show how symbolic analysis can be done
for a system with synchronous messages. We then show how our methods can be used for
systems with asynchronous messages.



3.1 Synchronous Messages

We do symbolic reachability of a system with synchronous messages by constructing a
reachability graph of its configurations. A reachability graph is a directed graph with each
node representing a marking, and a directed edge from one marking (say M;) to another
(say M) if there is a transition that takes the DPN from marking M; to M;. The edge is
labeled with the name of the transition. We allow coordinates of a marking to be symbolic.
As an example of symbolic analysis consider the 2-out-of-3 problem.

Figure 2: Example of symbolic analysis of DPN

The 2-out-of-3 problem is a good abstraction of many resource contention problems.
Assume that a memory scheduler has three memory blocks and that any process requires
two memory blocks to execute. A non-preemptive procedure for such a system with n
processes is given in Figure 2. We place n tokens in the state p; to signify n processes and
three tokens in the state ps to signify availability of three memory blocks. To analyze the
solution, we draw a reachability graph of its configurations. The initial configuration is
(n,0,0,0,3,0). With this configuration only a mem transition can take place, resulting in
the configuration (n —1,1,0,0,2,1) which is explored next. This procedure is continued
until all nodes in the graph have been explored. Following it in our example, we find that
a deadlock exists if the number of processes is greater than or equal to 3 (see Figure 2).

As in the above example, assume that symbolic reachability graph G is finite. G can
also be viewed as a finite state automata. Let C'¥) represent interleaving of k clients, and
S represent the server. The above system, then can be written as C¥0S. Let j be the
highest index such that n—j is one of the component in one of the states of the reachability

graph. Then,
L(G) = L(cWOs) Vi >

To see this, consider any k > j. On substituting for n, the value of k, all the coordinates



of states in G will be legal. Now consider any string s. By virtue of the construction of G,
s can be simulated in G if and only if it can also be simulated in S and C'¥.

Alternatively, we can do asymptotic analysis by replacing n with *. Doing a simple
reachability indicates that the system can deadlock.

With the brute force method of taking the cross product of all possible states of all
processes, there would be 4?° states for a system with 25 processes, in contrast to 9 states
that need to be explored if the symmetry is exploited. We note here that the saving results
from two sources. Firstly, we do not make any distinction between identical processes.
Hence, a configuration in which process 1 is in state 1 and process 2 is in state 2 is
treated equivalent to the configuration in which the states of both processes are switched.
Secondly, if the number of processes is treated as one of the parameters and the size of
the symbolic reachability graph is finite, then we have used the fact that the configuration
(n—1,1,0,0,2,1) is valid for all n > 1.

Since the change in the configuration of a DPN is always additive to coordinates, the
above construction of the symbolic reachability graph can be carried out automatically.
It is sufficient to keep the negative term for each place with a symbolic coordinate. The
chief disadvantage of this method is that the reachability graph may not be finite. w-
notation[KKarp 68] can be used to make the graph finite but due to the loss of information
it can only solve the coverability problem[Peterson 81]. As this method is independent
of the issues that arise due to the symbolic nature of coordinates, we do not discuss this
method here and refer interested readers to [Peterson 81].

3.2 Asynchronous Messages

We will be interested in the input-output behavior of processes using asynchronous mes-
sages. We adapt our model for input-output behavior as follows. We prefix each transition
with a + or a —. A + before some symbol represents that it is an input (or a receive)
event, and a — represents an output (or send) event. Thus, +a represents input «a, and
—a represents output a. Given any string s of such symbols we can break it into its input
and output parts, called in(s) and out(s). For example, if s = +a 4+ b — a+ ¢ — ¢, then
in(s) = abe, and out(s) = ac. This definition can be extended to languages in a natural
manner. We define a function B : 2% — 2% ¥
B(L)={(¢,0)|3x € L:i=1wn(x) Ao =out(x)}.
This functions takes a language as input and returns a set of input-output pairs for that
language (its i/o behavior).

as follows:

Two different languages may have the same i/o behavior as shown by the following
example:
Ly =(e,4b,4b—¢,—c¢)
Ly =(e,4b,4b—c¢,—c,—c+b)
However, i/o behavior for both languages is given by

{(€e:€),(by€), (b, ¢), (e, ¢)}

Two languages are identified with the same input-output behavior because we lose se-



quencing relationship between events in input and output channels. In the above example,
we know that if the input is b, then output is ¢. However, we do not know which happens
first. In both cases, however, if the entire input ¢ is present at the input channel, then
the output o of the process will always be such that (¢, 0) is in the input-output behavior.
This characterization is sufficient for many practical purposes. In particular, input-output
characterization is very useful to model the situation in which output of one process be-
comes input of the other. We formally define input-output semantics of a process on ¥p
as BehP C (Xp)* x (Xp)*, with the following constraint:

(i) (x,y) € BehP = Va' <a Jy' <vy:(a',y") € BehP.

(ii) (z,y) € BehP = Vy' <y o/ <a:(a',y') € BehP

The constraint (i) simply says that input is considered to affect a system as a stream
of events. Thus, if input x produced y, then any prefix of @ must also produce a prefix of
y. Similarly, (ii) says that output is also a stream of atomic events. If y is produced as a
result of x, then every prefix of y must be a possible output of some prefix of .

We note that we have concerned ourselves only with the finitary behavior of processes.
Thus, input-output behavior is described using finite strings. As a result, this model
cannot be used to analyze properties such as fairness which require specification of infinite
behavior of processes|Manna 90]. Since many properties of systems can be analyzed using
only finite sequences, we do not consider this as a serious limitation of our model.

Some examples of i/o-processes are:
ZERO4 = (A, ¢); process that does nothing
IDENTs = (A, {(z,2)|x € A*}); process that copies input to the output
RUN4 = (A, {(x,y)|z,y € A*}); process that can do anything
EPS4 = (A,(e€)); process that accepts only €
BUF4 = (A, {(z,y)|ly < x}; process that copies input to output with delay.

Our main motivation for defining input-output composition is to formalize and exploit
the notion of serial composition in which the output of one process becomes input of the
other. We define serial product between two processes denoted by P;Q as

(x,y) € BehP;Q if and only if 3z : (x,z) € BehP A (z,y) € BehQ
It can be easily shown that ; is an associative operation with ZERO as its zero, and IDENT
as its identity. We now assume that processes are connected through unbounded reliable
FIFO channels. We use P? as a short form for P; BUF. We note that
(z,y) € BehP?
= (x,y) € BehP; BUF
= 3dz:(x,2) € BehP N (z,y) € BehBUF
=dz:(2,2) € BehP ANy <z
= Jv : (x,yv) € BehP
It is the last condition that we will use as the definition of P°. Considering o as a unary
operator, it is easy to see that it is idempotent, i.e., (P?)? = P°.

As shown in Figure 3, our system consists of multiple clients operating in parallel. The
input-output behavior of two processes is given by the following Lemma. From now on
we will treat a process P equivalent to its BehP. Thus, instead of writing (z,y) € BehP,
we will write (z,y) € P. We first derive an expression for input-output behavior of two



Figure 3: Asynchronous System with Multiple Buffer Processes

processes running asynchronously.

Lemma 1 PHQ = {(wvy)prquvypqu : (xpvyp) € P, (xquq) €Q, v e poxqu € ypqu}

Proof:

(z,y) € BIL(P)|L(Q))
={definition B }

ds € L(P)||L(Q) :in(s) = & Aout(s) =y
={definition || }

ds, € L(P),s, € L(Q) : s € (8p]|84) Nin(s) = x Nout(s) =y
= { breaking s }

ds, € L(P), 54 € L(Q), Ty, Yp, g, Yg 2 1((sp) = 3 Ain(sy) = 2,

Aout(sy) =y, Aout(sy) =y, Aa € zpllag Ay € yplly,
={definition B }

2y, Ypr ¥, Yg (X9, Yg) € PA(24,y5) € QA € apllag Ay € yplly,

The above Lemma shows that during interleaving of two processes, an input symbol is

executed by either of the process. Similarly, output of both machines are also interleaved.

We next show that an asynchronous execution of two processes with independent buffers
is equivalent to their execution with a single buffer.

Lemma 2 (P|Q)’ = P7||Q”

Proof:

(z,y) € (P|Q)°
= { definition o }

Fv: (z,yv) € (P||Q)
= { Lemma 1 }

v, @, 2g, Yp, Yq (xpvyp) € PA (xquq) €QA (:1; € poxq) A (yv € ypqu)
= { property ||, 0}

Fap, 20, Yy Yy (X0, Y,) € POA (g, ,) € QA (2 € al|ag) Ay € ypllyy)
= { Lemma 1 }

(z,y) € P°|[Q°
= { Lemma 1 }

10



wp, 24, Ypy Yy (xpvyp) € P°A (xquq) € Q%A (:1; € poxq) A (y € ypqu)
= { property of o }
3@y, 24, Ypy Ygs p, Vg (xpvypvp) € PA (xquqvq) €QAN (:1; € poxq) A (y € ypqu)
= {v € vavq}
3@y, T4, Ypy Ygs Vp, Vg, U (xpvypvp) € P/\(xquqvq) € Q/\(x € poxq)/\(yv € ypvayqvq)
= { Lemma 1 }
Fv: (z,yv) € (P||Q)
= { definition o }
(z,y) € (P|Q)°

The above Lemma can be easily generalized to the following Theorem.
Theorem 3 Let Py, ..., P,_1 be any n processes. Then, (P||...||[P.-1)° = B§||...||P°_,

Proof: Using induction on n.

Theorem 3 can be used to reduce the state-space of a system considerably. Instead
of analyzing the system with & FIFO channels, it may be sufficient to do so with only
one channel. This is illustrated in Figure 3. This theorem may be used to analyze an
asynchronous version of the 2-out-of-3 problem with each client having an independent
channel to the server.

4 Induction Analysis: Ring Topology

As the number of processes in a ring may be a large, variable or unknown quantity, the
construction of the global state graph is not feasible. It is desirable to have a method
that analyzes the network with a small number of processes, and then generalize results
to the network with a larger number of processes. The key idea that can be frequently
applied for ring topology is that of induction. The principle of induction states that if an
observer cannot distinguish between two systems with ¢« and ¢ + 1 processes with any input
to both systems, then he also cannot distinguish between a system with ¢ processes and
any other system with more than ¢ processes. It follows that it is sufficient to analyze the
network with 7 + 1 processes for any input-output assertion on more than ¢ processes. We
illustrate this by analyzing the dining philosopher’s problem. If the number of philosophers
is large, a simple reachability technique will run into a state explosion problem. Symbolic
techniques are not applicable to this problem because the behavior of each philosopher is
not identical as they interact with different entities as opposed to a client-server model in
which all servers interact with the same entity - the server. To analyze the problem with
a large number of philosophers, we analyze it for a small number of dining philosophers
(two in our example). We then show that the same analysis will hold for any number of
philosophers. We next describe the problem, a deadlock-free solution and its automatic
analysis.

11



4.1 The Dining Philosophers Problem

This problem, due to Dijkstra, requires an algorithm for philosophers who are sitting on
a circular table. There are five philosophers and five forks, each of which is between
two philosophers. There is a bowl of spaghetti in the center which can be eaten by any
philosopher but its tangled nature requires that a philosopher use both his left and right
forks.

A solution to this problem which assumes synchronous communication is as follows. A
philosopher when hungry either picks up both the forks simultaneously or waits for them
to be available. This way of picking forks guarantees that there will not be any deadlock.
To express our solution, we assume that philosopher ¢ owns fork ¢ and needs to ask only
the right neighbor for the use of ¢ + 1! fork. For convenience we will use u;; to denote
that philosopher; picks up fork; and d;; to denote that philosopher; puts down fork;.
With this notation, Figure 4 shows the solution expressed in the DPN model.

Figure 4: Dining Philosophers: Analysis

To show that the solution is free from deadlock, we could use a computer to explore the
reachable states. Automatic analysis, in the past, meant exploring the cross product of all
possible states of five philosophers and five forks (or hundred philosophers and hundred
forks for a hundred philosopher problem). Our technique, in contrast, exploits the sym-
metry in the problem so that the complexity of analysis for five philosophers is the same
as that of, say, one hundred philosophers. Various steps in our technique are as follows:

o Let SYS, = (PHIL,0..0PHIL; ;—1). Find the smallest value of k for which
SY S, = SYSiy1. For most symmetric cases k¥ = 1 or 2 will suffice. For dining
philosopher SYS; = SY S, as shown in Figure 4.

12



e To analyze a ring with any number of units, say n, it is sufficient to analyze it
with & + 1 units. Thus, for our case it is sufficient to analyze the system with
two philosophers to make any assertion about a system with five or one hundred
philosophers.

o We next construct a reachability graph for two philosophers and find that there is
no state with out-degree equal to zero (see Figure 4). We conclude from this that
the system with five philosophers will also be deadlock free.

4.2 Induction Analysis with Filters

Observe that simple induction required that the observer not be able to detect the difference
on any input. This constraint may prove too restrictive to apply induction techniques for
certain problems. Therefore, we relax the condition using the concept of filters. Filters
capture the condition that not all inputs may be possible for the system, and therefore we
are willing to call two systems equivalent as long as their outputs do not differ on possible
inputs.

Figure 5: Mutual Exclusion in a Ring

We illustrate the use of filters by a mutual exclusion algorithm in a ring network. Clarke
et.al.[Clarke 86] use the same example to illustrate their manual induction technique.
Dijkstra[Dijkstra 86] also uses the same example to show how regular expressions can be
used to prove the correctness of certain algorithms. His proof, again, is manual. The
mutual exclusion problem in a ring of processes is as follows. The machines are connected
in a ring fashion and can communicate with their neighbors. Each process can be in one of
the three states: normal (n), delayed (d) or critical (¢). A process can execute the critical
region only if it is in the critical state. The objective is to ensure that at most one machine
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at a time is in a critical state. We introduce the notion of a token which is held by a
single machine. To avoid passing tokens unnecessarily, we introduce a request signal which
indicates an interest in the token. A process that wants to execute the critical region, and
does not have the token, gets delayed. Following the algorithm, tokens are sent to the left,
whereas request signals are sent to the right (see Figure 5). We will also color each of the
process as white or black depending upon whether an interest in the token exists to the
left. Figure 5 shows the example of a distributed mutual exclusion algorithm in a ring
network expressed in the DPN model.

If we try to apply the induction technique that was used for dining philosophers we
find that step 1 is not applicable, that is, there does not exist any k for which SY'S) is
the same as SY Siyq1. This can also be seen intuitively from the algorithm. An observer
can detect the number of processes he is connected to by sending multiple token messages.
The number of processes in a system would be equal to the maximum number of token
messages that are absorbed by the system.

Figure 6: (a) Composition of Two Processes with Filter (b) Filter

To solve this problem, we use the notion of filters to constrain the observer to send at
most one more token message than it receives from the output. We now show the steps in
the modified induction technique using the mutual ring example.

e Model all the constraints on the input output behavior through a process called
FILTER. Figure 6 shows such a filter for our example.
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e Verify that a process in the system indeed satisfies the constraint imposed by the
filter. If we substitute all request messages in an ENTITY by €, ¢;,_4 by t; and ¢; by
to we do get the filter as a result.

e Find the smallest k such that a filtered system with & units is identical to a filtered
system with & + 1 units. That is,
FILTSY S, = (ENTITY,0...0ENTITY; 4, «OFILTER). For our example we
find that FILTSYS; # FILTSY S, but FILTSY Sy = FILTSY S5. It is easy to
check that SY'Sy # SY Si11 for any value of k.

e Thus, from the principle of induction we deduce that it is sufficient to analyze the
algorithm with three processes to make an input-output assertion on any number of
processes greater than three.

4.3 Asynchronous Messages

In this section, we consider a ring of processes in which process ¢ may receive messages
from process ¢ — 1, and it can send messages only to the process ¢ + 1. We assume that
the link between processes is asynchronous, FIFO and reliable. We use the transition
(¢,a/b,r) as an abbreviation for two transitions, one after another, representing (¢, +a, ¢')
and (¢', —b,r). This convention enables us to specify each process as a finite state machine
with each transition labeled with input and output.

A process P is called complete iff (z,y) € P = Vo' > o Jy > y : (2/,y') € P. This
property may not be true for all processes, but may be desirable if the process is required
to respond to all inputs. We also say that P < Q if BehP C Beh().

Our aim is to analyze a ring of processes connected through reliable FIFO links (BUF
processes). The following Lemma results in simplification of such networks by combining
many channels into one.

Lemma 4 (P;Q)° < P°;Q°

Proof:

(z,y) € (P;Q)°
= { definition of o }

Jo: (2, yv) € (P;Q)
= { definition of ; }

Jvdz: (x,2) € PA(z,yv) € Q
= { exchange quantification }

dz3v: (x,2) € PA(z,yv) € Q
= { Property of o}

Jz:(x,2) € P°A(z,y) € Q°
= { definition of ; }

(z,y) € (P%Q°)

The inequality in the other direction require Q to be complete.
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Lemma 5 If Q is complete, then P% Q° < (P;Q)°

Proof:

(z,y) € (P%Q°)
= { definition of ; }

Jz:(x,2) € PPA(z,y) € Q°
= { definition o}

dz,u, v (x,zu) € PA(z,yv) € Q
={ Q is complete }

dz,u, 0" (2, zu) € PA(zu,yv’) € Q
= { definition of ; }

o’ (x,y0") € Py Q
= { definition o}

(z,y) € (P;Q)°

To see that the lemma does not hold if Q is not complete, consider the following ex-

ample:

7(a, ¢),(ab,e),(ab,c)}

The generalization of the above Lemma for any number of processes requires the fol-
lowing observation.

Lemma 6 If P and Q are complete, then P;Q is complete.

Proof:
Consider (z,y) € P. Let 2/ > «
(v,y) € P
= { definition ; }
Jz:(x,2) € PA(z,y) €Q
= {P is complete }
dz, 2/ >z (2, 2) e PA(z,y) €Q
= {Q is complete }
Ay >y (2,2 e PA(ZY) €Q
= { definition ; }
' 2y (2y) € P;Q

Lemma 7 Let P; for : = 1..n — 1 be complete processes. Then,
(Po; Pris...; Po1)’ = P, Py POy

n

Proof: Using induction on n and Lemmas 4, 5, and 6.

Now, we can analyze any chain of identical processes using the following Theorem. In
this section we use P! to mean P; P;...i times.
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Theorem 8 Let P be any process such that P* = P**! for some k. Assume that (P*)°
satisfies some input-output constraint. Then so does (P°)" for any n > k.

Proof: Using induction on n. Assume that the theorem is true for n = m which is at least
k. Then,

(Po)m-l—l
= { Lemma 7 }

(Prty
= { definition exponent }

(Pk-l-l; Pm—k)o
= { Hypothesis P* = P**1}

(Pk; Pm—k)o
= { definition exponent }

()
= { Lemma 7 }

(o)

We can use Theorem 8 to analyze a ring of n processes connected to each other with

buffers. From the theorem, we know that the input/output behavior is the same as that
of k processes with a buffer at the end.

We illustrate an application of the theorem using a fault-tolerant token ring sys-
tem[Misra 83]. There are two tokens flowing in the system - green and red. Each process
expects to see them alternating one after another. If any of them sees the same colored
token twice, it assumes that the other token is lost and generates it. Figure 7(a) shows
the state machine representation of the process. We find that P = P2 Therefore, given
a chain of any number of processes, we analyze it with just one process followed by a
buffer. In this example, we can easily show that the response on any string is correct. For
example, the output of the system is always in (gr)*

We now extend our model of the system to incorporate faults. We will assume that a
buffer can never lose two consecutive messages. We model unreliable buffer as composition
of two processes - ERR and BUF. ERR as shown in the Figure 7(b) models losing of a
token. Since composition is associative, we associate ERR with P instead of BUF. Thus,
the system can be represented as n number of () processes connected through reliable
asynchronous buffers, where @ = P; ERR. @ is shown in Figure 7(¢). It can again be
seen that @ = Q; Q. Therefore, we conclude that it is sufficient to analyze the process Q
connected to itself through a buffer. We do this analysis through simple reachability where
each node in the reachability tree denotes the state of the process Q and the state of the
channel. It can again be checked that the output is always in (¢r)* in spite of any loss of
non-consecutive messages.

Another example of a property that we can check is the unstability of the network, that
is, whether the number of messages in the channel can grow in an unbounded manner.
Doing the analysis for a single process, we find that the reachability tree terminates and
therefore the system is stable (see Figure 7(d)).

We note that most of ring networks exhibit some asymmetry; initially all machines,
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Figure 7: Fault-Tolerant Token Ring System

except one, are in the same state. The machine that has different initial state may be in
possession of a token, or responsible for initiating computation in the network. Instead of
keeping asymmetry in the system, we assume that input channel of the one of the process
is non-empty and contains messages such as “token” or “initiate”.

5 Conclusions and Future Work

There is an acute need for systems that can analyze distributed systems. Automatic
analysis of even finite state systems runs into the problem of state space explosion. Since
most distributed systems show symmetry, we suggest techniques that exploit symmetry to
reduce the state space. DPN is a useful model to represent symmetric distributed systems.
We use symbolic reachability to analyze systems with a star topology expressed in the DPN
model. We also use induction to reduce the number of process that need to be analyzed
in a ring network. In this paper, we have shown application of these techniques to many
examples. Some other examples are discussed in [Garg 88c]|.

Many interesting questions arise from this work. In this paper, we saw how machines
connected in a star or a ring topology can be analyzed. Some of the other interesting
topologies are regular graphs such as hypercubes. An interesting task for investigation
is the generalization of these techniques for identical processes connected in such regular
topologies. For application of the induction technique, we need to find a k such that the
system with k processes is equivalent to a system with & + 1 processes. It is easy in our
examples where k had small values (1 and 2). There needs to be a more general algorithm
for selecting k.
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7 Appendix A

A concurrent regular expression is any expression consisting of symbols from a finite set X
and +, ., %, 0, ||, &, and € with certain constraints as summarized by the following definition.

e Any a that belongs to ¥ is a regular expression (r.e.). A special symbol called € is
also a regular expression. If A and B are r.e.’s, then so are A.B (concatenation),

A+B (or), A* (Kleene closure).

o A regular expression is also a unit expression. If A and B are unit expressions then
so are A||B (Interleaving) and A% (Indefinite Interleaving closure).

e A unit expression is also a concurrent regular expression (cre). If A and B are cre’s
then so is AOB (synchronous composition).

Many examples of systems that can be modeled by concurrent regular expressions are
described in [Garg 89, 91a]. We now state the following result without proof.

Theorem 9 [Garg 91b]: The class of languages described by concurrent regular expres-
sions is the same as that described by DPN.
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