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Abstract

This paper discusses efficient distributed detection of global conjunctive predicates in a
distributed program. Previous work in detection of such predicates is based on a checker
process. The checker process requires O(n?m) time and space where m is the number of
messages sent or received by any process and n is the number of processes over which the
predicate is defined. In this paper, we introduce token-based algorithms which distribute
the computation and space requirements of the detection procedure. The distributed algo-
rithm has O(n?m) time, space and message complexity, distributed such that each process
performs O(nm) work. We describe another distributed algorithm with O(Nm) total work,
where N is the total number of processes in the system. The relative values of n and N
determine which algorithm is more efficient for a specific application.

1 Introduction

Detection of a global predicate is a fundamental problem in distributed computing. This prob-
lem arises in many contexts such as designing, testing and debugging of distributed programs.
Previous work has described algorithms for detecting stable and unstable global predicates
[2, 3,5, 7,6, 10, 11, 13]. See [1, 12] for surveys of stable and unstable predicate detection.
This paper is most closely related to [7], [6], and [3]. Garg and Waldecker [7] present a
method for detecting weak conjunctive predicates (WCP). A WCP is a global predicate formed
as the conjunction of n local predicates. Many problems in distributed systems can be viewed as
special cases of WCP detection. In [7], each process checks for its own local predicate and sends
messages to a global predicate checker that detects when all predicates are true in a consistent

cut. [7] also presents a method of decentralizing the algorithm. The main idea is that the
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set of processes are divided into groups. The checker process for the group is responsible for
sending to the overall checker process the set of all global states which are consistent within
the group. The overall checker process then checks consistency across groups. This technique
suffers from the disadvantage that the group checker process may have to send an exponential
number (exponential in the number of processes in the group) of global states to the overall
checker process. The algorithm presented in this paper avoids this problem.

Garg, Chase, Mitchell and Kilgore [6] extend the algorithm for detecting a WCP to include
predicates based on the state of communication channels. This larger class of predicates are
termed Generalized Conjunctive Predicates (GCP). A centralized checker process is also used
in [6].

Cooper and Marzullo [3] discuss detection of any global predicate. Their method relies on
constructing the lattice of global states and searching it to see if the global predicate is satisfied
by one of the states. This method also requires a centralized checker process.

In this paper, we present distributed algorithms to detect conjunctive predicates. We present
two algorithms. The first algorithm is based on vector clocks similar to [7]. However, instead of a
centralized process we use a token which carries in it the candidate global state and information
sufficient to determine if the global state satisfies the WCP. This algorithm requires O(n*m)
total work and O(nm) work per process where m is the number of messages sent or received
by any process and n is the number of processes over which the predicate is defined. We also
discuss how this algorithm can be generalized to a parallel algorithm for WCP with ¢ tokens.
The second algorithm does not use vector clocks. Instead it is based on finding all direct
dependences between processes. This algorithm requires O(Nm) work where N is the total
number of processes in the system. The relative values of n and N determine which algorithm
is more efficient for a specific application.

This paper is organized as follows. Section 2 describes our model of distributed computation
and monitoring of a global predicate. In Section 3, we present the vector clock based algorithm,
and in Section 4, we discuss the direct dependence based algorithm. Section 5 provides a lower
bound for the problem of detection of a conjunctive predicate. In this section, we show that
any parallel or distributed algorithm takes at least (nm) steps to determine if a conjunctive

predicate became true in a distributed computation.



2 Owur Model

This section presents the concepts of local and global predicates. The reader is referred to [7, 6]
for more comprehensive background material.

We assume a loosely-coupled message-passing system without any shared memory or a global
clock. A distributed program consists of N processes denoted by { Py, P;,...,Py} communicating
via asynchronous messages. In this paper, we will be concerned with a single run of a distributed
program. We assume that no messages are lost, altered or spuriously introduced. We do
not make any assumptions about a FIFO nature of the channels. We use a happened-before
relation, ‘—.” between states similar to that of Lamport’s happened-before relation between
events [8]. The happened-before relation can be formally stated as: @ — (3 iff: « occurs before
[ in the same process, or the action following « is a send of a message and the action preceding
3 is a receive of that message, or 3y : @ — vAy — . Two states for which the happened-before
relation does not hold in either direction are said to be concurrent. The concurrency relation,

||, can be formally stated as:
allfe(arBABFa)

A set of states is called a consistent cut if all states are pairwise concurrent.

A local state is the value of all program variables and processor registers (including the
program counter) for a single process. The execution of a process can thus be viewed as a
sequence of local states. A local predicate is defined as any boolean-valued formula on a local
state. For any process, represented by P;, a local predicate is written as [;. [;(«) is used to
represent the predicate being true in a particular state, a, of P;. A process can obviously detect
a local predicate on its own.

A global state is a collection of local states such that exactly one state is included from each
process. A global predicate is a boolean-valued formula on a global state. Global predicates
can only be true if the global state is a consistent cut. A global predicate formed only by the
conjunction of local predicates is called a Weak Conjunctive Predicate (WCP). We restrict our
consideration to conjunctive predicates because any boolean predicate can be detected using
an algorithm that detects conjunctive predicates [7].

Following are some examples of the WCP formulas:

1. Suppose we are developing a mutual exclusion algorithm for two processes. Let C'S; represent

the local predicate that the process P; is in critical section. Then, detecting (C'S; A C'S3) is



equivalent to detecting violation of mutual exclusion for a particular run:
2. Assume that in a database application, serializability is enforced using a two phase locking
scheme Further assume that there are two types of locks: read and write. Then, detecting

(Py has read lock) N\ (P, has write lock) is useful in identifying an error in implementation.

2.1 Application and Monitor Processes

A distributed program consists of a set of N interacting application processes. Collectively,
these processes perform some useful function, e.g. implement a distributed database. Our
goal is to detect the occurrence of global conditions of these processes. We introduce a new
set of N monitor processes. One monitor process is mated to each application process. Our
model is illustrated in Figure 1. The distributed program is illustrated by the plane labeled
“Application Domain”. The application processes (labeled “AP”) interact according to the
distributed application. In addition, the application processes send local snapshots (described
below) to monitor processes (labeled “MP”). The monitor processes interact with each other,

but do not communicate to the application processes.

Application Domain

Detection Domain

Figure 1: Application and Monitor Processes



3 A Vector Clock Based WCP Detection Algorithm

In this section we describe a vector clock based, distributed algorithm for detecting a WCP.
The algorithm has O(n?m) time, space and message complexity where the WCP is defined over
n (n < N) application processes and each application process sends at most m messages. We
describe the behavior of both application and monitor processes. Each process is required to

perform at most O(nm) work.

3.1 Application Processes

Since a WCP requires that local predicates are true on every process, we can disregard all local
states in which the local predicate is false. To uniquely identify a state, we use a vector clock
[9, 4]. We use the notation (7, k) to represent the kth state on application process P;. We will
also use simply k& to represent the this state when the identity of process P; is obvious from
context.

The following properties of vector clocks are easily verified.

1. a — B iff a.v < B.v, where a and 3 are states in processes P; and P; and a.v and 3.v are
the respective vector clocks at these states.
2. Let v be a vector on P;. Then, for any j different from ¢, (j,v[j]) — (7, v[¢]).

Each application processes checks for its local predicate. It sends a message, called a local
snapshot, to its monitor process whenever the local predicate becomes true for the first time
since the last program message was sent or received. The message contains vclock, the cur-
rent vector clock. An algorithm for this process is given in Figure 2. Note that we require

communication between an application process and a monitor process be FIFO.

3.2 Monitor Processes for single token algorithm

The distributed WCP detection algorithm uses a unique token. The token contains two vectors.
The first vector is labeled G. This vector defines the current candidate cut. If Gfi/ has the
value k, then state k from process F; is part of the current candidate cut. Note that all states on
the candidate cut satisfy local predicates. However, the states may not be mutually concurrent
(i.e. the candidate cut may not be a consistent cut). The token is initialized with Vi : G[i] = 0.

The second vector is labeled color, where color[i] indicates the color for the candidate state

from application process P;. The color of a state can be either red or green. If color[i] = red



P;:
var
vclock: array [1..n] of integer

init Vj : j # i :vclock[j] = 0; velock[i] = 1;
firstflag : boolean init true;
For sending msg do

msg.velock := velock;

send msg;

vclock[i]4++ ;

firstflag:=true;

Upon receive msg do
Vj wvclock[jl:=max(vclock[j], msg.vclock[j]);
vclock[i]4++ ;
firstflag:=true;

Upon (local_pred = true)A firstflag do
firstflag := false;
send (vclock) to monitor process M;;

Figure 2: Application Process Algorithm

then the state (¢, G[¢]) and all its predecessors have been eliminated and can never satisfy the
WCP. If color[i] = green, then there is no state in G such that (¢, G[¢]) happened before that
state. The token is initialized with Vi : color[i] = red.

The token is sent to monitor process M; only when color[ij] = red. When it receives the
token, M; waits to receive a new candidate state from P, and then checks for violations of
consistency conditions with this new candidate. This activity is repeated until the candidate
state did not happen before any other state on the candidate cut (i.e. the candidate can be
labeled green). Next, M; examines the token to see if any other states violate concurrency. If
it finds any j such that (j, G[j]) happened before (i, Gi]), then it makes color[j] red. Finally,
if all states in G are green, that is the cut, G, is consistent, then M; has detected the WCP.
Otherwise, M; sends the token to a process whose color is red. This behavior is described
in Figure 3. Note that the token can start on any process. Since the entire color vector is

initialized to red, it must eventually visit every process at least once.
3.3 Correctness of Vector Clock Based Algorithm

We now show that our algorithm correctly detects the first cut that satisfies a WCP.

Lemma 3.1 For any ¢,
1. G[i] # 0 A color[il = red = 3j : j # 1 : (¢, G[1]) — (4,Gj]);
2. colorli] = green = Vk : (1,G[i]) & (k,G[k]);



var
candidate:array[l..n] of integer; /* vector clock from candidate state * |

on receiving the token (G,color)
while (color[i] = red) do
receive candidate from application process F;
if (candidate[i] > Gi]) then
G[i] := candidate[i]; color[i]:=green;
endwhile
for j # i
if (candidate[j] > GJj]) then
G[j] := candidate][j];
color[j]:=red;
endif
endfor
if (3 j: color[j] = red) then send token to M;
else detect := true;

Figure 3: Monitor Process Algorithm

3. (color[i] = green) A (color[j] = green) = (i, G[i])||(7, Gj]).
4. If (color[i] = red), then there is no global cut satisfying the WCP which includes (i, G[i]).

Proof: 1. Initially, G[i] = 0, so the lemma holds. For any i, color[i] is set to red only when
some process P; has the token and Gi] < candidate[i]. By the property of vector clocks, for
any candidate in P;, candidate[i] — candidate[j]. Therefore, G[i] — G[j]. Whenever a new
candidate is selected for F;, the color of P; is set to green, hence the lemma holds.

2. We show the contrapositive of the statement. That is, Ik : G[i] — G[k] = color[i] = red.
Initially color[i] is red and the lemma holds. Assume that the lemma holds for any cut. We
show that on advancing the cut, the lemma continues to hold. The antecedent can be made
true only by advancing the cut on process k. Let G[i] — G[k]. This implies that the vector
My.candidate which satisfies My.candidate[k] = G[k| also satisfies My.candidate[i] > G[i] (by
the property of vector clocks). Therefore, color[i] is changed to red.

3. Follows easily from part 2.

4. We show that there is no global cut satisfying the WCP with G[i]. The proof is by induction.
Initially G[¢]is 0 and the assertion holds since there cannot be any consistent global cut including
(7,0). From part 1, (G[i] # 0) A (color[i] = red) implies that it happened before some state
G/[j]. This implies that G[i] cannot be consistent with G[j] or any state in P; after G[j]. By
the induction hypothesis, it follows that G[i] cannot be consistent with any state preceding G[j]
because states preceding G[j] are also colored red. Thus, there is no global cut which includes

a state in P; and is consistent with G[i]. O



Theorem 3.2 The flag detect is true with G iff G is the first cutl that satisfies the WCP.

Proof: The condition detect implies that Vj : color[j] = green. It follows from part 3 of
Lemma 3.1 that Vi,j : ¢ # j : G[i]||G[j]. We know that [;(G[i]) always holds because only
states where [; is true can be candidates. Hence, the WCP holds for G. We now show that &G
is the first such cut. Note that for any process P;, G/[i] is changed only when color[i] is red.
From lemma 3.1, part 4 it follows that no predecessor of any state, G[i], can satisfy the WCP.
Therefore, whenever detect is set to true, G is the first cut to satisfy the WCP.

Conversely, let H be the first cut for which the WCP is true. We first show that if & is the
current candidate for the WCP and (' is before H, then at least one of the states in G will be
eliminated. That is, the detection algorithm will continue to make progress until it reaches H.
It is easy to see that for any cut G before H, there exists j : color[j] = red. Since only process
P; can change color[j] from red to green, the condition to send the token to P; will stay true
until P; gets the token. Further, the token eventually is sent to P; because when a token moves
at least one state is removed from consideration and there are finite number of states in other
processes after (G and before H. Once the token reaches P;, the state in P; is advanced.

We now show that any state in I will not be eliminated. A state along F; is eliminated
only if it is red. From part 4 of Lemma 3.1 it follows that any eliminated state cannot be part
of a consistent cut satisfying the WCP. Therefore, no state in H is eliminated. Eventually, all

states from H will be part of the candidate cut and the algorithm will halt with detect true. O

3.4 Analysis of Vector Clock Based Algorithm

We first analyze the time complexity for computation. It is easy to see that whenever a process
receives the token, it deletes at least one local state (i.e., it receives at least one message from
the application process). Every time a state is eliminated, O(n) work is performed by the
process with the token. There are at most mn states; therefore, the total computation time
for all processes is O(n*m). Note that this requirement is same as that for the centralized
algorithm [7]. The main difference between the algorithms is that the work for any process in
the distributed algorithm is at most O(nm).

We now analyze the message complexity. Since there are at most mn states, the token is

sent at most mn times. In addition, each monitor process receives at most m messages from

its application process. Hence the total number of messages in the system is 2mn. The size



of both the token and the candidate messages is O(n). Therefore, the total number of bits
communicated is O(n?m).

The main space requirements are the buffer for holding messages from the application pro-
cess (the token is unique and only O(n) in size). There are at most m such messages each of
size O(n). Therefore, O(nm) space is required by the algorithm for every monitor process. We

2

again observe that the checker-based algorithm requires O(n*m) space for the checker process.

3.5 Introducing Parallelism to the Vector Clock Based Algorithm

The main drawback of the single-token WCP detection algorithm is that it has no concurrency.
A monitor process is active only if it has the token. This can be remedied by using multiple
tokens in the system. We partition the set of monitor processes into g groups and use one token
for each group. Let group(i) denote the group to which M; belongs. The monitor processes in
each group run the single-token algorithm, except that the token is not allowed to be sent to a
process in a different group. Once there are no longer any red states from processes within the
group, the token is returned to some pre-determined leader process (say Fp).

When Py has received all the tokens, it merges the information in the g tokens to identify a
new global cut. Some processes may not satisfy the consistency condition for this new cut. If
0, a token is sent into each group containing such a process. If Fy determines that all groups

satisfy the consistency condition, then the WCP is detected.

4 A Direct Dependence Based WCP Detection Algorithm

In this section we describe a WCP detection algorithm that does not use vector clocks. The
algorithm is based upon satisfying only direct dependences between states. Hence, it is necessary
for all N processes to participate in the algorithm. Recall that the vector clock based algorithm
required participation by only the n processes for which local predicates are defined. The
direct dependence based algorithm has O(Nm) time, space and message complexity and is

more efficient when n? is large relative to N.

4.1 Application Process

Each application process uses a logical counter to uniquely identify candidate states. The

counter is incremented on each send or receive performed by the application process. The



counter is attached to each message sent between application processes. This contrasts with
the previous algorithm, which attached a vector of n clock values to each message.

The format of a local snapshot is also changed from the previous algorithm. When applica-
tion process P; receives a message from process P; that is tagged with clock k, it records (j, k)
as a dependence. In other words, all successive states on process P; depend on state k from
process P;. We refer to this dependence as a direct dependence since it is implied by a single
message. A linked list of all direct dependences is constructed as messages are received. When
a candidate state for the WCP is reached, a local snapshot is created from this dependence list
and the current value of the local clock. The dependence list is reinitialized to be empty after

generating the local snapshot.

4.2 Monitor Processes

We now describe the direct dependence algorithm for monitor processes. As before, the monitor
processes interact by exchanging a token. However, in this algorithm the token is empty. All
data structures, including the candidate cut are distributed. Fach monitor process must keep
track of the color for its candidate state (the variable color) and the clock value for this state
(the variable /). These variables are analogous to those from the vector clock based algorithm

as shown in Table 1.

Vector Clock Algorithm | Direct Dependence Algorithm

token.colorli] M;.color

token. Gi] M,;.G

Table 1: Distribution of Token Data Structures

In addition, the monitor processes maintain a pointer variable, called next_red, which is
used to construct a null-terminated linked list that includes all monitor processes whose color
is red. We call this list the red chain. We maintain the invariant that the process with the
token is at the head of the red chain.

Monitor processes are active only when:
1. they have the token, or

2. they are polled by the process that has the token

10



var
color : { red, green } init red;
G : integer init 0;
deplist : list of (process id, clock);
upon receiving the token
deplist := 0;
repeat
receive candidate from application process
deplist := deplist U candidate.deplist;
until (candidate.clock > G)
color := green

/* add processes to red chain */
for (each (i, k) € deplist) do
send poll(k, next_red) to M;;
receive response from M;;

if (response = became_red) next_red := i;
endfor

if (next_red = NULL) detect := true;

else send token to MneXt_I’ed;

Figure 4: Monitor Process for Direct Dependence Algorithm

The monitor process with the token operates as shown in Figure 4. Note that only a monitor
process whose color is red will have the token. The process receives new candidate states from
the application process until a state is found with a local clock larger than G. As each new
candidate state is received, the dependences are collected into a list. When a candidate has
been found that has a clock larger than &, the dependence list is traversed as follows: For each
dependence in the list, a poll message is sent to M; where P; is the source of the dependence.
The poll message consists of two integers, the clock value for the dependence and next_red. If
the response to the poll message is “became red”, then M; sets next_red to be the value j,
adding M; to the red chain. If the response is “no change” then the dependence did not cause
M; to become red. All dependences are processed in this manner. Then M; sends the token
to the process corresponding to next_red. If next_red is NULL, then there are no red processes
and detect is set to true.

Upon receiving a poll message, the monitor process performs two functions as shown in
Figure 5. First it updates the G and color variables as follows. If the dependence contained in
the poll message has a value equal to or larger than G, then G is set to this value, and color is
set to red. Second, the monitor process generates a response message as follows. If in the first
step, color was not changed from its previous value, then reply with the message “no change”.

Otherwise set the local variable next_red to the value of next_red from the poll message and

11



upon receiving poll message from M;:
old _color := color;

if (poll.clock > G) then
color := red;
G := poll.clock;
endif
if (color = red A old_color = green) then
next_red := poll.next_red;
send “became red” to M;;
else
send “no change” to M;;

endif

Figure 5: Responding to Poll Messages

reply with the message “became red”.

4.3 Correctness of the Direct Dependence Algorithm

In this section we show that the direct dependence algorithm detects the first cut for which
the WCP is true. We first show that finding a global consistent cut with respect to indirect
dependence is equivalent to finding a global consistent cut with respect to direct dependence
when all processes are involved. Direct dependence, denoted s —4 ¢, means that s and ¢ are
on the same process and s happens before ¢, or there exists a single message sent after s and
received before t. Now, we can state the result that consistency can be checked with respect to

direct dependence.

Lemma 4.1 Let G be any global cut. Then, G is a consistent cut (i.e. Vi,j: G[i] /~ G[j]) iff
Vi, j 2 Gli] #-a Glj].
Proof: See Appendix. O

It should be observed that we have used the fact that G includes a component from each of

the N processes. Thus, this algorithm requires that all processes participate in the algorithm.

Lemma 4.2

1. For any i : M;.G # 0 A M;.color = red = 35 : (¢, M;.G) —4 (j, M;.G)

2. M;.color = green N M;.color = green = (1, M;.G) /4 (§, M;.G) N (j, M;.G) #4 (i, M;.GF).
3. M;.color is red, iff M; is on the red chain.

Proof: See Appendix. O

12



Theorem 4.3 If detect is set to true, then the cut defined by M;.G' on all monitor processes
M; is the first consistent cut that satisfies the WCP.

Proof: If detect is set to true then the red chain is empty. This is because only the process with
the token can set detect. Since the process with the token is always the head of the red chain,
this chain must be empty before detect can be made true. Therefore, by part 3 of Lemma 4.2
all of the color variables must be green. Hence, by part 2 of Lemma 4.2 the G variables form
a consistent cut with respect to direct dependence. By Lemma 4.1, this cut satisfies the WCP.
We now argue that this is the first such cut. Since a monitor process can only change G when
color is red, Part 1 of Lemma 4.2 tells us that we cannot bypass any cut that satisfies the WCP.

Hence if detect is set to true then this must be the first such cut. O

Theorem 4.4 If cut H is the first consistent cut that satisfies the WCP, then detect will be
set to true with H defined by the G variables on all M;.

Proof:

Initially, all M; are at a state that is a predecessor to H. We must now show that they continue
to make progress until they reach H. This requires two parts. First we must show that all red
candidates are eventually replaced with green candidates. By Part 3 of Lemma 4.2 we can assert
that the token will eventually visit any process with a red candidate. The token will remain on
this process until a green candidate can be found. Second, we must show that any state which
precedes H is correctly painted red. Assume (7,k) is a state that precedes H. For this to be
true, there must have been some message sent after state £ by P; that has been received prior
to H. Since all messages sent prior to any green state are included in the dependence list, any
such predecessor will eventually be painted red. Hence, the monitor processes will eventually
advance the cut to H. When this occurs, all processes must be green. By Lemma 4.2 part 3,

the red chain must be empty and detect will be set to true. O

4.4 Analysis of the Direct Dependence Algorithm

At most mN dependences exist in the system. Hence, at most mN poll messages and replies
can be sent. The token never visits processes with green candidates. Every time the token visits

a process, at least one state is eliminated. Hence the token can be sent at most m/N times.

13



Therefore, the total number of messages sent by monitor processes is 3mN. At most mN local
snapshots can be sent by application processes.

All monitor messages are of constant size. The token carries no actual information, and
poll messages contain only two integers. Poll responses are 1 bit. Therefore, total number of
bits sent by monitor processes is O(Nm). Local snapshots are variable sized. However the
total number of dependences for any one process cannot exceed m. Since a dependence can be
represented by a pair of integers, O( Nm) bits are sent by application processes.

Although a variable amount of work occurs each time the token visits a processor, the total
work is bounded by O(m) for each process. This is clearly seen by noting that a constant amount
of work is performed for each dependence. This work includes adding and then removing the
dependence from a list, sending a single poll message and waiting for a response. Since there
can be no more than O(m) dependences for any one process, the total work performed by all
monitor processes is O(Nm).

The amount of space required for each monitor process or application is determined by
the space required for the dependence list. All other variables are of constant size. Since the
dependence list is at most m elements long on any process, at most O(m) space is required on

any process.

4.5 Introducing Parallelism to the Direct Dependence Based Algorithm

We can introduce concurrent activity into the direct dependence based algorithm by noting that
any red process can safely search for a new candidate state. As it discovers new dependences,
the process may cause other processes to become red. Since the process itself is red, it has a
pointer into some part of the red chain. It can use this pointer to add new processes to the
chain without waiting for the token to arrive. Since poll messages must be acknowledged, there
is no possibility of a single process being inserted into the list twice.

Note that the parallel variation of the algorithm still requires that the token visit a process
before that process can be removed from the red chain. This restriction ensures that the chain
is never broken, and all red processes will remain on the chain in spite of the parallel activity

along it.

14



5 Lower Bound for Predicate Detection

We argue in this section that Q(nm) is the lower bound on the time complexity of WCP
detection. This bound holds for both serial and parallel algorithms. We assume that local
states must be considered in order. This restriction models the online nature of the detection
algorithm. Since the predicate is possibly unstable, it is not acceptable to skip any local states.
Since the application processes may continue executing for an arbitrary time even after the
predicate has become true, it is not acceptable to delay the detection process until after the
processes have terminated. Hence, identifying a global state that satisfies a global predicate
reduces to the problem of eliminating all local states that precede this global state.

Formally, the predicate detection problem is defined as follows. Let (5, <) be any partially
ordered finite set of size mn. We are given a decomposition of .5 into n sets Py, ... P, such that
P; is a chain of size m. Each chain is accessed through a queue. Only the head element of each
queue may be examined at any instant. When the head element has been removed from the
queue, it is lost from further consideration. Let the steps of a parallel algorithm consist of any
of the following:

S1. compare all heads of the queues in parallel

52. delete the heads of any number of queues in parallel.

Theorem 5.1 Let A be any parallel algorithm which determines if there exists an anti-chain
of size n in such a poset of size mn. If A is restricted to steps (S1) and (S2), then it takes at

least Q(nm) steps to determine the correct answer.

Proof: See Appendix O

It follows from the above result that any online parallel detection algorithm based on com-
parison of vectors requires at least mn time. It is also easy to see that in the worst case Q(nm)

space is also necessary.

6 Conclusion

We have presented distributed algorithms for detecting weak conjunctive predicates. The first
of these algorithms reduces the space requirements on any single process from O(n?m) to
O(nm). Further, the distribution of the workload is also more equitable than the the centralized

algorithm. We achieve this distribution without increasing the total number of messages, or
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increasing (except possibly by a constant factor) the total amount of work performed. The
second algorithm reduces time and message complexity in the case n (the number of processes
over which the predicate is defined) is large with respect to N (the total number of processes).
This algorithm has O(m) time, space, and message complexity on each of the N processes. The
algorithms rely on the ability to efficiently eliminate a state from any global cut that does not
satisfy the predicate. The happened before relation provides this ability for weak conjunctive
predicates.

We establish that any parallel algorithm for detecting a conjunctive predicate requires
Q(nm) steps when the algorithm is limited to eliminating at most one state from each of n
processes. Although it is not possible to improve upon O(nm) steps in the worst case, in the
average case faster detection may be possible. We describe methods of introducing parallelism

into our algorithms to improve average case performance.
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7 Appendix

Proof of Lemma 4.1:
(=) Since, s —,4 t implies that s — ¢, it follows that s /4 ¢ implies s /4 t. Thus, the right
hand side follows.
(<) It is sufficient to show that (37,j : M;.G — M;.G) implies (3k,l: My.G —4 M;.GG). The
proof is using induction on the number of processes in the causality chain from M;.G to M;.G,
that is, on the level of indirect dependence from M;.G to M;.G. The base case is trivially true
since if there are no processes in the causality chain, then M;.G —4 M;.GG and we are done.
Now consider the case when the indirect dependence goes through K processes. Let the first
process in the chain be Py. That is there exists a message sent after M;.G which is received
by Pjy. There are two cases. If this message is received before M;/.G, then we are done since
M;.G —4 M;.GG and the right hand side is true. The second case is when this message is received
after M;.GG. However, this implies that M;;.G — M;.G and from the induction hypothesis the

right hand side is true again.

Proof of Lemma 4.2

Part 1. Initially this lemma is true, since M,;.G is initialized to zero. During the detection
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algorithm, color can be set to red only when a dependence has been found and sent in a poll
message. Furthermore, the poll can be sent only when the relevant message was received by
the application process prior to the current state in the process which sent the poll message.
The proof then follows by induction.

Part 2. This lemma is easily proven by contradiction. Assume that (i, M;.GG) precedes
(j, M;.GG). Therefore, a message has been received prior to (j, M;.G), that was sent after
(i, M;.G7). Since a state can be painted green only after all poll messages have been received,
any such dependence would have caused (¢, M;.GG) to have been painted red, a contradiction.

Part 3. Initially this lemma is true, since all processes are on the red chain, and all processes
are red. We note that a process can only be removed from the red chain when the token visits
the process. The token can leave a process when color is green. Hence, all processes with a red
state will remain on the red chain. Further, any process that turns red is added to the chain.
Therefore, all red processes are on the red chain. Only red processes can be added to the chain,
and a process can become green only when sending the token (simultaneously removing itself

from the chain). Therefore, only red processes can be on the red chain.

Proof of Theorem 5.1

An adversary can exploit the fact that the algorithm can only compare heads of the queues.
Further, the algorithm can delete only those head elements which are smaller than some other
head element. Otherwise, the adversary can produce a consistent cut which includes the deleted
head. Thus, if the adversary can ensure that at most one state is deleted in one step, then it
has succeeded because there are mn states in all. For the first application of S1, the adversary
returns that all heads are concurrent except one which is smaller than exactly one other. Thus,
algorithm A can delete only one state in this iteration. Assume that the algorithm deleted a
state from P; in the last iteration. Of the remaining queues, let P; be the queue with the largest
number of elements. In the next iteration, the adversary returns that all heads are concurrent
except that head of P; is smaller than the head of P;. Thus, only the head of P; can be deleted
in the next iteration. By repeating this procedure it is clear that the adversary can force the
algorithm to delete one state at a time until some queue becomes empty. At this point, no
queue can have two or more elements otherwise that queue would have been chosen in the last

iteration. Hence, at least mn —n states are deleted sequentially before the algorithm can answer
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“no”. Note that if the algorithm returns “no” any point before this, the adversary can produce

another poset which is consistent with all its answers and has an anti-chain of size n.
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