
Distributed Algorithms for Detecting Conjunctive PredicatesParallel and Distributed Systems Laboratoryemail: pdslab@ece.utexas.eduElectrical and Computer Engineering DepartmentThe University of Texas at Austin,Austin, TX 78712Vijay K. Garg� Craig M. ChaseySeptember 30, 1994AbstractThis paper discusses e�cient distributed detection of global conjunctive predicates in adistributed program. Previous work in detection of such predicates is based on a checkerprocess. The checker process requires O(n2m) time and space where m is the number ofmessages sent or received by any process and n is the number of processes over which thepredicate is de�ned. In this paper, we introduce token-based algorithms which distributethe computation and space requirements of the detection procedure. The distributed algo-rithm has O(n2m) time, space and message complexity, distributed such that each processperforms O(nm) work. We describe another distributed algorithm with O(Nm) total work,where N is the total number of processes in the system. The relative values of n and Ndetermine which algorithm is more e�cient for a speci�c application.1 IntroductionDetection of a global predicate is a fundamental problem in distributed computing. This prob-lem arises in many contexts such as designing, testing and debugging of distributed programs.Previous work has described algorithms for detecting stable and unstable global predicates[2, 3, 5, 7, 6, 10, 11, 13]. See [1, 12] for surveys of stable and unstable predicate detection.This paper is most closely related to [7], [6], and [3]. Garg and Waldecker [7] present amethod for detecting weak conjunctive predicates (WCP). A WCP is a global predicate formedas the conjunction of n local predicates. Many problems in distributed systems can be viewed asspecial cases of WCP detection. In [7], each process checks for its own local predicate and sendsmessages to a global predicate checker that detects when all predicates are true in a consistentcut. [7] also presents a method of decentralizing the algorithm. The main idea is that the�supported in part by the NSF Grant CCR-9110605, a TRW faculty assistantship award, a General MotorsFellowship, and an IBM grantysupported in part by the Texas Instruments/Jack Kilby Faculty Fellowship1

set of processes are divided into groups. The checker process for the group is responsible forsending to the overall checker process the set of all global states which are consistent withinthe group. The overall checker process then checks consistency across groups. This techniquesu�ers from the disadvantage that the group checker process may have to send an exponentialnumber (exponential in the number of processes in the group) of global states to the overallchecker process. The algorithm presented in this paper avoids this problem.Garg, Chase, Mitchell and Kilgore [6] extend the algorithm for detecting a WCP to includepredicates based on the state of communication channels. This larger class of predicates aretermed Generalized Conjunctive Predicates (GCP). A centralized checker process is also usedin [6].Cooper and Marzullo [3] discuss detection of any global predicate. Their method relies onconstructing the lattice of global states and searching it to see if the global predicate is satis�edby one of the states. This method also requires a centralized checker process.In this paper, we present distributed algorithms to detect conjunctive predicates. We presenttwo algorithms. The �rst algorithm is based on vector clocks similar to [7]. However, instead of acentralized process we use a token which carries in it the candidate global state and informationsu�cient to determine if the global state satis�es the WCP. This algorithm requires O(n2m)total work and O(nm) work per process where m is the number of messages sent or receivedby any process and n is the number of processes over which the predicate is de�ned. We alsodiscuss how this algorithm can be generalized to a parallel algorithm for WCP with g tokens.The second algorithm does not use vector clocks. Instead it is based on �nding all directdependences between processes. This algorithm requires O(Nm) work where N is the totalnumber of processes in the system. The relative values of n and N determine which algorithmis more e�cient for a speci�c application.This paper is organized as follows. Section 2 describes our model of distributed computationand monitoring of a global predicate. In Section 3, we present the vector clock based algorithm,and in Section 4, we discuss the direct dependence based algorithm. Section 5 provides a lowerbound for the problem of detection of a conjunctive predicate. In this section, we show thatany parallel or distributed algorithm takes at least
(nm) steps to determine if a conjunctivepredicate became true in a distributed computation.2

2 Our ModelThis section presents the concepts of local and global predicates. The reader is referred to [7, 6]for more comprehensive background material.We assume a loosely-coupled message-passing system without any shared memory or a globalclock. A distributed program consists of N processes denoted by fP1,P2,...,PNg communicatingvia asynchronous messages. In this paper, we will be concerned with a single run of a distributedprogram. We assume that no messages are lost, altered or spuriously introduced. We donot make any assumptions about a FIFO nature of the channels. We use a happened-beforerelation, `!,' between states similar to that of Lamport's happened-before relation betweenevents [8]. The happened-before relation can be formally stated as: �! � i�: � occurs before� in the same process, or the action following � is a send of a message and the action preceding� is a receive of that message, or 9 : �! ^ ! �. Two states for which the happened-beforerelation does not hold in either direction are said to be concurrent. The concurrency relation,k, can be formally stated as: � k � , (� 6! � ^ � 6! �)A set of states is called a consistent cut if all states are pairwise concurrent.A local state is the value of all program variables and processor registers (including theprogram counter) for a single process. The execution of a process can thus be viewed as asequence of local states. A local predicate is de�ned as any boolean-valued formula on a localstate. For any process, represented by Pi, a local predicate is written as li. li(�) is used torepresent the predicate being true in a particular state, �, of Pi. A process can obviously detecta local predicate on its own.A global state is a collection of local states such that exactly one state is included from eachprocess. A global predicate is a boolean-valued formula on a global state. Global predicatescan only be true if the global state is a consistent cut. A global predicate formed only by theconjunction of local predicates is called a Weak Conjunctive Predicate (WCP). We restrict ourconsideration to conjunctive predicates because any boolean predicate can be detected usingan algorithm that detects conjunctive predicates [7].Following are some examples of the WCP formulas:1. Suppose we are developing a mutual exclusion algorithm for two processes. Let CSi representthe local predicate that the process Pi is in critical section. Then, detecting (CS1 ^ CS2) is3

equivalent to detecting violation of mutual exclusion for a particular run:2. Assume that in a database application, serializability is enforced using a two phase lockingscheme Further assume that there are two types of locks: read and write. Then, detecting(P1 has read lock) ^ (P2 has write lock) is useful in identifying an error in implementation.2.1 Application and Monitor ProcessesA distributed program consists of a set of N interacting application processes . Collectively,these processes perform some useful function, e.g. implement a distributed database. Ourgoal is to detect the occurrence of global conditions of these processes. We introduce a newset of N monitor processes . One monitor process is mated to each application process. Ourmodel is illustrated in Figure 1. The distributed program is illustrated by the plane labeled\Application Domain". The application processes (labeled \AP") interact according to thedistributed application. In addition, the application processes send local snapshots (describedbelow) to monitor processes (labeled \MP"). The monitor processes interact with each other,but do not communicate to the application processes.
AP AP

AP AP

Application Domain

MP MP

MP MP

Detection Domain

Application Messages

Local
Snapshots

Monitor MessagesFigure 1: Application and Monitor Processes4

3 A Vector Clock Based WCP Detection AlgorithmIn this section we describe a vector clock based, distributed algorithm for detecting a WCP.The algorithm has O(n2m) time, space and message complexity where the WCP is de�ned overn (n � N) application processes and each application process sends at most m messages. Wedescribe the behavior of both application and monitor processes. Each process is required toperform at most O(nm) work.3.1 Application ProcessesSince a WCP requires that local predicates are true on every process, we can disregard all localstates in which the local predicate is false. To uniquely identify a state, we use a vector clock[9, 4]. We use the notation (i; k) to represent the kth state on application process Pi. We willalso use simply k to represent the this state when the identity of process Pi is obvious fromcontext.The following properties of vector clocks are easily veri�ed.1. � ! � i� �:v < �:v, where � and � are states in processes Pi and Pj and �:v and �:v arethe respective vector clocks at these states.2. Let v be a vector on Pi. Then, for any j di�erent from i, (j; v[j])! (i; v[i]).Each application processes checks for its local predicate. It sends a message, called a localsnapshot , to its monitor process whenever the local predicate becomes true for the �rst timesince the last program message was sent or received. The message contains vclock, the cur-rent vector clock. An algorithm for this process is given in Figure 2. Note that we requirecommunication between an application process and a monitor process be FIFO.3.2 Monitor Processes for single token algorithmThe distributed WCP detection algorithm uses a unique token. The token contains two vectors.The �rst vector is labeled G . This vector de�nes the current candidate cut. If G[i] has thevalue k, then state k from process Pi is part of the current candidate cut. Note that all states onthe candidate cut satisfy local predicates. However, the states may not be mutually concurrent(i.e. the candidate cut may not be a consistent cut). The token is initialized with 8i : G[i] = 0.The second vector is labeled color , where color[i] indicates the color for the candidate statefrom application process Pi. The color of a state can be either red or green. If color[i] = red5

Pi:varvclock: array [1..n] of integerinit 8j : j 6= i :vclock[j] = 0; vclock[i] = 1;�rstag : boolean init true;For sending msg domsg.vclock := vclock;send msg;vclock[i]++ ;�rstag:=true;Upon receive msg do8j :vclock[j]:=max(vclock[j], msg.vclock[j]);vclock[i]++ ;�rstag:=true;Upon (local pred = true)^ �rstag do�rstag := false;send (vclock) to monitor process Mi;Figure 2: Application Process Algorithmthen the state (i; G[i]) and all its predecessors have been eliminated and can never satisfy theWCP. If color[i] = green, then there is no state in G such that (i; G[i]) happened before thatstate. The token is initialized with 8i : color[i] = red.The token is sent to monitor process Mi only when color[i] = red. When it receives thetoken, Mi waits to receive a new candidate state from Pi and then checks for violations ofconsistency conditions with this new candidate. This activity is repeated until the candidatestate did not happen before any other state on the candidate cut (i.e. the candidate can belabeled green). Next, Mi examines the token to see if any other states violate concurrency. Ifit �nds any j such that (j; G[j]) happened before (i; G[i]), then it makes color[j] red. Finally,if all states in G are green, that is the cut, G, is consistent, then Mi has detected the WCP.Otherwise, Mi sends the token to a process whose color is red. This behavior is describedin Figure 3. Note that the token can start on any process. Since the entire color vector isinitialized to red, it must eventually visit every process at least once.3.3 Correctness of Vector Clock Based AlgorithmWe now show that our algorithm correctly detects the �rst cut that satis�es a WCP.Lemma 3.1 For any i,1. G[i] 6= 0 ^ color[i] = red) 9j : j 6= i : (i; G[i])! (j; G[j]);2. color[i] = green) 8k : (i; G[i]) 6! (k;G[k]);6

varcandidate:array[1..n] of integer; /* vector clock from candidate state */on receiving the token (G,color)while (color[i] = red) doreceive candidate from application process Piif (candidate[i] > G[i]) thenG[i] := candidate[i]; color[i]:=green;endwhilefor j 6= i:if (candidate[j] � G[j]) thenG[j] := candidate[j];color[j]:=red;endifendforif (9 j: color[j] = red) then send token to Mjelse detect := true;Figure 3: Monitor Process Algorithm3. (color[i] = green) ^ (color[j] = green)) (i; G[i])k(j;G[j]).4. If (color[i] = red), then there is no global cut satisfying the WCP which includes (i; G[i]).Proof: 1. Initially, G[i] = 0, so the lemma holds. For any i, color[i] is set to red only whensome process Pj has the token and G[i] � candidate[i]. By the property of vector clocks, forany candidate in Pj , candidate[i] ! candidate[j]. Therefore, G[i] ! G[j]. Whenever a newcandidate is selected for Pi, the color of Pi is set to green, hence the lemma holds.2. We show the contrapositive of the statement. That is, 9k : G[i] ! G[k]) color[i] = red.Initially color[i] is red and the lemma holds. Assume that the lemma holds for any cut. Weshow that on advancing the cut, the lemma continues to hold. The antecedent can be madetrue only by advancing the cut on process k. Let G[i] ! G[k]. This implies that the vectorMk:candidate which satis�es Mk:candidate[k] = G[k] also satis�es Mk:candidate[i] � G[i] (bythe property of vector clocks). Therefore, color[i] is changed to red.3. Follows easily from part 2.4. We show that there is no global cut satisfying the WCP with G[i]. The proof is by induction.Initially G[i] is 0 and the assertion holds since there cannot be any consistent global cut including(i; 0). From part 1, (G[i] 6= 0) ^ (color[i] = red) implies that it happened before some stateG[j]. This implies that G[i] cannot be consistent with G[j] or any state in Pj after G[j]. Bythe induction hypothesis, it follows that G[i] cannot be consistent with any state preceding G[j]because states preceding G[j] are also colored red. Thus, there is no global cut which includesa state in Pj and is consistent with G[i]. 2 7

Theorem 3.2 The ag detect is true with G i� G is the �rst cut that satis�es the WCP.Proof: The condition detect implies that 8j : color[j] = green. It follows from part 3 ofLemma 3.1 that 8i; j : i 6= j : G[i]kG[j]. We know that li(G[i]) always holds because onlystates where li is true can be candidates. Hence, the WCP holds for G. We now show that Gis the �rst such cut. Note that for any process Pi, G[i] is changed only when color[i] is red.From lemma 3.1, part 4 it follows that no predecessor of any state, G[i], can satisfy the WCP.Therefore, whenever detect is set to true, G is the �rst cut to satisfy the WCP.Conversely, let H be the �rst cut for which the WCP is true. We �rst show that if G is thecurrent candidate for the WCP and G is before H , then at least one of the states in G will beeliminated. That is, the detection algorithm will continue to make progress until it reaches H .It is easy to see that for any cut G before H , there exists j : color[j] = red. Since only processPj can change color[j] from red to green, the condition to send the token to Pj will stay trueuntil Pj gets the token. Further, the token eventually is sent to Pj because when a token movesat least one state is removed from consideration and there are �nite number of states in otherprocesses after G and before H . Once the token reaches Pj , the state in Pj is advanced.We now show that any state in H will not be eliminated. A state along Pi is eliminatedonly if it is red. From part 4 of Lemma 3.1 it follows that any eliminated state cannot be partof a consistent cut satisfying the WCP. Therefore, no state in H is eliminated. Eventually, allstates from H will be part of the candidate cut and the algorithm will halt with detect true. 23.4 Analysis of Vector Clock Based AlgorithmWe �rst analyze the time complexity for computation. It is easy to see that whenever a processreceives the token, it deletes at least one local state (i.e., it receives at least one message fromthe application process). Every time a state is eliminated, O(n) work is performed by theprocess with the token. There are at most mn states; therefore, the total computation timefor all processes is O(n2m). Note that this requirement is same as that for the centralizedalgorithm [7]. The main di�erence between the algorithms is that the work for any process inthe distributed algorithm is at most O(nm).We now analyze the message complexity. Since there are at most mn states, the token issent at most mn times. In addition, each monitor process receives at most m messages fromits application process. Hence the total number of messages in the system is 2mn. The size8

of both the token and the candidate messages is O(n). Therefore, the total number of bitscommunicated is O(n2m).The main space requirements are the bu�er for holding messages from the application pro-cess (the token is unique and only O(n) in size). There are at most m such messages each ofsize O(n). Therefore, O(nm) space is required by the algorithm for every monitor process. Weagain observe that the checker-based algorithm requires O(n2m) space for the checker process.3.5 Introducing Parallelism to the Vector Clock Based AlgorithmThe main drawback of the single-token WCP detection algorithm is that it has no concurrency.A monitor process is active only if it has the token. This can be remedied by using multipletokens in the system. We partition the set of monitor processes into g groups and use one tokenfor each group. Let group(i) denote the group to which Mi belongs. The monitor processes ineach group run the single-token algorithm, except that the token is not allowed to be sent to aprocess in a di�erent group. Once there are no longer any red states from processes within thegroup, the token is returned to some pre-determined leader process (say P0).When P0 has received all the tokens, it merges the information in the g tokens to identify anew global cut. Some processes may not satisfy the consistency condition for this new cut. Ifso, a token is sent into each group containing such a process. If P0 determines that all groupssatisfy the consistency condition, then the WCP is detected.4 A Direct Dependence Based WCP Detection AlgorithmIn this section we describe a WCP detection algorithm that does not use vector clocks. Thealgorithm is based upon satisfying only direct dependences between states. Hence, it is necessaryfor all N processes to participate in the algorithm. Recall that the vector clock based algorithmrequired participation by only the n processes for which local predicates are de�ned. Thedirect dependence based algorithm has O(Nm) time, space and message complexity and ismore e�cient when n2 is large relative to N .4.1 Application ProcessEach application process uses a logical counter to uniquely identify candidate states. Thecounter is incremented on each send or receive performed by the application process. The9

counter is attached to each message sent between application processes. This contrasts withthe previous algorithm, which attached a vector of n clock values to each message.The format of a local snapshot is also changed from the previous algorithm. When applica-tion process Pi receives a message from process Pj that is tagged with clock k, it records (j; k)as a dependence. In other words, all successive states on process Pi depend on state k fromprocess Pj . We refer to this dependence as a direct dependence since it is implied by a singlemessage. A linked list of all direct dependences is constructed as messages are received. Whena candidate state for the WCP is reached, a local snapshot is created from this dependence listand the current value of the local clock. The dependence list is reinitialized to be empty aftergenerating the local snapshot.4.2 Monitor ProcessesWe now describe the direct dependence algorithm for monitor processes. As before, the monitorprocesses interact by exchanging a token. However, in this algorithm the token is empty. Alldata structures, including the candidate cut are distributed. Each monitor process must keeptrack of the color for its candidate state (the variable color) and the clock value for this state(the variable G). These variables are analogous to those from the vector clock based algorithmas shown in Table 1.Vector Clock Algorithm Direct Dependence Algorithmtoken.color [i] Mi.colortoken.G [i] Mi.GTable 1: Distribution of Token Data StructuresIn addition, the monitor processes maintain a pointer variable, called next red , which isused to construct a null-terminated linked list that includes all monitor processes whose coloris red. We call this list the red chain. We maintain the invariant that the process with thetoken is at the head of the red chain.Monitor processes are active only when:1. they have the token, or2. they are polled by the process that has the token10

varcolor : f red, green g init red;G : integer init 0;deplist : list of (process id, clock);upon receiving the tokendeplist := ;;repeatreceive candidate from application processdeplist := deplist [candidate.deplist;until (candidate.clock > G)color := green/* add processes to red chain */for (each (i, k) 2 deplist) dosend poll(k, next red) to Mi;receive response from Mi;if (response = became red) next red := i;endforif (next red = NULL) detect := true;else send token to Mnext red;Figure 4: Monitor Process for Direct Dependence AlgorithmThe monitor process with the token operates as shown in Figure 4. Note that only a monitorprocess whose color is red will have the token. The process receives new candidate states fromthe application process until a state is found with a local clock larger than G . As each newcandidate state is received, the dependences are collected into a list. When a candidate hasbeen found that has a clock larger than G , the dependence list is traversed as follows: For eachdependence in the list, a poll message is sent to Mj where Pj is the source of the dependence.The poll message consists of two integers, the clock value for the dependence and next red . Ifthe response to the poll message is \became red", then Mi sets next red to be the value j,adding Mj to the red chain. If the response is \no change" then the dependence did not causeMj to become red. All dependences are processed in this manner. Then Mi sends the tokento the process corresponding to next red . If next red is NULL, then there are no red processesand detect is set to true.Upon receiving a poll message, the monitor process performs two functions as shown inFigure 5. First it updates the G and color variables as follows. If the dependence contained inthe poll message has a value equal to or larger than G , then G is set to this value, and color isset to red. Second, the monitor process generates a response message as follows. If in the �rststep, color was not changed from its previous value, then reply with the message \no change".Otherwise set the local variable next red to the value of next red from the poll message and11

upon receiving poll message from Mi:old color := color;if �(poll.clock � G) thencolor := red;G := poll.clock;endifif (color = red ^ old color = green) thennext red := poll.next red;send \became red" to Mi;else send \no change" to Mi;endif Figure 5: Responding to Poll Messagesreply with the message \became red".4.3 Correctness of the Direct Dependence AlgorithmIn this section we show that the direct dependence algorithm detects the �rst cut for whichthe WCP is true. We �rst show that �nding a global consistent cut with respect to indirectdependence is equivalent to �nding a global consistent cut with respect to direct dependencewhen all processes are involved. Direct dependence, denoted s !d t, means that s and t areon the same process and s happens before t, or there exists a single message sent after s andreceived before t. Now, we can state the result that consistency can be checked with respect todirect dependence.Lemma 4.1 Let G be any global cut. Then, G is a consistent cut (i.e. 8i; j : G[i] 6! G[j]) i�8i; j : G[i] 6!d G[j].Proof: See Appendix. 2It should be observed that we have used the fact that G includes a component from each ofthe N processes. Thus, this algorithm requires that all processes participate in the algorithm.Lemma 4.21. For any i : Mi:G 6= 0 ^Mi:color = red) 9j : (i;Mi:G)!d (j;Mj:G)2. Mi:color = green ^Mj :color = green) (i;Mj:G) 6!d (j;Mj :G) ^ (j;Mj:G) 6!d (i;Mi:G).3. Mi:color is red, i� Mi is on the red chain.Proof: See Appendix. 2 12

Theorem 4.3 If detect is set to true, then the cut de�ned by Mi:G on all monitor processesMi is the �rst consistent cut that satis�es the WCP.Proof: If detect is set to true then the red chain is empty. This is because only the process withthe token can set detect. Since the process with the token is always the head of the red chain,this chain must be empty before detect can be made true. Therefore, by part 3 of Lemma 4.2all of the color variables must be green. Hence, by part 2 of Lemma 4.2 the G variables forma consistent cut with respect to direct dependence. By Lemma 4.1, this cut satis�es the WCP.We now argue that this is the �rst such cut. Since a monitor process can only change G whencolor is red, Part 1 of Lemma 4.2 tells us that we cannot bypass any cut that satis�es the WCP.Hence if detect is set to true then this must be the �rst such cut. 2Theorem 4.4 If cut H is the �rst consistent cut that satis�es the WCP, then detect will beset to true with H de�ned by the G variables on all Mi.Proof:Initially, all Mi are at a state that is a predecessor to H . We must now show that they continueto make progress until they reach H . This requires two parts. First we must show that all redcandidates are eventually replaced with green candidates. By Part 3 of Lemma 4.2 we can assertthat the token will eventually visit any process with a red candidate. The token will remain onthis process until a green candidate can be found. Second, we must show that any state whichprecedes H is correctly painted red. Assume (i; k) is a state that precedes H . For this to betrue, there must have been some message sent after state k by Pi that has been received priorto H . Since all messages sent prior to any green state are included in the dependence list, anysuch predecessor will eventually be painted red. Hence, the monitor processes will eventuallyadvance the cut to H . When this occurs, all processes must be green. By Lemma 4.2 part 3,the red chain must be empty and detect will be set to true. 24.4 Analysis of the Direct Dependence AlgorithmAt most mN dependences exist in the system. Hence, at most mN poll messages and repliescan be sent. The token never visits processes with green candidates. Every time the token visitsa process, at least one state is eliminated. Hence the token can be sent at most mN times.13

Therefore, the total number of messages sent by monitor processes is 3mN . At most mN localsnapshots can be sent by application processes.All monitor messages are of constant size. The token carries no actual information, andpoll messages contain only two integers. Poll responses are 1 bit. Therefore, total number ofbits sent by monitor processes is O(Nm). Local snapshots are variable sized. However thetotal number of dependences for any one process cannot exceed m. Since a dependence can berepresented by a pair of integers, O(Nm) bits are sent by application processes.Although a variable amount of work occurs each time the token visits a processor, the totalwork is bounded by O(m) for each process. This is clearly seen by noting that a constant amountof work is performed for each dependence. This work includes adding and then removing thedependence from a list, sending a single poll message and waiting for a response. Since therecan be no more than O(m) dependences for any one process, the total work performed by allmonitor processes is O(Nm).The amount of space required for each monitor process or application is determined bythe space required for the dependence list. All other variables are of constant size. Since thedependence list is at most m elements long on any process, at most O(m) space is required onany process.4.5 Introducing Parallelism to the Direct Dependence Based AlgorithmWe can introduce concurrent activity into the direct dependence based algorithm by noting thatany red process can safely search for a new candidate state. As it discovers new dependences,the process may cause other processes to become red. Since the process itself is red, it has apointer into some part of the red chain. It can use this pointer to add new processes to thechain without waiting for the token to arrive. Since poll messages must be acknowledged, thereis no possibility of a single process being inserted into the list twice.Note that the parallel variation of the algorithm still requires that the token visit a processbefore that process can be removed from the red chain. This restriction ensures that the chainis never broken, and all red processes will remain on the chain in spite of the parallel activityalong it. 14

5 Lower Bound for Predicate DetectionWe argue in this section that
(nm) is the lower bound on the time complexity of WCPdetection. This bound holds for both serial and parallel algorithms. We assume that localstates must be considered in order. This restriction models the online nature of the detectionalgorithm. Since the predicate is possibly unstable, it is not acceptable to skip any local states.Since the application processes may continue executing for an arbitrary time even after thepredicate has become true, it is not acceptable to delay the detection process until after theprocesses have terminated. Hence, identifying a global state that satis�es a global predicatereduces to the problem of eliminating all local states that precede this global state.Formally, the predicate detection problem is de�ned as follows. Let (S;<) be any partiallyordered �nite set of size mn. We are given a decomposition of S into n sets P1; :::Pn such thatPi is a chain of size m. Each chain is accessed through a queue. Only the head element of eachqueue may be examined at any instant. When the head element has been removed from thequeue, it is lost from further consideration. Let the steps of a parallel algorithm consist of anyof the following:S1. compare all heads of the queues in parallelS2. delete the heads of any number of queues in parallel.Theorem 5.1 Let A be any parallel algorithm which determines if there exists an anti-chainof size n in such a poset of size mn. If A is restricted to steps (S1) and (S2), then it takes atleast
(nm) steps to determine the correct answer.Proof: See Appendix 2It follows from the above result that any online parallel detection algorithm based on com-parison of vectors requires at least mn time. It is also easy to see that in the worst case
(nm)space is also necessary.6 ConclusionWe have presented distributed algorithms for detecting weak conjunctive predicates. The �rstof these algorithms reduces the space requirements on any single process from O(n2m) toO(nm). Further, the distribution of the workload is also more equitable than the the centralizedalgorithm. We achieve this distribution without increasing the total number of messages, or15

increasing (except possibly by a constant factor) the total amount of work performed. Thesecond algorithm reduces time and message complexity in the case n (the number of processesover which the predicate is de�ned) is large with respect to N (the total number of processes).This algorithm has O(m) time, space, and message complexity on each of the N processes. Thealgorithms rely on the ability to e�ciently eliminate a state from any global cut that does notsatisfy the predicate. The happened before relation provides this ability for weak conjunctivepredicates.We establish that any parallel algorithm for detecting a conjunctive predicate requires
(nm) steps when the algorithm is limited to eliminating at most one state from each of nprocesses. Although it is not possible to improve upon O(nm) steps in the worst case, in theaverage case faster detection may be possible. We describe methods of introducing parallelisminto our algorithms to improve average case performance.References[1] �O Babao�glu, and K. Marzullo, \Consistent Global States of Distributed Systems: Funda-mental Concepts and Mechanisms," Distributed Systems , 2nd Edition, editor Sape Mul-lender, Addison Wesley, New York, NY. 1994, pp. 55-96.[2] K. Chandy, and L. Lamport, \Distributed snapshots: Determining global states of dis-tributed systems," ACM Transactions on Computer Systems, no. 1, pp. 63-75, February1985.[3] R. Cooper and K. Marzullo, \Consistent Detection of Global Predicates", Proc. of theACM/ONR Workshop on Parallel and Distributed Debugging, Santa Cruz, California, pp.163 { 173, May 1991.[4] C. J. Fidge, \Partial Orders for Parallel Debugging," Proceedings of the ACM SIG-PLAN/SIGOPSWorkshop on Parallel and Distributed Debugging, also SIGPLAN Notices ,Vol. 24. No. 1. January, 1989. pp. 183-194.[5] E. Fromentin, M. Raynal, V. K. Garg, and A. Tomlinson, \On the Fly Testing of RegularPatterns in Distributed Computations," Proceedings of the 23rd Int. Conference on ParallelProcessing, St. Charles, Illinois, pp. 2: 73-76, August 1994.[6] V. K. Garg, C. Chase, J. R. Mitchell, R. Kilgore, \Detecting Conjunctive Channel Predi-cates in a Distributed Programming Environment," Proc. Hawaii International Conferenceon System Sciences, Hawaii, 1995, (to appear). Also as University of Texas at Austin, Tech-nical Report TR-PDS-94-02, June 1994.[7] V. K. Garg, and B. Waldecker, \Detection of Weak Unstable Predicates in DistributedPrograms," IEEE Transactions on Parallel and Distributed Systems, Vol. 5, No. 3, March1994, pp. 299-307. 16

[8] L. Lamport, \Time, Clocks, and the Ordering of Events in a Distributed System," Com-munications fo the ACM, vol. 21, no. 7, pp. 558-565, July 1978.[9] F. Mattern, \Virtual time and global states of distributed systems", Parallel and Dis-tributed Algorithms: Proceedings of the International Workshop on Parallel and DistributedAlgorithms, Elsevier Science Publishers B. V., 1989, pp. 215{226.[10] Y. Manabe, and M. Imase, \Global Conditions in Debugging Distributed Programs," Jour-nal of Parallel and Distributed Computing, Vol. 15, pp. 62-69, 1992.[11] B. P. Miller and J. Choi, \Breakpoints and Halting in Distributed Programs", Proceed-ings of the 8-th International Conference on Distributed Computing Systems, San Jose,California, June 1988, pp. 316{323.[12] R. Schwartz and F. Mattern, \Detecting Causal Relationships in Distributed Computa-tions: In Search of the Holy Grail", Distributed Computing, 7(3), 1994, pp. 149{174.[13] A.I. Tomlinson, V. K. Garg, \Detecting Relational Global Predicates in Distributed Sys-tems," Proc. 3rd ACM/ONR Workshop on Parallel and Distributed Debugging, San Diego,California, May 1993, pp. 21{31.7 AppendixProof of Lemma 4.1:()) Since, s !d t implies that s ! t, it follows that s 6! t implies s 6!d t. Thus, the righthand side follows.(() It is su�cient to show that (9i; j : Mi:G ! Mj :G) implies (9k; l : Mk:G !d Ml:G). Theproof is using induction on the number of processes in the causality chain from Mi.G to Mj .G,that is, on the level of indirect dependence from Mi.G to Mj .G. The base case is trivially truesince if there are no processes in the causality chain, then Mi:G!d Mj :G and we are done.Now consider the case when the indirect dependence goes through K processes. Let the �rstprocess in the chain be Pi0 . That is there exists a message sent after Mi.G which is receivedby Pi0 . There are two cases. If this message is received before Mi0 .G, then we are done sinceMi:G!d Mi0 :G and the right hand side is true. The second case is when this message is receivedafter Mi0 :G. However, this implies that Mi0 :G!Mj :G and from the induction hypothesis theright hand side is true again.Proof of Lemma 4.2Part 1. Initially this lemma is true, since Mi.G is initialized to zero. During the detection17

algorithm, color can be set to red only when a dependence has been found and sent in a pollmessage. Furthermore, the poll can be sent only when the relevant message was received bythe application process prior to the current state in the process which sent the poll message.The proof then follows by induction.Part 2. This lemma is easily proven by contradiction. Assume that (i;Mi:G) precedes(j;Mj:G). Therefore, a message has been received prior to (j;Mj:G), that was sent after(i;Mi:G). Since a state can be painted green only after all poll messages have been received,any such dependence would have caused (i;Mi:G) to have been painted red, a contradiction.Part 3. Initially this lemma is true, since all processes are on the red chain, and all processesare red. We note that a process can only be removed from the red chain when the token visitsthe process. The token can leave a process when color is green. Hence, all processes with a redstate will remain on the red chain. Further, any process that turns red is added to the chain.Therefore, all red processes are on the red chain. Only red processes can be added to the chain,and a process can become green only when sending the token (simultaneously removing itselffrom the chain). Therefore, only red processes can be on the red chain.Proof of Theorem 5.1An adversary can exploit the fact that the algorithm can only compare heads of the queues.Further, the algorithm can delete only those head elements which are smaller than some otherhead element. Otherwise, the adversary can produce a consistent cut which includes the deletedhead. Thus, if the adversary can ensure that at most one state is deleted in one step, then ithas succeeded because there are mn states in all. For the �rst application of S1, the adversaryreturns that all heads are concurrent except one which is smaller than exactly one other. Thus,algorithm A can delete only one state in this iteration. Assume that the algorithm deleted astate from Pi in the last iteration. Of the remaining queues, let Pj be the queue with the largestnumber of elements. In the next iteration, the adversary returns that all heads are concurrentexcept that head of Pj is smaller than the head of Pi. Thus, only the head of Pj can be deletedin the next iteration. By repeating this procedure it is clear that the adversary can force thealgorithm to delete one state at a time until some queue becomes empty. At this point, noqueue can have two or more elements otherwise that queue would have been chosen in the lastiteration. Hence, at leastmn�n states are deleted sequentially before the algorithm can answer18

\no". Note that if the algorithm returns \no" any point before this, the adversary can produceanother poset which is consistent with all its answers and has an anti-chain of size n.

19

