Characterization of Message Ordering Specifications

and Protocols

V.V.Murty and V.K. Garg

TR ECE-PDS-96-002 December 1996

Parallel & Distributed Systems group
Department of Electrical & Computer Engineering
University of Texas at Austin
Austin, Texas 78712

Characterization of Message Ordering Specifications and Protocols

V. V. Murty and V. K. Garg
Department of Electrical & Computer Engineering
University of Texas at Austin

email: {murty, vijay}@pine.ece.utexas.edu

Abstract

We study the problem of determining which message ordering specifications can be imple-
mented in a distributed system. Further, if a specification can be implemented, we give a tech-
nique to determine whether it can be implemented by tagging information with user messages
or if it requires control messages. To specify the message ordering, we use a novel method called
forbidden predicates. All existing message ordering guarantees such as FIFO, flush channels,
causal ordering, and logically synchronous ordering, (as well as many new message orderings)
can be concisely specified using forbidden predicates. We then present an algorithm that deter-
mines from the forbidden predicate the type of protocol needed to implement that specification.
Keywords: Message ordering, forbidden predicate, predicate graph, protocols and specifica-
tions.

1 Introduction

A distributed computation or a run describes an execution of a distributed program. At an abstract
level, a run can be defined as a partially ordered set (H, >), where H is the set of events in the system
and > the “happened before” relation [16] between events. It is often easier to develop distributed
programs when the partially ordered set (H, >) is guaranteed to satisfy certain message ordering
properties. For example, many distributed algorithms work correctly only in the presence of FIFO
channels. This guarantee on ordering of messages is either provided explicitly — by communication
primitives such as causal ordering [4] and logically synchronous ordering [6, 9]; or is built into the
algorithm itself — as with global snapshot and recovery algorithms. In this paper, we propose a
general framework in which existing and new message orderings can be specified and studied.

In this paper, a message ordering specification is characterized as the set of acceptable runs,
that is, a subset of X, where X is the set of all runs. For example, a system satisfying causal
ordering can be viewed as the set of runs, say X.,, such that for all runs in X.,, and for all pairs
of messages, (s1 > s2) = —(r2 > 1), where s; is the send of a message and r; is its corresponding
receive. In this broad setting, where each message ordering is a subset of X, we first determine
whether a given specification can be implemented. We show that a message ordering specification
can be implemented if and only if it includes all logically synchronous runs. Further, if it can
be implemented then we determine the type of protocol necessary and sufficient to implement it,
where the protocols are classified into three types, (1) general: those that can tag information and
have control messages, (2) tagged: those that can tag information, and (3) tagless: those that do
nothing. For example, we show that a message specification can be implemented by tagging user
messages with some additional information if and only if it includes all causally ordered runs. This
result implies that there is no protocol for imposing logically synchronous ordering which does not
use control messages.

Formally, we define three subsets of X, namely, X,syne, Xeo and Xgyne. We show that given
a specification Y C X it is implementable (there exists a protocol with control messages) if and
only if Xgy,c € Y. Similarly, there is a protocol without control messages if and only if X, C Y.
The “do nothing” protocol is sufficient to implement if and only if X,sy,. € Y. Thus, given a
specification, that is the set of acceptable runs, the type of protocol necessary and sufficient can be
easily checked by testing the containment of the three limit sets Xqgyne, Xeo and Xyype.

Since X is an infinite set, we also need a finite representation for its subsets that specify message
ordering. We present a method called forbidden predicates that can be used to describe a large class
of message ordering specifications. All existing message ordering guarantees such as FIFO, flush
channels, causal ordering, and logically synchronous ordering as well as others can be concisely
specified using forbidden predicates. For example, the specification for causal ordering X., can
be stated as: for all runs in X,,, and for all pairs of messages, = ((s1 > s2) A (ro > 71)). The
forbidden predicate for X, is 3 (s1,71), (s2,72) : (s1 > s2) A (ro > r1). In general, a forbidden
predicate can be stated as a conjunction of causality relationships between the events (send and
receive).

Given a message ordering specification using forbidden predicates, we present an algorithm
that determines the type of protocol necessary to implement that specification. The algorithm
converts the forbidden predicate into a predicate graph. It is shown that the specification can
be implemented if and only if there is a cycle in this graph. Further, to determine the nature of
the protocol required for the specification, it is sufficient to examine vertices of the graph. We
define the notion of 3 vertices. If the cycle has two or more § vertices with respect to that cycle,
then control message are necessary. If the cycle has one § vertex, then tagging user messages is
sufficient. If the cycle has no g8 vertex, then no action from the protocol is required. Thus, given
any message ordering specification using forbidden predicates, the nature of the protocol necessary
for implementing it can easily be determined.

We note here that specification using forbidden predicates also permits automatic generation of
efficient protocols for a class of message ordering specifications. This is the focus of the companion
paper [19].

2 Related Work

A fair amount of research has been done for efficient algorithms to implement different message
orderings. Birman and Joseph [4], Raynal, Schiper and Toueg [20], Schiper, Eggli and Sandoz [21],
have presented algorithms for the causal ordering of messages. These algorithms tag knowledge
of processes about messages sent in the system with the message. For example, process P; in the
algorithm by Raynal, Schiper and Toueg [20] tags a message with the matrix m where m[j, k] is the
knowledge of process P; about the messages sent from P; to P;. It is natural to ask whether the
message ordering can be further restricted by sending higher-levels of knowledge (for example, by
using three dimensional matrices: what P; knows that P; knows about messages sent from P} to
P)). It is an easy consequence of the results of this paper that no additional tagging of information
can restrict the message ordering further.

Variants of FIFO ordering have been studied under F-channels [1]. The implementation of
F-channels, provides us with some basic synchronization primitives for sending messages: two-way-

flush send, forward-flush send, backward-flush send, and ordinary send. Similar flush primitives can
be defined for causal ordering [12]. These message orderings can be specified using forbidden pred-
icates. By constructing predicate graphs of these predicates it can be shown that these orderings
can be implemented without using any control messages.

Logically synchronous ordering of messages has been studied in [9, 18, 24]. It has also been
studied extensively as implementation of the guard statement of Communicating Sequential Process
(CSP) [6, 3, 23] and as the binary interaction problem [2, 8]. Thus, these message orderings have
either been studied as synchronization primitives, or are embedded in some protocol. Our results
show that all these protocols must use additional control messages for implementation.

Many asynchronous consistent-cut protocols [25] such as global snapshot algorithms [7, 11, 17],
check-pointing and rollback recovery [10, 15, 14], and deadlock detection [5] require special messages
to find consistent-cuts in a computation. These protocols require some form of inhibition of the
special messages in order to guarantee correctness. The inhibition of the messages can also be
viewed as a restriction on the set X.

In [22], Schmuck presents the necessary and sufficient conditions under which causal/FIFO
broadcast instead of atomic broadcast can be used to guarantee correctness of a specification.
We on the other hand are concerned with the problem of implementing atomic, causal and FIFO
broadcast instead of using these broadcast primitives.

3 Model and Definitions

In this paper, we are interested in characterization of message ordering specifications and proto-
cols that operate by delaying events. Usually an event from a user’s view is broken up into two
underlying system events: the request of the event and the execution of the event. For example,
to implement causal ordering, the receive events are delayed and are usually called receive and
delivery of the message. Therefore, we differentiate between the two views by defining a system’s
view of a run and a user’s view of the same run. In this paper, each user event h, like sending of a
message or receiving of a message, is characterized by two system events, that is Ah* and h, where
h* represents the request of the event and h its execution.

3.1 System Model

The basic entity in our model is a message. A message x consists of four events. They are
invocation event x.s*, send event x.s, receive event x.r* and delivery event x.r. The set of messages
from process ¢ to process j is M;;. The set of all message is denoted by M = U; ; M;;.

A run is a decomposed partially ordered set H = (Hy, Ho, ..., H,, —) [13], where the set H; is
a sequence of events, such that

H; C{z.s",z.s : € Mjjforallj} U {zor*,zr : € My, forall k}.

and the order relation — is defined as, h — A’ iff,
1. 3k : h,h' € Hj and h is before A’ in the sequence Hy, or

2. there exists a message © € M such that h = z.s and b/ = z.r*, or

NN/4 AN
3 / 3 J
(a) Run H (b) CausalPasta(H)

Figure 1: Illustration of Causal past with respect to a process

3. there exists g € H = U; H; such that h — g and g — A’

A run satisfies the usual notions of a computation in a distributed system, that is, it is a partial
order, it has no spurious messages and it includes the execution of an event only if it has been
requested by the user. Formally, these condition can be stated as,

1. the relation — on H = U; H; is a partial order,
2. z.r* € Hy=z.s € H, that is, message is received only if it has been sent, and
3. z.s€ H=x." — z.s and x.r € H=-z.r* — z.r, that is, the events x.s and z.r are always

preceded by the events x.s* and z.r*, respectively.

Given a run H, a prefix of the run G is also a run, such that G; is a prefix of H; for all 7. A prefix of
interest is the causal past of a run H with respect to a given process i (denoted by CausalPast;(H)).
Figure 1 shows the causal past of the run H with respect to process 2. Intuitively, the causal past
with respect to a process ¢ consists of all the events that are followed by some event in process 1.
Let G = CausalPast;(H), then

1. G; = H;, and
2.Vj#i:9€eG; = (GheH; : g = h).

A distributed system is a tuple (M, X'), where X is a set of all possible runs with respect to the
message set M. Given a run H € X we define the following sets;

1. the messages that have not been requested by process ¢,

Li(H)={z.s" : (z.s" € H;)) N (x € My,) }.
2. the messages that have been requested but not yet sent by process ¢,
Si(H) ={z.s : (z.s" € H;) N\ (x.s¢ H;) }.
3. the messages that have been sent to process ¢ but not yet received by process i,

Ri(H)={zr" : (zr*" ¢ H;)) N 3k : (x € My;) N (z.s € Hy)) }.

4. the messages that have been received but not yet delivered by process 7,

Di(H) ={zr : (xr* € H;)) N (x.r € H;) }.

receive delivery
* *
L) T)

Ok Ok
51 81 Sg 82

invocation send
Figure 2: Inhibitory protocol to implement FIFO

3.2 Protocols

In this section we define inhibitory protocols. Informally, an inhibitory protocol specifies that an
event may be delayed until the occurrence of prerequisite events. For example, in the implementa-
tion of FIFO, a message is delayed until all messages sent earlier have been delivered. In Figure 2,
the protocol enables the event ro only after the event r; has been executed. Thus, a protocol

'P:{(Pl(H),PQ(H),---aPn(H)) tHE (MvX) }’

is a vector of enabled event sets for each run, where P;(#) is the set of enabled events in process i
after the execution of the run #.

Now we present some conditions to be satisfied by the vector of enabled event sets. The protocols
do not have control over star-events. Clearly, a protocol cannot disable a user from requesting the
execution of a message that has not been sent. Thus, we have

Pi(H) N Li(H) = L(H).

Similarly, a protocol cannot disable the receive of a message that has been already sent and is in
transit. Thus
Pi(H) N Ri(H) = Ri(H).

A protocol can disable or enable the send event and delivery event of a message if the invocation
or the receive has been executed, respectively. Thus,
Pi(H) N Si(H)
Pi(H) N Di(H)

S;i(#H), and

-
C Di(H).

Therefore,
I;(H) U Ri(H) € Pi(H) C L;(H) U Ri(H) U Ci(H),

where C;(H) = Si(H) U D;i(H).
Notation: The use of the notation C' is to represent the events that are “controllable”. We use Cj,
with a subscript to identify with a particular process i. When the subscript is absent, say C'(H),
then we are referring to the union of all C!s, that is, C(H) = |J; Ci(#H). We follow this convention
for the sets H, P,1,S,D, R, and C, that is, H = J; H, P(H) = J; P;(#), and so on.

We define the set of runs, Xp, possible under the protocol P in an inductive fashion, based on
the events enabled. The base case is a null run Hy (where H = ()) belongs to the set Xp, since this

Process 1
r.5* I.s /» Control Message r.5* T.8

N N

r.r* r.r r.r* r.r

(a) With Control Message (b) Without Control Message

Figure 3: Knowledge of concurrent events

run is possible even if the protocol does not enable any event. Let the run H be possible under the
protocol, then if some of the processes simultaneously execute an event enabled in their process,
then the resulting run also is possible under the protocol. This can be formally stated as,
1. HQ) € Xp.
2. Let H € Xp, then G € Xp, where
(a) Hjis a prefix of G; and they differ by at most one event, and
(b) Gi C H; U Pi(H).

In the next lemma, we show that G is a run, that is, it satisfies the three conditions of a run.
Lemma 1 Let H be a run, and (Pi(H), P2(H),...,P(H)) a vector of enabled event sets, such
that for all 4

L(H) U Ri(H) C Fi(H) C L(H) U Ri(H) U Ci(H).

Then G is a run, where

1. H; is a prefix of G; and they differ by at most one event, and
2. G; C H; U P;(H).

Proof Outline: Clearly, G satisfies the three conditions of a run, that is,
1. G is a partial order, since H is a partial order, and if g € G N P(H) then A¢g' € G : g — ¢,
2. z.r* € G = z.s € G, since a receive event is added only if H contains the send event, and

3. z.s€G = x.s"€Gand z.r € G = x.r* € G, by definition of S and D. 0

It is desirable that any protocol allows the system to progress, that is, to satisfy the liveness
property. For example, if a user requests a message then it is eventually sent and delivered. In other
words, we want the protocol eventually to execute a run H such that S(H) U R(H) U D(H) =0,
that is, all the messages requested by the user have been sent and delivered and there are no
pending events. Thus, the protocol at each stage enables at least one of the pending events if the
pending set is not empty. This condition can be formally stated as,

Liveness: RH) UCH)#0D = P(H) N (R(H) U C(H)) #0.

Consider the case when the above condition is not satisfied. If the user does not request any more
messages, the system cannot make any progress and the pending events are never executed.

Next, we classify the set of protocols based on the information exchange possible between the
processes. First, consider a protocol that allows processes to exchange information using user
messages only, then the processes are limited to the causal past. Intuitively, the class of such
protocols can be implemented by tagging information to user messages. Second, if a protocol
does not allow any information exchange using either user or control messages, then a process may
enable or disable events based only on the local history. Such protocols belong to the class of tagless
protocols. Finally, a protocol allows processes to exchange information using both control messages
and user messages, then processes are capable of deciding based on events that appear concurrent,
when events associated with the control messages are deleted. For example, in Figure 3, process ¢
knows about the events z.s* and x.s although it appears concurrent when the control message has
been deleted. Formally, the types of protocols and the condition satisfied by each type are:

general : The class of general protocols characterize the environment where an action by a
process can be known instantaneously to all processes in the group. Thus, each process
enables and disables events based on the knowledge of both causal and concurrent events.
This can be formally stated as

H=G = P(H)=P(9)

The condition states that a process takes the same action in any two executions if the partial
orders are the same. Later, we will show that if there exists a general protocol for a given
specification then there exists an inhibitory protocol using control and user messages that
implements the specification.

tagged : The class of tagged protocols characterize the environment where an action by a process
can be known only in its causal future. Thus, each process enables and disables events, based
on the knowledge of causal events. Therefore, if in two different executions, the causal past
with respect to a process i, that is CausalPast;(-), is the same then the action taken by the
process ¢ in the two cases is the same. This can be formally stated as

CausalPast;(H) = CausalPast;(G) = P;(H) = Pi(G).

tagless : These protocols cannot tag information to the user messages and cannot use control
messages. The condition satisfied by a tagless protocol is

H;=G; = Pi(H)=PFi(9).

The condition states that if the local history is the same then the action taken by the process
is the same.

The above conditions are used to capture the three classes of protocols we are interested in studying
in this paper. In particular, first case the class of general protocols model the behavior of protocols
with control messages in the absence of synchronized clocks or a global clock. Therefore, such a
protocol cannot differentiate between two runs that have the same partial order relation but may
differ in physical global time.

3.2.1 Limitations of Protocols

In this section we explore the limitations of each type of protocol. We answer questions of the
form, “if protocol P is a tagless protocol, then does H necessarily belong to the set Xp 7”. These
questions will provide us with insight into the type of protocol necessary to implement the desired
specification. For example, if the run # is undesirable and H € Xp, then P cannot guarantee
safety. We define three subsets of X, that is, X,,, Xjq and &}, such that, they are subsets of Xp,
when P is a general, tagged or tagless protocol, respectively. Formally, these sets are:

A run H belongs to the set Xy if and only if

1. for any message = in H, z.s* immediately precedes z.s and z.r* immediately precedes z.r,
and

2. all messages requested have been delivered, that is, z.s* € H = xz.r € H.

A run H belongs to the set Xy if and only if
1. H € Xy, and

2. the messages are causally ordered, that is, z.s — y.s = —(y.r* — z.r*).

A run H belongs to the set &y, if and only if
1. H € X4, and

2. the time diagram can be redrawn such that all message arrows are vertical, that is, there
exists a numbering scheme N, that assigns a unique number to each event such that,

h — g = N(h) < N(g) and N(z.r) = N(z.r*)+ 1= N(z.s) + 2 = N(z.s") + 3.

The main result of this section show the relation of the above sets to a protocol of each type.
Lemma 2 Let P be a protocol satisfying the liveness property and Xp is the set of all runs possible

under the protocol.
1. If P is a general protocol, then X,, C Xp.
2. If P is a tagged protocol, then Xiq C Xp.
3. If P is a tagless protocol, then Xy C Xp.

Therefore, if H € &), and it is an undesirable run, then there does not exist a protocol to implement
the specification. The lemma is proved in the appendix.

3.3 Specifications

A specification is the set of behavior as desired by the user. For example, a particular run H may
or may not be desirable. In this section, we expand on the concepts of user’s view and formally
define a specification.

A user is interested in the send and delivery of a message and the order relation among them,
rather than the invocation and receive events. For example, causal ordering is stated in terms of
the relation between the send and delivery events. Thus, the causality relation between two events

e e
5181 5282 S1 52

(a) System’s View (b) User’s View
Figure 4: Illustration for the difference in causality relation

from the user’s view can be different the relation from the system’s view. Figure 4 illustrates the
difference in a system that implements FIFO ordering among the messages. In the system’s view
the event so happened causally before the event ri, whereas from user’s view so did not happen
before the event r1. Thus, we define a relation from system’s view to the user’s view of a run which
is a projection of the events with the invocation and receive events removed.

1. UsersView(H), a projection of the run H, is a partial order, denoted as (H, >), where
H={h : he H A (his a send or a delivery event) },

and > is the order relation on H. For the projected run (H, >), h > h' if and only if
(a) 3k such that h,h' € H, and h — h', or

(b) 3z € M, such that z.s = h and z.r =1/, or

(c) g € H such that h > g and g > }'.

2. A complete run is a projected run such that x.s € H <= z.r € H.
A specification Y is a set of complete runs, where
YCX={(Hp>):2zs€H <= zorecHand > isa partial order }.

The reason for considering only complete runs is to satisfy the notion that all messages sent are
eventually delivered in a reliable system. In other words, if a send of a message does not invalidate
the run, then there should be a possible completion (the message is delivered), that is valid.

A protocol P is characterized by the set of complete runs Xp, where

Xp={H,)= UsersView(H) : (He€ Xp) N (z.se H& z.r €H) }.

We say, a protocol P guarantees safety, if the projection of a run H € Xp is valid in the user’s
view. In other words, if H € Xp, where x.s € H < x.r € H, then (H, >) = UsersView(H) € Y.
If a protocol P implements a specification Y then

VHE (M, X), RH)UCH)#D = P(H) N (R(H) UC(H)) #0, (Liveness)
Xp CY. (Safety)

3.4 Limit Sets

In this section, we consider the problem of finding the type of protocol sufficient and necessary to
implement a given specification.

In Section 3.2.1, we investigated the question whether a run necessarily belongs to the Xp,
given a protocol P. In this section, we pose the same question but in a different setting; that is,
given a projected run (H, >) does it necessarily belong to the set Xp. Given a specification Y, this
gives us lower bounds on the specification Y that is necessary for the existence of a general, a
tagged or a tagless protocol. For example, if a general protocol implements the specification Y
then X, C Y, where X, is the lower bound for the class of general protocols. In this section, we
present results in the other direction, that is, does there exists a limit X that is sufficient for the
existence of a general protocol. For example, if X; C Y then there exists a general protocol that
implements the specification Y.

We define three subsets of X (or specifications) similar to ones in Section 3.2.1 that will be used
to provide answer to the problem stated in this section. The three subsets of X are:

Asynchronous ordering (ASYNC) : This is the same as the ground set X. Therefore, it
includes all possible runs. There exists a tagless algorithm (i.e., enable all pending events)
that will guarantee safety and liveness for this specification. Formally, we can state X,sync,
the set of all partial orders as

Xasyne ={ (H,>) : (z.s EH< z.r €H) and > is a partial order }.

Causal Ordering (CO) : Causal ordering can be stated as s; > so = —(r9 > r1). There exists a
tagged algorithm where with each message a matrix of size n x n is tagged to the message [20,
21]. Formally, we can state X, the set of partial orders satisfying causal ordering as

Xeo={(H,>) : = ((z.s>y.s) AN (yr>azxr)) Yo,yec M }.

Logically Synchronous (SYNC) : A run is logically synchronous if its time diagram can be
drawn such that all message arrows are vertical. Formally, we can state X,,,., the set of
logically synchronous partial orders as

Kogne ={ (H,>) : = ((x1.5 > z2.7) A (2.5 > 23.7) -+ (T)5 > 21.77)), VE>1, Vo, € M }.

Since the message arrows can be drawn vertically, the messages can be linearly ordered such
that (y.h> z.f) = (z < y) Thus, we can get an alternative definition of a logically synchronous
run as,

JIT-M — N : VzyeM

Vh,fe{syr} z.hoyf = T(z)<T(y). (SYNC)

In [18] it was shown that the two definitions are equivalent. This property can be implemented
using control messages, for details refer to [3, 18]. Therefore, there exists a general protocol
that will guarantee the absence of any partial order in the set X — Xy, ..

10

Figure 5: Construction of H from (H,)

It is easy to see that
Xsync - Xco - Xasync-

The sets Xysyne, Xeo, and Xy exhibit an important property, i.e., they are the limiting specifi-
cations, in terms of whether there exists a protocol that can guarantee safety and liveness, for each
of the three classes of protocols. For example, there exists a tagged protocol (i.e., no control mes-
sages) that guarantees safety and liveness for the specification X,,. Further, given a specification
Y, there exists a tagged protocol that guarantees safety and liveness, if and only if X;, C Y. Thus,
given a specification, i.e., the set of acceptable runs, the type of protocol necessary and sufficient
can be easily checked by testing the containment of the three limit sets, Xosyne, Xeo, and Xgype.
Theorem 1 Let Y be a specification. Then

1. A general protocol can guarantee safety and liveness iff Xgyne C Y.

2. A tagged protocol can guarantee safety and liveness iff X.o C Y.

3. A tagless protocol can guarantee safety and liveness iff Xqsyne C Y.
Proof: It is easy to show the “if part” in each of the cases. We use the fact that if a protocol P
implements the specification Y, then Xp C Y.

1. There exists a general protocol P such that Xp = Xy [3, 18].

2. There exists a tagged protocol P such that Xp = X, [20, 21].

3. There exists a tagless protocol P such that Xp = X,syn. (enable all events).

We now proceed to show the “only if part”.
1. Let P be a general protocol. From lemma 2, we have X, C Xp. We have to show that if
(H, >) € Xgyne then I3H € X, such that (H, >) = UsersView(H).
Given (H, >) € Xgyn, we construct #, such that (H, >) = UsersView(H) and H € Xsype, as

shown in Figure 5. For each event z.s add z.s* such that z.s* immediately precedes z.s.
Similarly, for each event z.r add z.r* such that z.r* immediately precedes z.r. We claim that
H € Xy, that is, H satisfies the conditions satisfied by elements of X,.
(a) z.s* immediately precedes z.s, and z.r* immediately precedes x.r, by construction of H.
(b) H is a complete run, that is, z.s* € H = z.r € H, since (H, >) is a complete run.
(c) Since (H, >) € Xgyne, there exists a function T satisfying SYNC. Using the function T
we can derive the numbering scheme N, where h — g = N(h) < N(g) and N(z.r) =
N(z.r*)+1= N(z.s)+2= N(z.s*)+3

11

2. Let P be a tagged protocol. From lemma 2, we have &;; C Xp. We have to show that if
(H, ») € X, then 3H € A}, such that (H, >) = UsersView(H).

The proof is similar to the previous case. We construct H as above and show that H € X}y.

3. Let P be a tagless protocol. From lemma 2, we have Ay C X'p. We have to show that if
(H, >) € Xgsync then IH € Xy such that (H, >) = UsersView(H).

The proof is similar to the previous case. We construct H as above and show that H € A};.

O
Corollary 1 A specification Y is implementable, that is, there exists o tagless, tagged, or
general protocol, if and only if Xsyne C Y.

4 Forbidden Predicates

In previous sections, specifications were stated as a subset of X. Since X is an infinite set, we need
a finite representation for its subsets that specify message ordering. We present a method called
forbidden predicates that can be used to describe a large class of message ordering specifications. All
existing message ordering guarantees such as FIFO, flush channels, causal ordering, and logically
synchronous ordering as well as others can be concisely specified using forbidden predicates.

In this section we describe forbidden predicates and present an algorithm to address the main
concerns of this paper: What are the necessary and sufficient conditions for the existence of a
protocol of each type?

Definition 4.1:
1. A forbidden predicate B is defined as

B=3z,29,...,2m €M : B(z1,29, * ,Tm)

where B(z1,29, "+ y&Tm) = /\ (zj.p > k.q),
(j.k)ETXK
and p and ¢ represent s or . And J, K are subset of {1,2,...,m}.

2. Given a forbidden predicate B, the corresponding specification set Xp C X is defined as

Xp={H>) : =B(z1, - ,zm), Yzo, 21, ,Tm € M}. .

Notation: Let B=3dz,y € M : (xz.s > y.s). We write the predicate B as (z.s > y.s) dropping the
quantifier 3 for ease of use. B(a,b) implies the evaluation of (z.s > y.s) for the instances ¢ and b in
M. Therefore, B(a,b) is true if and only if a.s > b.s. In case of ambiguity we express the predicate
as B=dz,ye M : B(z,y).

Given two forbidden predicates B and B’ for the sets Xp and Xp/, respectively, B’ = B iff
Xp C Xpr. If a protocol for B guarantees that all the allowable partial orders belong to the set
Xp, then the same protocol guarantees that all the allowable partial orders belong to the set Xpr.

Consider, the example of causal ordering. The predicate can be stated as B = (z.s > y.s) A
(y.r > z.r). For each element (H, >) of X,, (the corresponding specification set),

Ve,ye M :: = ((x.s > y.s) A (yr > zr)).

12

Further, we can define three attributes for each message receiving process, and sending process,
and color. We can use these attributes to define a range for the variables of the predicate. For
example, FIFO can be stated as

Vx,y € M : process (x.s) = process (y.s) A process (x.r) = process (y.r) : = ((x.s > y.8) A (y.r > x.1)),

or we may be interested in runs where messages should not overtake the red marker message, that
is
Vz,ye M : color(y)=red : —((x.s > y.s) A (yr > z.r)).

In this paper we will be interested in predicates where the variables range over all messages.

4.1 Forbidden Predicates and Limit Sets

In this section we characterize limit sets using forbidden predicates. For example, X., corresponds
to the forbidden predicate B = (z.s > y.s) A (y.r > z.r).
Lemma 3

1. The specification set for each of the following predicates contain Xgyp..
a) B=((xz1.8 > x9.7) N\ (9.8 > z3.7) -+ (T8 > T1.7)) forany k=2,3...

2. The specification set for the following predicates is Xeo.
a) Bi=(z.s>yr)A(yr>zr).
b) By=(z.s>y.s)A(yrp> zr).
¢) Bsz=(z.s>y.s)A(y.s >).
3. The specification set for the following predicates is Xsync-

a) B=(z.s>y.s) A (y.s>z.s). b) B=(z.s>uy.s) A (yr>zs).
¢) B=(z.s>yr) A (yrp>z.s). d) B=(xr>y.s) A (yrp>z.s).
e) B=(z.r>yr) A (yr>xs). f) B=(zxrvuyr) A (yr>xr).

Proof: In the first part, the intersection of all specification sets is Xy, for details refer to [18].
For the third part, each of the predicates implies the existence of an event h € H such that h > h.
No run in X,y satisfies such a predicate. Therefore, the specification set for the predicates is
Xasync-

In the second part, Bs corresponds to X., by definition. We will show B; < Bs; the proof
of By < Bj is similar. Let the corresponding specification sets be X; and Xo, respectively. We
have to show that X; = X,. It is easy to see that By = By. Since By = (z.s > y.8) A (y.r > z.r)
and y.s > y.r is true, By = (x.s > y.8) A (y.r > z.r) A (y.s > y.r). Combining the first and third
conjuncts, we get By = (x.s > y.r) A (y.r > x.r) = B;. Therefore, X C Xj.

We now show that X; C X; where, X; = X — X|. Using the definition of X;, we get the
complement of X; as,

X;={(H, ») : 3z,y € M such that By(z,y) } .

Let (H, »>) € X;. We have to show (H, >) € Xy. In the run (H, >), we have at least two messages =
and y such that, (z.s > y.s) A (y.s > z.r).

13

1. Let z.s and y.s be in different processes.

Since (z.s > y.s), and z.s and y.s are in different processes, there exists a message z such that
(x.s > 2.8), (z.s > z.r) and (z.r > y.s). Since (y.s > z.r) and (z.r > y.s), z.r > z.r. Therefore,
z.s > z.s and z.r > z.r, thus By(z, z) is true.

2. Assume z.s and y.s are in the same process (z.r and y.s are in different processes).
Since (y.s > z.r) and z.r and y.s are in different processes, y.r > x.r or 3z € M, such that
(y.s > z.5), (z.s > z.r) and (z.r > z.r).
(a) If y.r > z.r, then (z.s > y.s) and (y.r > z.r). Thus By(z,y) is true.

(b) If 3z: (y.s > z.9),(z.s > z.r) and (z.r > z.r), then (z.s > y.8) A (y.s > z.5) = (2.5 > 2.5)
and (z.r > z.r), thus By(z, z) is true.

Therefore, 3,z € M such that By(z, z) is true. Thus, (H, >) € X. O

4.2 Specification Graph

In this section we classify the forbidden predicates to determine the type of algorithm necessary
and sufficient to guarantee safety and liveness.

Definition 4.2: Let B=3z,...,2, € M : B(xy,...,z,) be a forbidden predicate. A predicate
graph Gp(V, E) is a multi-graph such that

Vo= {xla"'axm}

E = {(zj,zr)]| (zj.p > zk.q) is a conjunct of B where p,q is s or r }
| |
Example 1: Let a predicate be
B= (1.7 > T9.8) A (m2.8 > x3.8) A (3.7 > T4.7) A
B (4.8 > x1.7) N (4.8 > T5.7) A (1.8 > T4.T)
T1_ O\ T4
then Gp(V, E) is T
V = {$0,$1,$2,.’E3,.’E4,.’E5,$6} Os
E = {($1,$2), (.Tg,xg), ($3,$4), ($4,.’I)1), ($4,.’I)5), (1131,1134)}, u

T2 3
Using the graph, we can determine whether the specification is implementable, and if it is, the

type of protocol necessary and sufficient to guarantee safety and liveness.
Theorem 2 A specification Xp (or forbidden predicate B) is implementable if and only if there
exists a cycle in the predicate graph Gg(V, E).

Proof: We first prove the “only if” part. Let the predicate be B = dz1,--- ,z,, € M

B(zy,--+ ,x;) such that the predicate graph Gg(V, E) does not have a cycle and let the cor-
responding specification set be Xp. Consider a run (H, >) such that the set of messages is
M = {z1,...,zp}. The run is constructed such that if z;.p > z4.q is a conjunct of B(z1,--- ,zy,)

14

then (z;.p, z5.q) € (H,>). For each message x € M, (z.s, .r) € (H, >). Now take the transitive
closure () to make it a run. Therefore,

(8, ») = {{(zj.p, T-q) : (zj.p > T.q) is a conjunct in B(...) } U{ (z.8, z.r) : VI =0,...,m }}*.

It is easy to see that the predicate B is true in the run (H,), therefore, (H, >) ¢ Xp. We claim
that (H, >) € Xgypc, hence the theorem (only if) follows. Since the predicate graph does not have
any cycles, it can be linearly ordered. Using the same ordering we define a function T : M — N
satisfying the SYNC condition. Therefore, (H, >) € Xy, and (H, >) € Xp. From corollary 1, we
have that there exists a protocol only if X,,,. C Xp.

The “if” part follows from theorem 3 which will be proved in Section 5.3. O

4.2.1 [Vertex

We are interested in cycles in the specification graphs. Pick any cycle G.(V¢, E¢) C G(V, E) in the
specification graph and let the corresponding forbidden predicate be B..

Example 2: Consider the forbidden predicate and the graph from example 1. A possible cycle
and the corresponding predicate is shown below. It is easy to see that B = B,, since B, is the same
as B with some conjuncts removed.

1 T4
Ve = {$13$23$37$4} \/
E¢ = {(z1,2), (22, %3), (23, 24), (24, 71) }
p — { (1.7 > 22.5) N (2.8 > 13.5) A }
¢ (3.7 > 24.7) A (£4.8 > T1.5) .
T2 T3

The specification graphs can contain a number of cycles. We classify a cycle into different
categories based on the number of vertices (defined next) it contains.

Definition 4.3: Given, a cycle G.(V¢, E) in the graph G(V, E), we say x € V° is a vertex
with respect to the cycle G.(V*¢, E¢) if the incoming edge is either y.s > z.r or y.r > z.r and the
outgoing edge is either z.s > z.s or z.s > z.r. The order of a cycle is equal to the number of 3
vertices it contains. [|

Example 3: Continuing with the previous example. With respect to the cycle G.(V¢, E€), only
x4 is a (3 vertex, thus the order of the cycle is 1. Consider a non-3 vertex, say zs. Consider the
conjuncts that result in the input and output edges of the vertex z3. They are, z2.s > x3.s and
x3.r > x4.r. Since x3.s > x3.r, combining the three conjuncts we get, z2.s > x4.r. We can get a
predicate B’,

B' = (1.7 > 29.8) A (22.5 > 24.7) A (24.8 > T1.7),

such that B.= B’. Since B= B. and B.= B', B= B’. If we consider the predicate graph
Gp (V' E'), it is a cycle of order 1 and the [vertex is x4, thus maintaining the order and the
0 vertex of the cycle. n

15

Lemma 4 Let B be a predicate and Gg(V, E) be the corresponding predicate graph with a cycle
of order I. Then there exists a predicate B' weaker than B whose predicate graph Gg/(V',E') is a
cycle of order k such that

1. |V'| =2, or

2. all the vertices are B vertices.

Proof: Let G(V°¢, E¢) C G(V, E) be a cycle in the predicate graph with the corresponding predicate
as B.. We know that B = B,.

If the graph G(V', E') = G(V¢, E°) and predicate B’ = B, satisfy the condition of the lemma,
we are done. If not, pick a vertex, say y, that is not a § vertex. Then one of the following is true,

with z # z,

. B=---(zp>ys)A(ys>zqg) Ao, 2. B =---(zp>ys)Ayr>zg A,

3. B'=---(zpvyr)A(yrv>zq) A---.

Such a vertex exists since the graph (cycle) has more then two vertices and has at least one non-g3
vertex. In each case, B'= B" where B" =--- A (z.p » z.¢) A---. Since B= B’ and B'= B",

B = B". Let the graph predicate for B” be G(V", E"). The graph G(V", E") satisfies the condition
|[V"| = |V'| — 1, and the number of 3 vertices in G(V",E") is k.

If the graph G(V", E") and the corresponding predicate B” satisfy the conditions of the lemma,
we are done, otherwise repeat the above process. O

4.3 Impossibility and Lower-Bounds

In this section we prove the necessary and sufficient conditions for a specification to be imple-
mentable by a protocol of a given class. This can be summed up by the following table which is a
consequence of the next two theorems proved later in this section:

Specification graph has a cycle <= specification is implementable

and, if there exists a cycle with

— zero or more (3 vertices <= tagging and control messages are sufficient,
— zero or one [vertex <= tagging is sufficient, and
— zero [vertex <= trivial protocol is sufficient.

The next theorem proves the sufficient condition for a protocol to implement a given speci-
fication. Theorem 4 presents the necessary conditions to be satisfied by the specifications to be
implementable by a protocol of a given class.

Theorem 3 (Sufficient Conditions) Let Xp be a specification with B as the corresponding for-
bidden predicate. Let the predicate graph be Gp(V, E) with a cycle G.(V¢, E°) C Gp(V,E).

1. If there exists a cycle G.(V, E°) C Gg(V, E) of order 0, then Xysyn. € Xp.
2. If there exists a cycle G.(V¢, E°) C Gp(V, E) of order 1, then X, C Xp.
3. If there exists a cycle G.(V°, E¢) C Gg(V, E) of order k (> 1), then Xgyn. C Xp.

Proof:

16

1. Let G.(V¢ E°) C Gp(V,E) be a cycle of order 0. Then from Lemma 4, there exists a
predicate B’, such that, B= B’ and the corresponding graph G/ (V', E') is a cycle of order
0 with |[V'| = 2. Since B= B’, Xp C Xp.

Since the graph is a cycle with two vertices (both non-3), the predicate B’ = 32,y : B'(z,y)
can only be one of the predicates in the statement of Lemma 3.3. From Lemma 3 we have that
the specification corresponding to the above predicates are equivalent to X,syn.. Therefore,
Xasync = Xp, and Xasync C Xp.

2. We have to show X, C Xp. Let G.(V¢ E°) C Gp(V, E) be a cycle of order 1. Then from
Lemma 4, there exists a predicate B = B'. The corresponding graph Gg/(V', E') is a cycle
of order 1, such that |V'| = 2. Since B= B', Xp' C Xp.

Since the graph is a cycle with two vertices (one), the predicate B’ = 3x,y : B'(z,y)
can only be one of the predicates in the statement of Lemma 3.2. From Lemma 3, the
specification corresponding to the above predicates is equivalent to X.,. Therefore, X., = Xpr,
and XCO g XB.

3. We have to show Xgyn. C Xp. Let G.(V¢, E¢) C Gg(V, E) be a cycle of order &k (> 1). Then
from Lemma 4, there exists a predicate B = B’. The corresponding graph Gy (V', E') is a
cycle of order k, such that |[V'| = k. Since B= B', Xp C Xp.

Since the graph is a cycle with k& 3 vertices, the predicate B’ is
B' = (z1.8 > 29.7) A (9.8 > 23.7) -+ - (T}.8 > T1.7).

This implies the predicate in the statement of Lemma 3.1. Therefore, Xy, C Xp C Xp. 0

Theorem 4 (Necessary Conditions) Let Xp be a specification with B as the corresponding for-
bidden predicate. Let the predicate graph be Gg(V, E) with a cycle G.(V¢, E°) C Gp(V,E).

1. If there does not exist a cycle G.(V¢, E°) C Gg(V, E) of order 0, 1 or n, then Xgyn. € Xp.
2. If there does not exist a cycle G.(V¢, E€) C Gp(V, E) of order 0 or 1, then X., Z Xp.
3. If there does not exist a cycle G.(V¢, E¢) C Gg(V, E) of order 0, then Xysync € Xp.

Proof:

1. If there does not exist a cycle of order 0, 1, or n, then there does not exist a cycle. From
theorem 2 it follows that Xy, ,. Z Xp.

2. We have to show that X, € Xp, given there does not exist a cycle of order 0 or 1 in the
predicate graph. We will construct a run (H, >) and show that (H, >) &€ Xpg, but (H, ») € X,.

Let the forbidden predicate be B(z1,---y). Consider a run (H, >) such that the set of
messages M = {x1,---z,}. The causality relation is defined as

8, >) = {{ (zi-h,2;.f) : (w;.h > x;.f) is a conjunct of B } U{ (z;.s,25.7) : i=1,...n}}7",

where * represents the transitive closure. Since for this run B(zy,- - x,) is true, (H, >) € Xp.
The claim is (H, ») € X.,. We will show (H, >) € X, by contradiction.

17

Assume (H, >) ¢ X;,. From the definition of X,
Xo={H 1) : = ((x.s >y.s) A (yr>azr)),Ve,yc M }.

Therefore, 3z;, x; € M such that (z;.s > xj.s) A (z;.r > z;.r) is true.
We can rewrite (z;.5 > zj.5) A (zjr > zir)as (Cr A Co A=A Cp) A (CT A - Cp),
where C' is either a conjunct of B or of the form zy.s > z.r.

We are interested in forming a graph (cycle) from the Cs. Drop all the C's which are not a
conjunct of B, since they do not contribute to the cycle.

Consider the predicate graph formed by the resulting Cs. Let the predicate be B, and
G (V¢ E). Tt is a cycle and G.(V¢, E€) C G(V, E). For each C remaining there is an edge.
We have to analyze the vertex formed by two Cs. If C; is of form (x.s > z.r) (thus dropped)
then C;_1 = (y.h > z.s) and Cjy1 = (z.r > z.f), thus the vertex formed by C;_; and Cjy; is
not a [vertex.

Let us consider the case when C; and Cjy; are parts of the conjunct. Then, C; = (y.f > x.h)
and Cj;1 = (z.h > z.g). Thus the vertex formed by C; and Cj;1 is not a [vertex.

Therefore the vertices formed by the Cs in the same group do not result in any [vertex.
There are two more vertices to be considered, that is, the vertices formed by the group joining.
Note that C,, and C] are conjuncts of B since they cannot be of the form z.s > z.r. Therefore,
the vertex formed by joining C}, and C] results in a non-{ vertex. The is because C,, is of the
form (y.h > z;.5) and C] is of the form (z;.r > z.f).

Therefore, the number of vertices left to be considered is one (it may or may not be a (3
vertex). Thus the resulting graph is of order 0 or 1.

. We have to show that X,syn. € Xp given that there does not exist a cycle of order 0 in the
predicate graph Gg(V, E).

Let us assume that the predicate graph does not have a cycle of order 0. We construct a run
(H, ») and show that (H, >) & Xp but (H, >) € Xsync-

Let the forbidden predicate be B(z1,---x,). Consider a run (H, >) such that the set of
messages M = {xi,---z,}. The causality relation is defined as

H, ») = {{ (xi-h,x;.f) : (w.h > x;.f) is a conjunct of B } U{ (z.5,25.7) : i=1,...n}}7",

where * represents the transitive closure. Since for this run B(z1,- - x,) is true, (H, >) € Xp.
The claim is (H, >) € Xy5yne. We show (H, >) € Xygyne by contradiction.

Assume (H, >) € Xosyne. From the definition of X,eyne,
Xasyne ={ (H,>) : Ah €Hsuch that h > h }.

Therefore, 3 h € H such that (h > h).

We can rewrite (h > h) as (C1 A Cy A--- A Cp) where C is either a conjunct of B or of the
form zp.s > zp.7.

18

We are interested in forming a graph (cycle) from the Cs. Drop all the C's which are not a
conjunct of B, since they do not contribute to the cycle.

Consider the predicate graph formed by the resulting Cs. Let the predicate be B, and
G (V¢ E°). Tt is a cycle and G.(V¢, E€) C G(V, E). By similar reasoning as in the previous
case the only 3 vertex that can be possible is between C; and C),.
(a) C} is of the form z.s > x.r (thus dropped), then C, is of the form y.f > z.r, and C; is
of the form z.r > z.g. The vertex formed by C}, and C» is not a (3 vertex.
(b) Cp is of the form z.s > z.r (thus dropped), then C is of the form z.r > y.f, and C,_;
is of the form z.g > x.s. The vertex formed by C},_1 and C is not a 3 vertex.
(c) Ci and C) are not of the form z.s > x.r. Thus C} is of the form z.f > y.g and C), is of
the form z.h > x.f. The vertex formed by C, and C is not a (3 vertex.

Therefore, the graph is a cycle of order 0. Thus, G(V, E) has a cycle of order 0. (contradic-
tion). O

5 Discussion

We considered limitation of protocols that operate by delaying events using local knowledge, causal
knowledge and concurrent knowledge. The theory developed in this paper provides an algorithm in
determining the existence of a protocol, given a specification using forbidden predicates. Further if
there does exist a protocol; whether local, causal or concurrent knowledge is sufficient and necessary
to guarantee safety and liveness.

The process of determining the existence of a type of protocol can be done easily, if the speci-
fication can be expressed using forbidden predicates. For example, in mobile computations, when
a mobile unit moves from one region serviced by a fixed station to another region, it has to com-
municate with the handshake and the handoff. These handshake and handoff messages, have to
satisfy properties like

Vy,z : z is a handoff message : (y.r > z.r) V (y.s > z.r) V (y.r > z.5) V (y.s > z.5)
= = ((z.r > yr)V(z.s > yr)V(zr > ys)V(z.s > y.s)).

Using the results of this paper it can be easily concluded that guaranteeing the condition requires
additional control messages.

Similarly, a specification such as receive the second message before the first, may seem imple-
mentable, but using the results of this paper it can be seen that it is not. A protocol can gaurantee
safety either by knowing the future, that is, the process knows the existence/absence of the second
message (in the future) or the protocol violates liveness condition, that is, a message may not be
delivered to the destination process even in a reliable system.

We can see that the following specifications can be implemented by merely tagging the user
messages:

FIFO : The messages are received in the same order that they are sent between any pair of
processes.

(process (s1) = process (s2)) A (process (r1) = process (r2)) = (s1 > s2) A (ro > 71)

19

k—Weaker Causal Ordering : The messages can be out of order by at most k messages.

(81 > 82) A (82 > 83) VANERRIVAN (’I“]H_Q > ’)"1).

Local Forward—Flush : All messages sent before any red message are received before the red message
between any pair of processes.

process (s1) = process (s2) A process (r1) = process (r2) A color (z2) = red : (s1>82) A (ra>r).

Global Forward—Flush : All messages sent before a red message are received before the red message.
color (z9) =red : (s1 > s2) A (rg > 7r1).

This paper presented a general characterization of message ordering specifications. We classified
the protocols into three major types (1) those that do nothing, (2) those that can tag information,
and (3) those that can have control messages and tag information. The limitations of the three
classes of protocols was studied. The results in this paper can be extended to incorporate multicast
messages.

References

[1] M. Ahuja. An implementation of F-channels. IEEE Transactions on Parallel and Distributed
Systems, 4(6):658-667, June 1993.

[2] R. Bagrodia. Process synchronization: Design and performance evaluation of distributed
algorithms. IEEE Transactions on Software Engineering, 15(9):1053-1065, September 1989.

[3] R. Bagrodia. Synchronization of asynchronous processes in CSP. ACM Transactions Program-
ming Language Systems, 11(4):585-597, October 1989.

[4] K. P. Birman and T. A. Joseph. Reliable communication in the presence of failures. ACM
Transactions on Computer Systems, 5(1):47-76, January 1987.

[6] G.Bracha and S. Toeug. Distributed deadlock detection. Distributed Computing, 2(3):127-138,
January 1987.

[6] G. Buckley and A. Silbershatz. An effective implementation of the generalized input-output
construct of CSP. ACM Transactions Programming Language Systems, 2(2):223-235, April
1980.

[7] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of distributed
systems. ACM Transactions on Computer Systems, 3(1):63-75, Febuary. 1985.

K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley, 1988.

Lo X

B. Charron-Bost, F. Mattern, and G. Tel. Synchronous and asynchronous communication in
distributed computations. Technical Report TR91.55, LITP, University Paris 7, September
1991.

20

[10]

[11]

[12]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

O. P. Damani and V. K. Garg. How to recover efficiently and asynchronously when optimism
fails. Technical Report TR-PDS-1995-017, Parallel and Distributed Systems Laboratory, The
University of Texas at Austin, 1995.

E. W. Dijkstra. The distributed snapshot of K.M Chandy and L. Lamport. In M. Broy, editor,
Control Flow and Data Flow: Concepts of Distributed Programming. Springer-Verlag, 1985.

A. Gahlot and M. Ahuja. Global flush communication primitive for inter-process communica-
tion. In Proceedings of the Thirteenth Annual ACM Symposium on Principles of Distributed
Computing, pages 111-120. ACM, 1994.

V. K. Garg. Some optimal algorithms for decomposed partially ordered sets. Inf. Process.
Lett., 44:39-43, November 1992.

D. B. Johnson and W. Zwaenepeol. Recovery in distributed systems using optimistic message
logging and checkpointing. In Proceedings of the 8th Annual ACM Symposium on Principles
of Distributed Computing, pages 171-181. ACM, 1988.

R. Koo and S. Toueg. Checkpointing and rollback-recovery for distributed systems. IEEE
Transactions on Software Engineering, 13(1):23-31, January 1987.

L. Lamport. Time, clocks and the ordering of events in a distributed system. Communications
fo the ACM, 21(7):95-114, July 1978.

F. Mattern. Efficient distributed snapshots and global virtual time algorithms for non-FIFO
systems. Draft Version, March 1990.

V. V. Murty and V. K. Garg. An algorithm to gaurantee synchronous ordering of messages. In
Proceedings of Second International Symposium on Autonomous Decentralized Systems, pages
208-214. IEEE Computer Society Press, 1995.

V. V. Murty and V. K. Garg. Message ordering based on colorful forbidden predicates. Under
preparation, 1996.

M. Raynal, A. Schiper, and S. Toueg. The causal ordering abstraction and a simple way to
implement it. Inf. Process. Lett., 39(6):343-350, July 1991.

A. Schiper, J. Eggli, and A. Sandoz. A new algorithm to implement causal ordering. In
Proceedings of the Third International Workshop on Distributed Algorithms, pages 219-232.
Springer-Verlay, 1989.

F. Schmuck. Efficient broadcast primitives in asynchronous distributed systems. In K. P.
Birman and R. VanRenesse, editors, Reliable Distributed Computing with the Isis Toolkit:
Collected Readings, pages 263-283. IEEE Press, 1995.

A. P. Sistla. Distributed algorithms for ensuring fair interprocess communication. In Pro-
ceedings of the Third Annual ACM Symposium on Principles of Distributed Computing, pages
266-277. ACM, 1984.

T. Soneoka and T. Ibaraki. Logically instantaneous message passing in asynchronous dis-
tributed systems. IEEE Transactions on Computers, 43(5):513-527, May 1994.

21

[25] K. Taylor. The role of inhibition in asynchronous consistent-cut protocols. In J.-C. Bermond
and M. Raynal, editors, Proc. of the 3rd International Workshop on Distributed Algorithms,
pages 280-291. Springer-Verlag, 1989.

22

*
S1 81

H: Hit
Figure 6: Prefixes of H.

Appendix

A Proof of Lemma 2

Given a protocol P, the set of possible runs under the protocol Xp is defined inductively. Thus, the
proof of the inclusion of a run H in the set Xp is also done similarly. Given a run H we construct
a series of prefixes H?,H',... , H’,..., such that H’ is a prefix of # and H* C H't! C H, and H°
is an empty run, that is H% = (). We show that # € Xp inductively. Clearly, the base case follows,
that is, H° € Xp, since H° is an empty run. Further, we show that if #? € Xp then H't! € Xp.
Given H' € Xp, the conditions for Ht! € Xp are, for all j,

C1 : H]Z is a prefix of H;H and they differ by at most one event, and
C2: H*' C HI U Pj(H).

To prove that H € Xp, we will use the following properties of a protocol P,
Pl : [;(H) U R(H) C P(H) C I;(H) U R;(H) U C;i(H), and

P2 : R(H) UCH)#0 = P(H) N (R(H) U C(H)) # 0.

In our proofs, if we can show that R(H) U C(H) is a singleton or an empty set, than we can
conclude C(H) C P(H) using the property P2. If C(H) C P(#H), then from P1 its clear that
Pi(H) = L(H) U Ri(H) U Ci(H).

A.1 Proof of Lemma 2, part 1.

Let H € Xy,. By definition of Aj,, there exists a numbering scheme N that assigns a unique
number to each event, such that

N(z.r) = N(z.r*)+1= N(z.s) +2 = N(z.s") +3

23

Figure 8: Constructing the next prefix given H'.

and (9 — h)= (N(g9) < N(h)). Using this numbering, we can define a total order in the messages
and construct the required prefixes, that is, #° H!,..., as shown in Figure 7. Since, H® € Xp it
is sufficient to show that H'*! € Xp, given H' € Xp. Clearly, H*t! and H* differ at most by one
event. Therefore, for each j, H]Z is a prefix of H;H and they differ by at most one event. Thus,
C1 is satisfied for all j.

We have to show that C2 is satisfied, that is, (Hi+1 — HZ) C P(H?). There are four possible
cases:
Let i = 4m. Then H'*' — H' = {s% ., } and s}, ., € I(#"), since only up to m messages have been
executed. Due to property P1, s¥ , € I(H') implies s}, , € P(H").
Let i = 4m + 1. Then H""' — H' = { 8,541 } and S(H?) = { 841}, R(H?) =) and D(H?) = (). Due
to property P2, singleton set C(H!) U R(H') implies S(H!) C P(H'). Therefore, s,,11 € P(H?').
Let i = 4m + 2. Then H'™' — H' = {r}, ., } and S(H") =0, R(H") = {r}, .1} and D(H') = 0. Due
to property P1, r% ., € R(H') implies r}, ., € P(H').
Let i = 4m + 3. Then H*' — H' = {7,411 } and S(H?) = 0, R(H?) = 0 and D(H’) = {r;;1}. Due
to property P2, singleton set C(H') U R(H') implies R(H') C P(H"). Therefore, r,, 1 € P(H").
Therefore, in each case we have H'*! = H' U P(H?).

24

1 1 —? 1

2 \ /(/(2 M 2 \ /

3 . 3 . 3 /
(a) Run #H* (b) Causal Pasty(H") (c) Run G

Figure 9: Construction of G given H* for process j.

A.2 Proof of Lemma 2, part 2.

To prove that a run H € Xp, we have to construct a sequence of runs H%, #!, ..., that are prefixes
of H. We construct the sequence such that if the longest path from start of the computation to an
event h is k, then h ¢ H*=! and h € HF.

Let H* be a prefix of H, then H**! contains the bottom elements among the events that do not
belong to H’. For example, in Figure 8, H'*! = H* U { s5, s} }. Formally,

HI*' = H: U Bj(H,HY),

where, B;(H,H') = {h € H; —HJZ: (g = h)y=>gc¢€ HZ}
Let P be a tagged protocol. By definition of tagged protocols,

P3 : CausalPastj(H) = CausalPast;(G) = Pj(H) = P;(G).

We have to show that if H € A}y, then H € Xp, by induction. Construct the prefixes of H as
defined above. Clearly, H° € Xp, since it is the empty run.

Let H' € Xp, we have to show that H'*! € Xp. In other words for any j, ’H; and H;-H satisfies
C1 and C2.

Construct a run G as shown in Figure 9. Pick CausalPast;(H') and extend all messages (with
destination process not being j) in transit. Therefore, we have

CausalPast;(H') = CausalPast;(G).

We make the following claims:
1. Pj(H') = Pj(G), by the property P3.
2. C;(G) = C;(HY), since H; =Gj.
3. Rk(G) =, where k # j, by construction of G.

4. R;j(G) = 0. (Proof by contradiction)
Let z.r* € R;j(G), therefore 3k : (z.r* € Gj) A (z.s € Gi) N (x € My;). Since, (z.s € G},)
and (x € My;), we have by the definition of CausalPast 3h : (x.s — h) A (h € Gj).
Since, (z.s — h) and z.s, h in different processes, we have either
(a) dye M : (x.s = y.s) A ((yr* = h) V (y,r* =h)), or
(b) (x.s = x.r*) A (x.r* — h).
But z.r* € G, therefore =(z.r* — h). Since h,z.r* € Hj, either (z.r* — h) or (h — z.r*).
Therefore,
dz,ye M : (z.s = y.s) A (yr® — zr’) = H & Xyg.

25

onees L. e

Figure 10: Construction of G given H* for process j

5. Cx(G) = 0, where k # j, since x.s* immediately precedes z.s, z.r* immediately precedes x.r
and construction of G.

6. C;(G) is a singleton or an empty set. Since, z.s* immediately precedes z.s and z.r* immedi-
ately precedes z.r.

7. Bj(H,H') is a singleton or an empty set. 'Let g,h € H; - sz Since g,h € Hj= (9 —
h) V (h — g), we have either g € B;(H,H") or h € B;(H,H").

8. Bj(H,H') C Ij(H') U Rj(H') U Cj(H"). The statement is trivially true if Bj(H,H") is an
empty set. Let B;(H,H') = {h}. Then the event h can be either an invocation, a send, a

delivery or a receive event.
(a) Let h = x.s*. By definition z.s* € H; — H;, therefore
= (z.s" € Hj) A (z.s" ¢ H}) = (Ik : © € My) A (z.8" € H}) = x.5" € I;(H').
(b) Let h = z.s. Therefore, (z.s € Hj — H}) A (z.5" — z.5)
= (z.s ¢ H}) A (z.s € H}) = z.s € Sj(H').
Similarly, we can show that h = z.r* = z.r* € Rj(H') and h = z.r = z.r € Dj(H"). Hence,
By (H,) € (W) U By (1) U ().

From (3), (4), (5) and (6), we have R(G) U C(G) is a singleton or empty set. Using property P2
and R(G) U C(G) being either a singleton or empty set, we get C;(G) C P;(G). Substituting for
C;(G) and P;j(G) from (1) and (2), we get C;(H') C Pj(H?).

Since, Cj(H?) C P;(H'), we get (using property P1),

Pj(H") = I;(H") U R;j(H') U Cj(H).

Therefore, from (8)
Bj(H,H") C Pj(HZ).

H*! € Xp, since for any 7,
L H;H = HJZ U Bj(H,H') C H; U Pj(H')= C1 and
2. Bj(H,H') is a singleton or an empty set = C2.

A.3 Proof of Lemma 2, part 3

Let P be a tagless protocol. Therefore,

P3 Hj = Gjipj(’ﬂ) :P](g)

26

We have to show that if H € X}, then H € Xp, by induction. Construct the prefixes of H as
defined in the last section.

Let H! € Xp, we have to show that H'*! € Xp. Construct a run G by removing and adding events
such that (Figure 10 shows the construction of G given H' with respect to process j.) (a) HZ =G},
(b) messages that do not effect (a) are deleted, and (c) the messages sent with destination 7é j are
delivered and received (no pending events).

The claims are very similar to the previous proof.
1. Pj(H') = Pj(G), by the property P3.

2. C;(G) = C;(HY), since Hl- = G by construction of G.

3. Crx(G) = 0, where k # j, since there are no pending events in the process k # j.

4. Ri(G) = 0, there are no messages in transit.

5

. C;(G) is a singleton or an empty set. Since z.s* immediately precede z.s and z.r* immediately
precede z.7.

6. Bj(H,H') is a singleton or an empty set.
7. B](H,HZ) - Ij(%i) U R](’Hl) U C](’Hl)

The rest of the proof is identical to the previous one.

27

