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Characterization of Message Ordering Speci�cations and ProtocolsV. V. Murty and V. K. GargDepartment of Electrical & Computer EngineeringUniversity of Texas at Austinemail: fmurty, vijayg@pine.ece.utexas.eduAbstractWe study the problem of determining which message ordering speci�cations can be imple-mented in a distributed system. Further, if a speci�cation can be implemented, we give a tech-nique to determine whether it can be implemented by tagging information with user messagesor if it requires control messages. To specify the message ordering, we use a novel method calledforbidden predicates. All existing message ordering guarantees such as FIFO, 
ush channels,causal ordering, and logically synchronous ordering, (as well as many new message orderings)can be concisely speci�ed using forbidden predicates. We then present an algorithm that deter-mines from the forbidden predicate the type of protocol needed to implement that speci�cation.Keywords: Message ordering, forbidden predicate, predicate graph, protocols and speci�ca-tions.1 IntroductionA distributed computation or a run describes an execution of a distributed program. At an abstractlevel, a run can be de�ned as a partially ordered set (H; . ), where H is the set of events in the systemand . the \happened before" relation [16] between events. It is often easier to develop distributedprograms when the partially ordered set (H; . ) is guaranteed to satisfy certain message orderingproperties. For example, many distributed algorithms work correctly only in the presence of FIFOchannels. This guarantee on ordering of messages is either provided explicitly { by communicationprimitives such as causal ordering [4] and logically synchronous ordering [6, 9]; or is built into thealgorithm itself { as with global snapshot and recovery algorithms. In this paper, we propose ageneral framework in which existing and new message orderings can be speci�ed and studied.In this paper, a message ordering speci�cation is characterized as the set of acceptable runs,that is, a subset of X, where X is the set of all runs. For example, a system satisfying causalordering can be viewed as the set of runs, say Xco, such that for all runs in Xco, and for all pairsof messages, (s1 . s2)):(r2 . r1), where sj is the send of a message and rj is its correspondingreceive. In this broad setting, where each message ordering is a subset of X, we �rst determinewhether a given speci�cation can be implemented. We show that a message ordering speci�cationcan be implemented if and only if it includes all logically synchronous runs. Further, if it canbe implemented then we determine the type of protocol necessary and su�cient to implement it,where the protocols are classi�ed into three types, (1) general: those that can tag information andhave control messages, (2) tagged: those that can tag information, and (3) tagless: those that donothing. For example, we show that a message speci�cation can be implemented by tagging usermessages with some additional information if and only if it includes all causally ordered runs. Thisresult implies that there is no protocol for imposing logically synchronous ordering which does notuse control messages. 1



Formally, we de�ne three subsets of X, namely, Xasync, Xco and Xsync. We show that givena speci�cation Y � X, it is implementable (there exists a protocol with control messages) if andonly if Xsync � Y. Similarly, there is a protocol without control messages if and only if Xco � Y.The \do nothing" protocol is su�cient to implement if and only if Xasync � Y. Thus, given aspeci�cation, that is the set of acceptable runs, the type of protocol necessary and su�cient can beeasily checked by testing the containment of the three limit sets Xasync, Xco and Xsync.Since X is an in�nite set, we also need a �nite representation for its subsets that specify messageordering. We present a method called forbidden predicates that can be used to describe a large classof message ordering speci�cations. All existing message ordering guarantees such as FIFO, 
ushchannels, causal ordering, and logically synchronous ordering as well as others can be conciselyspeci�ed using forbidden predicates. For example, the speci�cation for causal ordering Xco canbe stated as: for all runs in Xco, and for all pairs of messages, : ( (s1 . s2) ^ (r2 . r1) ). Theforbidden predicate for Xco is 9 (s1; r1); (s2; r2) : (s1 . s2) ^ (r2 . r1). In general, a forbiddenpredicate can be stated as a conjunction of causality relationships between the events (send andreceive).Given a message ordering speci�cation using forbidden predicates, we present an algorithmthat determines the type of protocol necessary to implement that speci�cation. The algorithmconverts the forbidden predicate into a predicate graph. It is shown that the speci�cation canbe implemented if and only if there is a cycle in this graph. Further, to determine the nature ofthe protocol required for the speci�cation, it is su�cient to examine vertices of the graph. Wede�ne the notion of � vertices. If the cycle has two or more � vertices with respect to that cycle,then control message are necessary. If the cycle has one � vertex, then tagging user messages issu�cient. If the cycle has no � vertex, then no action from the protocol is required. Thus, givenany message ordering speci�cation using forbidden predicates, the nature of the protocol necessaryfor implementing it can easily be determined.We note here that speci�cation using forbidden predicates also permits automatic generation ofe�cient protocols for a class of message ordering speci�cations. This is the focus of the companionpaper [19].2 Related WorkA fair amount of research has been done for e�cient algorithms to implement di�erent messageorderings. Birman and Joseph [4], Raynal, Schiper and Toueg [20], Schiper, Eggli and Sandoz [21],have presented algorithms for the causal ordering of messages. These algorithms tag knowledgeof processes about messages sent in the system with the message. For example, process Pi in thealgorithm by Raynal, Schiper and Toueg [20] tags a message with the matrix m where m[j; k] is theknowledge of process Pi about the messages sent from Pj to Pk. It is natural to ask whether themessage ordering can be further restricted by sending higher-levels of knowledge (for example, byusing three dimensional matrices: what Pi knows that Pj knows about messages sent from Pk toPl). It is an easy consequence of the results of this paper that no additional tagging of informationcan restrict the message ordering further.Variants of FIFO ordering have been studied under F-channels [1]. The implementation ofF-channels, provides us with some basic synchronization primitives for sending messages: two-way-2




ush send, forward-
ush send, backward-
ush send, and ordinary send. Similar 
ush primitives canbe de�ned for causal ordering [12]. These message orderings can be speci�ed using forbidden pred-icates. By constructing predicate graphs of these predicates it can be shown that these orderingscan be implemented without using any control messages.Logically synchronous ordering of messages has been studied in [9, 18, 24]. It has also beenstudied extensively as implementation of the guard statement of Communicating Sequential Process(CSP) [6, 3, 23] and as the binary interaction problem [2, 8]. Thus, these message orderings haveeither been studied as synchronization primitives, or are embedded in some protocol. Our resultsshow that all these protocols must use additional control messages for implementation.Many asynchronous consistent-cut protocols [25] such as global snapshot algorithms [7, 11, 17],check-pointing and rollback recovery [10, 15, 14], and deadlock detection [5] require special messagesto �nd consistent-cuts in a computation. These protocols require some form of inhibition of thespecial messages in order to guarantee correctness. The inhibition of the messages can also beviewed as a restriction on the set X.In [22], Schmuck presents the necessary and su�cient conditions under which causal/FIFObroadcast instead of atomic broadcast can be used to guarantee correctness of a speci�cation.We on the other hand are concerned with the problem of implementing atomic, causal and FIFObroadcast instead of using these broadcast primitives.3 Model and De�nitionsIn this paper, we are interested in characterization of message ordering speci�cations and proto-cols that operate by delaying events. Usually an event from a user's view is broken up into twounderlying system events: the request of the event and the execution of the event. For example,to implement causal ordering, the receive events are delayed and are usually called receive anddelivery of the message. Therefore, we di�erentiate between the two views by de�ning a system'sview of a run and a user's view of the same run. In this paper, each user event h, like sending of amessage or receiving of a message, is characterized by two system events, that is h� and h, whereh� represents the request of the event and h its execution.3.1 System ModelThe basic entity in our model is a message. A message x consists of four events. They areinvocation event x:s�, send event x:s, receive event x:r� and delivery event x:r. The set of messagesfrom process i to process j is Mij . The set of all message is denoted by M = [i;jMij.A run is a decomposed partially ordered set H = (H1;H2; : : : ;Hn; ! ) [13], where the set Hi isa sequence of events, such thatHi � fx:s�; x:s : x 2Mij for all j g [ fx:r�; x:r : x 2Mki for all k g:and the order relation ! is de�ned as, h ! h0 i�,1. 9 k : h; h0 2 Hk and h is before h0 in the sequence Hk, or2. there exists a message x 2M such that h = x:s and h0 = x:r�, or3



q qqq q q qq qq ---���� �����7@@@R ����123 q q q q qq- --����@@@R �123(a) Run H (b) CausalPast2(H)Figure 1: Illustration of Causal past with respect to a process3. there exists g 2 H = [jHj such that h ! g and g ! h0 .A run satis�es the usual notions of a computation in a distributed system, that is, it is a partialorder, it has no spurious messages and it includes the execution of an event only if it has beenrequested by the user. Formally, these condition can be stated as,1. the relation ! on H = [j Hj is a partial order,2. x:r� 2 Hi) x:s 2 H, that is, message is received only if it has been sent, and3. x:s 2 H)x:s� ! x:s and x:r 2 H)x:r� ! x:r, that is, the events x:s and x:r are alwayspreceded by the events x:s� and x:r�, respectively.Given a run H, a pre�x of the run G is also a run, such that Gi is a pre�x of Hi for all i. A pre�x ofinterest is the causal past of a run H with respect to a given process i (denoted by CausalPasti(H)).Figure 1 shows the causal past of the run H with respect to process 2. Intuitively, the causal pastwith respect to a process i consists of all the events that are followed by some event in process i.Let G = CausalPasti(H), then1. Gi = Hi, and2. 8 j 6= i : g 2 Gj � (9h 2 Hi : g ! h).A distributed system is a tuple (M;X ), where X is a set of all possible runs with respect to themessage set M . Given a run H 2 X we de�ne the following sets;1. the messages that have not been requested by process i,Ii(H) = f x:s� : (x:s� 62 Hi) ^ (x 2Mik) g :2. the messages that have been requested but not yet sent by process i,Si(H) = fx:s : (x:s� 2 Hi) ^ (x:s 62 Hi) g :3. the messages that have been sent to process i but not yet received by process i,Ri(H) = f x:r� : (x:r� 62 Hi) ^ (9 k : (x 2Mki) ^ (x:s 2 Hk)) g :4. the messages that have been received but not yet delivered by process i,Di(H) = f x:r : (x:r� 2 Hi) ^ (x:r 62 Hi) g :4
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Figure 2: Inhibitory protocol to implement FIFO3.2 ProtocolsIn this section we de�ne inhibitory protocols. Informally, an inhibitory protocol speci�es that anevent may be delayed until the occurrence of prerequisite events. For example, in the implementa-tion of FIFO, a message is delayed until all messages sent earlier have been delivered. In Figure 2,the protocol enables the event r2 only after the event r1 has been executed. Thus, a protocolP = f (P1(H); P2(H); : : : ; Pn(H) ) : H 2 (M;X ) g ;is a vector of enabled event sets for each run, where Pi(H) is the set of enabled events in process iafter the execution of the run H.Now we present some conditions to be satis�ed by the vector of enabled event sets. The protocolsdo not have control over star-events. Clearly, a protocol cannot disable a user from requesting theexecution of a message that has not been sent. Thus, we havePi(H) \ Ii(H) = Ii(H):Similarly, a protocol cannot disable the receive of a message that has been already sent and is intransit. Thus Pi(H) \ Ri(H) = Ri(H):A protocol can disable or enable the send event and delivery event of a message if the invocationor the receive has been executed, respectively. Thus,Pi(H) \ Si(H) � Si(H); andPi(H) \ Di(H) � Di(H):Therefore, Ii(H) [ Ri(H) � Pi(H) � Ii(H) [ Ri(H) [ Ci(H);where Ci(H) = Si(H) [ Di(H):Notation: The use of the notation C is to represent the events that are \controllable". We use Ci,with a subscript to identify with a particular process i. When the subscript is absent, say C(H),then we are referring to the union of all C 0is, that is, C(H) = Si Ci(H). We follow this conventionfor the sets H;P; I; S;D;R; and C, that is, H = Si H, P (H) = Si Pi(H), and so on.We de�ne the set of runs, XP , possible under the protocol P in an inductive fashion, based onthe events enabled. The base case is a null run H; (where H = ;) belongs to the set XP , since this5



Process i rx:s� rx:s rx:r� rx:r
---@@@R - Control Message


� rx:s� rx:s rx:r� rx:r

---@@@R(a) With Control Message (b) Without Control MessageFigure 3: Knowledge of concurrent eventsrun is possible even if the protocol does not enable any event. Let the run H be possible under theprotocol, then if some of the processes simultaneously execute an event enabled in their process,then the resulting run also is possible under the protocol. This can be formally stated as,1. H; 2 XP .2. Let H 2 XP , then G 2 XP , where(a) Hi is a pre�x of Gi and they di�er by at most one event, and(b) Gi � Hi [ Pi(H):In the next lemma, we show that G is a run, that is, it satis�es the three conditions of a run.Lemma 1 Let H be a run, and (P1(H); P2(H); : : : ; Pn(H) ) a vector of enabled event sets, suchthat for all i Ii(H) [ Ri(H) � Pi(H) � Ii(H) [ Ri(H) [ Ci(H):Then G is a run, where1. Hi is a pre�x of Gi and they di�er by at most one event, and2. Gi � Hi [ Pi(H):Proof Outline: Clearly, G satis�es the three conditions of a run, that is,1. G is a partial order, since H is a partial order, and if g 2 G \ P (H) then 6 9 g0 2 G : g ! g0,2. x:r� 2 G ) x:s 2 G, since a receive event is added only if H contains the send event, and3. x:s 2 G ) x:s� 2 G and x:r 2 G ) x:r� 2 G , by de�nition of S and D. 2It is desirable that any protocol allows the system to progress, that is, to satisfy the livenessproperty. For example, if a user requests a message then it is eventually sent and delivered. In otherwords, we want the protocol eventually to execute a run H such that S(H) [ R(H) [ D(H) = ;;that is, all the messages requested by the user have been sent and delivered and there are nopending events. Thus, the protocol at each stage enables at least one of the pending events if thepending set is not empty. This condition can be formally stated as,Liveness: R(H) [ C(H) 6= ; ) P (H) \ (R(H) [ C(H)) 6= ;:Consider the case when the above condition is not satis�ed. If the user does not request any moremessages, the system cannot make any progress and the pending events are never executed.6



Next, we classify the set of protocols based on the information exchange possible between theprocesses. First, consider a protocol that allows processes to exchange information using usermessages only, then the processes are limited to the causal past. Intuitively, the class of suchprotocols can be implemented by tagging information to user messages. Second, if a protocoldoes not allow any information exchange using either user or control messages, then a process mayenable or disable events based only on the local history. Such protocols belong to the class of taglessprotocols. Finally, a protocol allows processes to exchange information using both control messagesand user messages, then processes are capable of deciding based on events that appear concurrent,when events associated with the control messages are deleted. For example, in Figure 3, process iknows about the events x:s� and x:s although it appears concurrent when the control message hasbeen deleted. Formally, the types of protocols and the condition satis�ed by each type are:general : The class of general protocols characterize the environment where an action by aprocess can be known instantaneously to all processes in the group. Thus, each processenables and disables events based on the knowledge of both causal and concurrent events.This can be formally stated as H = G ) Pi(H) = Pi(G):The condition states that a process takes the same action in any two executions if the partialorders are the same. Later, we will show that if there exists a general protocol for a givenspeci�cation then there exists an inhibitory protocol using control and user messages thatimplements the speci�cation.tagged : The class of tagged protocols characterize the environment where an action by a processcan be known only in its causal future. Thus, each process enables and disables events, basedon the knowledge of causal events. Therefore, if in two di�erent executions, the causal pastwith respect to a process i, that is CausalPasti(�), is the same then the action taken by theprocess i in the two cases is the same. This can be formally stated asCausalPasti(H) = CausalPasti(G) ) Pi(H) = Pi(G):tagless : These protocols cannot tag information to the user messages and cannot use controlmessages. The condition satis�ed by a tagless protocol isHi = Gi ) Pi(H) = Pi(G):The condition states that if the local history is the same then the action taken by the processis the same.The above conditions are used to capture the three classes of protocols we are interested in studyingin this paper. In particular, �rst case the class of general protocols model the behavior of protocolswith control messages in the absence of synchronized clocks or a global clock. Therefore, such aprotocol cannot di�erentiate between two runs that have the same partial order relation but maydi�er in physical global time. 7



3.2.1 Limitations of ProtocolsIn this section we explore the limitations of each type of protocol. We answer questions of theform, \if protocol P is a tagless protocol, then does H necessarily belong to the set XP ?". Thesequestions will provide us with insight into the type of protocol necessary to implement the desiredspeci�cation. For example, if the run H is undesirable and H 2 XP , then P cannot guaranteesafety. We de�ne three subsets of X , that is, Xgn, Xtd and Xtl, such that, they are subsets of XP ,when P is a general, tagged or tagless protocol, respectively. Formally, these sets are:A run H belongs to the set Xtl if and only if1. for any message x in H, x:s� immediately precedes x:s and x:r� immediately precedes x:r,and2. all messages requested have been delivered, that is, x:s� 2 H ) x:r 2 H.A run H belongs to the set Xtd if and only if1. H 2 Xtl, and2. the messages are causally ordered, that is, x:s ! y:s ) : (y:r� ! x:r�) :A run H belongs to the set Xgn if and only if1. H 2 Xtd, and2. the time diagram can be redrawn such that all message arrows are vertical, that is, thereexists a numbering scheme N, that assigns a unique number to each event such that,h ! g ) N(h) < N(g) and N(x:r) = N(x:r�) + 1 = N(x:s) + 2 = N(x:s�) + 3:The main result of this section show the relation of the above sets to a protocol of each type.Lemma 2 Let P be a protocol satisfying the liveness property and XP is the set of all runs possibleunder the protocol.1. If P is a general protocol, then Xgn � XP .2. If P is a tagged protocol, then Xtd � XP .3. If P is a tagless protocol, then Xtl � XP .Therefore, ifH 2 Xgn and it is an undesirable run, then there does not exist a protocol to implementthe speci�cation. The lemma is proved in the appendix.3.3 Speci�cationsA speci�cation is the set of behavior as desired by the user. For example, a particular run H mayor may not be desirable. In this section, we expand on the concepts of user's view and formallyde�ne a speci�cation.A user is interested in the send and delivery of a message and the order relation among them,rather than the invocation and receive events. For example, causal ordering is stated in terms ofthe relation between the send and delivery events. Thus, the causality relation between two events8



rs�1 rs1 rs�2 rs2 rr�2 rr�1 rr1 rr2 --��������*����� rs1 rs2 rr1 rr2 --��������*��������*(a) System's View (b) User's ViewFigure 4: Illustration for the di�erence in causality relationfrom the user's view can be di�erent the relation from the system's view. Figure 4 illustrates thedi�erence in a system that implements FIFO ordering among the messages. In the system's viewthe event s2 happened causally before the event r1, whereas from user's view s2 did not happenbefore the event r1. Thus, we de�ne a relation from system's view to the user's view of a run whichis a projection of the events with the invocation and receive events removed.1. UsersView(H), a projection of the run H, is a partial order, denoted as (H; . ), whereH = fh : h 2 H ^ (h is a send or a delivery event) g;and . is the order relation on H. For the projected run (H; . ), h . h0 if and only if(a) 9 k such that h; h0 2 Hk and h ! h0, or(b) 9x 2M , such that x:s = h and x:r = h0, or(c) 9 g 2 H such that h . g and g . h0.2. A complete run is a projected run such that x:s 2 H () x:r 2 H.A speci�cation Y is a set of complete runs, whereY � X = f (H; . ) : x:s 2 H () x:r 2 H and . is a partial order g:The reason for considering only complete runs is to satisfy the notion that all messages sent areeventually delivered in a reliable system. In other words, if a send of a message does not invalidatethe run, then there should be a possible completion (the message is delivered), that is valid.A protocol P is characterized by the set of complete runs XP , whereXP = f (H; . ) = UsersView(H) : (H 2 XP ) ^ (x:s 2 H, x:r 2 H) g :We say, a protocol P guarantees safety, if the projection of a run H 2 XP is valid in the user'sview. In other words, if H 2 XP , where x:s 2 H , x:r 2 H, then (H; . ) = UsersView(H) 2 Y.If a protocol P implements a speci�cation Y then8H 2 (M;X ); R(H) [ C(H) 6= ; ) P (H) \ (R(H) [ C(H)) 6= ;; (Liveness)XP � Y: (Safety)
9



3.4 Limit SetsIn this section, we consider the problem of �nding the type of protocol su�cient and necessary toimplement a given speci�cation.In Section 3.2.1, we investigated the question whether a run necessarily belongs to the XP ,given a protocol P. In this section, we pose the same question but in a di�erent setting; that is,given a projected run (H; . ) does it necessarily belong to the set XP . Given a speci�cation Y, thisgives us lower bounds on the speci�cation Y that is necessary for the existence of a general, atagged or a tagless protocol. For example, if a general protocol implements the speci�cation Ythen Xn � Y, where Xn is the lower bound for the class of general protocols. In this section, wepresent results in the other direction, that is, does there exists a limit Xs that is su�cient for theexistence of a general protocol. For example, if Xs � Y then there exists a general protocol thatimplements the speci�cation Y.We de�ne three subsets of X (or speci�cations) similar to ones in Section 3.2.1 that will be usedto provide answer to the problem stated in this section. The three subsets of X are:Asynchronous ordering (ASYNC) : This is the same as the ground set X. Therefore, itincludes all possible runs. There exists a tagless algorithm (i.e., enable all pending events)that will guarantee safety and liveness for this speci�cation. Formally, we can state Xasync,the set of all partial orders asXasync = f (H; . ) : (x:s 2 H, x:r 2 H) and . is a partial order g :Causal Ordering (CO) : Causal ordering can be stated as s1 . s2):(r2 . r1). There exists atagged algorithm where with each message a matrix of size n�n is tagged to the message [20,21]. Formally, we can state Xco, the set of partial orders satisfying causal ordering asXco = f (H; . ) : : ( (x:s . y:s) ^ (y:r . x:r) ) 8x; y 2M g :Logically Synchronous (SYNC) : A run is logically synchronous if its time diagram can bedrawn such that all message arrows are vertical. Formally, we can state Xsync, the set oflogically synchronous partial orders asXsync = f (H; . ) : : ( (x1:s . x2:r) ^ (x2:s . x3:r) � � � (xk:s . x1:r) ) ; 8 k > 1; 8xj 2M g :Since the message arrows can be drawn vertically, the messages can be linearly ordered suchthat (y:h . x:f)) (x < y) Thus, we can get an alternative de�nition of a logically synchronousrun as, 9T :M �! N1 : 8x; y 2MWh;f2fs;rg x:h . y:f ) T(x) < T(y): (SYNC)In [18] it was shown that the two de�nitions are equivalent. This property can be implementedusing control messages, for details refer to [3, 18]. Therefore, there exists a general protocolthat will guarantee the absence of any partial order in the set X � Xsync.10



--�����rx:s rx:r --�����rx:s� rx:s rx:r� rx:r
Figure 5: Construction of H from (H; . )It is easy to see that Xsync � Xco � Xasync:The sets Xasync, Xco, and Xsync exhibit an important property, i.e., they are the limiting speci�-cations, in terms of whether there exists a protocol that can guarantee safety and liveness, for eachof the three classes of protocols. For example, there exists a tagged protocol (i.e., no control mes-sages) that guarantees safety and liveness for the speci�cation Xco. Further, given a speci�cationY, there exists a tagged protocol that guarantees safety and liveness, if and only if Xco � Y. Thus,given a speci�cation, i.e., the set of acceptable runs, the type of protocol necessary and su�cientcan be easily checked by testing the containment of the three limit sets, Xasync, Xco, and Xsync.Theorem 1 Let Y be a speci�cation. Then1. A general protocol can guarantee safety and liveness i� Xsync � Y:2. A tagged protocol can guarantee safety and liveness i� Xco � Y:3. A tagless protocol can guarantee safety and liveness i� Xasync � Y:Proof: It is easy to show the \if part" in each of the cases. We use the fact that if a protocol Pimplements the speci�cation Y, then XP � Y.1. There exists a general protocol P such that XP = Xsync [3, 18].2. There exists a tagged protocol P such that XP = Xco [20, 21].3. There exists a tagless protocol P such that XP = Xasync (enable all events).We now proceed to show the \only if part".1. Let P be a general protocol. From lemma 2, we have Xgn � XP . We have to show that if(H; . ) 2 Xsync then 9H 2 Xgn such that (H; . ) = UsersView(H).Given (H; . ) 2 Xsync we construct H, such that (H; . ) = UsersView(H) and H 2 Xsync, asshown in Figure 5. For each event x:s add x:s� such that x:s� immediately precedes x:s.Similarly, for each event x:r add x:r� such that x:r� immediately precedes x:r. We claim thatH 2 Xgn, that is, H satis�es the conditions satis�ed by elements of Xgn.(a) x:s� immediately precedes x:s, and x:r� immediately precedes x:r, by construction of H.(b) H is a complete run, that is, x:s� 2 H)x:r 2 H, since (H; . ) is a complete run.(c) Since (H; . ) 2 Xsync, there exists a function T satisfying SYNC. Using the function Twe can derive the numbering scheme N , where h ! g ) N(h) < N(g) and N(x:r) =N(x:r�) + 1 = N(x:s) + 2 = N(x:s�) + 3
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2. Let P be a tagged protocol. From lemma 2, we have Xtg � XP . We have to show that if(H; . ) 2 Xco then 9H 2 Xtg such that (H; . ) = UsersView(H).The proof is similar to the previous case. We construct H as above and show that H 2 Xtd.3. Let P be a tagless protocol. From lemma 2, we have Xtl � XP . We have to show that if(H; . ) 2 Xasync then 9H 2 Xtl such that (H; . ) = UsersView(H).The proof is similar to the previous case. We construct H as above and show that H 2 Xtl.2Corollary 1 A speci�cation Y is implementable, that is, there exists a tagless, tagged, orgeneral protocol, if and only if Xsync � Y.4 Forbidden PredicatesIn previous sections, speci�cations were stated as a subset of X. Since X is an in�nite set, we needa �nite representation for its subsets that specify message ordering. We present a method calledforbidden predicates that can be used to describe a large class of message ordering speci�cations. Allexisting message ordering guarantees such as FIFO, 
ush channels, causal ordering, and logicallysynchronous ordering as well as others can be concisely speci�ed using forbidden predicates.In this section we describe forbidden predicates and present an algorithm to address the mainconcerns of this paper: What are the necessary and su�cient conditions for the existence of aprotocol of each type?De�nition 4.1:1. A forbidden predicate B is de�ned asB � 9x1; x2; : : : ; xm 2M : B(x1; x2; � � � ; xm)where B(x1; x2; � � � ; xm) = ^(j;k)2J�K(xj :p . xk:q);and p and q represent s or r. And J;K are subset of f1; 2; : : : ;mg.2. Given a forbidden predicate B, the corresponding speci�cation set XB � X is de�ned asXB = f (H; . ) : :B(x1; � � � ; xm); 8x0; x1; � � � ; xm 2Mg :Notation: Let B � 9x; y 2M : (x:s . y:s). We write the predicate B as (x:s . y:s) dropping thequanti�er 9 for ease of use. B(a; b) implies the evaluation of (x:s . y:s) for the instances a and b inM . Therefore, B(a; b) is true if and only if a:s . b:s. In case of ambiguity we express the predicateas B � 9x; y 2M : B(x; y).Given two forbidden predicates B and B0 for the sets XB and XB0 , respectively, B0 ) B i�XB � XB0 . If a protocol for B guarantees that all the allowable partial orders belong to the setXB , then the same protocol guarantees that all the allowable partial orders belong to the set XB0 .Consider, the example of causal ordering. The predicate can be stated as B � (x:s . y:s) ^(y:r . x:r). For each element (H; . ) of Xco (the corresponding speci�cation set),8 x; y 2M : : : ((x:s . y:s) ^ (y:r . x:r)) :12



Further, we can de�ne three attributes for each message receiving process, and sending process,and color. We can use these attributes to de�ne a range for the variables of the predicate. Forexample, FIFO can be stated as8x; y 2M : process (x:s) = process (y:s)^process (x:r) = process (y:r) : : ((x:s . y:s) ^ (y:r . x:r)) ;or we may be interested in runs where messages should not overtake the red marker message, thatis 8 x; y 2M : color (y) = red : : ((x:s . y:s) ^ (y:r . x:r)) :In this paper we will be interested in predicates where the variables range over all messages.4.1 Forbidden Predicates and Limit SetsIn this section we characterize limit sets using forbidden predicates. For example, Xco correspondsto the forbidden predicate B � (x:s . y:s) ^ (y:r . x:r).Lemma 31. The speci�cation set for each of the following predicates contain Xsync.a) B � ((x1:s . x2:r) ^ (x2:s . x3:r) � � � (xk:s . x1:r)) for any k = 2; 3 : : :2. The speci�cation set for the following predicates is Xco.a) B1 � (x:s . y:r) ^ (y:r . x:r).b) B2 � (x:s . y:s) ^ (y:r . x:r).c) B3 � (x:s . y:s) ^ (y:s . x:r).3. The speci�cation set for the following predicates is Xasync.a) B � (x:s . y:s) ^ (y:s . x:s). b) B � (x:s . y:s) ^ (y:r . x:s).c) B � (x:s . y:r) ^ (y:r . x:s). d) B � (x:r . y:s) ^ (y:r . x:s).e) B � (x:r . y:r) ^ (y:r . x:s). f) B � (x:r . y:r) ^ (y:r . x:r).Proof: In the �rst part, the intersection of all speci�cation sets is Xsync, for details refer to [18].For the third part, each of the predicates implies the existence of an event h 2 H such that h . h.No run in Xasync satis�es such a predicate. Therefore, the speci�cation set for the predicates isXasync.In the second part, B2 corresponds to Xco by de�nition. We will show B1 , B2; the proofof B2 , B3 is similar. Let the corresponding speci�cation sets be X1 and X2, respectively. Wehave to show that X1 = X2. It is easy to see that B2 ) B1. Since B2 � (x:s . y:s) ^ (y:r . x:r)and y:s . y:r is true, B2 = (x:s . y:s) ^ (y:r . x:r) ^ (y:s . y:r). Combining the �rst and thirdconjuncts, we get B2) (x:s . y:r) ^ (y:r . x:r) � B1. Therefore, X1 � X2.We now show that X1 � X1 where, X1 = X � X1. Using the de�nition of X1, we get thecomplement of X1 as, X1 = f (H; . ) : 9x; y 2M such that B1(x; y) g :Let (H; . ) 2 X1. We have to show (H; . ) 2 X2. In the run (H; . ), we have at least two messages xand y such that, (x:s . y:s) ^ (y:s . x:r). 13



1. Let x:s and y:s be in di�erent processes.Since (x:s . y:s), and x:s and y:s are in di�erent processes, there exists a message z such that(x:s . z:s), (z:s . z:r) and (z:r . y:s): Since (y:s . x:r) and (z:r . y:s), z:r . x:r. Therefore,x:s . z:s and z:r . x:r, thus B2(x; z) is true.2. Assume x:s and y:s are in the same process (x:r and y:s are in di�erent processes).Since (y:s . x:r) and x:r and y:s are in di�erent processes, y:r . x:r or 9 z 2 M , such that(y:s . z:s), (z:s . z:r) and (z:r . x:r).(a) If y:r . x:r, then (x:s . y:s) and (y:r . x:r). Thus B2(x; y) is true.(b) If 9 z : (y:s . z:s); (z:s . z:r) and (z:r . x:r), then (x:s . y:s) ^ (y:s . z:s)) (x:s . z:s)and (z:r . x:r), thus B2(x; z) is true.Therefore, 9x; z 2M such that B2(x; z) is true. Thus, (H; . ) 2 X2. 24.2 Speci�cation GraphIn this section we classify the forbidden predicates to determine the type of algorithm necessaryand su�cient to guarantee safety and liveness.De�nition 4.2: Let B � 9x1; : : : ; xm 2M : B(x1; : : : ; xm) be a forbidden predicate. A predicategraph GB(V;E) is a multi-graph such thatV = fx1; : : : ; xmgE = f(xj; xk) j (xj:p . xk:q) is a conjunct of B where p; q is s or r gExample 1: Let a predicate beB � ( (x1:r . x2:s) ^ (x2:s . x3:s) ^ (x3:r . x4:r) ^(x4:s . x1:r) ^ (x4:s . x5:r) ^ (x1:s . x4:r) ) ;then GB(V;E) isV = fx0; x1; x2; x3; x4; x5; x6gE = f(x1; x2); (x2; x3); (x3; x4); (x4; x1); (x4; x5); (x1; x4)g; e ee e? -6e QQQs x5x1 x4x2 x3Using the graph, we can determine whether the speci�cation is implementable, and if it is, thetype of protocol necessary and su�cient to guarantee safety and liveness.Theorem 2 A speci�cation XB (or forbidden predicate B) is implementable if and only if thereexists a cycle in the predicate graph GB(V;E).Proof: We �rst prove the \only if" part. Let the predicate be B � 9x1; � � � ; xm 2 M :B(x1; � � � ; xm) such that the predicate graph GB(V;E) does not have a cycle and let the cor-responding speci�cation set be XB . Consider a run (H; . ) such that the set of messages isM = fx1; : : : ; xmg. The run is constructed such that if xj:p . xk:q is a conjunct of B(x1; � � � ; xm)14



then (xj:p; xk:q) 2 (H; . ). For each message x 2 M , (x:s; x:r) 2 (H; . ). Now take the transitiveclosure (+) to make it a run. Therefore,(H; . ) = f f (xj :p; xk:q) : (xj:p . xk:q) is a conjunct in B(: : : ) g [ f (xl:s; xl:r) : 8 l = 0; : : : ;m g g+ :It is easy to see that the predicate B is true in the run (H; . ), therefore, (H; . ) 62 XB . We claimthat (H; . ) 2 Xsync, hence the theorem (only if) follows. Since the predicate graph does not haveany cycles, it can be linearly ordered. Using the same ordering we de�ne a function T : M ! Nsatisfying the SYNC condition. Therefore, (H; . ) 2 Xsync and (H; . ) 62 XB . From corollary 1, wehave that there exists a protocol only if Xsync � XB .The \if" part follows from theorem 3 which will be proved in Section 5.3. 24.2.1 � VertexWe are interested in cycles in the speci�cation graphs. Pick any cycle Gc(V c; Ec) � G(V;E) in thespeci�cation graph and let the corresponding forbidden predicate be Bc.Example 2: Consider the forbidden predicate and the graph from example 1. A possible cycleand the corresponding predicate is shown below. It is easy to see that B)Bc, since Bc is the sameas B with some conjuncts removed.
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V c = fx1; x2; x3; x4 gEc = f (x1; x2); (x2; x3); (x3; x4); (x4; x1) gPc = ( (x1:r . x2:s) ^ (x2:s . x3:s)^(x3:r . x4:r) ^ (x4:s . x1:s) )The speci�cation graphs can contain a number of cycles. We classify a cycle into di�erentcategories based on the number of � vertices (de�ned next) it contains.De�nition 4.3: Given, a cycle Gc(V c; Ec) in the graph G(V;E), we say x 2 V c is a � vertexwith respect to the cycle Gc(V c; Ec) if the incoming edge is either y:s . x:r or y:r . x:r and theoutgoing edge is either x:s . z:s or x:s . z:r. The order of a cycle is equal to the number of �vertices it contains.Example 3: Continuing with the previous example. With respect to the cycle Gc(V c; Ec), onlyx4 is a � vertex, thus the order of the cycle is 1. Consider a non-� vertex, say x3. Consider theconjuncts that result in the input and output edges of the vertex x3. They are, x2:s . x3:s andx3:r . x4:r. Since x3:s . x3:r, combining the three conjuncts we get, x2:s . x4:r. We can get apredicate B0, B0 � (x1:r . x2:s) ^ (x2:s . x4:r) ^ (x4:s . x1:r);such that Bc)B0. Since B)Bc and Bc)B0, B)B0. If we consider the predicate graphGB0(V 0; E0), it is a cycle of order 1 and the � vertex is x4, thus maintaining the order and the� vertex of the cycle. 15



Lemma 4 Let B be a predicate and GB(V;E) be the corresponding predicate graph with a cycleof order l. Then there exists a predicate B0 weaker than B whose predicate graph GB0(V 0; E0) is acycle of order k such that1. jV 0j = 2, or2. all the vertices are � vertices.Proof: Let G(V c; Ec) � G(V;E) be a cycle in the predicate graph with the corresponding predicateas Bc. We know that B)Bc.If the graph G(V 0; E0) = G(V c; Ec) and predicate B0 = Bc satisfy the condition of the lemma,we are done. If not, pick a vertex, say y, that is not a � vertex. Then one of the following is true,with x 6= z,1. B0 � � � � (x:p . y:s) ^ (y:s . z:q) ^ � � � ; 2. B0 � � � � (x:p . y:s) ^ (y:r . z:q) ^ � � � ;3. B0 � � � � (x:p . y:r) ^ (y:r . z:q) ^ � � � :Such a vertex exists since the graph (cycle) has more then two vertices and has at least one non-�vertex. In each case, B0)B00, where B00 � � � � ^ (x:p . z:q) ^ � � � : Since B)B0 and B0)B00,B)B00. Let the graph predicate for B00 be G(V 00; E00). The graph G(V 00; E00) satis�es the conditionjV 00j = jV 0j � 1, and the number of � vertices in G(V 00; E00) is k.If the graph G(V 00; E00) and the corresponding predicate B00 satisfy the conditions of the lemma,we are done, otherwise repeat the above process. 24.3 Impossibility and Lower-BoundsIn this section we prove the necessary and su�cient conditions for a speci�cation to be imple-mentable by a protocol of a given class. This can be summed up by the following table which is aconsequence of the next two theorems proved later in this section:Speci�cation graph has a cycle () speci�cation is implementableand, if there exists a cycle with� zero or more � vertices () tagging and control messages are su�cient,� zero or one � vertex () tagging is su�cient, and� zero � vertex () trivial protocol is su�cient.The next theorem proves the su�cient condition for a protocol to implement a given speci-�cation. Theorem 4 presents the necessary conditions to be satis�ed by the speci�cations to beimplementable by a protocol of a given class.Theorem 3 (Su�cient Conditions) Let XB be a speci�cation with B as the corresponding for-bidden predicate. Let the predicate graph be GB(V;E) with a cycle Gc(V c; Ec) � GB(V;E).1. If there exists a cycle Gc(V c; Ec) � GB(V;E) of order 0, then Xasync � XB .2. If there exists a cycle Gc(V c; Ec) � GB(V;E) of order 1, then Xco � XB .3. If there exists a cycle Gc(V c; Ec) � GB(V;E) of order k (> 1), then Xsync � XB .Proof: 16



1. Let Gc(V c; Ec) � GB(V;E) be a cycle of order 0. Then from Lemma 4, there exists apredicate B0, such that, B)B0 and the corresponding graph GB0(V 0; E0) is a cycle of order0 with jV 0j = 2. Since B)B0, XB0 � XB .Since the graph is a cycle with two vertices (both non-�), the predicate B0 � 9x; y : B0(x; y)can only be one of the predicates in the statement of Lemma 3.3. From Lemma 3 we have thatthe speci�cation corresponding to the above predicates are equivalent to Xasync. Therefore,Xasync = XB0 , and Xasync � XB .2. We have to show Xco � XB . Let Gc(V c; Ec) � GB(V;E) be a cycle of order 1. Then fromLemma 4, there exists a predicate B)B0. The corresponding graph GB0(V 0; E0) is a cycleof order 1, such that jV 0j = 2. Since B)B0, XB0 � XB .Since the graph is a cycle with two vertices (one �), the predicate B0 � 9x; y : B0(x; y)can only be one of the predicates in the statement of Lemma 3.2. From Lemma 3, thespeci�cation corresponding to the above predicates is equivalent to Xco. Therefore, Xco = XB0 ,and Xco � XB .3. We have to show Xsync � XB . Let Gc(V c; Ec) � GB(V;E) be a cycle of order k (> 1). Thenfrom Lemma 4, there exists a predicate B)B0. The corresponding graph GB0(V 0; E0) is acycle of order k, such that jV 0j = k. Since B)B0, XB0 � XB .Since the graph is a cycle with k � vertices, the predicate B0 isB0 � (x1:s . x2:r) ^ (x2:s . x3:r) � � � (xk:s . x1:r):This implies the predicate in the statement of Lemma 3.1. Therefore, Xsync � XB0 � XB .2Theorem 4 (Necessary Conditions) Let XB be a speci�cation with B as the corresponding for-bidden predicate. Let the predicate graph be GB(V;E) with a cycle Gc(V c; Ec) � GB(V;E).1. If there does not exist a cycle Gc(V c; Ec) � GB(V;E) of order 0, 1 or n, then Xsync 6� XB .2. If there does not exist a cycle Gc(V c; Ec) � GB(V;E) of order 0 or 1, then Xco 6� XB .3. If there does not exist a cycle Gc(V c; Ec) � GB(V;E) of order 0, then Xasync 6� XB .Proof:1. If there does not exist a cycle of order 0, 1, or n, then there does not exist a cycle. Fromtheorem 2 it follows that Xsync 6� XB .2. We have to show that Xco 6� XB , given there does not exist a cycle of order 0 or 1 in thepredicate graph. We will construct a run (H; . ) and show that (H; . ) 62 XB , but (H; . ) 2 Xco.Let the forbidden predicate be B(x1; � � � xn). Consider a run (H; . ) such that the set ofmessages M = fx1; � � � xng. The causality relation is de�ned as(H; . ) = ff (xi:h; xj :f) : (xi:h . xj:f) is a conjunct of B g [ f (xi:s; xi:r) : i = 1; : : : n gg+ ;where + represents the transitive closure. Since for this run B(x1; � � � xn) is true, (H; . ) 62 XB .The claim is (H; . ) 2 Xco. We will show (H; . ) 2 Xco by contradiction.17



Assume (H; . ) 62 Xco. From the de�nition of Xco,Xco = f (H; . ) : : ((x:s . y:s) ^ (y:r . x:r)) ;8x; y 2M g :Therefore, 9xi; xj 2M such that (xi:s . xj :s) ^ (xj:r . xi:r) is true.We can rewrite (xi:s . xj :s) ^ (xj:r . xi:r) as (C1 ^ C2 ^ � � � ^ Cp) ^ (C 01 ^ � � � C 0q);where C is either a conjunct of B or of the form xk:s . xk:r.We are interested in forming a graph (cycle) from the Cs. Drop all the Cs which are not aconjunct of B, since they do not contribute to the cycle.Consider the predicate graph formed by the resulting Cs. Let the predicate be Bc andGc(V c; Ec). It is a cycle and Gc(V c; Ec) � G(V;E). For each C remaining there is an edge.We have to analyze the vertex formed by two Cs. If Ci is of form (x:s . x:r) (thus dropped)then Ci�1 = (y:h . x:s) and Ci+1 = (x:r . z:f), thus the vertex formed by Ci�1 and Ci+1 isnot a � vertex.Let us consider the case when Ci and Ci+1 are parts of the conjunct. Then, Ci = (y:f . x:h)and Ci+1 = (x:h . z:g). Thus the vertex formed by Ci and Ci+1 is not a � vertex.Therefore the vertices formed by the Cs in the same group do not result in any � vertex.There are two more vertices to be considered, that is, the vertices formed by the group joining.Note that Cp and C 01 are conjuncts of B since they cannot be of the form x:s . x:r. Therefore,the vertex formed by joining Cp and C 01 results in a non-� vertex. The is because Cp is of theform (y:h . xj :s) and C 01 is of the form (xj :r . z:f).Therefore, the number of vertices left to be considered is one (it may or may not be a �vertex). Thus the resulting graph is of order 0 or 1.3. We have to show that Xasync 6� XB given that there does not exist a cycle of order 0 in thepredicate graph GB(V;E).Let us assume that the predicate graph does not have a cycle of order 0. We construct a run(H; . ) and show that (H; . ) 62 XB but (H; . ) 2 Xasync.Let the forbidden predicate be B(x1; � � � xn). Consider a run (H; . ) such that the set ofmessages M = fx1; � � � xng. The causality relation is de�ned as(H; . ) = ff (xi:h; xj :f) : (xi:h . xj:f) is a conjunct of B g [ f (xi:s; xi:r) : i = 1; : : : n gg+ ;where + represents the transitive closure. Since for this run B(x1; � � � xn) is true, (H; . ) 62 XB .The claim is (H; . ) 2 Xasync. We show (H; . ) 2 Xasync by contradiction.Assume (H; . ) 62 Xasync. From the de�nition of Xasync,Xasync = f (H; . ) : 6 9h 2 H such that h . h g :Therefore, 9h 2 H such that (h . h).We can rewrite (h . h) as (C1 ^ C2 ^ � � � ^ Cp) where C is either a conjunct of B or of theform xk:s . xk:r. 18



We are interested in forming a graph (cycle) from the Cs. Drop all the Cs which are not aconjunct of B, since they do not contribute to the cycle.Consider the predicate graph formed by the resulting Cs. Let the predicate be Bc andGc(V c; Ec). It is a cycle and Gc(V c; Ec) � G(V;E). By similar reasoning as in the previouscase the only � vertex that can be possible is between C1 and Cp.(a) C1 is of the form x:s . x:r (thus dropped), then Cp is of the form y:f . x:r, and C2 isof the form x:r . z:g. The vertex formed by Cp and C2 is not a � vertex.(b) Cp is of the form x:s . x:r (thus dropped), then C1 is of the form x:r . y:f , and Cp�1is of the form z:g . x:s. The vertex formed by Cp�1 and C1 is not a � vertex.(c) C1 and Cp are not of the form x:s . x:r. Thus C1 is of the form x:f . y:g and Cp is ofthe form z:h . x:f . The vertex formed by Cp and C1 is not a � vertex.Therefore, the graph is a cycle of order 0. Thus, G(V;E) has a cycle of order 0. (contradic-tion). 25 DiscussionWe considered limitation of protocols that operate by delaying events using local knowledge, causalknowledge and concurrent knowledge. The theory developed in this paper provides an algorithm indetermining the existence of a protocol, given a speci�cation using forbidden predicates. Further ifthere does exist a protocol; whether local, causal or concurrent knowledge is su�cient and necessaryto guarantee safety and liveness.The process of determining the existence of a type of protocol can be done easily, if the speci-�cation can be expressed using forbidden predicates. For example, in mobile computations, whena mobile unit moves from one region serviced by a �xed station to another region, it has to com-municate with the handshake and the hando�. These handshake and hando� messages, have tosatisfy properties like8 y; x : x is a hando� message : (y:r . x:r) _ (y:s . x:r) _ (y:r . x:s) _ (y:s . x:s)=) : ((x:r . y:r) _ (x:s . y:r) _ (x:r . y:s) _ (x:s . y:s)) :Using the results of this paper it can be easily concluded that guaranteeing the condition requiresadditional control messages.Similarly, a speci�cation such as receive the second message before the �rst, may seem imple-mentable, but using the results of this paper it can be seen that it is not. A protocol can gauranteesafety either by knowing the future, that is, the process knows the existence/absence of the secondmessage (in the future) or the protocol violates liveness condition, that is, a message may not bedelivered to the destination process even in a reliable system.We can see that the following speci�cations can be implemented by merely tagging the usermessages:FIFO : The messages are received in the same order that they are sent between any pair ofprocesses.(process (s1) = process (s2)) ^ (process (r1) = process (r2)) :: (s1 . s2) ^ (r2 . r1)19
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Hi Hi+jFigure 6: Pre�xes of H.AppendixA Proof of Lemma 2Given a protocol P, the set of possible runs under the protocol XP is de�ned inductively. Thus, theproof of the inclusion of a run H in the set XP is also done similarly. Given a run H we constructa series of pre�xes H0;H1; : : : ;Hi; : : : , such that Hi is a pre�x of H and Hi � Hi+1 � H, and H0is an empty run, that is H0 = ;. We show that H 2 XP inductively. Clearly, the base case follows,that is, H0 2 XP , since H0 is an empty run. Further, we show that if Hi 2 XP then Hi+1 2 XP .Given Hi 2 XP , the conditions for Hi+1 2 XP are, for all j,C1 : Hij is a pre�x of Hi+1j and they di�er by at most one event, andC2 : Hi+1j � Hij [ Pj(Hi).To prove that H 2 XP , we will use the following properties of a protocol P,P1 : Ii(H) [ Ri(H) � Pi(H) � Ii(H) [ Ri(H) [ Ci(H); andP2 : R(H) [ C(H) 6= ; ) P (H) \ (R(H) [ C(H)) 6= ;.In our proofs, if we can show that R(H) [ C(H) is a singleton or an empty set, than we canconclude C(H) � P (H) using the property P2. If C(H) � P (H), then from P1 its clear thatPi(H) = Ii(H) [ Ri(H) [ Ci(H):A.1 Proof of Lemma 2, part 1.Let H 2 Xgn. By de�nition of Xgn, there exists a numbering scheme N that assigns a uniquenumber to each event, such thatN(x:r) = N(x:r�) + 1 = N(x:s) + 2 = N(x:s�) + 323
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HiFigure 8: Constructing the next pre�x given Hi.and (g ! h)) (N(g) < N(h)). Using this numbering, we can de�ne a total order in the messagesand construct the required pre�xes, that is, H0;H1; : : : , as shown in Figure 7. Since, H0 2 XP itis su�cient to show that Hi+1 2 XP , given Hi 2 XP . Clearly, Hi+1 and Hi di�er at most by oneevent. Therefore, for each j, Hij is a pre�x of Hi+1j and they di�er by at most one event. Thus,C1 is satis�ed for all j.We have to show that C2 is satis�ed, that is, �Hi+1 �Hi� � P (Hi). There are four possiblecases:Let i = 4m. Then Hi+1�Hi = f s�m+1 g and s�m+1 2 I(Hi), since only up to m messages have beenexecuted. Due to property P1, s�m+1 2 I(Hi) implies s�m+1 2 P (Hi):Let i = 4m+ 1. Then Hi+1�Hi = f sm+1 g and S(Hi) = f sm+1g; R(Hi) = ; and D(Hi) = ;. Dueto property P2, singleton set C(Hi) [ R(Hi) implies S(Hi) � P (Hi). Therefore, sm+1 2 P (Hi):Let i = 4m+ 2. Then Hi+1�Hi = f r�m+1 g and S(Hi) = ;; R(Hi) = fr�m+1g and D(Hi) = ;. Dueto property P1, r�m+1 2 R(Hi) implies r�m+1 2 P (Hi):Let i = 4m+ 3. Then Hi+1�Hi = f rm+1 g and S(Hi) = ;; R(Hi) = ; and D(Hi) = frm+1g. Dueto property P2, singleton set C(Hi) [ R(Hi) implies R(Hi) � P (Hi). Therefore, rm+1 2 P (Hi):Therefore, in each case we have Hi+1 = Hi [ P (Hi).
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q qqq q q qq qq ---���� �����7@@@R ����123 q q q q qq- --����@@@R �123 q qq q q qq ---����@@@R ����123(a) Run Hi (b) CausalPast2(Hi) (c) Run GFigure 9: Construction of G given Hi for process j.A.2 Proof of Lemma 2, part 2.To prove that a run H 2 XP , we have to construct a sequence of runs H0;H1; : : : , that are pre�xesof H. We construct the sequence such that if the longest path from start of the computation to anevent h is k, then h 62 Hk�1 and h 2 Hk.Let Hi be a pre�x of H, then Hi+1 contains the bottom elements among the events that do notbelong to Hi. For example, in Figure 8, Hi+1 = Hi [ f s5; s�6 g: Formally,Hi+1j = Hij [ Bj(H;Hi);where, Bj(H;Hi) = nh 2 Hj �Hij : (g ! h)) g 2 Hi o :Let P be a tagged protocol. By de�nition of tagged protocols,P3 : CausalPastj(H) = CausalPastj(G))Pj(H) = Pj(G):We have to show that if H 2 Xtd, then H 2 XP , by induction. Construct the pre�xes of H asde�ned above. Clearly, H0 2 XP , since it is the empty run.Let Hi 2 XP , we have to show that Hi+1 2 XP . In other words for any j, Hij and Hi+1j satis�esC1 and C2.Construct a run G as shown in Figure 9. Pick CausalPastj(Hi) and extend all messages (withdestination process not being j) in transit. Therefore, we haveCausalPastj(Hi) = CausalPastj(G):We make the following claims:1. Pj(Hi) = Pj(G), by the property P3.2. Cj(G) = Cj(Hi), since Hij = Gj.3. Rk(G) = ;, where k 6= j, by construction of G.4. Rj(G) = ;: (Proof by contradiction)Let x:r� 2 Rj(G), therefore 9 k : (x:r� 62 Gj) ^ (x:s 2 Gk) ^ (x 2 Mkj). Since, (x:s 2 Gk)and (x 2Mkj), we have by the de�nition of CausalPast 9h : (x:s ! h) ^ (h 2 Gj):Since, (x:s ! h) and x:s; h in di�erent processes, we have either(a) 9 y 2M : (x:s ! y:s) ^ ((y:r� ! h) _ (y; r� � h)) ; or(b) (x:s ! x:r�) ^ (x:r� ! h).But x:r� 62 G, therefore :(x:r� ! h). Since h; x:r� 2 Hj, either (x:r� ! h) or (h ! x:r�).Therefore, 9x; y 2M : (x:s ! y:s) ^ (y:r� ! x:r�) ) H 62 Xtd:25
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Figure 10: Construction of G given Hi for process j5. Ck(G) = ;, where k 6= j, since x:s� immediately precedes x:s, x:r� immediately precedes x:rand construction of G.6. Cj(G) is a singleton or an empty set. Since, x:s� immediately precedes x:s and x:r� immedi-ately precedes x:r.7. Bj(H;Hi) is a singleton or an empty set. Let g; h 2 Hj ! Hij. Since g; h 2 Hj) (g !h) _ (h ! g), we have either g 2 Bj(H;Hi) or h 2 Bj(H;Hi).8. Bj(H;Hi) � Ij(Hi) [ Rj(Hi) [ Cj(Hi). The statement is trivially true if Bj(H;Hi) is anempty set. Let Bj(H;Hi) = fhg: Then the event h can be either an invocation, a send, adelivery or a receive event.(a) Let h � x:s�. By de�nition x:s� 2 Hj �Hij, therefore) (x:s� 2 Hj) ^ (x:s� 62 Hij) ) (9 k : x 2Mjk) ^ (x:s� 62 Hij) ) x:s� 2 Ij(Hi):(b) Let h � x:s. Therefore, (x:s 2 Hj �Hij) ^ (x:s� ! x:s)) (x:s 62 Hij) ^ (x:s 2 Hij) ) x:s 2 Sj(Hi):Similarly, we can show that h � x:r�)x:r� 2 Rj(Hi) and h � x:r)x:r 2 Dj(Hi). Hence,Bj(H;Hi) � Ij(Hi) [ Rj(Hi) [ Cj(Hi).From (3), (4), (5) and (6), we have R(G) [ C(G) is a singleton or empty set. Using property P2and R(G) [ C(G) being either a singleton or empty set, we get Cj(G) � Pj(G): Substituting forCj(G) and Pj(G) from (1) and (2), we get Cj(Hi) � Pj(Hi).Since, Cj(Hi) � Pj(Hi), we get (using property P1),Pj(Hi) = Ij(Hi) [ Rj(Hi) [ Cj(Hi):Therefore, from (8) Bj(H;Hi) � Pj(Hi):Hi+1 2 XP , since for any j,1. Hi+1j = Hij [ Bj(H;Hi) � Hij [ Pj(Hi)) C1 and2. Bj(H;Hi) is a singleton or an empty set ) C2.A.3 Proof of Lemma 2, part 3Let P be a tagless protocol. Therefore,P3 : Hj = Gj)Pj(H) = Pj(G):26



We have to show that if H 2 Xtl, then H 2 XP , by induction. Construct the pre�xes of H asde�ned in the last section.Let Hi 2 XP , we have to show that Hi+1 2 XP . Construct a run G by removing and adding eventssuch that (Figure 10 shows the construction of G given Hi with respect to process j.) (a) Hij = Gj,(b) messages that do not e�ect (a) are deleted, and (c) the messages sent with destination 6= j aredelivered and received (no pending events).The claims are very similar to the previous proof.1. Pj(Hi) = Pj(G), by the property P3.2. Cj(G) = Cj(Hi), since Hij = Gj by construction of G.3. Ck(G) = ;, where k 6= j, since there are no pending events in the process k 6= j.4. Rk(G) = ;; there are no messages in transit.5. Cj(G) is a singleton or an empty set. Since x:s� immediately precede x:s and x:r� immediatelyprecede x:r.6. Bj(H;Hi) is a singleton or an empty set.7. Bj(H;Hi) � Ij(Hi) [ Rj(Hi) [ Cj(Hi).The rest of the proof is identical to the previous one.
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