Addressing False Causality while Detecting Predicates
in Distributed Programs *

Ashis Tarafdar
Dept. of Computer Sciences
University of Texas at Austin
Austin, TX 78712
(ashis@cs.utexas.edu)

Abstract

The partial-order model of distributed computations
based on the happened before relation has been criti-
cized for allowing false causality between events. Our
strong causality model addresses this problem by allow-
ing multiple local threads of control.

This paper addresses the predicate detection prob-
lem for the class of weak conjunctive predicates in the
strong causality model. We show that, in general, the
problem is NP-complete. However, an efficient solu-
tion is demonstrated for a useful sub-case. Further,
this solution can be used to achieve an exponential re-
duction in time for solving the general problem.

Our predicate detection algorithms can be applied to
distributed debugging when processes have independent
events, as in multi-threaded processes.

1 Introduction

A fundamental problem in distributed systems is
that of predicate detection [1, 6] — detecting whether
a global condition occurs while running a distributed
program. Its main application is in the testing, debug-
ging and monitoring of distributed programs. Pred-
icate detection is usually specified in a model of dis-
tributed computation based on a happened-before rela-
tion [8], which models the independence of concurrent
events on different processes. However, it has been
criticized for allowing false causality between events
[3, 11]. This paper addresses this issue by extending
the model and shows how to solve predicate detection
in the extended model.

Consider running a distributed mutual-exclusion
program. The happened-before model of the result-
ing distributed computation is shown in Figure 1(i). If
mutual-exclusion violation is the predicate that we are
trying to detect, it would not be detected because the

*supported in part by the NSF CCR-9414780, CCR-9520540,
a General Motors Fellowship, Texas Education Board ARP-320
and an IBM grant

Vijay K. Garg
Dept. of Electrical and Computer Engg.
University of Texas at Austin
Austin, TX 78712
(garg@ece.utexas.edu)

cs . o] ‘
a bc = d c < da b
(i) Good Computation (i) Bad Computation

CS

o
S

c d
(iii) New Model

Figure 1: Example: Addressing False Causality

message ensures that the two critical sections cannot
occur at the same time. However, in reality, the mes-
sage may have been fortuitous and the sections of ex-
ecution marked by intervals (a, b) and (c, d) may have
been independent (for example, independent threads).
The scenario in Figure 1(i) may be just one possi-
ble scheduling of events. Figure 1(ii) shows another
scheduling in which mutual-exclusion would be vio-
lated.

A model that partially orders the events on a local
process would allow events within a process to be in-
dependent. Figure 1(iii) shows such a model for the
example. This representation models both of the pre-
vious schedulings. In general, there would be an ex-
ponential number of happened-before representations
corresponding to a single representation in the new
model. We call the new model a strong causality dia-
gram.

Our contributions are two-fold. First, we define
and motivate a new model of computation, strong
causality diagrams, that extends the happened-before
model to address false causality. Next, we present
results in solving predicate detection in the strong

causality model. We focus on the important class
of weak conjunctive predicates which express a large
number of important global properties, and which can
be solved efficiently in the happened-before model [7].
We demonstrate that for general strong causality di-
agrams, the problem is NP-complete. However, for
certain restricted, but useful, classes of strong causal-
ity diagrams, the problem may be solved efficiently.
These restricted classes correspond to having either
the receive events or the send events totally ordered,
while allowing all other events to be partially ordered.
Further, we can decompose a general strong causal-
ity diagram into strong causality diagrams of these
classes, to achieve an exponential reduction in time
as compared to the naive solution. Lastly, we dis-
cuss how the strong causality diagram model may be
applied in practical modeling of distributed programs
with multi-threaded processes. We also discuss the
applications of our results in predicate detection to
testing and debugging such programs.

It is definitely harder to solve predicate detection
in the strong causality model than in the happened-
before model. However, even being able to efficiently
solve predicate detection for a restricted class is a great
improvement over the alternative of solving predicate
detection on an exponential number of corresponding
happened-before representations. In the worst case
where the strong causality diagram does not fall into
either totally ordered sends or totally ordered receives,
we may decompose the problem into strong causal-
ity diagrams each of which belongs to one of these
classes and so efficiently solve for each such diagram.
Even though this solution is exponential, it achieves
an exponential reduction as compared to the naive
approach of considering all possible happened-before
representations.

In Section 2, we discuss related work. In Section 3,
we formally define the strong causality diagram model
and define the predicate detection problem that we
will be addressing. In Section 4, we present our re-
sults in solving predicate detection in strong causality
diagrams. Section 5 discusses how to apply the strong
causality model and the results in predicate detection
in this model.

2 Related Work

Using partial orders to model concurrency avoids
the combinatorial explosion involved in the interleav-
ing model. This fact has led to a number of studies
of such partial order models [8, 10]. Our work builds
on the happened-before model [8] by extending the
same idea to allow concurrency or independence be-
tween events within a local process. We are aware of

no other study of such an extended happened-before
model.

Predicate detection is a widely-studied problem
[1, 6]. Approaches to solving predicate detection are
divided into three categories: global snapshot based
[2], lattice construction based [4], and predicate re-
striction based [7] approaches. The first approach can
detect only stable predicates (which remain true once
they become true), and the second approach uses the
interleaving model of concurrency and, therefore, suf-
fers from the above-mentioned combinatorial explo-
sion. We follow the last approach that uses the partial
order model and limits itself to classes of predicates
which can be detected efficiently. We focus on the im-
portant class of weak conjunctive predicates for which
an optimal solution was provided for the happened-
before model of computation [7]. Our work extends
this solution to the proposed strong causality model
of computation.

3 Model and Problem Definition

The usual model of a distributed computation is
based on the happened-before relation. The motiva-
tion for this model is that a partial ordering of events
in a distributed computation provides a more feasible,
concise and meaningful model than a total ordering
of events. We call this model a happened-before dia-
gram and represent it by (Si,Ss,...5,, <,~). Here
S1,89,...5, are sets of states on each of n processes,
< is the locally precedes relation that totally orders the
states on each process in their order of occurrence in
time, and ~» is the remotely precedes relation that re-
lates the state that sends a message to the state that
receives it. We will use letters s,t,u,... to denote
states.

In this model, the notion of whether a global state
can “occur” is defined as follows. Define the causally
precedes (or happened before) relation, —, as the tran-
sitive closure of < and ~ (Le. — = (K U~)T). If
S =S USU...S, then (S,—) forms an irreflex-
ive poset. If two states s and ¢t are incomparable in
this poset (i.e., s/~¢ and t/s) then s and ¢ are called
concurrent, denoted by s||t. A global state is defined
as a set of n states, one from each S;. We use let-
ters G, H to denote global states. For a global state
G, G[i] denotes the state in G from S;. However, all
global states cannot occur in a computation. Global
states which can occur are modeled as consistent global
states — global states in which every pair of states is
concurrent.

As has been discussed, the happened-before dia-
grams are limited because they totally order the events
local to a process, thus, not modeling possibly inde-

pendent local events. Our model, therefore, extends

the locally precedes relation, <, from a total order to

an irreflexive partial order, <y, called the strong lo-
cally precedes relation. Our model of a distributed
computation now becomes a strong causality diagram,

D = (51, 852,...5,, <s,~). We use the letters D, E

to represent strong causality diagrams. Note that a

happened-before diagram is a special case of a strong

causality diagram in which <, is a total order <. All
notions of global states and their consistency are de-

fined in an analogous manner for strong causality di-

agrams. We use the notation — and || to stand for

the strong causally precedes and strong concurrent re-
lations respectively.

A linearization of a partial order is a total order
that contains the partial order. We define a local
linearization of a strong causality diagram to be the
happened-before diagram that may be obtained by lin-
earizing the <, relation within each of the sets .S;, to
give a < relation. We represent the set of all possi-
ble local linearizations of a strong causality diagram
D by Lin(D). Note that, in general, a single strong
causality diagram would correspond to an exponential
number of happened-before diagrams. In fact, this
conciseness is part of the reason for working in the
extended model.

We will be interested in whether a consistent global
state satisfies certain global conditions. We model
these as global predicates, boolean-valued functions
defined on the set of all global states. Similarly, lo-
cal predicates are boolean-valued functions defined on
the set of states in a process. We will use ¢ to rep-
resent a global predicate and z; to represent local
predicates defined on S;. Our focus will be on an
important class of global predicates called comjunc-
tive predicates. These are predicates of the form ¢ =
c1AC2A ... ¢, with the usual semantics (i.e., ¢(G) =
ca(G[L]) A e2(G2]) A ... en(Gn])).

We now define our general problem in this model
as:

Conjunctive Predicate Detection in General

Strong Causality Diagrams (CPG):

Given a conjunctive predicate ¢ and a strong causality

diagram D = (S, Sa,...Sn, <s,~), does there exist a

consistent global state G such that ¢(G) holds.

4 Solving Conjunctive Predicate De-
tection in Strong Causality Dia-
grams

The problem of weak conjunctive predicate detec-
tion was efficiently (in O(mn?) time, where m is a

bound on the number of states in a process) and op-
timally solved for happened-before diagrams in [7].

VvVl vl A (UWv Uy

3SAT Formula

CPG Strong Causality Diagram

Figure 2: Example Transformation

However, in strong causality diagrams, the problem
becomes expectedly harder. In fact, we have:

CPG is NP-complete.

Proof: CPG is in NP because, given a global state
G, ¢(G@) can be checked in polynomial time (assum-
ing each ¢; can be checked in polynomial time) and
every pair of states in G can be checked for strong
concurrency in polynomial time (how this is done will
be clear in Section 5).

To show that CPG is NP-hard, we transform
3SAT to CPG. Let 3SAT be specified by [variables
v1,Va,...vy, and k clauses p1, p2, . .. pk. Let pi[5], (1 <
Jj < 3) be the 3 literals in clause p;. Let v stand for
any variable.

Theorem 1:

Our transformation (refer to the example in Fig-
ure 2 consists of defining k + [processes represented
by k + [sets of states Si,S9,...Sk+. Each S; for
1 <4 < k corresponds to p;, so that S; contains three
states s;[j], (1 < j < 3), where s;[j] corresponds to
pilj]. Each Si4; for 1 < ¢ < [contains two states
se+ild], (1 <j < 2), where sgy;[1] corresponds to the
literal v; and sj1[2] corresponds to the literal 7;. Let
<s = 0. Define ~ as follows. (s;[y], sj[2]) € ~, (i # j)
iff p;ly] = v and pj[2] = 7 for some variable v. Fur-
ther, we define ¢ = true since we are only interested
in determining if there is a consistent global state.

First, we show that if CPG answers “yes” then
3SAT answers “yes”. If CPG detects a consistent
global state G, then for each variable v;, exactly one
of the literals v; and 7; corresponds to a state in G.
This is because G[k + 7] must either correspond to v;
or v;, using the definition of Sy, and no two states

in G may correspond to v; and 7; for any j (using the
definition of ~+). So, to every variable v;, we assign
true if G[k + i] corresponds to literal v; and false if
it corresponds to 7;. This truth assignment satisfies
the literal corresponding to G[j], (1 < j < k) and,
therefore, satisfies each of the clauses.

Next, we show that if 3SAT answers “yes” then
CPG answers “yes”. Given a satisfying truth assign-
ment to the variables , we construct a global state G as
follows. Choose the state G[i], (1 < i < k +) so that
the corresponding literal is satisfied by the truth as-
signment. This is possible for G[i], (1 < i < k) because
the truth assignment solves 3SAT and, therefore, sat-
isfies all clauses. It is possible for G[k +i],(1 < ¢ <)
because either v; or 7; must be satisfied by the truth
assignment. Every pair of states in G must be strong
concurrent because of the definition of ~ and <;. G
satisfies conjunctive predicate ¢ because of the defini-
tion of ¢. O

The motivation for strong causality diagrams is
that it concisely represents many happened-before di-
agrams. The following result confirms that solving
predicate detection in a strong causality diagram is
equivalent to solving predicate detection for all of the
diagram’s local linearizations. First, we define the new
problem:

Conjunctive Predicate Detection in Local Lin-
earizations of General Strong Causality Dia-
grams (CPL):

Given a conjunctive predicate ¢ and a strong causality
diagram D = (S1,Sa,...Sn, <s,~), does there exist a
consistent global state G in any E € Lin(D) such that
c(G) holds.

Theorem 2: CPG is equivalent to CPL.

Proof: Let D = (51, 853,...5,, <s,~) be a strong
causality diagram and let ¢ be a conjunctive predicate
defined on it.

First, we prove that, if a global state G is a solution
to CPL, then it is also a solution to CPG. So, let
E = (51,52,...5,,<,~) be a local linearization of
D, and let a global state G' be consistent in E, and let
¢(G) hold. We have to prove that G is also consistent
in D. Since G is consistent in F, for any two states
G[i] and G[j], G[i]A~G[j].- Since =5 C —, we have
G[i]4sG[j]. So G is consistent in D.

Next, we prove that, if a global state G is a so-
lution to CPG, then it is also a solution to CPL.
So, let a global state G be consistent in D, and
let ¢(G). We construct a local linearization E =
(S1,52,...8,,<,~) of G as follows. If each S; is to-
tally ordered in D, then we are already done since we

can choose E = D. So assume that two states z and
y of the same process are incomparable in D. From
D, we will construct another strong causality diagram
D' =(51,852,...,5,,<s',~) such that:

(1) <s C <4,

(2) G is consistent in D', and

(3) and y are comparable in D'.

By repeating this procedure, we will eventually reach
a linearization of D. We make z and y comparable in
<" as follows.

Case 1: z—,G[k] for some k.

We add (z,y) to <s;. We show that G is consistent
in D’. If not, there exist ¢ and j such that G[i]—sz
and y—sG[j]. However, this implies that G[i]—sG[k]
which is false.

Case 2: =/ ,G[k] for all k.

We add (y,z) to <s. We show that G is consistent in
D'. If not, there exist ¢ and j such that G[i]—sy and
z—sG[j]. However, this violates the condition that
z/,Glk] for all k. O

This result tells us that if we exhaustively detect a
predicate in each of Lin(D) then we have also done so
for D. Since this would be very inefficient, we identify
two classes of strong dependency diagrams for which
we may apply a special predicate detection algorithm
to a specially chosen representative from Lin(D) in
order to efficiently detect a predicate.

Consider a strong causality diagram D =
(S1,52,...8n, <s,~). If s ~ ¢, then we call s a send
state and we call t a receive state. Let Snd be the set
of send states in S (S will stand for S; USa U...S,
throughout this paper.) and let Rcv be the set of re-
ceive states in S. We use Snd; and Rcv; to denote
the set of send and receive states, respectively, in S;.
We say that D is receive-ordered if, for each i, the re-
ceive states in Rcv; are totally ordered by — (i.e.,
Vi: Vs,t € Rev; = (s—st) V (t—5s)). We say that D
is send-ordered if, for each 7, the send states in Snd;
are totally ordered by — ;.

Let CPR and CPS be the CPG problem specialized
to receive-ordered and send-ordered strong causality
diagrams, respectively.

Let D = (51, Sa, ... Sn, <s,~) be a receive-ordered
strong causality diagram. Let c be a conjunctive pred-
icate defined on D. We now pick a special represen-
tative E from Lin(D) so that it satisfies the following
property:

Pl: Vi: Vse€S;: Yt€ Rcv;: (s]lst) = (s<t)

This ensures that we linearize the partial order <; on
each process such that a receive state is ordered after
all the states that are concurrent with it. The prop-

erty is well-defined because no two receive states are
concurrent.

Input:

S; set of states in process ¢

<; transitive reduction of <, restricted to .S;

Rcu;set of receive states in process ¢ (Rcv N S;)
Output:

Q; queue of states in S;, initially 0, and

finally contains all states in < total order

Predicates:

select(Z)
Variables:

M =0 set of states in S;

R =10 setof states in S;

s,t states in S;

k[Si] array of integers for each state in S;

any element from non-empty set Z

L1 for each state s in S; do

L2 k[s] := no. of incoming edges in <; for s
L3 if (k[s] = 0) then

L4 if (s € Rcv;) then R := RU{s}
L5 else M := MU({s}

L6 while (S; # 0) do

L7 if (M # 0) then t := select(M)
L8 else t := select(R)

L9 enqueue(Q;,t)

L10 Si = S; — {t}

L11 for each state s such that ¢t <; s do

L12 k[s] == k[s] — 1

L13 if (k[s] = 0) then

L14 if (s € Rcv;) then R := RU {s}
L15 else M := MU({s}

Figure 3: Algorithm RECEIVE-SORT

In order to ensure this property, we apply a spe-
cial linearization algorithm, RECEIVE-SORT shown
in Figure 3, for each process. The algorithm is a mod-
ification of a standard topological sort algorithm that
gives a higher priority to non-receive states so that all
states concurrent to a receive state precede it in the
total ordering. The algorithm takes as input the par-
tial order of <y restricted to a process and specified
as its transitive reduction (or Hasse Diagram). It is
easy to show that this correctly produces a lineariza-
tion of the partial order for each process. It is also
easy to show that the linearizations produced by the
algorithm are those that ensure Property P1:

Theorem 3: If D = (51,852,...5,,<s,~) is a
receive-ordered strong causality diagram, and if E =
(S1,52,...8,,<,~) is the local linearization of D

produced by applying Algorithm RECEIVE-SORT for
each process, then E satisfies Property P1.

Proof: The following four invariants are maintained
by the algorithm:

(INV1) Vs € S;: E[s] = number of states immedi-
ately smaller than s in S; (|{t € S; : t <; s}|)

(Here S; is the variable used in the algorithm and not
the static S; representing all states in the ith process.)
(INV2) M is the set of minimal elements in S; that
are not in Rcv;

(INV3) R is the set of minimal elements in S; that
are in Rcv;

(INV4) S; contains no element transitively smaller
than (w.r.t <;1) a minimal element

It is easy to prove INV1 from the algorithm and then
prove INV?2 and INV 3 using it. INV4 follows from
INV1 by induction on the length of the transitive
chain.

Let s € S; and t € Rcv; be two states such that
s ||s t. Since D is receive-ordered, either s ¢ Rcv; or
s =t. If s =t, we are done. So we consider the case of
s ¢ Rcv;. Focus on the iteration in which ¢ is enqueued
in Q;. Since t € Rcv;, t must have been chosen in line
L8 (using INV2, INV3). So M = { in this iteration.
Further, R = {t} (using INV3, INV4 and that D is
receive-ordered). We conclude that ¢ is the mimimum
element of S; in this iteration. Therefore, s ¢ S; in
this iteration. Therefore, it must have been enqueued
before this iteration. So s<t. O

From Property P1, we derive the following useful
property:
P2:Vi,j: (i#j): Vs€S;, t,u€eS;:
(s =st) ANt <u) = (s —=su)

Lemma 1: If D = (51,52,...5n,<s,~) is a
receive-ordered strong causality diagram and E €
Lin(D) such that E = (S1,S2,...S,,<,~), then:
E satisfies Property P1 = E satisfies Property P2

Proof: Let i # j and s € S; and ¢,u € S; and let
s —s t and (¢t < w). Since s — ¢t and s and ¢ are on
different processes, there must be some receive state
v on Sj, such that s =, v and v <, ¢t. Since < is a
linearization of <y, we have v < u. If v = u, we are
done. So assume v < wu. Using the contra-positive of
property P1, we have u |, v. We cannot have u <; v
because v < u and < is a linearization of <;. So we
must have v <; u. Since s =4 v, we have s —5 u by
transitivity. O

We now apply algorithm PRED-DETECT in Fig-
ure 4 to the special representative chosen from Lin(D)
using algorithm RECEIVE-SORT.

Input:
Q1,Qa2,... 9, process state queues in < order
—s strong causally precedes relation
z1,%2,...%, local predicates for each process
Output:
detected boolean
Constants:
all = {1,2,...,n}
Variables:
low, newlow subsets of all
k,l integers in all

L1 low := all
L2 while (low # 0) do

L3 newlow = 0

L4 for k in low do

L5 if (—zi(head(Qk))) then

L6 newlow := newlow U {k}

L7 else

L8 for [in all do

L9 if (head(Qk) —s head(Q;)) then
L10 newlow = newlow U {k}
L11 if (head(Q;) —s head(Qy)) then
L12 newlow := newlow U {l}
L13 low := newlow

L14 for k in low do

L15 deletehead(Qx)

L16 detected := (Vk: —empty(Qx))

Figure 4: Algorithm PRED-DETECT

Our final result shows that applying PRED-
DETECT to the representative in Lin(D) is sufficient
for detecting the predicate in D. The main idea of
the algorithm is similar to that used in [7] to op-
timally solve the problem for happened-before dia-
grams. We start with the lowest global state and move
upwards. If, in a global state G, we find a state G[i]
that strong causally precedes another state G[j] then
using Property P2, we are guaranteed that G[i] also
strong causally precedes every state higher than G[j]
in the total order <. So G[i] can be safely discarded.
If no such pair of states can be found, then the global
state is consistent. The algorithm discards at least one
state in each iteration and so must terminate.

Theorem 4: If D = (51,852,...5,,<s,~) is a
receive-ordered strong causality diagram, c is a con-
junctive predicate, and E = (S1,Ss,...Sn, <,~) is
a local linearization of D satisfying property P1, then
applying algorithm PRED-DETECT to E and c solves
CPR for D and c.

Proof: Lemma 1 implies that F satisfies P2. We first

prove that if PRED-DETECT returns detected = true
then there is indeed a strong consistent global state in
D such that ¢ holds in it. It is easy to verify the fol-
lowing loop invariant:

(INV1) Vk,l ¢low: —empty(Q) N —empty(Q;) =
zy (head(Qx)) A zi(head(Q;))A head(Qy)||shead(Qy)

So, if detected = true, then no queue is empty and
the global state consisting of the heads of the queues
must be strong consistent and ¢ must hold.

We now prove that if there is a strong consis-
tent global state G such that ¢ holds, then the al-
gorithm must return detected = true. The proof is
by contradiction. Assume that the algorithm returns
detected = false. Since some queue must be empty
in the end, at least one state in G must be deleted
in line L15. Let G[j] be the state in G to be deleted
first in line L15. Consider the iteration of loop L2 in
which this happens. Since ¢(G) holds, G[j] could not
have been added to newlow in line L6. So it must
have been added in line L10 or L12. In either case,
G[j]—=shead(Q;), for some queue Q;. Since G[j] is the
first state in G to be deleted, head(Q;)<G[i]. So by
Property P2, G[j]—sG[i] which contradicts the strong
consistency of G. O

Having established that CPR can be solved
efficiently, we now address CPS. For a send-
ordered strong causality diagram, we can simply
make use of symmetry to transform the strong
causality diagram and convert the problem to
CPR. Given a send-ordered strong causality dia-
gram D = (51,85s,...5,,<s,~), we define its in-
version, inv(D) as the strong causality diagram
(S1,82,...8n,~", <) where ~' = {(s,t)| (¢,s) €
~} and < = {(s,t)] (t,s) € <s}. We now have:

Theorem 5: CPS for a send-ordered strong causal-
ity diagram D = (S1,S52,...5,,<s,~) and conjunc-
tive predicate c is equivalent to CPR for inv(D) =
(S1,52,...8,,~', <) and conjunctive predicate c.

Proof: First, the set of receive states Rev'(S) for
inv(D) is the same as the set of send states Snd(S) for
D (from the definition of ~'). So inv(D) is receive-
ordered.

If G is consistent in D then for any i, j, G[i] /4, G[j]
and G[j] #, Gli]. So G[j] /" G[i] and G[i] #," Gj]
(from the definition of ~' and <,'). So G is consistent
in inv(D).

Using a similar argument, if G is a consistent global
state in nv(D) then G is also consistent in D. O

If m is a bound on |S;| and e is the size of the

transitive reduction of <y, then we can deduce that
the time complexity of applying RECEIVE-SORT to
each process is O(mn + e) and the time complexity of
PRED-DETECT is O(mn?). So the time complexity
to solve CPR or CPS is O(mn? +e).

Having efficiently solved CPR and CPS, we now
take another look at the general problem CPG. We
know from Theorem 1 that CPG is NP-Complete. So,
it a polynomial solution to CPG is unlikely. Two
naive exponential solutions are possible. Let m be
a bound on |S;|.The first solution enlists every global
state and checks if it is consistent, a process which
takes O(m™n?) time. The second applies a predicate
detection algorithm (such as in [7]) to every local lin-
earization of the strong causality diagram, which takes
O(m™*mn?) time.

However, these solutions do not perform any better
for strong causality diagrams which are “close” to be-
ing send-ordered or receive-ordered. For example, in
a strong causality diagram which has two possible lin-
earizations of receive states in one process, we would
expect not to have to pay the full price of the above
naive solutions. We now provide a solution that de-
grades gracefully for diagrams that are close to being
send-ordered or receive-ordered.

Let k; be a bound on the number of linearizations of
the <, relation restricted to the set of receive states
in S;. If we linearize for each process, we can con-
struct a receive-ordered strong causality diagram by
adding the ordering of receive states imposed by the
linearizations. For all such possible combinations of
linearizations, there would be k = ky X k3 X ... k;,, pos-
sible receive-ordered strong causality diagrams. We
know from Theorem 2 that applying predicate detec-
tion to each such receive-ordered strong causality di-
agrams would be equivalent to applying predicate de-
tection to the original strong causality diagram. So
we can solve CPG by applying our algorithm for CPR
to k receive-ordered strong causality diagrams, tak-
ing O(k(mn?® + €)). Notice that this degrades to the
second naive approach in the worst case but achieves
good results if k is small, or the original strong causal-
ity diagram is close to being receive-ordered. A similar
approach could be used if the diagram were close to
being send-ordered. Further, by decomposing it into
receive-ordered diagrams instead of happened-before
diagrams, we save an exponential number of applica-
tions of a predicate detection algorithm as compared
to the second naive approach.

5 Applications
Applying Strong Causality Diagrams:

The main application of predicate detection has
been in distributed debugging and testing. A trace
of the distributed computation is taken at run-time
and provides the information necessary for the model
of a distributed computation. Our extension to the
strong causality model allows us to debug distributed
programs with multi-threaded processes.

The usual practical representation of the happened-
before or causally precedes relation, —, has been us-
ing vector clocks [9]. Two states can then be easily
checked for their — relationship by comparing their
vector clocks. Since we allow partial orders on each of
the processes, we must extend the vector clocks to a
vector of partially ordered logical clocks [5]. Each such
clock value would be an unbounded set in the general
case. However, since, in practice, we can place a pre-
defined bound on the number of concurrent threads,
we can represent each partially ordered logical clock
as a fixed-size vector. The total clock size would then
be n x [where n is the number of processes and [is
the maximum number of concurrent threads on a pro-
cess. Given such “expanded” clocks of two states, we
can check their —4 relationship in constant time (if
we know which processes and threads the two states
belong to).

The expanded clocks keep track of the ~» relation
by logging send and receive events. The <, relation is
a little more involved because we have to decide when
two states are independent. In multi-threaded pro-
cesses, we can keep track of all fork and join points and
inter-thread communications through shared memory
as described in [5]. Although multi-threaded processes
are the most direct application of strong causality di-
agrams, there are other types of independent events
that may be identified in processes. Within the strong
causality diagram model, two events are independent
so long as reversing their order of execution does not
change the values of any of the predicates that may
be applied to them. This allows a wide variety of in-
dependences to be defined. For example, operations
on independent objects are independent, and so are
receives or sends on independent ports.

Applying Conjunctive Predicates:

Local predicates are any boolean-valued functions
defined on the states in a process. In practice, these
states are the values of the variables defining the state
of execution of the process. An example of a local
predicate would be to check if a program reaches a
certain function in the program text. This is equiv-
alent to checking if the program counter variable for
any thread reaches the function.

Global predicates can be any conjunctive predi-

cates. Further, we can detect any predicates that may
be reduced to conjunctive predicates. Any predicate
that is a boolean expression (i.e. expression on local
predicates using —, A, V) may be converted into dis-
junctive normal form and we may then apply a detec-
tion algorithm for each of the conjunctions indepen-
dently. Further, any global predicate that is only sat-
isfied by a finite set of global states may be expressed
(though inefficiently) as a boolean expression of lo-
cal predicates [7]. An example of a global predicate
would be detecting if functions on two processes are
entered at the same time, violating a required mutual-
exclusion property.

Applying Our Results:

We have provided efficient solutions to the conjunc-
tive predicate detection problems for two classes of
strong causality diagrams — receive-ordered and send-
ordered. As we will now illustrate, these restrictions
are met by many distributed computations in practice.

A scenario that arises very often, especially in
client-server systems, is:

repeat
receive a request ;
create a thread to process the request

until done

It is clear that such a scenario is receive-ordered even
though the sends and per-request processing may be
independent.

Another scenario that is often used to model syn-
chronous rounds is:

repeat
receive and process messages
until time = end-of-round ;
send messages

until done

If the sends in a round occur in a fixed order or use the
same port, then they are totally ordered while receives
and local processing may be independent. Thus, a dis-
tributed computation resulting from such a program
would be send-ordered.

Thus, very often the natural design of distributed
programs involves totally ordering the sends and/or
the receives.

References
[1] O. Babaoglu and K. Marzullo. Consistent global
states of distributed systems: fundamental con-

cepts and mechanisms. In S. Mullender, editor,
Distributed Systems, chapter 4. Addison-Wesley,
1993.

[2] K. M. Chandy and L. Lamport. Distributed snap-
shots: Determining global states of distributed sys-

tems. ACM Transactions on Computer Systems,
3(1):63 — 75, February 1985.

[3] D. R. Cheriton and D. Skeen. Understanding the
limitations of causally and totally ordered commu-
nication. In Proc. of the 11th Symp. on Operating
System Principles, pages 44 — 57. ACM, 1993.

[4] R. Cooper and K. Marzullo. Consistent detec-
tion of global predicates. In Proceedings of the
ACM/ONR Workshop on Parallel and Distributed
Debugging, pages 163 — 173, Santa Cruz, Califor-
nia, 1991.

[5] C. Fidge. Logical time in distributed computing
systems. IEEE Computer, 24(8):28 — 33, August
1991.

[6] V. K. Garg. Observation of global properties in
distributed systems. In Proceedings of the IEEE
International Conference on Software and Knowl-
edge Engineering, pages 418 — 425, Lake Tahoe,
Nevada, 1996.

[7] V. K. Garg and B. Waldecker. Detection of weak
unstable predicates in distributed programs. IEEE
Transactions on Parallel and Distributed Systems,
5(3):299 — 307, March 1994.

[8] L. Lamport. Time, clocks, and the ordering of
events in a distributed system. Communications
of the ACM, 21(7):558 — 565, July 1978.

[9] F. Mattern. Virtual time and global states of dis-
tributed systems. In Parallel and Distributed Al-
gorithms: Proc. of the International Workshop on
Parallel and Distributed Algorithms, pages 215 —
226. Elsevier Science Publishers B. V. (North Hol-
land), 1989.

[10] V. Pratt. Modelling concurrency with partial or-
ders. International Journal of Parallel Program-
ming, 15(1):33 — 71, 1986.

[11] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro,
and T. Anderson. Eraser: A dynamic data race
detector for multi-threaded programs. In Proc. of
the 16th Symp. on Operating System Principles.
ACM, October 1997. (To be published).

