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Abstract

The traditional Distributed Shared Memory (DSM)
model provides atomicity at levels of read and write on
single objects. Therefore, multi-object operations such
as double compare and swap, and atomic m-register as-
signment cannot be efficiently expressed in this model.
We extend the traditional DSM model to allow oper-
ations to span multiple objects. We show that mem-
ory consistency conditions such as sequential consis-
tency and linearizability can be extended to this general
model. We also provide algorithms to implement these
consistency conditions in a distributed system.

1 Introduction

Applications such as distributed file systems, trans-
action systems, cache coherence for multiprocessors re-
quire concurrent accesses to shared data. The underly-
ing system must provide certain guarantees about the
values returned by data accesses, possibly to distinct
copies of a single logical data object. A consistency
condition specifies what guarantees are provided by the
system. The consistency conditions should be strong
enough to enable easy programming. Sequential con-
sistency and linearizability are two well-known consis-
tency conditions defined in the literature.

Sequential Consistency was proposed by Lamport
[14] to formulate a correctness criterion for a multi-
processor shared-memory system. It requires that all
data operations (same as actions in our model) appear
to have executed atomically, in some sequential order
that is consistent with the order seen by individual pro-
cesses.

Linearizability was introduced by Herlihy and Wing
[12] to exploit the semantics of abstract data types.
It provides the illusion that each operation applied
by concurrent processes takes effect instantaneously at
some point between its invocation and response. Lin-
earizability is stronger than sequential consistency and
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has two advantages over it. First, it is more conve-
nient to use because it preserves real-time ordering of
operations, and hence corresponds more naturally to
the intuitive notion of atomic execution of operations.
Consequently, it is easier to develop programs assuming
a linearizable implementation of shared objects. Sec-
ond, linearizability satisfies the local property, that is
the system as a whole is linearizable whenever the im-
plementation of each object is linearizable.

These and other consistency conditions [15, 3, 8, 6,
13, 9] are based on the model in which an operation
is invoked on a single object. In fact, the traditional
Distributed Shared Memory (DSM) provides atomicity
only at levels of read and write on single objects. While
this may be appropriate for models at the level of hard-
ware, they do not provide an expressive [11] and con-
venient abstraction for concurrent programming. Her-
lihy [12] extended the model to arbitrary operations
on single objects. That allows the representation of
more powerful concurrent objects, for example test and
set, fetch and add, FIFO queues and stacks. How-
ever, the model assumes that all operations are unary,
that is, they are invoked on a single object. There
are many applications in which operations are more
naturally expressed as encompassing multiple objects.
For example, operations like double compare and swap
(DCAS)* [10] cannot be efficiently expressed in that
model. DCAS reduces the allocation and copy cost
thereby permitting a more efficient implementation of
concurrent objects. As another application, if a trans-
action in a database is viewed as an atomic operation
then it is clear that it operates, in general, on multiple
data items.

In this paper, we develop a framework for consis-
tency conditions for distributed objects with multi-
object operations (or multi-methods). We introduce
a formal model for execution of operations that span
multiple objects. In this model, each process executes
multiple operations and each operation consists of mul-

IDCAS atomically updates locations addr; and addrs to val-
ues new; and newsz respectively if addr; holds value old; and
addrz holds old> when the operation is invoked.



tiple actions (possibly on different objects). With the
increasing popularity of distributed objects it is impor-
tant to understand the conditions for their consistency
in presence of replication and caches.

Besides practical implications, our model has nice
theoretical consequences. It serves to unify results from
two areas. By restricting the number of operations per
process to one, the model reduces to that of database
transactions. Similarly, if we restrict each operation
to execute actions on a single object then the model
reduces to that of distributed shared memory [1] on
concurrent objects [12]. Thus with our model, one set
of consistency conditions, their implementation, and
complexity results are applicable to both the areas.

It has been shown that determining whether a given
execution is sequentially consistent when the opera-
tions are restricted to read/write on a single object is
an NP-complete problem [22]. We show that the prob-
lem of checking whether a given history is linearizable
is also NP-complete in our model. This is true even
when the reads-from relation (defined later) is known.
Note that when the operations are restricted to a sin-
gle read/write register and the reads-from relation is
known, then linearizability can be checked in polyno-
mial time [18].

We show that execution constraints proposed by
Raynal et al [20] to ensure efficient implementation for
sequential consistency can also be used for operations
that span multiple objects. Specifically, under these
execution constraints, it is necessary and sufficient to
ensure legality of reads to guarantee sequential consis-
tency (and linearizability).

Finally, we provide algorithms for ensuring proposed
consistency conditions in a distributed system. Sev-
eral papers [2, 4, 17, 20] have proposed sequentially
consistent implementations for read/write objects. At-
tiya and Welch [4] provide sequentially consistent and
linearizable implementations for read/write objects,
FIFO queues and stacks. In addition, they also give
an analysis of the response time of their implementa-
tions. But their implementation for linearizability as-
sumes that clocks are perfectly synchronized and there
is an upper bound on the delay of the message. Our
algorithm for sequential consistency is an extension of
the algorithm proposed by them. We show that their
algorithm also works for multi-object operations. More
importantly, we provide an algorithm for implementa-
tion of linearizability in an asynchronous distributed
system which does not make any assumptions about
clock synchronization or the message delay.

It should be noted that there may be a temptation to
model multi-methods by defining an aggregate object
that represents the state of all objects. However, this

technique has serious drawbacks. For example, if there
are n read-write registers and one multi-method sum
that takes two registers as arguments, the technique
will force all registers to be treated as one object. This
results in loss of locality and concurrency.

This paper is organized as follows. Section 2 gives
our model of a concurrent system with multi-object
operations and presents the consistency conditions ap-
propriate in this model. In Section 3 we show the NP-
completeness of verification of linearizability. Section 4
imposes additional constraints on execution for efficient
implementation of distributed objects. In Section 5
we present algorithms for implementation of sequential
consistency and linearizability in distributed systems.

2 Definitions
2.1 System Model

A concurrent system consists of a finite set of se-
quential threads of control called processes, denoted
by Py, Ps,...,P,, that communicate through a set of
shared data structures called objects (or concurrent ob-
jects) X . Each object can be accessed by read and
write actions (same as traditional operation on a sin-
gle object). A write into an object defines a new value
for the object; a read allows to obtain the value of the
object. A write action on an object x is denoted by
w(z)v, where v is the value written to = by this action.
A read action on z is denoted by r(z)v, where v is the
value of object = returned by this action.

Processes are sequential and manipulate objects
through operations. An operation is a sequence of ac-
tions possibly spanning several objects. Each process
applies a sequence of operations to objects, alternately
issuing an invocation and then receiving the associated
response. Let a(arg,res) be an operation issued at P;;
arg and res denote a’s input and output parameters
respectively. Execution of an operation takes certain
time; this is modeled by two events, namely an invoca-
tion event and a response event. For an operation «,
invocation and response events, inv(a(arg)) at P; and
resp(a(res)) at P;, will be abbreviated as inv(a) and
resp(a) when parameters and process identity are not
necessary. An event e occurs-before event f, denoted
by e < f, iff event e precedes event f in real time.
We will use greek symbols «, (3, v, d, etc. to denote
operations.

If two operations a and (@ are issued by the same
process, say P;, and « is issued before 3, then we say
«a precedes (B in P;’s process order and is written as
a ~p [B. If process identity is not important then
process order is denoted by ~+p. In Figure 1, a ~p (3.

If a read action r(z)v reads the value written by
the write action w(z)v, then r(z)v is said to read-from



w(z)v. An operation a reads-from a distinct operation
B the value of object z, written as 3 ~+_ e if there
exists at least one read action of a that reads from some
write action of § the value of object z. In Figure 1,
a~, ;0 and -~ . 0.

We assume that an imaginary operation that writes
to all objects is performed to initialize the objects be-
fore the first operation by any process is executed. In
all the examples considered in this paper, unless spec-
ified otherwise, we assume that initial value of all ob-
jects is 0.

2.2 Histories
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Figure 1: An execution history H’

Informally, an execution of a concurrent system is
modeled by a history, which is a finite sequence of op-
eration invocation and response events. Formally, a
history # is denoted by a tuple (op(H),~%), where
op(#) is the set of operations and ~»4 is some irreflex-
ive transitive relation defined on the set of operations
which includes the partial order imposed by process
orders and reads-from relation.

A history S is sequential iff (1) its first event is an
invocation event, (2) each invocation event is immedi-
ately followed by a matching response event, and (3)
~+g is a total order consistent with the order of oper-
ation invocation events.

A process subhistory or local history of P; of a his-
tory H, denoted by #|P;, is the subsequence of all
events in H associated with the process P;. A history
is well-formed iff each process subhistory is sequential.
All histories considered in this paper are assumed to
be well-formed.

Two histories H and G are equivalent iff for ev-
ery process P;, H|P; = G|P; and they have the same
reads-from relation.

Intuitively, a read action is legal if it does not read
from an overwritten write action. It should be noted
that if there exists a write action w(z)v before a read
action r(z)u in an operation (such that w(z)v is the
last write on z before r(z)u) then v must be equal to
v. In the rest of the paper, we ignore such read actions.
Let op(a(z)v) denote the operation associated with the

action a(z)v. A read action r(z)v is legal iff there exists
a write action w(z)v such that r(z)v reads from w(z)v
and there does not exist another write action w'(z)u
such that op(w(z)v) ~rgy op(w'(z)u) ~3 op(r(z)v).
An operation is legal iff all its read actions are legal.
A history H is legal iff all its operations are legal.

A history H is admissible iff it is equivalent to some
legal sequential history that respects ~»4,.

2.3 Consistency Conditions

A consistency policy makes the behavior of a con-
current system equivalent to that of a non-concurrent
system. A consistency condition provides guarantees
about the values returned by data accesses in the pres-
ence of interleaved and/or overlapping accesses. Se-
quential Consistency and Linearizability are two well
known consistency conditions. We extend their defini-
tions to include operations on multiple objects. Our
definitions are based on the definition of admissibility
with the partial order ~ g appropriately defined.

Let proc(a) and objects(a) denote the process and
the set of objects respectively associated with an oper-
ation a. In Figure 1, proc(a) = P; and objects(a) =
{z,y,2z}. The operations o and [ are related by
real-time order, denoted by a ~», 3, iff the response
of « is received before the invocation of 3, that is,
resp(a) < inv(B). The operations a and [ are re-
lated by object order, denoted by a ~ B, iff both
the operations share an object and the response of
a is received before the invocation of (3, that is,
(objects(a) Nobjects(B) # @) A (resp(a) < inv(B)).
In Figure 1, o~ p, n ~, B and n ~x 0.

Sequential Consistency requires that all data oper-
ations appear to have executed atomically, in some se-
quential order that is consistent with the order seen by
individual processes. Let H = (op(#),~ ) be an exe-
cution history, where ~+4 includes process orders, and
reads-from relation. Then H is sequentially consistent
iff it is admissible. If operations are restricted to a sin-
gle read or write action, then our definition reduces to
Lamport’s definition of sequential consistency.

Linearizability requires that: (1) each operation
should appear to take effect instantaneously somewhere
between its invocation and response, and (2) the order
of non-concurrent operations should be preserved. Let
H = (op(H),~2) be an execution history, where ~»4
includes process orders, reads-from relation and real-
time order. Then H is linearizable iff it is admissible.

Garg and Raynal [8] proposed another definition of
consistency which is based on object-order rather than
real-time order. Let # = (op(H),~>3) be an execution
history, where ~+4 includes process orders, reads-from
relation, and object order. Then H is normal iff it
is admissible. Normality is less restrictive than lin-



earizability since it does not order two non-concurrent
operations unless they act on a common object. The
results of Section 3 and Section 4 also hold for normal-
ity. Since the protocol for linearizability also imple-
ments normality, we will focus on linearizability in the
rest of the paper.

3 NP-completeness of
Conditions

It has been shown that ascertaining whether a given
execution is sequentially consistent when the opera-
tions are restricted to a single object is an NP-complete
problem [22]. Since our model is a generalization of the
traditional DSM model, determining whether a given
execution is sequentially consistent in our model is NP-
complete too. Misra proved that checking whether
an execution satisfies atomic consistency is solvable
in polynomial time when reads-from relation is known
[18]. It turns out that this is not the case when the op-
erations can encompass multiple objects. In this sec-
tion we show that determining whether a given exe-
cution is linearizable is an NP-complete problem when
the operations are allowed to span multiple objects and
even when reads-from relation is known. We will use
the results in databases to prove the NP-completeness
of linearizability.

Much work on databases uses serializability [21, 5]
as the basic correctness condition for concurrent com-
putations. Several notions of equivalence such as view
equivalence, strict view equivalence, and conflict equiv-
alence are defined [21]. If we restrict each process to
contain a single operation (one for each transaction)
then the notion of correctness in the database world
can be viewed as special case of the consistency con-
ditions in our model. For instance, view equivalence
can be considered as a special case of sequential con-
sistency; strict view equivalence can be viewed as a
special case of linearizability, and conflict equivalence
can be considered as a special case of normality un-
der OO-constraint (defined later). Since determining
whether a schedule is strict view serializable is an NP-
complete problem, hence checking whether a history is
linearizable is also an NP-complete problem. It should
be noted that checking for linearizability of history # is
not same as checking for acyclicity of ~»3. In particu-
lar, ~»3 may be acyclic but H may not be linearizable.

Consistency

Theorem 1 Let H = (op(H),~) be an execution
history. Then it is NP-complete to determine whether
the history H is sequentially consistent.

Theorem 2 Let H = (op(H),~1) be an execution
history. Then it is NP-complete to determine whether
the history H is linearizable.

Proof: To prove that determining whether a his-
tory ‘H is linearizable is NP-hard we reduce
strict view serializability? to linearizability.  Let
S = (trans(S),~gs) be a schedule of transactions
in a database consisting of finite set of entities
E = {z1,z2,...}, where trans(S) denote the set of
transactions 77,75,...,71,, and ~»g represents the
order of actions in the schedule. We construct a
distributed system consisting of sequential processes
Py,P,P,,...P,, Py, one for each transaction in the
augmented schedule®, and shared objects E. For each
step in the schedule there is a corresponding action.
An action a; reads from action a; if the corresponding
step of action a; reads-from the corresponding step of
action a; in the schedule S. Each process P; executes
a single operation «; whose actions correspond to the
steps of the transaction T; executed in the same or-
der. The first and last steps of a transaction define the
invocation and response events respectively of the cor-
responding operation. It is easy to see that two trans-
actions are concurrent in the schedule S if and only
if the corresponding operations are concurrent in #.
The history H of the system is the history (op(H),~3)
where op(H) is the set of transactions and ~»4 consists
of reads-from relation and real-time order. It can be
easily proved that schedule § is strict view serializable
if and only if the history # is linearizable. Moreover, it
can be easily verified that the problem is indeed in NP
since, given a sequential history, we can easily check
that it is legal and equivalent to #. [

4 Consistency Conditions with Con-
straints

Due to Theorem 1 and Theorem 2 it is unlikely that
there exists an efficient algorithm that realizes sequen-
tial consistency (linearizability), that is, allows all se-
quentially consistent (linearizable) histories and only
these. Thus we need to impose constraints on each
history to ensure efficient implementations of consis-
tent DSMs. Raynal et al [20] identified two such con-
straints, namely WW-and OO-constraints, for sequen-
tial consistency. We extend their work in two ways: we
show that (1) their results extend to the case when the
operations can span multiple objects, and (2) similar
results also hold for linearizability. Before proceeding
further, we give some definitions we use in this section.

Two actions are said to be conflicting iff both act
on the same object and at least one of them is a write

2A schedule S is strict view serializable if it is view equivalent
to a serial schedule in which transactions that do not overlap in
S are in the same order as in S.

3a schedule augmented with an initial transaction writing val-
ues to each entity and a final transaction reading values from
each entity.



action. Two operations are said to be conflicting iff
one of them contains an action that conflicts with some
action of the other. The operations «, 3,7 are said to
interfere in history # iff v writes to some object that
a reads from (. In Figure 1, a conflicts with n, and
operations d, n and « interfere.

A history H satisfies WO-constraint iff any pair
of operations performing write actions on a common
object are ordered under ~»3. A history H satisfies
WW -constraint iff any pair of operations performing
write actions are ordered under ~+3;. A history H satis-
fies OO-constraint iff any pair of conflicting operations
are ordered under ~».

We will see that these constraints permit an effi-
cient implementation of consistency conditions. In this
section, we prove that legality is the necessary and
sufficient condition for an execution history # under
WW- or OO-constraint to be admissible.

Theorem 3 Let H = (op(H),~3) be an execution
history. If H is admissible then it is legal.

Proof: Assume, on the contrary, that #, is not le-
gal. Therefore there exist operations a, § and 7 that
interfere in A such that 8 ~4 v ~»3 « holds. Let
S = (op(8),~s) be the legal sequential history equiv-
alent to # that respects ~»3. Thus § ~s v ~s «
holds. Since S has the same reads-from relation as H,
therefore S is not legal - a contradiction. ]

We now show that legality is sufficient to guarantee
that a history H under OO-constraint is admissible. So
a protocol based on OO-constraint just needs to ensure
the legality of all its operations and that will guarantee
that all executions generated by it are admissible.

Theorem 4 Let H = (op(H),~3) be an execution
history under OO-constraint. If H is legal then it is
admissible.

Proof: Since ~»4 defines an irreflexive partial order
on op(#H), extend ~+ to any total order on op(#),
say ~s. Now we have to show that ~»s defines a
legal relation on op(#H). Let a, 8 and 7 be oper-
ations that interfere in 7. Since history is under
OO-constraint, either v ~»4 B or 8 ~+3 v holds. In
the first case, 7 ~s [ ~+s a holds. In the second case,
since the history H is legal and under OO-constraint,
B ~s a~>s v holds. Since the operations «, 8 and
v were chosen arbitrarily, S = (op(S) = op(H),~s) is
legal. Thus H is admissible. [

We next show that legality is a sufficient condition
to guarantee admissibility of a history under WW-
constraint. A history under W W -constraint permits
the operations, one of which only reads from an object

and the other writes on the same object, to execute
concurrently. Therefore we define a logical read-write
precedence, denoted by ~»,,, between two such op-
erations which are not ordered under ~»3. Let
H = (op(H),~%) be an execution history and let
a, B and v be operations that interfere in H. Then
B~y vy = a~>,., 7. We define an extended relation
as M%{: ('\’)H U ’\’)rw)+'

Lemma 5 Let H = (op(H),~3) be an execution his-
tory under W O-constraint. If ~5, is acyclic then H is
admissible.

Proof: Let ~+s be any total order that extends ~+§,
(it can be done since ~§, is acyclic). We now need to
prove that ~»s is legal. Let «, # and y be operations
that interfere in 7. Since # is under W O-constraint,
either v ~4 [ or B ~»y 7 holds. In the first
case, 7 ~s [ ~s a holds. In the second case, we
have a ~»,,, 7, and therefore 8 ~s a ~s 7 holds.
Hence < cannot be ordered between  and « in S.
Since operations «, 8 and 7y were chosen arbitrarily,
S = (op(S) = op(H),~s) is legal. Thus ~»3 is admis-
sible. ]

Lemma 6 Let H = (op(H),~+%) be an execution his-
tory under WW -constraint. If H is legal then ~»§, is
acyclic.

Proof: Since ~»4 is an irreflexive transitive relation,
any cycle in ~»%, must involve at least one pair of op-
erations ordered by ~+.,. We will prove that ~§, is
acyclic by induction on number of pair of operations n
ordered by ~+ ., relation in a cycle.

Base Case (n = 1) : Any cycle is of the form
a~> .Y~y a (~gy is transitive). By definition of
~ .0, there exists an operation 3 such that «, 8 and
~ interfere in H, and 8 ~»3 < holds. Therefore
B ~+34 ¥ ~4 a holds, and hence # is not legal - a con-
tradiction.

Induction Step : Consider a cycle with n > 1 pair
of operations ordered by ~+,.,, relation. The cycle is of
the form a ~» ., v~ -+~ ., § ~ .-+ ~ a. Since
‘H is under W W -constraint, either v ~»¢ d or 6 ~»9 v
holds. In either case we have a cycle involving less than
n pair of operations ordered by ~+,, relation. Hence
by induction ~+, is acyclic. ]

Theorem 7 Let H = (op(H),~3) be an execution
history under WW -constraint. If H is legal then it
1s admissible.

Theorem 8 Let H = (op(H),~#) be an execution
history under OO- or WW -constraint. Then H is ad-
missible if and only if it is legal.



A protocol based on OO- or WW-constraint only
needs to ensure that all reads are legal and that will
guarantee that all executions generated by it are ad-
missible.

5 Implementation of Consistency Con-
ditions

This section presents the implementations of sequen-
tial consistency and linearizability in an asynchronous
message passing system and proves their correctness.
Our protocols assume that the processes and the com-
munication channels are reliable.

Each process maintains a private copy M of the ab-
stract shared memory M. We divide the set of op-
erations into two types: operations that perform only
read actions, denoted by READ, and operations that
perform at least one write action, denoted by W RITE.
The result of an operation o on application to memory
M is represented by a(M). Our both protocols are
based on WW-constraint and rely on atomic broad-
casting for synchronization of write operations. If the
underlying hardware provides an atomic broadcast fa-
cility, these protocols can be implemented efficiently.

In addition to a copy of the shared memory, each
process also maintains a vector ts of natural num-
bers, one entry for each object, called timestamp. Two
timestamps can be compared by comparing their com-
ponents. A timestamp tsy < ts; if each of ts;’s compo-
nents is less than or equal to ¢s;’s corresponding com-
ponent; ts, < ts; if ts; < ts; and ts; is not equal to
tSl.

We associate a timestamp with each operation «
which is denoted by ts(«). Before describing the pro-
tocol, we show that if timestamps of the operations
satisfy certain properties, then the execution is admis-
sible.

Lemma 9 Let H = (op(H),~#) be an execution his-
tory such that ~>3 is an irreflexive transitive closure
of ~, where ~ 1is some irreflexive relation defined on
op(H) (which includes process orders and reads-from
relation). Let ts(a) denote the timestamp of an oper-
ation «. If the timestamp satisfies the following prop-
erties :

1. If a ~ ( then

(a) ts(a) 2 ts(B),
(b) B writes on z = ts(o)[z] < ts(B)[z], and
(¢) a,Bf € READ = resp(a) < inv(B)

2. If B reads from «a the value of object x then

(a) B writes on x = ts(a)[z] =ts(B)[z] — 1,
(b) B does not write on x = ts(a)[z] = ts(B)[z]

3. Ya,B € WRITE, either o~ [ or B~ a.
then H is admissible.

Proof: Intuitively, the properties 1(a), 1(b) and 1(c)
imply that the relation ~» is acyclic and hence H is
indeed a valid execution history. The properties 2(a)
and 2(b) imply that a read action does not read from
an overwritten write action and the property 3 implies
that the history satisfies W W -constraint.

We claim that ~ is acyclic.
Assume, on the contrary, that ~+» contains a cy-
cle, namely a~ B~ ---~ y~ a. If there ex-
ists at least one operation ¢ in the cycle such
that 6 € WRITE, then by properties 1(a) and
1(b) we get ts(a) <ts(B)--- <ts(d) =X --- < ts(w).
Hence ts(a) < ts(a), a contradiction. There-
fore, none of the operations in the cycle is in
WRITE. Hence all operations of the cycle
are in READ, and from property 1(c) we get
resp(a) < inv(B) < resp(f) < --- <inv(a) < resp(a),
again a contradiction. Therefore we can conclude that
~» is acyclic and ~»4 is an irreflexive transitive rela-
tion. Using property 3 we can infer that H satisfies
W W -constraint.

Now we need to show that # is legal. Assume
again, on the contrary, that the history is not le-
gal. Hence there exist operations «, 8 and v and
an object = such that «, 8 and + interfere in #H
on object x and [ ~»y v~y a holds. Note that
since ~4 is an irreflexive transitive closure of ~»,
properties 1(a) and 1(b) also hold for ~»3. There-
fore we have ts(8)[x] < ts(y)[z]. There are two cases
to consider: o« only reads from x or it also writes
to z. In the first case, by property 2(b), we get
ts(B)[z] = ts(a)[z] and ts(y)[z] < ts(a)[z] and hence
ts(B)[z] < ts(B)[z], a contradiction. In the second case,
by property 2(a), we get ts(8)[z] = ts(a)[z] — 1 and
ts(y)[z] < ts(a)[z]. Hence ts(B)[z] < ts(B)[z], again
a contradiction. Therefore # is legal which together
with Theorem 8 implies that execution history # is
admissible. ]

Now we present the protocols for implementing se-
quential consistency and linearizability. For each pro-
tocol, we associate a timestamp with each operation
and then show that the timestamps satisfy the proper-
ties required in the Lemma 9.

5.1 Implementation of Sequential Consis-
tency

The protocol in Figure 2 consists of an initialization
routine and three basic actions each of which is exe-
cuted locally and atomically. The statements enclosed
in curly brackets are not part of the protocol but are
used to prove the correctness of the algorithm.



Process P;

/* Initialization */

foreach z € M do
Mlz] +1
{ts[z] <0}

/¥ a € READ */
return(a(M))

/¥ o€ WRITE */
atomically broadcast the operation to all processes

/* On receiving atomic broadcast of operation «
from process P; */
apply the operation to the memory M
{ foreach z such that o writes on = do ts[z] < ts[z] + 1}
if proc(a) = P; then return(a(M))

Figure 2: Protocol for Sequential Consistency

Theorem 10 All the executions generated by the pro-
tocol in Figure 2 are sequentially consistent.

Proof: Consider any execution H generated by the
protocol. Let the reads-from relation ~»,_, be defined
as: a read action of an operation « reads from the last
write action on that object in proc(a)’s memory. Let
~+ 1w denotes the order in which operationsin W RITE
are broadcasted. We define ~» (as in Lemma 9) to be
the union of process orders (~ p), reads-from relation
(~,) and atomic broadcast order (~+,,,). Note that
a~p B ora g B or a ~,, B imply that « is ap-
plied to proc(8)’s memory before 3. Let ts;(a) denote
the timestamp of process P; just after application of «
to P;’s memory.

We define the timestamp of an operation « issued by
process P; as ts(a) = ts;(a). Note that only operations
in W RITFE modify the timestamp ¢s. Since all oper-
ations in WRITE are applied in same order on every
process, therefore for every operation o € W RITE the
following holds: for every process Pj, ts(a) = ts;(a).

If & ~ (3 holds, then « is applied to proc(5)’s mem-
ory before 8. Since vector timestamp never decreases,
the property 1(a) holds. If 8 writes on object z, then
proc(B) will increment ts,,..()[z] by 1 after applying
0 to its memory. Therefore the property 1(b) holds.

Since operations belonging to READ can only be or-
dered by process-order, property 1(c) trivially follows.

Property 2(a) and 2(b) follow from the fact that
since (3 reads from « the value of object z, « is the last
operation to write on z in proc(8)’s memory. There-
fore tsp,00(s)[7] just before the application of 3 is equal
to ts(a)[z]. Now if B writes on x then it increments

the entry for z, and therefore ts(a)[z] = ts(6)[z] — 1,
otherwise ts(a)[z] = ts(6)[z]

Property 3 follows from the fact that all operations
in WRITE are atomically broadcasted and hence or-
dered under ~ .

Hence, by Lemma 9, the history H is sequentially
consistent, and therefore the protocol only generates
sequentially consistent executions. ]

5.2 Implementation of Linearizability

The protocol in Figure 3 consists of an initialization
routine and five basic actions each of which is executed
locally and atomically. Each process maintains another
vector timestamp ¢s’ which records the latest writes by
any process when it issues an operation in READ.

Process P;

/* Initialization */

foreach ¢ € M do
Mlz],ts[z] +L1,0
M'[z],ts'[z] +L,0

/¥ a € READ */
send query to all the processes for objects € M

/¥ a € WRITE */
atomically broadcast the operation to all processes

/* On receiving atomic broadcast of operation «
from process P; */
apply the operation to the memory M
foreach z such that o writes on z do ts[z] « ts[z] + 1
if proc(a) = P; then return(a(M))

/* On receiving query for set of objects X
from process P; */
send (ts, M) to process P;

/* On receiving response, denoted by (¢s}, M;),
for the query from process P; */
foreach z € M do
if ts}[x] > ts'[x] then M'[z],ts'[x] « M][z],ts}[z]
if all the responses for the last query have been received
then return(a(M'))

Figure 3: Protocol for Linearizability

Theorem 11 All the executions generated by the pro-
tocol in Figure 3 are linearizable.

Proof: The proof is similar to the proof of Theorem 10
but is more involved. Due to the lack of space we will
not present the proof here. The interested reader can
refer to the technical report [19].
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Conclusion

We extend the traditional model of concurrent ob-
jects to allow operations that span multiple objects.
We give the consistency conditions in this model, ana-
lyze their verification complexity and give efficient al-
gorithms for ensuring them in distributed systems.
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