
Consisten
y Conditions for Multi-Obje
t Distributed OperationsNeeraj Mittal � Vijay K. Garg yneerajm�
s.utexas.edu garg�e
e.utexas.eduDept. of Computer S
ien
es Dept. of Ele
tri
al and Computer Engg.The University of Texas at Austin, Austin, TX 78712Abstra
tThe traditional Distributed Shared Memory (DSM)model provides atomi
ity at levels of read and write onsingle obje
ts. Therefore, multi-obje
t operations su
has double 
ompare and swap, and atomi
 m-register as-signment 
annot be eÆ
iently expressed in this model.We extend the traditional DSM model to allow oper-ations to span multiple obje
ts. We show that mem-ory 
onsisten
y 
onditions su
h as sequential 
onsis-ten
y and linearizability 
an be extended to this generalmodel. We also provide algorithms to implement these
onsisten
y 
onditions in a distributed system.1 Introdu
tionAppli
ations su
h as distributed �le systems, trans-a
tion systems, 
a
he 
oheren
e for multipro
essors re-quire 
on
urrent a

esses to shared data. The underly-ing system must provide 
ertain guarantees about thevalues returned by data a

esses, possibly to distin
t
opies of a single logi
al data obje
t. A 
onsisten
y
ondition spe
i�es what guarantees are provided by thesystem. The 
onsisten
y 
onditions should be strongenough to enable easy programming. Sequential 
on-sisten
y and linearizability are two well-known 
onsis-ten
y 
onditions de�ned in the literature.Sequential Consisten
y was proposed by Lamport[14℄ to formulate a 
orre
tness 
riterion for a multi-pro
essor shared-memory system. It requires that alldata operations (same as a
tions in our model) appearto have exe
uted atomi
ally, in some sequential orderthat is 
onsistent with the order seen by individual pro-
esses.Linearizability was introdu
ed by Herlihy and Wing[12℄ to exploit the semanti
s of abstra
t data types.It provides the illusion that ea
h operation appliedby 
on
urrent pro
esses takes e�e
t instantaneously atsome point between its invo
ation and response. Lin-earizability is stronger than sequential 
onsisten
y and�supported in part by the MCD Fellowshipysupported in part by the NSF Grants ECS-9414780, CCR-9520540, Texas Higher Edu
ation Board grant ARP-320, a Gen-eral Motors Fellowship, and an IBM grant

has two advantages over it. First, it is more 
onve-nient to use be
ause it preserves real-time ordering ofoperations, and hen
e 
orresponds more naturally tothe intuitive notion of atomi
 exe
ution of operations.Consequently, it is easier to develop programs assuminga linearizable implementation of shared obje
ts. Se
-ond, linearizability satis�es the lo
al property, that isthe system as a whole is linearizable whenever the im-plementation of ea
h obje
t is linearizable.These and other 
onsisten
y 
onditions [15, 3, 8, 6,13, 9℄ are based on the model in whi
h an operationis invoked on a single obje
t. In fa
t, the traditionalDistributed Shared Memory (DSM) provides atomi
ityonly at levels of read and write on single obje
ts. Whilethis may be appropriate for models at the level of hard-ware, they do not provide an expressive [11℄ and 
on-venient abstra
tion for 
on
urrent programming. Her-lihy [12℄ extended the model to arbitrary operationson single obje
ts. That allows the representation ofmore powerful 
on
urrent obje
ts, for example test andset, fet
h and add, FIFO queues and sta
ks. How-ever, the model assumes that all operations are unary,that is, they are invoked on a single obje
t. Thereare many appli
ations in whi
h operations are morenaturally expressed as en
ompassing multiple obje
ts.For example, operations like double 
ompare and swap(DCAS)1 [10℄ 
annot be eÆ
iently expressed in thatmodel. DCAS redu
es the allo
ation and 
opy 
ostthereby permitting a more eÆ
ient implementation of
on
urrent obje
ts. As another appli
ation, if a trans-a
tion in a database is viewed as an atomi
 operationthen it is 
lear that it operates, in general, on multipledata items.In this paper, we develop a framework for 
onsis-ten
y 
onditions for distributed obje
ts with multi-obje
t operations (or multi-methods). We introdu
ea formal model for exe
ution of operations that spanmultiple obje
ts. In this model, ea
h pro
ess exe
utesmultiple operations and ea
h operation 
onsists of mul-1DCAS atomi
ally updates lo
ations addr1 and addr2 to val-ues new1 and new2 respe
tively if addr1 holds value old1 andaddr2 holds old2 when the operation is invoked.



tiple a
tions (possibly on di�erent obje
ts). With thein
reasing popularity of distributed obje
ts it is impor-tant to understand the 
onditions for their 
onsisten
yin presen
e of repli
ation and 
a
hes.Besides pra
ti
al impli
ations, our model has ni
etheoreti
al 
onsequen
es. It serves to unify results fromtwo areas. By restri
ting the number of operations perpro
ess to one, the model redu
es to that of databasetransa
tions. Similarly, if we restri
t ea
h operationto exe
ute a
tions on a single obje
t then the modelredu
es to that of distributed shared memory [1℄ on
on
urrent obje
ts [12℄. Thus with our model, one setof 
onsisten
y 
onditions, their implementation, and
omplexity results are appli
able to both the areas.It has been shown that determining whether a givenexe
ution is sequentially 
onsistent when the opera-tions are restri
ted to read/write on a single obje
t isan NP-
omplete problem [22℄. We show that the prob-lem of 
he
king whether a given history is linearizableis also NP-
omplete in our model. This is true evenwhen the reads-from relation (de�ned later) is known.Note that when the operations are restri
ted to a sin-gle read/write register and the reads-from relation isknown, then linearizability 
an be 
he
ked in polyno-mial time [18℄.We show that exe
ution 
onstraints proposed byRaynal et al [20℄ to ensure eÆ
ient implementation forsequential 
onsisten
y 
an also be used for operationsthat span multiple obje
ts. Spe
i�
ally, under theseexe
ution 
onstraints, it is ne
essary and suÆ
ient toensure legality of reads to guarantee sequential 
onsis-ten
y (and linearizability).Finally, we provide algorithms for ensuring proposed
onsisten
y 
onditions in a distributed system. Sev-eral papers [2, 4, 17, 20℄ have proposed sequentially
onsistent implementations for read/write obje
ts. At-tiya and Wel
h [4℄ provide sequentially 
onsistent andlinearizable implementations for read/write obje
ts,FIFO queues and sta
ks. In addition, they also givean analysis of the response time of their implementa-tions. But their implementation for linearizability as-sumes that 
lo
ks are perfe
tly syn
hronized and thereis an upper bound on the delay of the message. Ouralgorithm for sequential 
onsisten
y is an extension ofthe algorithm proposed by them. We show that theiralgorithm also works for multi-obje
t operations. Moreimportantly, we provide an algorithm for implementa-tion of linearizability in an asyn
hronous distributedsystem whi
h does not make any assumptions about
lo
k syn
hronization or the message delay.It should be noted that there may be a temptation tomodel multi-methods by de�ning an aggregate obje
tthat represents the state of all obje
ts. However, this

te
hnique has serious drawba
ks. For example, if thereare n read-write registers and one multi-method sumthat takes two registers as arguments, the te
hniquewill for
e all registers to be treated as one obje
t. Thisresults in loss of lo
ality and 
on
urren
y.This paper is organized as follows. Se
tion 2 givesour model of a 
on
urrent system with multi-obje
toperations and presents the 
onsisten
y 
onditions ap-propriate in this model. In Se
tion 3 we show the NP-
ompleteness of veri�
ation of linearizability. Se
tion 4imposes additional 
onstraints on exe
ution for eÆ
ientimplementation of distributed obje
ts. In Se
tion 5we present algorithms for implementation of sequential
onsisten
y and linearizability in distributed systems.2 De�nitions2.1 System ModelA 
on
urrent system 
onsists of a �nite set of se-quential threads of 
ontrol 
alled pro
esses, denotedby P1; P2; : : : ; Pn, that 
ommuni
ate through a set ofshared data stru
tures 
alled obje
ts (or 
on
urrent ob-je
ts) X . Ea
h obje
t 
an be a

essed by read andwrite a
tions (same as traditional operation on a sin-gle obje
t). A write into an obje
t de�nes a new valuefor the obje
t; a read allows to obtain the value of theobje
t. A write a
tion on an obje
t x is denoted byw(x)v, where v is the value written to x by this a
tion.A read a
tion on x is denoted by r(x)v, where v is thevalue of obje
t x returned by this a
tion.Pro
esses are sequential and manipulate obje
tsthrough operations. An operation is a sequen
e of a
-tions possibly spanning several obje
ts. Ea
h pro
essapplies a sequen
e of operations to obje
ts, alternatelyissuing an invo
ation and then re
eiving the asso
iatedresponse. Let �(arg; res) be an operation issued at Pi;arg and res denote �'s input and output parametersrespe
tively. Exe
ution of an operation takes 
ertaintime; this is modeled by two events, namely an invo
a-tion event and a response event. For an operation �,invo
ation and response events, inv(�(arg)) at Pi andresp(�(res)) at Pi, will be abbreviated as inv(�) andresp(�) when parameters and pro
ess identity are notne
essary. An event e o

urs-before event f , denotedby e < f , i� event e pre
edes event f in real time.We will use greek symbols �, �, 
, Æ, et
. to denoteoperations.If two operations � and � are issued by the samepro
ess, say Pi, and � is issued before �, then we say� pre
edes � in Pi's pro
ess order and is written as� ;Pi �. If pro
ess identity is not important thenpro
ess order is denoted by;P . In Figure 1, �;P1 �.If a read a
tion r(x)v reads the value written bythe write a
tion w(x)v, then r(x)v is said to read-from



w(x)v. An operation � reads-from a distin
t operation� the value of obje
t x, written as � ;rf �, if thereexists at least one read a
tion of � that reads from somewrite a
tion of � the value of obje
t x. In Figure 1,�;rf Æ and � ;rf Æ.We assume that an imaginary operation that writesto all obje
ts is performed to initialize the obje
ts be-fore the �rst operation by any pro
ess is exe
uted. Inall the examples 
onsidered in this paper, unless spe
-i�ed otherwise, we assume that initial value of all ob-je
ts is 0.2.2 Histories
P1

P
δ = r(y)2 r(z)3

2

P3
µ = r(v)1η 

β = r(u)0 w(v)1= r(x)0 w(y)2 w(z)2α 

process order reads-from

inv(η) resp(η )

= r(v)0 w(x)1 w(z)3Figure 1: An exe
ution history H0Informally, an exe
ution of a 
on
urrent system ismodeled by a history, whi
h is a �nite sequen
e of op-eration invo
ation and response events. Formally, ahistory H is denoted by a tuple (op(H);;H), whereop(H) is the set of operations and;H is some irre
ex-ive transitive relation de�ned on the set of operationswhi
h in
ludes the partial order imposed by pro
essorders and reads-from relation.A history S is sequential i� (1) its �rst event is aninvo
ation event, (2) ea
h invo
ation event is immedi-ately followed by a mat
hing response event, and (3);S is a total order 
onsistent with the order of oper-ation invo
ation events.A pro
ess subhistory or lo
al history of Pi of a his-tory H, denoted by HjPi, is the subsequen
e of allevents in H asso
iated with the pro
ess Pi. A historyis well-formed i� ea
h pro
ess subhistory is sequential.All histories 
onsidered in this paper are assumed tobe well-formed.Two histories H and G are equivalent i� for ev-ery pro
ess Pi, HjPi = GjPi and they have the samereads-from relation.Intuitively, a read a
tion is legal if it does not readfrom an overwritten write a
tion. It should be notedthat if there exists a write a
tion w(x)v before a reada
tion r(x)u in an operation (su
h that w(x)v is thelast write on x before r(x)u) then u must be equal tov. In the rest of the paper, we ignore su
h read a
tions.Let op(a(x)v) denote the operation asso
iated with the

a
tion a(x)v. A read a
tion r(x)v is legal i� there existsa write a
tion w(x)v su
h that r(x)v reads from w(x)vand there does not exist another write a
tion w0(x)usu
h that op(w(x)v) ;H op(w0(x)u) ;H op(r(x)v).An operation is legal i� all its read a
tions are legal.A history H is legal i� all its operations are legal.A history H is admissible i� it is equivalent to somelegal sequential history that respe
ts ;H.2.3 Consisten
y ConditionsA 
onsisten
y poli
y makes the behavior of a 
on-
urrent system equivalent to that of a non-
on
urrentsystem. A 
onsisten
y 
ondition provides guaranteesabout the values returned by data a

esses in the pres-en
e of interleaved and/or overlapping a

esses. Se-quential Consisten
y and Linearizability are two wellknown 
onsisten
y 
onditions. We extend their de�ni-tions to in
lude operations on multiple obje
ts. Ourde�nitions are based on the de�nition of admissibilitywith the partial order ;H appropriately de�ned.Let pro
(�) and obje
ts(�) denote the pro
ess andthe set of obje
ts respe
tively asso
iated with an oper-ation �. In Figure 1, pro
(�) = P1 and obje
ts(�) =fx; y; zg. The operations � and � are related byreal-time order, denoted by � ;t �, i� the responseof � is re
eived before the invo
ation of �, that is,resp(�) < inv(�). The operations � and � are re-lated by obje
t order, denoted by � ;X �, i� boththe operations share an obje
t and the response of� is re
eived before the invo
ation of �, that is,(obje
ts(�) \ obje
ts(�) 6= �) ^ (resp(�) < inv(�)).In Figure 1, �;t �, � ;t � and � ;X �.Sequential Consisten
y requires that all data oper-ations appear to have exe
uted atomi
ally, in some se-quential order that is 
onsistent with the order seen byindividual pro
esses. Let H = (op(H);;H) be an exe-
ution history, where ;H in
ludes pro
ess orders, andreads-from relation. Then H is sequentially 
onsistenti� it is admissible. If operations are restri
ted to a sin-gle read or write a
tion, then our de�nition redu
es toLamport's de�nition of sequential 
onsisten
y.Linearizability requires that: (1) ea
h operationshould appear to take e�e
t instantaneously somewherebetween its invo
ation and response, and (2) the orderof non-
on
urrent operations should be preserved. LetH = (op(H);;H) be an exe
ution history, where ;Hin
ludes pro
ess orders, reads-from relation and real-time order. Then H is linearizable i� it is admissible.Garg and Raynal [8℄ proposed another de�nition of
onsisten
y whi
h is based on obje
t-order rather thanreal-time order. Let H = (op(H);;H) be an exe
utionhistory, where ;H in
ludes pro
ess orders, reads-fromrelation, and obje
t order. Then H is normal i� itis admissible. Normality is less restri
tive than lin-



earizability sin
e it does not order two non-
on
urrentoperations unless they a
t on a 
ommon obje
t. Theresults of Se
tion 3 and Se
tion 4 also hold for normal-ity. Sin
e the proto
ol for linearizability also imple-ments normality, we will fo
us on linearizability in therest of the paper.3 NP-
ompleteness of Consisten
yConditionsIt has been shown that as
ertaining whether a givenexe
ution is sequentially 
onsistent when the opera-tions are restri
ted to a single obje
t is an NP-
ompleteproblem [22℄. Sin
e our model is a generalization of thetraditional DSM model, determining whether a givenexe
ution is sequentially 
onsistent in our model is NP-
omplete too. Misra proved that 
he
king whetheran exe
ution satis�es atomi
 
onsisten
y is solvablein polynomial time when reads-from relation is known[18℄. It turns out that this is not the 
ase when the op-erations 
an en
ompass multiple obje
ts. In this se
-tion we show that determining whether a given exe-
ution is linearizable is an NP-
omplete problem whenthe operations are allowed to span multiple obje
ts andeven when reads-from relation is known. We will usethe results in databases to prove the NP-
ompletenessof linearizability.Mu
h work on databases uses serializability [21, 5℄as the basi
 
orre
tness 
ondition for 
on
urrent 
om-putations. Several notions of equivalen
e su
h as viewequivalen
e, stri
t view equivalen
e, and 
on
i
t equiv-alen
e are de�ned [21℄. If we restri
t ea
h pro
ess to
ontain a single operation (one for ea
h transa
tion)then the notion of 
orre
tness in the database world
an be viewed as spe
ial 
ase of the 
onsisten
y 
on-ditions in our model. For instan
e, view equivalen
e
an be 
onsidered as a spe
ial 
ase of sequential 
on-sisten
y; stri
t view equivalen
e 
an be viewed as aspe
ial 
ase of linearizability, and 
on
i
t equivalen
e
an be 
onsidered as a spe
ial 
ase of normality un-der OO-
onstraint (de�ned later). Sin
e determiningwhether a s
hedule is stri
t view serializable is an NP-
omplete problem, hen
e 
he
king whether a history islinearizable is also an NP-
omplete problem. It shouldbe noted that 
he
king for linearizability of historyH isnot same as 
he
king for a
y
li
ity of ;H. In parti
u-lar,;H may be a
y
li
 but H may not be linearizable.Theorem 1 Let H = (op(H);;H) be an exe
utionhistory. Then it is NP-
omplete to determine whetherthe history H is sequentially 
onsistent.Theorem 2 Let H = (op(H);;H) be an exe
utionhistory. Then it is NP-
omplete to determine whetherthe history H is linearizable.

Proof: To prove that determining whether a his-tory H is linearizable is NP-hard we redu
estri
t view serializability2 to linearizability. LetS = (trans(S);;S) be a s
hedule of transa
tionsin a database 
onsisting of �nite set of entitiesE = fx1; x2; : : :g, where trans(S) denote the set oftransa
tions T1; T2; : : : ; Tn, and ;S represents theorder of a
tions in the s
hedule. We 
onstru
t adistributed system 
onsisting of sequential pro
essesP0; P1; P2; : : : Pn; P1, one for ea
h transa
tion in theaugmented s
hedule3, and shared obje
ts E. For ea
hstep in the s
hedule there is a 
orresponding a
tion.An a
tion ai reads from a
tion aj if the 
orrespondingstep of a
tion ai reads-from the 
orresponding step ofa
tion aj in the s
hedule S. Ea
h pro
ess Pi exe
utesa single operation �i whose a
tions 
orrespond to thesteps of the transa
tion Ti exe
uted in the same or-der. The �rst and last steps of a transa
tion de�ne theinvo
ation and response events respe
tively of the 
or-responding operation. It is easy to see that two trans-a
tions are 
on
urrent in the s
hedule S if and onlyif the 
orresponding operations are 
on
urrent in H.The historyH of the system is the history (op(H);;H)where op(H) is the set of transa
tions and;H 
onsistsof reads-from relation and real-time order. It 
an beeasily proved that s
hedule S is stri
t view serializableif and only if the history H is linearizable. Moreover, it
an be easily veri�ed that the problem is indeed in NPsin
e, given a sequential history, we 
an easily 
he
kthat it is legal and equivalent to H.4 Consisten
y Conditions with Con-straintsDue to Theorem 1 and Theorem 2 it is unlikely thatthere exists an eÆ
ient algorithm that realizes sequen-tial 
onsisten
y (linearizability), that is, allows all se-quentially 
onsistent (linearizable) histories and onlythese. Thus we need to impose 
onstraints on ea
hhistory to ensure eÆ
ient implementations of 
onsis-tent DSMs. Raynal et al [20℄ identi�ed two su
h 
on-straints, namelyWW -and OO-
onstraints, for sequen-tial 
onsisten
y. We extend their work in two ways: weshow that (1) their results extend to the 
ase when theoperations 
an span multiple obje
ts, and (2) similarresults also hold for linearizability. Before pro
eedingfurther, we give some de�nitions we use in this se
tion.Two a
tions are said to be 
on
i
ting i� both a
ton the same obje
t and at least one of them is a write2A s
hedule S is stri
t view serializable if it is view equivalentto a serial s
hedule in whi
h transa
tions that do not overlap inS are in the same order as in S.3a s
hedule augmented with an initial transa
tion writing val-ues to ea
h entity and a �nal transa
tion reading values fromea
h entity.



a
tion. Two operations are said to be 
on
i
ting i�one of them 
ontains an a
tion that 
on
i
ts with somea
tion of the other. The operations �; �; 
 are said tointerfere in history H i� 
 writes to some obje
t that� reads from �. In Figure 1, � 
on
i
ts with �, andoperations Æ, � and � interfere.A history H satis�es WO-
onstraint i� any pairof operations performing write a
tions on a 
ommonobje
t are ordered under ;H. A history H satis�esWW -
onstraint i� any pair of operations performingwrite a
tions are ordered under;H. A historyH satis-�es OO-
onstraint i� any pair of 
on
i
ting operationsare ordered under ;H.We will see that these 
onstraints permit an eÆ-
ient implementation of 
onsisten
y 
onditions. In thisse
tion, we prove that legality is the ne
essary andsuÆ
ient 
ondition for an exe
ution history H underWW - or OO-
onstraint to be admissible.Theorem 3 Let H = (op(H);;H) be an exe
utionhistory. If H is admissible then it is legal.Proof: Assume, on the 
ontrary, that H, is not le-gal. Therefore there exist operations �, � and 
 thatinterfere in H su
h that � ;H 
 ;H � holds. LetS = (op(S);;S ) be the legal sequential history equiv-alent to H that respe
ts ;H. Thus � ;S 
 ;S �holds. Sin
e S has the same reads-from relation as H,therefore S is not legal - a 
ontradi
tion.We now show that legality is suÆ
ient to guaranteethat a historyH under OO-
onstraint is admissible. Soa proto
ol based on OO-
onstraint just needs to ensurethe legality of all its operations and that will guaranteethat all exe
utions generated by it are admissible.Theorem 4 Let H = (op(H);;H) be an exe
utionhistory under OO-
onstraint. If H is legal then it isadmissible.Proof: Sin
e ;H de�nes an irre
exive partial orderon op(H), extend ;H to any total order on op(H),say ;S . Now we have to show that ;S de�nes alegal relation on op(H). Let �, � and 
 be oper-ations that interfere in H. Sin
e history is underOO-
onstraint, either 
 ;H � or � ;H 
 holds. Inthe �rst 
ase, 
 ;S � ;S � holds. In the se
ond 
ase,sin
e the history H is legal and under OO-
onstraint,� ;S �;S 
 holds. Sin
e the operations �, � and
 were 
hosen arbitrarily, S = (op(S) = op(H);;S) islegal. Thus H is admissible.We next show that legality is a suÆ
ient 
onditionto guarantee admissibility of a history under WW -
onstraint. A history under WW -
onstraint permitsthe operations, one of whi
h only reads from an obje
t

and the other writes on the same obje
t, to exe
ute
on
urrently. Therefore we de�ne a logi
al read-writepre
eden
e, denoted by ;rw, between two su
h op-erations whi
h are not ordered under ;H. LetH = (op(H);;H) be an exe
ution history and let�, � and 
 be operations that interfere in H. Then� ;H 
 ) �;rw 
. We de�ne an extended relationas ;eH= (;H [;rw)+.Lemma 5 Let H = (op(H);;H) be an exe
ution his-tory under WO-
onstraint. If ;eH is a
y
li
 then H isadmissible.Proof: Let ;S be any total order that extends ;eH(it 
an be done sin
e ;eH is a
y
li
). We now need toprove that ;S is legal. Let �, � and 
 be operationsthat interfere in H. Sin
e H is under WO-
onstraint,either 
 ;H � or � ;H 
 holds. In the �rst
ase, 
 ;S � ;S � holds. In the se
ond 
ase, wehave � ;rw 
, and therefore � ;S � ;S 
 holds.Hen
e 
 
annot be ordered between � and � in S.Sin
e operations �, � and 
 were 
hosen arbitrarily,S = (op(S) = op(H);;S) is legal. Thus ;H is admis-sible.Lemma 6 Let H = (op(H);;H) be an exe
ution his-tory under WW -
onstraint. If H is legal then ;eH isa
y
li
.Proof: Sin
e ;H is an irre
exive transitive relation,any 
y
le in ;eH must involve at least one pair of op-erations ordered by ;rw. We will prove that ;eH isa
y
li
 by indu
tion on number of pair of operations nordered by ;rw relation in a 
y
le.Base Case (n = 1) : Any 
y
le is of the form�;rw 
 ;H � (;H is transitive). By de�nition of;rw, there exists an operation � su
h that �, � and
 interfere in H, and � ;H 
 holds. Therefore� ;H 
 ;H � holds, and hen
e H is not legal - a 
on-tradi
tion.Indu
tion Step : Consider a 
y
le with n > 1 pairof operations ordered by ;rw relation. The 
y
le is ofthe form � ;rw 
 ; � � � ;rw Æ ; � � � ; �. Sin
eH is under WW -
onstraint, either 
 ;H Æ or Æ ;H 
holds. In either 
ase we have a 
y
le involving less thann pair of operations ordered by ;rw relation. Hen
eby indu
tion ;eH is a
y
li
.Theorem 7 Let H = (op(H);;H) be an exe
utionhistory under WW -
onstraint. If H is legal then itis admissible.Theorem 8 Let H = (op(H);;H) be an exe
utionhistory under OO- or WW -
onstraint. Then H is ad-missible if and only if it is legal.



A proto
ol based on OO- or WW -
onstraint onlyneeds to ensure that all reads are legal and that willguarantee that all exe
utions generated by it are ad-missible.5 Implementation of Consisten
y Con-ditionsThis se
tion presents the implementations of sequen-tial 
onsisten
y and linearizability in an asyn
hronousmessage passing system and proves their 
orre
tness.Our proto
ols assume that the pro
esses and the 
om-muni
ation 
hannels are reliable.Ea
h pro
ess maintains a private 
opy M of the ab-stra
t shared memory M. We divide the set of op-erations into two types: operations that perform onlyread a
tions, denoted by READ, and operations thatperform at least one write a
tion, denoted byWRITE.The result of an operation � on appli
ation to memoryM is represented by �(M). Our both proto
ols arebased on WW -
onstraint and rely on atomi
 broad-
asting for syn
hronization of write operations. If theunderlying hardware provides an atomi
 broad
ast fa-
ility, these proto
ols 
an be implemented eÆ
iently.In addition to a 
opy of the shared memory, ea
hpro
ess also maintains a ve
tor ts of natural num-bers, one entry for ea
h obje
t, 
alled timestamp. Twotimestamps 
an be 
ompared by 
omparing their 
om-ponents. A timestamp tsk � tsl if ea
h of tsk's 
ompo-nents is less than or equal to tsl's 
orresponding 
om-ponent; tsk � tsl if tsk � tsl and tsk is not equal totsl.We asso
iate a timestamp with ea
h operation �whi
h is denoted by ts(�). Before des
ribing the pro-to
ol, we show that if timestamps of the operationssatisfy 
ertain properties, then the exe
ution is admis-sible.Lemma 9 Let H = (op(H);;H) be an exe
ution his-tory su
h that ;H is an irre
exive transitive 
losureof ;, where ; is some irre
exive relation de�ned onop(H) (whi
h in
ludes pro
ess orders and reads-fromrelation). Let ts(�) denote the timestamp of an oper-ation �. If the timestamp satis�es the following prop-erties :1. If �; � then(a) ts(�) � ts(�),(b) � writes on x) ts(�)[x℄ < ts(�)[x℄, and(
) �; � 2 READ ) resp(�) < inv(�)2. If � reads from � the value of obje
t x then(a) � writes on x) ts(�)[x℄ = ts(�)[x℄ � 1,(b) � does not write on x) ts(�)[x℄ = ts(�)[x℄

3. 8�; � 2 WRITE, either �; � or � ; �.then H is admissible.Proof: Intuitively, the properties 1(a), 1(b) and 1(
)imply that the relation ; is a
y
li
 and hen
e H isindeed a valid exe
ution history. The properties 2(a)and 2(b) imply that a read a
tion does not read froman overwritten write a
tion and the property 3 impliesthat the history satis�es WW -
onstraint.We 
laim that ; is a
y
li
.Assume, on the 
ontrary, that ; 
ontains a 
y-
le, namely �; � ; � � �; 
 ; �. If there ex-ists at least one operation Æ in the 
y
le su
hthat Æ 2WRITE, then by properties 1(a) and1(b) we get ts(�) � ts(�) � � � � ts(Æ) � � � � � ts(�).Hen
e ts(�) � ts(�), a 
ontradi
tion. There-fore, none of the operations in the 
y
le is inWRITE. Hen
e all operations of the 
y
leare in READ, and from property 1(
) we getresp(�) < inv(�) < resp(�) < � � � < inv(�) < resp(�),again a 
ontradi
tion. Therefore we 
an 
on
lude that; is a
y
li
 and ;H is an irre
exive transitive rela-tion. Using property 3 we 
an infer that H satis�esWW -
onstraint.Now we need to show that H is legal. Assumeagain, on the 
ontrary, that the history is not le-gal. Hen
e there exist operations �, � and 
 andan obje
t x su
h that �, � and 
 interfere in Hon obje
t x and � ;H 
 ;H � holds. Note thatsin
e ;H is an irre
exive transitive 
losure of ;,properties 1(a) and 1(b) also hold for ;H. There-fore we have ts(�)[x℄ < ts(
)[x℄. There are two 
asesto 
onsider: � only reads from x or it also writesto x. In the �rst 
ase, by property 2(b), we getts(�)[x℄ = ts(�)[x℄ and ts(
)[x℄ � ts(�)[x℄ and hen
ets(�)[x℄ < ts(�)[x℄, a 
ontradi
tion. In the se
ond 
ase,by property 2(a), we get ts(�)[x℄ = ts(�)[x℄ � 1 andts(
)[x℄ < ts(�)[x℄. Hen
e ts(�)[x℄ < ts(�)[x℄, againa 
ontradi
tion. Therefore H is legal whi
h togetherwith Theorem 8 implies that exe
ution history H isadmissible.Now we present the proto
ols for implementing se-quential 
onsisten
y and linearizability. For ea
h pro-to
ol, we asso
iate a timestamp with ea
h operationand then show that the timestamps satisfy the proper-ties required in the Lemma 9.5.1 Implementation of Sequential Consis-ten
yThe proto
ol in Figure 2 
onsists of an initializationroutine and three basi
 a
tions ea
h of whi
h is exe-
uted lo
ally and atomi
ally. The statements en
losedin 
urly bra
kets are not part of the proto
ol but areused to prove the 
orre
tness of the algorithm.



Pro
ess Pi/* Initialization */forea
h x 2M doM [x℄ ?f ts[x℄ 0 g/* � 2 READ */return(�(M))/* � 2WRITE */atomi
ally broad
ast the operation to all pro
esses/* On re
eiving atomi
 broad
ast of operation �from pro
ess Pj */apply the operation to the memory Mf forea
h x su
h that � writes on x do ts[x℄ ts[x℄ + 1gif pro
(�) = Pi then return(�(M))Figure 2: Proto
ol for Sequential Consisten
yTheorem 10 All the exe
utions generated by the pro-to
ol in Figure 2 are sequentially 
onsistent.Proof: Consider any exe
ution H generated by theproto
ol. Let the reads-from relation ;rf be de�nedas: a read a
tion of an operation � reads from the lastwrite a
tion on that obje
t in pro
(�)'s memory. Let;ww denotes the order in whi
h operations inWRITEare broad
asted. We de�ne ; (as in Lemma 9) to bethe union of pro
ess orders (;P ), reads-from relation(;rf ) and atomi
 broad
ast order (;ww). Note that�;P � or � ;rf � or � ;ww � imply that � is ap-plied to pro
(�)'s memory before �. Let tsi(�) denotethe timestamp of pro
ess Pi just after appli
ation of �to Pi's memory.We de�ne the timestamp of an operation � issued bypro
ess Pi as ts(�) = tsi(�). Note that only operationsin WRITE modify the timestamp ts. Sin
e all oper-ations in WRITE are applied in same order on everypro
ess, therefore for every operation � 2WRITE thefollowing holds: for every pro
ess Pj , ts(�) = tsj(�).If �; � holds, then � is applied to pro
(�)'s mem-ory before �. Sin
e ve
tor timestamp never de
reases,the property 1(a) holds. If � writes on obje
t x, thenpro
(�) will in
rement tspro
(�)[x℄ by 1 after applying� to its memory. Therefore the property 1(b) holds.Sin
e operations belonging to READ 
an only be or-dered by pro
ess-order, property 1(
) trivially follows.Property 2(a) and 2(b) follow from the fa
t thatsin
e � reads from � the value of obje
t x, � is the lastoperation to write on x in pro
(�)'s memory. There-fore tspro
(�)[x℄ just before the appli
ation of � is equalto ts(�)[x℄. Now if � writes on x then it in
rements

the entry for x, and therefore ts(�)[x℄ = ts(�)[x℄ � 1,otherwise ts(�)[x℄ = ts(�)[x℄.Property 3 follows from the fa
t that all operationsin WRITE are atomi
ally broad
asted and hen
e or-dered under ;ww.Hen
e, by Lemma 9, the history H is sequentially
onsistent, and therefore the proto
ol only generatessequentially 
onsistent exe
utions.5.2 Implementation of LinearizabilityThe proto
ol in Figure 3 
onsists of an initializationroutine and �ve basi
 a
tions ea
h of whi
h is exe
utedlo
ally and atomi
ally. Ea
h pro
ess maintains anotherve
tor timestamp ts0 whi
h re
ords the latest writes byany pro
ess when it issues an operation in READ.Pro
ess Pi/* Initialization */forea
h x 2 M doM [x℄; ts[x℄ ?; 0M 0[x℄; ts0[x℄ ?; 0/* � 2 READ */send query to all the pro
esses for obje
ts 2M/* � 2 WRITE */atomi
ally broad
ast the operation to all pro
esses/* On re
eiving atomi
 broad
ast of operation �from pro
ess Pj */apply the operation to the memory Mforea
h x su
h that � writes on x do ts[x℄ ts[x℄ + 1if pro
(�) = Pi then return(�(M))/* On re
eiving query for set of obje
ts Xjfrom pro
ess Pj */send (ts;M) to pro
ess Pj/* On re
eiving response, denoted by (ts0j ;M 0j),for the query from pro
ess Pj */forea
h x 2 M doif ts0j [x℄ > ts0[x℄ then M 0[x℄; ts0[x℄ M 0j [x℄; ts0j [x℄if all the responses for the last query have been re
eivedthen return(�(M 0))Figure 3: Proto
ol for LinearizabilityTheorem 11 All the exe
utions generated by the pro-to
ol in Figure 3 are linearizable.Proof: The proof is similar to the proof of Theorem 10but is more involved. Due to the la
k of spa
e we willnot present the proof here. The interested reader 
anrefer to the te
hni
al report [19℄.



6 Con
lusionWe extend the traditional model of 
on
urrent ob-je
ts to allow operations that span multiple obje
ts.We give the 
onsisten
y 
onditions in this model, ana-lyze their veri�
ation 
omplexity and give eÆ
ient al-gorithms for ensuring them in distributed systems.Referen
es[1℄ Sarita V. Adve and K. Ghara
horloo. \Shared MemoryConsisten
y Models: A Tutorial". IEEE Computer,pages 66{76, De
ember 1996.[2℄ Y. Afek, G. Brown, and M. Merritt. \Lazy Ca
hing".ACM Transa
tions on Programming Language andSystems, 15(1):182{205, January 1993.[3℄ Mustaque Ahamad, Phillip W. Hutto, and RanjitJohn. \Causal memory: De�nitions, Implementationand Programming". Te
hni
al Report 93/55, Col-lege of Computing, Georgia Institute of Te
hnology,September 1993.[4℄ Hagit Attiya and Jennifer L. Wel
h. \Sequential Con-sisten
y versus Linearizability". ACM Transa
tions onComputer Systems, 12(2):91{122, May 1994.[5℄ P. Bernstein, V. Hadzila
os, and N. Goodman. \Con-
urren
y Control and Re
overy in Database Systems".Addison-Wesley, Reading, MA, 1987.[6℄ Robert D. Blumofe, Matteo Frigo, Christopher F. Jo-erg, Charles E. Leiserson, and Keith H. Randall. \Dag-Consistent Distributed Shared Memory". In Pro
eed-ings of the 10th International Parallel Pro
essing Sym-posium (IPPS), pages 132{141, April 15-19, 1996.[7℄ C. J. Fidge. \Logi
al Time in Distributed ComputingSystems". IEEE Computer, 24(8):28{33, 1991.[8℄ Vijay K. Garg and Mi
hel Raynal. \Normality: A Con-sisten
y Conditions for Con
urrent Obje
ts". Te
hni-
al Report TR-PDS-1996-010, The University of Texasat Austin, May 1996. To appear in Parallel Pro
essingLetters.[9℄ K. Ghara
horloo, D. Lenoski, J. Laudon, P. Gibbons,A. Gupta, and J. Hennessy. \Memory Consisten
yand Event Ordering in S
alable Shared-Memory Mul-tipro
essors". In Pro
eedings of the 17th Annual Inter-national Symposium on Computer Ar
hite
ture, pages15{26, May 1990.[10℄ Mi
hael Greenwald and David Cheriton. \The SynergyBetween Non-blo
king Syn
hronization and OperatingSystem Stru
ture". In Pro
eedings of the Se
ond Sym-posium on Operating System Design and Implementa-tion, pages 123{136, USENIX, Seattle, O
tober 1996.[11℄ Mauri
e Herlihy. \Wait-Free Syn
hronization". ACMTransa
tions on Programming Language and Systems,11(1):124{149, January 1991.[12℄ Mauri
e P. Herlihy and Jeannette M. Wing. \Lin-earizability: A 
orre
tness 
ondition for 
on
urrent ob-je
ts". ACM Transa
tions on Programming Languageand Systems, 12(3):463{492, July 1990.

[13℄ P. Keleher, A. L. Cox, S. Dwarkadas, andW. Zwaenepoel. \Treadmarks: Distributed SharedMemory on Standard Workstations and operating sys-tems". In Pro
eedings of the 1994 Winter Usenix Con-feren
e, pages 115{132, January 1994.[14℄ Leslie Lamport. \How to make a multipro
essor 
om-puter that 
orre
tly exe
utes multipro
ess programs".IEEE Transa
tions on Computers, C28(9):690{691,September 1979.[15℄ Ri
hard J. Lipton and Jonathan S. Sandberg. \PRAM:A s
alable shared memory". Te
hni
al Report 180-88,Department of Computer S
ien
e, Prin
eton Univer-sity, September 1988.[16℄ Friedemann Mattern. \Virtual time and global statesof distributed systems". International Workshop onParallel and Distributed Algorithms, pages 215{226,O
tober 1988.[17℄ Marios Mavroni
olas and Dan Roth. \Sequential Con-sisten
y and Linearizability: Read/Write obje
ts". InPro
eedings of Twenty-Ninth Annual Allerton Con-feren
e on Communi
ation, Control and Computing,pages 683{692, O
tober 1991.[18℄ Jayadev Misra. \Axioms for memory a

ess in asyn-
hronous hardware systems". ACM Transa
tions onProgramming Language and Systems, 8(1):142{153,January 1986.[19℄ Neeraj Mittal and Vijay K. Garg. \Consisten
y Condi-tions for Multi-Obje
t Distributed Operations". Te
h-ni
al Report TR-PDS-1998-005, The University ofTexas at Austin, 1998.[20℄ M. Mizuno, M. Raynal, and J.Z. Zhou. \SequentialConsisten
y in Distributed Systems: Theory and Im-plementation". Te
hni
al Report 871, INRIA, Rennes,Fran
e, O
tober 1994.[21℄ C. H. Papadimitriou. \The Theory of Con
urren
yControl". Computer S
ien
e Press, May 1986.[22℄ Ri
hard N. Taylor. \Complexity of Analyzing the Syn-
hronization Stru
ture of Con
urrent Programs". A
taInformati
a, 19:57{84, 1983.


