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has two advantages over it. First, it is more onve-nient to use beause it preserves real-time ordering ofoperations, and hene orresponds more naturally tothe intuitive notion of atomi exeution of operations.Consequently, it is easier to develop programs assuminga linearizable implementation of shared objets. Se-ond, linearizability satis�es the loal property, that isthe system as a whole is linearizable whenever the im-plementation of eah objet is linearizable.These and other onsisteny onditions [15, 3, 8, 6,13, 9℄ are based on the model in whih an operationis invoked on a single objet. In fat, the traditionalDistributed Shared Memory (DSM) provides atomiityonly at levels of read and write on single objets. Whilethis may be appropriate for models at the level of hard-ware, they do not provide an expressive [11℄ and on-venient abstration for onurrent programming. Her-lihy [12℄ extended the model to arbitrary operationson single objets. That allows the representation ofmore powerful onurrent objets, for example test andset, feth and add, FIFO queues and staks. How-ever, the model assumes that all operations are unary,that is, they are invoked on a single objet. Thereare many appliations in whih operations are morenaturally expressed as enompassing multiple objets.For example, operations like double ompare and swap(DCAS)1 [10℄ annot be eÆiently expressed in thatmodel. DCAS redues the alloation and opy ostthereby permitting a more eÆient implementation ofonurrent objets. As another appliation, if a trans-ation in a database is viewed as an atomi operationthen it is lear that it operates, in general, on multipledata items.In this paper, we develop a framework for onsis-teny onditions for distributed objets with multi-objet operations (or multi-methods). We introduea formal model for exeution of operations that spanmultiple objets. In this model, eah proess exeutesmultiple operations and eah operation onsists of mul-1DCAS atomially updates loations addr1 and addr2 to val-ues new1 and new2 respetively if addr1 holds value old1 andaddr2 holds old2 when the operation is invoked.



tiple ations (possibly on di�erent objets). With theinreasing popularity of distributed objets it is impor-tant to understand the onditions for their onsistenyin presene of repliation and ahes.Besides pratial impliations, our model has nietheoretial onsequenes. It serves to unify results fromtwo areas. By restriting the number of operations perproess to one, the model redues to that of databasetransations. Similarly, if we restrit eah operationto exeute ations on a single objet then the modelredues to that of distributed shared memory [1℄ ononurrent objets [12℄. Thus with our model, one setof onsisteny onditions, their implementation, andomplexity results are appliable to both the areas.It has been shown that determining whether a givenexeution is sequentially onsistent when the opera-tions are restrited to read/write on a single objet isan NP-omplete problem [22℄. We show that the prob-lem of heking whether a given history is linearizableis also NP-omplete in our model. This is true evenwhen the reads-from relation (de�ned later) is known.Note that when the operations are restrited to a sin-gle read/write register and the reads-from relation isknown, then linearizability an be heked in polyno-mial time [18℄.We show that exeution onstraints proposed byRaynal et al [20℄ to ensure eÆient implementation forsequential onsisteny an also be used for operationsthat span multiple objets. Spei�ally, under theseexeution onstraints, it is neessary and suÆient toensure legality of reads to guarantee sequential onsis-teny (and linearizability).Finally, we provide algorithms for ensuring proposedonsisteny onditions in a distributed system. Sev-eral papers [2, 4, 17, 20℄ have proposed sequentiallyonsistent implementations for read/write objets. At-tiya and Welh [4℄ provide sequentially onsistent andlinearizable implementations for read/write objets,FIFO queues and staks. In addition, they also givean analysis of the response time of their implementa-tions. But their implementation for linearizability as-sumes that loks are perfetly synhronized and thereis an upper bound on the delay of the message. Ouralgorithm for sequential onsisteny is an extension ofthe algorithm proposed by them. We show that theiralgorithm also works for multi-objet operations. Moreimportantly, we provide an algorithm for implementa-tion of linearizability in an asynhronous distributedsystem whih does not make any assumptions aboutlok synhronization or the message delay.It should be noted that there may be a temptation tomodel multi-methods by de�ning an aggregate objetthat represents the state of all objets. However, this

tehnique has serious drawbaks. For example, if thereare n read-write registers and one multi-method sumthat takes two registers as arguments, the tehniquewill fore all registers to be treated as one objet. Thisresults in loss of loality and onurreny.This paper is organized as follows. Setion 2 givesour model of a onurrent system with multi-objetoperations and presents the onsisteny onditions ap-propriate in this model. In Setion 3 we show the NP-ompleteness of veri�ation of linearizability. Setion 4imposes additional onstraints on exeution for eÆientimplementation of distributed objets. In Setion 5we present algorithms for implementation of sequentialonsisteny and linearizability in distributed systems.2 De�nitions2.1 System ModelA onurrent system onsists of a �nite set of se-quential threads of ontrol alled proesses, denotedby P1; P2; : : : ; Pn, that ommuniate through a set ofshared data strutures alled objets (or onurrent ob-jets) X . Eah objet an be aessed by read andwrite ations (same as traditional operation on a sin-gle objet). A write into an objet de�nes a new valuefor the objet; a read allows to obtain the value of theobjet. A write ation on an objet x is denoted byw(x)v, where v is the value written to x by this ation.A read ation on x is denoted by r(x)v, where v is thevalue of objet x returned by this ation.Proesses are sequential and manipulate objetsthrough operations. An operation is a sequene of a-tions possibly spanning several objets. Eah proessapplies a sequene of operations to objets, alternatelyissuing an invoation and then reeiving the assoiatedresponse. Let �(arg; res) be an operation issued at Pi;arg and res denote �'s input and output parametersrespetively. Exeution of an operation takes ertaintime; this is modeled by two events, namely an invoa-tion event and a response event. For an operation �,invoation and response events, inv(�(arg)) at Pi andresp(�(res)) at Pi, will be abbreviated as inv(�) andresp(�) when parameters and proess identity are notneessary. An event e ours-before event f , denotedby e < f , i� event e preedes event f in real time.We will use greek symbols �, �, , Æ, et. to denoteoperations.If two operations � and � are issued by the sameproess, say Pi, and � is issued before �, then we say� preedes � in Pi's proess order and is written as� ;Pi �. If proess identity is not important thenproess order is denoted by;P . In Figure 1, �;P1 �.If a read ation r(x)v reads the value written bythe write ation w(x)v, then r(x)v is said to read-from



w(x)v. An operation � reads-from a distint operation� the value of objet x, written as � ;rf �, if thereexists at least one read ation of � that reads from somewrite ation of � the value of objet x. In Figure 1,�;rf Æ and � ;rf Æ.We assume that an imaginary operation that writesto all objets is performed to initialize the objets be-fore the �rst operation by any proess is exeuted. Inall the examples onsidered in this paper, unless spe-i�ed otherwise, we assume that initial value of all ob-jets is 0.2.2 Histories
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= r(v)0 w(x)1 w(z)3Figure 1: An exeution history H0Informally, an exeution of a onurrent system ismodeled by a history, whih is a �nite sequene of op-eration invoation and response events. Formally, ahistory H is denoted by a tuple (op(H);;H), whereop(H) is the set of operations and;H is some irreex-ive transitive relation de�ned on the set of operationswhih inludes the partial order imposed by proessorders and reads-from relation.A history S is sequential i� (1) its �rst event is aninvoation event, (2) eah invoation event is immedi-ately followed by a mathing response event, and (3);S is a total order onsistent with the order of oper-ation invoation events.A proess subhistory or loal history of Pi of a his-tory H, denoted by HjPi, is the subsequene of allevents in H assoiated with the proess Pi. A historyis well-formed i� eah proess subhistory is sequential.All histories onsidered in this paper are assumed tobe well-formed.Two histories H and G are equivalent i� for ev-ery proess Pi, HjPi = GjPi and they have the samereads-from relation.Intuitively, a read ation is legal if it does not readfrom an overwritten write ation. It should be notedthat if there exists a write ation w(x)v before a readation r(x)u in an operation (suh that w(x)v is thelast write on x before r(x)u) then u must be equal tov. In the rest of the paper, we ignore suh read ations.Let op(a(x)v) denote the operation assoiated with the

ation a(x)v. A read ation r(x)v is legal i� there existsa write ation w(x)v suh that r(x)v reads from w(x)vand there does not exist another write ation w0(x)usuh that op(w(x)v) ;H op(w0(x)u) ;H op(r(x)v).An operation is legal i� all its read ations are legal.A history H is legal i� all its operations are legal.A history H is admissible i� it is equivalent to somelegal sequential history that respets ;H.2.3 Consisteny ConditionsA onsisteny poliy makes the behavior of a on-urrent system equivalent to that of a non-onurrentsystem. A onsisteny ondition provides guaranteesabout the values returned by data aesses in the pres-ene of interleaved and/or overlapping aesses. Se-quential Consisteny and Linearizability are two wellknown onsisteny onditions. We extend their de�ni-tions to inlude operations on multiple objets. Ourde�nitions are based on the de�nition of admissibilitywith the partial order ;H appropriately de�ned.Let pro(�) and objets(�) denote the proess andthe set of objets respetively assoiated with an oper-ation �. In Figure 1, pro(�) = P1 and objets(�) =fx; y; zg. The operations � and � are related byreal-time order, denoted by � ;t �, i� the responseof � is reeived before the invoation of �, that is,resp(�) < inv(�). The operations � and � are re-lated by objet order, denoted by � ;X �, i� boththe operations share an objet and the response of� is reeived before the invoation of �, that is,(objets(�) \ objets(�) 6= �) ^ (resp(�) < inv(�)).In Figure 1, �;t �, � ;t � and � ;X �.Sequential Consisteny requires that all data oper-ations appear to have exeuted atomially, in some se-quential order that is onsistent with the order seen byindividual proesses. Let H = (op(H);;H) be an exe-ution history, where ;H inludes proess orders, andreads-from relation. Then H is sequentially onsistenti� it is admissible. If operations are restrited to a sin-gle read or write ation, then our de�nition redues toLamport's de�nition of sequential onsisteny.Linearizability requires that: (1) eah operationshould appear to take e�et instantaneously somewherebetween its invoation and response, and (2) the orderof non-onurrent operations should be preserved. LetH = (op(H);;H) be an exeution history, where ;Hinludes proess orders, reads-from relation and real-time order. Then H is linearizable i� it is admissible.Garg and Raynal [8℄ proposed another de�nition ofonsisteny whih is based on objet-order rather thanreal-time order. Let H = (op(H);;H) be an exeutionhistory, where ;H inludes proess orders, reads-fromrelation, and objet order. Then H is normal i� itis admissible. Normality is less restritive than lin-



earizability sine it does not order two non-onurrentoperations unless they at on a ommon objet. Theresults of Setion 3 and Setion 4 also hold for normal-ity. Sine the protool for linearizability also imple-ments normality, we will fous on linearizability in therest of the paper.3 NP-ompleteness of ConsistenyConditionsIt has been shown that asertaining whether a givenexeution is sequentially onsistent when the opera-tions are restrited to a single objet is an NP-ompleteproblem [22℄. Sine our model is a generalization of thetraditional DSM model, determining whether a givenexeution is sequentially onsistent in our model is NP-omplete too. Misra proved that heking whetheran exeution satis�es atomi onsisteny is solvablein polynomial time when reads-from relation is known[18℄. It turns out that this is not the ase when the op-erations an enompass multiple objets. In this se-tion we show that determining whether a given exe-ution is linearizable is an NP-omplete problem whenthe operations are allowed to span multiple objets andeven when reads-from relation is known. We will usethe results in databases to prove the NP-ompletenessof linearizability.Muh work on databases uses serializability [21, 5℄as the basi orretness ondition for onurrent om-putations. Several notions of equivalene suh as viewequivalene, strit view equivalene, and onit equiv-alene are de�ned [21℄. If we restrit eah proess toontain a single operation (one for eah transation)then the notion of orretness in the database worldan be viewed as speial ase of the onsisteny on-ditions in our model. For instane, view equivalenean be onsidered as a speial ase of sequential on-sisteny; strit view equivalene an be viewed as aspeial ase of linearizability, and onit equivalenean be onsidered as a speial ase of normality un-der OO-onstraint (de�ned later). Sine determiningwhether a shedule is strit view serializable is an NP-omplete problem, hene heking whether a history islinearizable is also an NP-omplete problem. It shouldbe noted that heking for linearizability of historyH isnot same as heking for ayliity of ;H. In partiu-lar,;H may be ayli but H may not be linearizable.Theorem 1 Let H = (op(H);;H) be an exeutionhistory. Then it is NP-omplete to determine whetherthe history H is sequentially onsistent.Theorem 2 Let H = (op(H);;H) be an exeutionhistory. Then it is NP-omplete to determine whetherthe history H is linearizable.

Proof: To prove that determining whether a his-tory H is linearizable is NP-hard we reduestrit view serializability2 to linearizability. LetS = (trans(S);;S) be a shedule of transationsin a database onsisting of �nite set of entitiesE = fx1; x2; : : :g, where trans(S) denote the set oftransations T1; T2; : : : ; Tn, and ;S represents theorder of ations in the shedule. We onstrut adistributed system onsisting of sequential proessesP0; P1; P2; : : : Pn; P1, one for eah transation in theaugmented shedule3, and shared objets E. For eahstep in the shedule there is a orresponding ation.An ation ai reads from ation aj if the orrespondingstep of ation ai reads-from the orresponding step ofation aj in the shedule S. Eah proess Pi exeutesa single operation �i whose ations orrespond to thesteps of the transation Ti exeuted in the same or-der. The �rst and last steps of a transation de�ne theinvoation and response events respetively of the or-responding operation. It is easy to see that two trans-ations are onurrent in the shedule S if and onlyif the orresponding operations are onurrent in H.The historyH of the system is the history (op(H);;H)where op(H) is the set of transations and;H onsistsof reads-from relation and real-time order. It an beeasily proved that shedule S is strit view serializableif and only if the history H is linearizable. Moreover, itan be easily veri�ed that the problem is indeed in NPsine, given a sequential history, we an easily hekthat it is legal and equivalent to H.4 Consisteny Conditions with Con-straintsDue to Theorem 1 and Theorem 2 it is unlikely thatthere exists an eÆient algorithm that realizes sequen-tial onsisteny (linearizability), that is, allows all se-quentially onsistent (linearizable) histories and onlythese. Thus we need to impose onstraints on eahhistory to ensure eÆient implementations of onsis-tent DSMs. Raynal et al [20℄ identi�ed two suh on-straints, namelyWW -and OO-onstraints, for sequen-tial onsisteny. We extend their work in two ways: weshow that (1) their results extend to the ase when theoperations an span multiple objets, and (2) similarresults also hold for linearizability. Before proeedingfurther, we give some de�nitions we use in this setion.Two ations are said to be oniting i� both aton the same objet and at least one of them is a write2A shedule S is strit view serializable if it is view equivalentto a serial shedule in whih transations that do not overlap inS are in the same order as in S.3a shedule augmented with an initial transation writing val-ues to eah entity and a �nal transation reading values fromeah entity.



ation. Two operations are said to be oniting i�one of them ontains an ation that onits with someation of the other. The operations �; �;  are said tointerfere in history H i�  writes to some objet that� reads from �. In Figure 1, � onits with �, andoperations Æ, � and � interfere.A history H satis�es WO-onstraint i� any pairof operations performing write ations on a ommonobjet are ordered under ;H. A history H satis�esWW -onstraint i� any pair of operations performingwrite ations are ordered under;H. A historyH satis-�es OO-onstraint i� any pair of oniting operationsare ordered under ;H.We will see that these onstraints permit an eÆ-ient implementation of onsisteny onditions. In thissetion, we prove that legality is the neessary andsuÆient ondition for an exeution history H underWW - or OO-onstraint to be admissible.Theorem 3 Let H = (op(H);;H) be an exeutionhistory. If H is admissible then it is legal.Proof: Assume, on the ontrary, that H, is not le-gal. Therefore there exist operations �, � and  thatinterfere in H suh that � ;H  ;H � holds. LetS = (op(S);;S ) be the legal sequential history equiv-alent to H that respets ;H. Thus � ;S  ;S �holds. Sine S has the same reads-from relation as H,therefore S is not legal - a ontradition.We now show that legality is suÆient to guaranteethat a historyH under OO-onstraint is admissible. Soa protool based on OO-onstraint just needs to ensurethe legality of all its operations and that will guaranteethat all exeutions generated by it are admissible.Theorem 4 Let H = (op(H);;H) be an exeutionhistory under OO-onstraint. If H is legal then it isadmissible.Proof: Sine ;H de�nes an irreexive partial orderon op(H), extend ;H to any total order on op(H),say ;S . Now we have to show that ;S de�nes alegal relation on op(H). Let �, � and  be oper-ations that interfere in H. Sine history is underOO-onstraint, either  ;H � or � ;H  holds. Inthe �rst ase,  ;S � ;S � holds. In the seond ase,sine the history H is legal and under OO-onstraint,� ;S �;S  holds. Sine the operations �, � and were hosen arbitrarily, S = (op(S) = op(H);;S) islegal. Thus H is admissible.We next show that legality is a suÆient onditionto guarantee admissibility of a history under WW -onstraint. A history under WW -onstraint permitsthe operations, one of whih only reads from an objet

and the other writes on the same objet, to exeuteonurrently. Therefore we de�ne a logial read-writepreedene, denoted by ;rw, between two suh op-erations whih are not ordered under ;H. LetH = (op(H);;H) be an exeution history and let�, � and  be operations that interfere in H. Then� ;H  ) �;rw . We de�ne an extended relationas ;eH= (;H [;rw)+.Lemma 5 Let H = (op(H);;H) be an exeution his-tory under WO-onstraint. If ;eH is ayli then H isadmissible.Proof: Let ;S be any total order that extends ;eH(it an be done sine ;eH is ayli). We now need toprove that ;S is legal. Let �, � and  be operationsthat interfere in H. Sine H is under WO-onstraint,either  ;H � or � ;H  holds. In the �rstase,  ;S � ;S � holds. In the seond ase, wehave � ;rw , and therefore � ;S � ;S  holds.Hene  annot be ordered between � and � in S.Sine operations �, � and  were hosen arbitrarily,S = (op(S) = op(H);;S) is legal. Thus ;H is admis-sible.Lemma 6 Let H = (op(H);;H) be an exeution his-tory under WW -onstraint. If H is legal then ;eH isayli.Proof: Sine ;H is an irreexive transitive relation,any yle in ;eH must involve at least one pair of op-erations ordered by ;rw. We will prove that ;eH isayli by indution on number of pair of operations nordered by ;rw relation in a yle.Base Case (n = 1) : Any yle is of the form�;rw  ;H � (;H is transitive). By de�nition of;rw, there exists an operation � suh that �, � and interfere in H, and � ;H  holds. Therefore� ;H  ;H � holds, and hene H is not legal - a on-tradition.Indution Step : Consider a yle with n > 1 pairof operations ordered by ;rw relation. The yle is ofthe form � ;rw  ; � � � ;rw Æ ; � � � ; �. SineH is under WW -onstraint, either  ;H Æ or Æ ;H holds. In either ase we have a yle involving less thann pair of operations ordered by ;rw relation. Heneby indution ;eH is ayli.Theorem 7 Let H = (op(H);;H) be an exeutionhistory under WW -onstraint. If H is legal then itis admissible.Theorem 8 Let H = (op(H);;H) be an exeutionhistory under OO- or WW -onstraint. Then H is ad-missible if and only if it is legal.



A protool based on OO- or WW -onstraint onlyneeds to ensure that all reads are legal and that willguarantee that all exeutions generated by it are ad-missible.5 Implementation of Consisteny Con-ditionsThis setion presents the implementations of sequen-tial onsisteny and linearizability in an asynhronousmessage passing system and proves their orretness.Our protools assume that the proesses and the om-muniation hannels are reliable.Eah proess maintains a private opy M of the ab-strat shared memory M. We divide the set of op-erations into two types: operations that perform onlyread ations, denoted by READ, and operations thatperform at least one write ation, denoted byWRITE.The result of an operation � on appliation to memoryM is represented by �(M). Our both protools arebased on WW -onstraint and rely on atomi broad-asting for synhronization of write operations. If theunderlying hardware provides an atomi broadast fa-ility, these protools an be implemented eÆiently.In addition to a opy of the shared memory, eahproess also maintains a vetor ts of natural num-bers, one entry for eah objet, alled timestamp. Twotimestamps an be ompared by omparing their om-ponents. A timestamp tsk � tsl if eah of tsk's ompo-nents is less than or equal to tsl's orresponding om-ponent; tsk � tsl if tsk � tsl and tsk is not equal totsl.We assoiate a timestamp with eah operation �whih is denoted by ts(�). Before desribing the pro-tool, we show that if timestamps of the operationssatisfy ertain properties, then the exeution is admis-sible.Lemma 9 Let H = (op(H);;H) be an exeution his-tory suh that ;H is an irreexive transitive losureof ;, where ; is some irreexive relation de�ned onop(H) (whih inludes proess orders and reads-fromrelation). Let ts(�) denote the timestamp of an oper-ation �. If the timestamp satis�es the following prop-erties :1. If �; � then(a) ts(�) � ts(�),(b) � writes on x) ts(�)[x℄ < ts(�)[x℄, and() �; � 2 READ ) resp(�) < inv(�)2. If � reads from � the value of objet x then(a) � writes on x) ts(�)[x℄ = ts(�)[x℄ � 1,(b) � does not write on x) ts(�)[x℄ = ts(�)[x℄

3. 8�; � 2 WRITE, either �; � or � ; �.then H is admissible.Proof: Intuitively, the properties 1(a), 1(b) and 1()imply that the relation ; is ayli and hene H isindeed a valid exeution history. The properties 2(a)and 2(b) imply that a read ation does not read froman overwritten write ation and the property 3 impliesthat the history satis�es WW -onstraint.We laim that ; is ayli.Assume, on the ontrary, that ; ontains a y-le, namely �; � ; � � �;  ; �. If there ex-ists at least one operation Æ in the yle suhthat Æ 2WRITE, then by properties 1(a) and1(b) we get ts(�) � ts(�) � � � � ts(Æ) � � � � � ts(�).Hene ts(�) � ts(�), a ontradition. There-fore, none of the operations in the yle is inWRITE. Hene all operations of the yleare in READ, and from property 1() we getresp(�) < inv(�) < resp(�) < � � � < inv(�) < resp(�),again a ontradition. Therefore we an onlude that; is ayli and ;H is an irreexive transitive rela-tion. Using property 3 we an infer that H satis�esWW -onstraint.Now we need to show that H is legal. Assumeagain, on the ontrary, that the history is not le-gal. Hene there exist operations �, � and  andan objet x suh that �, � and  interfere in Hon objet x and � ;H  ;H � holds. Note thatsine ;H is an irreexive transitive losure of ;,properties 1(a) and 1(b) also hold for ;H. There-fore we have ts(�)[x℄ < ts()[x℄. There are two asesto onsider: � only reads from x or it also writesto x. In the �rst ase, by property 2(b), we getts(�)[x℄ = ts(�)[x℄ and ts()[x℄ � ts(�)[x℄ and henets(�)[x℄ < ts(�)[x℄, a ontradition. In the seond ase,by property 2(a), we get ts(�)[x℄ = ts(�)[x℄ � 1 andts()[x℄ < ts(�)[x℄. Hene ts(�)[x℄ < ts(�)[x℄, againa ontradition. Therefore H is legal whih togetherwith Theorem 8 implies that exeution history H isadmissible.Now we present the protools for implementing se-quential onsisteny and linearizability. For eah pro-tool, we assoiate a timestamp with eah operationand then show that the timestamps satisfy the proper-ties required in the Lemma 9.5.1 Implementation of Sequential Consis-tenyThe protool in Figure 2 onsists of an initializationroutine and three basi ations eah of whih is exe-uted loally and atomially. The statements enlosedin urly brakets are not part of the protool but areused to prove the orretness of the algorithm.



Proess Pi/* Initialization */foreah x 2M doM [x℄ ?f ts[x℄ 0 g/* � 2 READ */return(�(M))/* � 2WRITE */atomially broadast the operation to all proesses/* On reeiving atomi broadast of operation �from proess Pj */apply the operation to the memory Mf foreah x suh that � writes on x do ts[x℄ ts[x℄ + 1gif pro(�) = Pi then return(�(M))Figure 2: Protool for Sequential ConsistenyTheorem 10 All the exeutions generated by the pro-tool in Figure 2 are sequentially onsistent.Proof: Consider any exeution H generated by theprotool. Let the reads-from relation ;rf be de�nedas: a read ation of an operation � reads from the lastwrite ation on that objet in pro(�)'s memory. Let;ww denotes the order in whih operations inWRITEare broadasted. We de�ne ; (as in Lemma 9) to bethe union of proess orders (;P ), reads-from relation(;rf ) and atomi broadast order (;ww). Note that�;P � or � ;rf � or � ;ww � imply that � is ap-plied to pro(�)'s memory before �. Let tsi(�) denotethe timestamp of proess Pi just after appliation of �to Pi's memory.We de�ne the timestamp of an operation � issued byproess Pi as ts(�) = tsi(�). Note that only operationsin WRITE modify the timestamp ts. Sine all oper-ations in WRITE are applied in same order on everyproess, therefore for every operation � 2WRITE thefollowing holds: for every proess Pj , ts(�) = tsj(�).If �; � holds, then � is applied to pro(�)'s mem-ory before �. Sine vetor timestamp never dereases,the property 1(a) holds. If � writes on objet x, thenpro(�) will inrement tspro(�)[x℄ by 1 after applying� to its memory. Therefore the property 1(b) holds.Sine operations belonging to READ an only be or-dered by proess-order, property 1() trivially follows.Property 2(a) and 2(b) follow from the fat thatsine � reads from � the value of objet x, � is the lastoperation to write on x in pro(�)'s memory. There-fore tspro(�)[x℄ just before the appliation of � is equalto ts(�)[x℄. Now if � writes on x then it inrements

the entry for x, and therefore ts(�)[x℄ = ts(�)[x℄ � 1,otherwise ts(�)[x℄ = ts(�)[x℄.Property 3 follows from the fat that all operationsin WRITE are atomially broadasted and hene or-dered under ;ww.Hene, by Lemma 9, the history H is sequentiallyonsistent, and therefore the protool only generatessequentially onsistent exeutions.5.2 Implementation of LinearizabilityThe protool in Figure 3 onsists of an initializationroutine and �ve basi ations eah of whih is exeutedloally and atomially. Eah proess maintains anothervetor timestamp ts0 whih reords the latest writes byany proess when it issues an operation in READ.Proess Pi/* Initialization */foreah x 2 M doM [x℄; ts[x℄ ?; 0M 0[x℄; ts0[x℄ ?; 0/* � 2 READ */send query to all the proesses for objets 2M/* � 2 WRITE */atomially broadast the operation to all proesses/* On reeiving atomi broadast of operation �from proess Pj */apply the operation to the memory Mforeah x suh that � writes on x do ts[x℄ ts[x℄ + 1if pro(�) = Pi then return(�(M))/* On reeiving query for set of objets Xjfrom proess Pj */send (ts;M) to proess Pj/* On reeiving response, denoted by (ts0j ;M 0j),for the query from proess Pj */foreah x 2 M doif ts0j [x℄ > ts0[x℄ then M 0[x℄; ts0[x℄ M 0j [x℄; ts0j [x℄if all the responses for the last query have been reeivedthen return(�(M 0))Figure 3: Protool for LinearizabilityTheorem 11 All the exeutions generated by the pro-tool in Figure 3 are linearizable.Proof: The proof is similar to the proof of Theorem 10but is more involved. Due to the lak of spae we willnot present the proof here. The interested reader anrefer to the tehnial report [19℄.
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