Distributed predicate detection in a faulty environment

Vijay K. Garg*

J. Roger Mitchellf

http://maple.ece.utexas.edu
Department of Electrical and Computer Engineering
The University of Texas at Austin,
Austin, TX 78712-1084

Abstract

There has been very little research n distributed
predicate detection for faulty, asynchronous environ-
ments. In this paper we define a class of predicates
called set decreasing predicates which can be detec-
ted in such an environment. We introduce a set of
failure detectors called infinitely often accurate detect-
ors which are implementable in asynchronous systems.
Based on these failure detectors we present an al-
gorithm to detect conjunction of local predicates and
send-monotonic channel predicates. Since perfect fail-
ure detection is impossible in an asynchronous system,
we cannot guarantee that our detection algorithm will
not have false detections. However, if the predicate
ever holds then it is guaranteed to be detected.

1 Introduction

Detecting a distributed predicate is a fundamental
problem in distributed systems. However, very little
research has been done for detecting these predicates
in a faulty environment. Providing predicate detec-
tion amid failures can be useful for monitoring predic-
ates that correspond to “bad states.” Some examples
of such predicates are: “no leader,” “no token,” or
“no process or channel active.” Consider an applica-
tion which requires that a token be passed among a
set of processes. The failure of a process which holds
the token, or failure of a message containing the token
means the token 1s no longer in the system. It is use-
ful to detect this condition so that a new token can be
generated.

A perfect predicate detection algorithm is expected
to satisfy two properties - completeness and accuracy.
A predicate detection algorithm is complete if it de-
tects any occurrence of the predicate. A predicate de-
tection algorithm is accurate if it it avoids false detec-

*supported in part by the NSF Grants ECS-9414780, CCR-
9520540, Texas Education Board Grant ARP-320, a General
Motors Fellowship, and an IBM grant (garg@ece.utexas.edu)

tsupported in part by a Virginia & Ernest Cockrell fellowship

tion. Since failure detection is a special case of general
predicate detection, and perfect failure detection is not
possible in an asynchronous system [2, 7], it follows
that perfect predicate detection is also impossible in a
faulty, asynchronous system. In this paper we present
a method for monitoring predicates in a faulty system
in which we accept the limitations of failure detection.
Our algorithm uses a class of failure detectors called
infinitely often accurate (1I0) detectors [11, 16]. These
failure detectors guarantee that a failed process is al-
ways suspected; however, they may sometimes suspect
an unfailed process. It is guaranteed that a false sus-
picion will not hold permanently at any process. The
chief advantage of these failure detectors is that they
can be implemented in an asynchronous environment.

Using 10 failure detectors we describe an algorithm
for detecting those global predicates which satisfy two
properties. We require predicates to be set decreasing
and conjunctive. A global predicate is set decreasing if
whenever it holds for a set of processes and channels,
it also holds for a subset of these processes and chan-
nels (with possibly fewer messages). For example, “no
token” in the system is a set decreasing predicate. This
property allows the algorithm to remove from consid-
eration the suspected processes, channels or messages
for the purpose of predicate evaluation. If the global
predicate is false for the smaller set, then it must be
false for the entire system even if the suspicions were
incorrect. A set decreasing global predicate is con-
gunctive if it can be written as a conjunction of local
predicates and send-monotonic channel predicates [8].
This property allows efficient evaluation of even un-
stable predicates.

We show that our predicate detection algorithm sat-
isfies completeness, i.e. if the predicate holds it is de-
tected by the algorithm. Since our failure detection
mechanism is not perfect, 1t is clear that our predicate
detection algorithm may sometimes give false detec-
tion. These false predicate detections arise from inac-
curate failure detection. In fact if all failure detectors

are accurate for some computation, then our predicate
detector is also accurate for that computation.

There is a large body of research for predicate de-
tection in a non-faulty environment. Chandy and Lam-
port [3] present a method for detecting stable global
predicates (predicates such as termination which, once
true, remain true) using snapshots. Cooper and Mar-
zullo [4] detect any stable or unstable predicate but
require a search of the entire exponential state space.
Garg and Waldecker [10] present an efficient on-line
method of detection for conjunctive process predicates
using control messages and a central checker process.
In [8] and [9] Garg, et. al. present centralized and
non-centralized on-line methods for detecting unstable
conjunctions of process and channel predicates using
control messages. In [12], Hurfin, et. al. give a distrib-
uted on-line method for detecting process predicates
using only application messages.

For predicate detection in a faulty distributed en-
vironment, previous work has considered only specific
global conditions. Li and McMillin, [14] give a method
for deadlock detection and Venkatesan [18] gives a
method for termination detection. In Meta [1], combin-
ations of process conditions can be detected, but this
approach requires underlying causal message ordering
and broadcasts of control messages for detection. All
of these algorithms assume perfect failure detection.
Our approach is not based on perfect failure detection
and can be implemented in an asynchronous system.

2 Model

The environment we consider is a system of N pro-
cesses which communicate solely by passing messages
via channels. The processes do not share a global
clock or memory. We use F;,P;, Py as identifiers for
processes. The run of a process, P;, is a sequence of
states. We use s, ¢, and u to denote states. The rela-
tion s < t means that s and ¢ are states at the same
process and s occurred before . The relation s < ¢
means that s < ¢ or s is equal to ¢{. The relation, — is
used to order states in the same manner as Lamport’s
happened before relation on events [13]. Therefore,
s — t is the smallest transitive relation satisfying 1)
s < t implies s — ¢, and 2) if s is the state immedi-
ately preceding the send of a message and ¢ is the state
immediately following the receive of that message then
s — 1.

A global state, (G, is defined as a set containing
exactly one state from every process. The state of F;
in G is represented by G[i]. We also use the < relation
on global states. H < G <= Vi: H[{] < G[i{J]A3Jj :
H[j] < G[j]. A consistent global state is a global state
such that for all s;,t € G : s A t At 4 s. That is,

all s,¢ in G are concurrent. For the remainder of the
paper, we will only consider consistent global states.

In our model we allow processes to crash, channels
to fail and messages to be lost. A process crashes by
ceasing all its activity. We assume that once a process
has failed (or crashed) it stays failed throughout the
run. The predicate failed(é) holds if the process ¢ has
failed in the given run. A process that has not failed is
called a correct process. We assume that at least one
of the processes in the system is correct. Let C' denote
the set of states on correct processes and C; denote
the set of states on any correct process j.

We define a channel failure as the condition when
a channel stops delivering messages or when a process
adjacent to the channel crashes. As for processes, once
a channel fails 1t is assumed to stay failed. In a dis-
tributed system, a process failure is indistinguishable
from failures of all channels adjacent to it. However,
it is possible for a process to distinguish a channel fail-
ure from a process failure when a message is received
from the suspected process along a different channel.

A message loss corresponds to a message that is
sent by the sender but never received by the receiver.
Note that a channel failure is a stronger condition than
a message failure.

Finally, we assume that the run of a computation is
infinite and every state of every process is eventually in
the causal past of every process except where process
crashes or channel crashes preclude this. This assump-
tion is used for guaranteeing detection of predicates.
If the computation is finite or some of the processes
terminate, then 1t is sufficient to require that every
process sends message to all processes before termin-
ation. This will ensure that if the predicate occurs in
the computation then it will be detected even when the
computation is finite.

2.1 Failure detection

A failure detector is responsible for maintaining the
value of a predicate suspects at all correct processes.
The predicate suspects(s,i) holds if the process 7 is
suspected in the state s (by the process which contains
s). Note that this process may stop suspecting process
¢ in some later state ¢.

We would like our failure detectors to satisfy certain
completeness and accuracy properties. The complete-
ness properties require suspicion of failed processes.
The weak completeness property requires that every
failed process is eventually permanently suspected by
some correct process. Let the predicate permsusp(s, i)

be defined as

permsusp(s, i) =Vt :s <t : suspects(t, i)

A detector is defined to be weak complete if for any

run,

Vi: (failed(i) = 3s € C : permsusp(s,i))

The strong completeness property requires the
failed process to be eventually suspected by all cor-
rect processes. Formally,

Vi, j: failed(i)A=failed(j) = 3s € C; : permsusp(s, i)

In [2], four accuracy properties have been presen-
ted. The weakest of these properties is eventual weak
accuracy. A detector satisfies eventual weak accuracy
if eventually some correct process is never suspected
by any correct process, i.e., there exists a correct pro-
cess ¢ such that for all correct processes j

ds € C,Vt 1 s <t : nsuspects(t, i)

However, as shown in [2] a failure detector which
satisfies weak completeness and eventual weak accur-
acy, called eventually weak detector (& W), can be
used to solve the consensus problem in an asynchron-
ous system([7]. This implies that all of the failure de-
tectors in [2] are impossible to implement in asyn-
chronous systems.

We now introduce a weaker accuracy property
which we call infinitely often accuracy. A detector is
infinitely often accurate if no correct process perman-
ently suspects an unfailed process. Formally,

Definition 1 A detector is infinitely often accurate if
Vi: (—failed(i) = Vs € C': ~permsusp(s,i))

An TO detector 1s a failure detector which satis-
fies weak completeness and infinitely often accuracy.
By combining the two properties, we get the following
pleasant property of an 10 detector.

Vi : (failed(i) = 3s € C : permsusp(s, i))

Intuitively, this says that a failure of a process is
equivalent to permanent suspicion by some correct
process.

A possible implementation of an IO detector is
shown in Fig. 1. This implementation is similar to that
proposed by [5]. The algorithm maintains a timeout
period for each process. The variable watch[i] is the
timer for the process P;. When the timer expires, the
process 1is suspected. On the other hand when a mes-
sage 1s received while a process is under a suspicion,
the suspicion is removed and the timeout period for
that process is increased. It is easy to verify that this

var
suspects : set of processes initially {};
timeout: array[1..N] of integer initially t;
watch: array[1..N] Of timer initially set to timeout;

After every t units;
send “alive” to all processes;

On receiving “alive” from P;;
if ¢ € suspects then
suspects 1= suspects — {i};
timeout[i]++;
Set watch[i] timer for timeout;

On expiry of watchl[i]
suspects = suspects U {i};

Figure 1: Implementation of an 10 detector at P;

detector satisfies strong completeness and infinitely of-
ten accuracy. From now on we will assume both of
these properties for our failure detectors.

Observe that one needs to be careful with design-
ing algorithms for failure detectors. For example, the
approach of sending a query message and waiting for
a reply for a certain timeout period does not satisfy
the IO-property. The reply from a correct process to a
query may always arrive after the timeout period caus-
ing a process to permanently suspect a correct process.

We have discussed suspicions for process failures.
Simple mechanisms that satisfy 1O-property can also
be built for channel failures and message loss. An 10
detector for channel failure can be implemented by the
receiver of the channel as follows. Each process sends
“alive” messages to all other processes infinitely often
via different paths. If the receiver does not receive any
message on a channel for some timeout interval then it
starts suspecting the channel. Similarly, a message m
is suspected if a message sent later than m 1s received
but m is not. It i1s easy to verify that for channel
failures as well as message loss we have completeness
and IO-accuracy. In fact, all of them satisfy strong
completeness and 10-accuracy.

2.2 Detectable predicates

We now define a class of predicates for which we
can guarantee efficient detection. In a faulty environ-
ment we must exclude from consideration the entity
(process, channel or message) which failed. We call
a predicate set decreasing if it continues to hold upon
removal of a process, a channel, or a message. The
predicate “no token in system” is set decreasing.

Formally, let S denote the set of entities that should

be excluded from consideration. We say that B(G)
holds with S to denote that B holds in the global state
G from which processes, channels and messages in .S
are removed from consideration. Now the property of
set decreasing predicates can be defined as below.

Definition 2 A predicate, B, is a set decreasing pre-
dicate if for any global state G and lists of entities to
be excluded S and S':

(B(G) holds with S)A(S C S') = B(G) holds with S’

The set decreasing property gives us the following
desirable assertion on the detection algorithm. If the
global predicate B is false for the system from which
entities that are suspected are removed, then it must
be false for the entire system. This assertion allows
the detection algorithm to be complete even when sus-
picions are inaccurate.

An example of a predicate which 1s not set decreas-
ing is - “there are more than & tokens in the system”.
An inaccurate suspicion of a process may lead the pre-
dicate to evaluate to false on a subsytem even though
it may be true on the entire system.

For efficiency, we also restrict the global predicate
G to be a conjunction of local predicates and send-
monotonic channel predicates. A local predicate is any
boolean predicate which can be evaluated on the state
of a single process. We use LP;(G) to mean that the
local predicate is true on state G[f]. A channel pre-
dicate C'F;; on a global state GG is a boolean valued
function on the state of the channel from F; to P; in
G where the state of a channel is defined as the set of
messages sent before G[i] but not received before G[j].
A channel predicate is send-monotonic if it satisfies the
condition that if it 1s false for any global state, then
1t will remain false on sending more messages without
any receives. The predicate “the channel is empty”
is send-monotonic. If it 1s false, sending more mes-
sages will not make it true. Conjunctive predicates
reduce the global state space to search from O(M?¥)
to O(M N) states, where M is the maximum number
of messages sent by any process.

Thus, predicates we detect are of the form

B(G) = \ LP,(G) A)\ CPi;(G) (E1)
2 2,7

For example, the predicate “no token in system,” can
be expressed within this equation by setting LF; to
“token not held” for all ¢, and C'P;; to “token not
in channel” for all ¢,j. For the distributed predicate
“no leader”, LP;() would be “process not leader” and

C'P;;() would be TRUE.
Since our environment is faulty the algorithm ex-
cludes components that are suspected. Let S(G)

denote the entities suspected in the global state G.
We use functions named SP(G, 1), SC(G, (¢, j)), and
SM(G, m) that return true if the process i, channel
(4,7) or the message m is suspected in the global state
(. Therefore, we modify E1 to:

B(G) = \[LP:{(G) V SP(G,)] A
NCP;(G = {m | SM(G,m)}) v SC(G, (i, 5))] (E2)

i3

where C'P;;(G—{m | SM (G, m)}) corresponds to eval-
uation of the channel predicate on the state of the chan-
nel from which the suspected messages are removed.

It 1s easy to see that the predicate E1 1s a set de-
creasing predicate. If a process (and all its adjacent
channels), or a channel is excluded from evaluation of
B due to suspicions, then the truthness of B continues
to hold. Similarly, if some messages are removed due
to suspicions, then the truthness of B still holds due
to send-monotonicity of channel predicates. Thus, our
algorithm uses E2 for evaluation of B((G) instead of
E1. We have the following Theorem.

Theorem 3 Assume that B is set decreasing and that
10 failure detectors are used for failure detection.

1. El = F2.

2. If all 10 failure detectors are accurate on G, then
E2 = EI.

Proof: 1. Let B hold on G with failures in G. Since
IO detectors are strong complete, the set of all the
failed entities is a subset of S(G). Since B is a set
decreasing predicate it follows that B also holds on G
with suspicions S(G).

2. If all failure detectors are accurate on G, then
S(G) is a subset of all the failed entities in GG. There-
fore, if B holds on G with S((), then it also holds on
G with failures. [|

3 Algorithm for detecting predicates

Our predicate detection algorithm is completely dis-
tributed so that it works in spite of failures. It is based
on the algorithm for weak conjunctive predicate detec-
tion in [12]. In our algorithm every process performs
predicate detection and no reliance is made on control
messages for detection. It includes predicate inform-
ation in application messages so that at any time a
process can determine if a predicate holds in its causal
past.

Failure detectors reside at every process and the
suspicions they generate are input to the algorithm via
suspicion sets. It is important to note that the al-
gorithm cannot simply exclude processes, channels or

messages that are currently suspected. Processes need
to maintain the information regarding when the suspi-
cion for any entity was true. In our algorithm, we will
simply assume that the failure detector provides values
of the functions SP(G,), SC(G, (4, j)) and SM(G, m)

at all processes.

3.1 Data Structures

In our algorithm, three important data structures
- VC, F, ML - are maintained at every process and
sent in every application message. The first is the
vector clock VC which is a slight variant of the one
proposed in literature [12, 6, 15]. VC is an array with
N components, one per process, each of which is a
structure of two fields - val and LP. The definition of
VC is based on the notion of a state interval. A state
interval 1s a sequence of states between two external
events (send of a message, receive of a message, be-
ginning of the process, or termination of a process).
Now VC for the process Py can be defined as follows.
The field VC[k].val indicates the current state interval
number of P, where the state interval number is equal
to the number of messages sent or received by Pg. The
entry VC[i].val at Py, for ¢ different from & denotes the
number of state intervals at P; which causally precede
the current interval at Pj. Thus, initially the value of
V(l[i].val is 0 for all i. For process Py, the component
VC[k].val is incremented for every send and receive.
Further, the vector clock is included in all outgoing
messages. On receiving a vector clock in a message,
the process takes a component-wise maximum of its
own vector clock with that received. It can be easily
shown that the vector clock (as defined here) always
corresponds to a consistent cut.

The second field LP indicates the value of the local
predicate in the state indicated by the vector clock.
This field is also updated when a message is received.
The operation of taking maximum of two vector clocks
X and Y will return a vector clock Z as follows. For

any i,
Z[i].val = max(X[i].val, Y[i].val),
Z[i.LP
X[é].LP if X[¢].val > Y[é].val
=<{ Y[i.LP if X[¢].val < YTé].val

X[).LP v Y[i.LP if X[¢].val = Y[¢].val

The data structure first cut, F, represents the earli-
est global state for which the predicate detected could
be true. It has the identical structure as VC. The vari-
able F has tags indicating the current state (F[é].val),
and the state of LP; (F[¢].LP) on the global state rep-
resented by F. The algorithm maintains the invariant
that F always represents a consistent global state and

that no consistent global state earlier than F has the
conjunctive predicate true. This operation is similar to
the algorithm of [12]. To update F a process also main-
tains a FIFO queue of states in its local past after F in
which the local predicate is true. This queue, called
SL (State List) is similar to that maintained by the
monitor process in the distributed algorithm for weak
conjunctive predicates [9].

The first cut F is initially set to VC and is passed
with every message. F uses the same algorithm as
vector clocks for combining the received entries of F
with that of the local process (Note that F[k].val is not
incremented after the send or receive event). After
performing this combination when receiving a message,
the local F is also combined with the earliest VC in SL
(which is not earlier than F). If SL is empty, F is
set to the current VC. By performing these actions,
F always represents the earliest global state for which
the predicate being detected could be true.

Finally, ML is the set of messages sent in the past
which have not been received before the global state
identified by F. This set is used to compute the state of
the channel in the consistent cut F. Based on this state
the channel predicate can be evaluated. Each message
m 1s 1dentified with four fields - sent, rcvd, source, and
dest - corresponding to the state a message was sent in,
received in, and the source and destination processes.

3.2 Actions of the Algorithm

The algorithm can be understood by considering
what a process does when the local predicate becomes
true, when it sends a message and when it receives a
message. We will discuss the events at a process Pj.
Our algorithm is symmetric; all processes execute the
same program.

When the local predicate becomes true for the first
time for the state VC[k], the process adds the vector
clock for that state to SL. Further, if F[k].val is equal
to VC[k].val then F[k].LP is set to true. Since the
global predicate could now be true, we check for it
by eval_global (described in Section 3.3). Formally,

Upon LP; true first time for VC[k]

VCK].LP « true;

add VC to SL;

if (F[k].val = V(C[k].val) then
F[k].LP « true;

eval_global();

To send a message m, the only action required by
the algorithm is to send the vector clock VC | the first
cut F and the message list ML with the algorithm. The
structure corresponding to the message m is included

in the message list with the fields m.send, m.source and
m.dest set appropriately. Formally,

When sending message m:
m.send < VC[k].val;
ML « ML U{m},
V([k].val « VC(C[k].val + 1,
send VC, F, and ML as part of the message;

On receiving a message m with the vector clock
VC,,, the first cut F,, and the message list ML,,,
P, updates its own variables as follows. The vector
clock is updated by taking the component-wise max-
imum as usual. It also updates its first cut by taking
component-wise maximum with the received F. Any
state in the state list SL which is before F is discarded.
The message list 1s updated by taking the union of
the message list with the list received in the message.
All messages received before the global state F are dis-
carded. At this point, Py is ready to check if the global
predicate is true. Formally,

On Receiving a message m with VC,,,, F,;, and ML,,
m.revd «— VC[k].val;
VC « max(VC, VC,,);
V([k].val « VC(C[k].val + 1,

F « max(F, Fp,);

SL+ {VC' € SL| (VC'[k].val > F[k].val) };
if (SL= NULL) then F « VC;

else F « max(F, first entry in SL);

ML+ {m’' € (MLU ML,,) | F[mm/.dest].val < m'.revd};
eval_global();

3.3 Evaluation of Global Predicate

To check whether the global predicate is true on
F, we need to verify that all local predicates and all
channel predicates are true. The flag global indicates
whether the global predicate is true or not. It is ini-
tialized to true and set to false when it is determined
that one of the local or the channel predicates is false.
If 1t 1s found that the global predicate is false because
of P, then F needs to advance on P;. This condition
is captured by the flag advance. We already know that
F is a consistent global state by our invariant. We
next check that for each j, either F[j].LP is true or
the process P; is suspected in the global state F (i.e.
SP(F,7)). In this manner we eliminate processes from
consideration that are suspected to have failed. If this
condition holds true then channel predicates are com-
puted. Only those channels are considered which were
not suspected in the cut F. First a subset of mes-

sage list ML 1is constructed which includes only those
messages which have been sent before F. Further, all
messages that are suspected to be lost are removed
from the message list. Now the channel predicate is
evaluated. If a channel predicate evaluates to false,
then by send-monotonicity of the channel predicate,
we know that the state corresponding to the receiver is
ineligible and we can advance the cut F by deleting the
entry corresponding to the receiver. If all such channel
predicates evaluate to true then the global predicate
has been detected.
eval_global() at process Pj
var
global: boolean initially true;
advance: boolean initially false;

/* check for all local predicates */
for all j: = SP(F,j) do
if = F[4].LP then
global := false;
if (j = k) then advance := true;

/* check for all channel predicates */
forall 4,7 : (¢ £ j) A= SC(F,(¢,4)) do
mm < {m € ML| m.source = i A m.dest = j A
m.send < F[i].val A= SM(F,m)};

if channel predicate is false for mm then

global := false;
if (j = k) then advance := true;
break;

if (global) then issue detected,
else if (advance) then
if (SL= NULL) then F « VC;
else F « max(F, first entry in SL);

We now show the correctness of our algorithm.

Lemma 4

1. F for any process always represents a consistent
global state.

2. F s eventually advanced if it does not satisfy the
global predicate.

3. Any global state which precedes F does not satisfy
the global predicate.

Proof: 1. F is initialized to a consistent global state.
Whenever it is modified, it is either set to VC, com-
bined with the F from a message or the first entry in
SL. Since VC always defines a consistent global state
and combining two consistent global states produces a
consistent global state[15], the result follows.

2. If a local predicate L Py is false, then the process
Py, will eventually advance its own F (see eval_global).
All other processes will eventually receive a message
with the new F and therefore advance their F as well.
The similar reasoning applies when a channel predicate
is false.

3. F at Py is advanced only when the local pre-
dicate is false, the channel predicate for which P is a
receiver is false or when combining with F received in
a message. In the first two cases, by the definition of
the local predicate and send-monotonicity, the lemma
holds. In the last case it can be shown to hold by using
induction.]

Theorem 5 The algorithm is complete, i.e. if the
global predicate is true then the algorithm issues detec-
ted in spite of failures (so long as at least one process
is alive.) Conversely, if the algorithm issues detected
on a global state F, then the global predicate is true
with the suspicions (i.e. if all suspicions are accurate
then the global predicate is true on the cut F.)

Proof : From Lemma 4 part 2 and part 3, F in
any correct process will eventually be advanced to the
global state in which the global predicate is true. Now
due to the set decreasing property of the global predic-
ate, 1t will evaluate to true even if there are incorrect
suspicions of processes, channels or messages. There-
fore, the algorithm is complete. The converse is obvi-
ous from the procedure eval_global.]

4 Discussion
4.1 Overhead

The algorithm appends O(N) integers for VC and F
and O(M) information for ML to every message where
M is the number of messages sent by any process
in the causal past which have not been received be-
fore F. In many cases, this overhead can be reduced.
For example, when detecting the predicate “no token
in system,” only token messages need to be tracked.
The computation overhead for maintaining VC and F
is O(N). The overhead to check whether channel pre-
dicates are true is O(N?) assuming that each channel
predicate can be evaluated in O(1) time. We have ig-
nored overhead of suspicion list maintenance in this
analysis.

In the algorithm presented above each process eval-
uates channel predicates for all the channels. This
overhead can be reduced by requiring only the receiver
of a channel to evaluate the predicate. Just as we have
a tag with each component of F for the local predic-
ate, we will then have a tag for the channel predicate
as well. During the evaluation of the global predic-
ate, a process would be required to check for all local

predicates and channel predicates through these tags.
This may, however, increase the latency of detection.
4.2 Action on Detection

Although our algorithm correctly detects all predic-
ates which actually hold, it may detect a predicate
which has not held in the past because of inaccurate
suspicions. For some applications, a human can de-
termine whether the predicate detection was true and
take the corrective action. Sometimes we may want
the corrective action to be taken automatically. For ex-
ample, for the predicate “no token in system,” we may
wish to generate a new token. There are two problems
with this approach. First, the detection of a lost token
may be false. If a new token is generated, then there
will be multiple tokens in the system. For some applic-
ations this may be okay if 1t is required that there be
at least one token at all times and preferably only one
for efficiency reasons. For example, if we require the
process with the token to carry out some task (respond
to a query) the computation will still be in good state
after the false detection. Further, by keeping numbers
with a token we can force processes to discard any old
tokens.

The second problem is how to coordinate processes
so that exactly one of them generates the new token.
Unfortunately, it 1s impossible to guarantee this in an
asynchronous environment in which a process can fail.
Formally, define the problem of unique action as

Devise an algorithm so that some process in
the system performs an action and all others
do not perform that action.

The next theorem demonstrates that implementing
such an action 1s as difficult as implementing con-
Sensus.

Theorem 6 There is no terminating protocol for the
untque action problem.

Proof: We show that the problem of the unique ac-
tion is at least as difficult as the consensus problem
in Fischer, Lynch, and Paterson [7]. Assuming that
there exists a protocol for unique action, we solve the
consensus problem as follows. The action we require
from exactly one correct process is that it send its in-
put value to all other processes in a special message
called action message. By requiring all processes to
output the value they receive in an action message, we
meet all the requirements for consensus. [|

Thus, any protocol for unique action cannot both
be safe and live. One solution is to use idempotent
actions so that application of multiple actions is equi-
valent to a single action. For example in a process

control application the action may be to open some
valve. If the valve is already open then performing the
action again would not change anything.
4.3 Synchronous Environment

We define a synchronous environment as one which
guarantees that all messages are received with a
bounded delay. In a synchronous environment our
failure detectors will eventually be accurate. This 1is
because we increase our timeout period after any false
suspicion and therefore the timeout period will eventu-
ally become greater than the bound on the delay. After
this point of time all suspicions will be accurate. Since
the loss of accuracy in our predicate detection is only
due to inaccuracy of failure detection, 1t follows that
eventually our predicate detection scheme will be both
complete and accurate in a synchronous environment.
Note that we only require that the message delays be
bounded and not that the bound is known. No matter
what the bound is, the algorithm will eventually make
only accurate detections.

References
[1] K. P. Birman and R. V. Renesse. Reliable Dis-
tributed Computing with the Isis Toolkit, 1993.

[2] Tushar Deepak Chandra and Sam Toueg. Unreli-
able failure detectors for reliable distributed sys-
tems. Journal of the ACM, 43(2):225-267, March
1996.

[3] K. M. Chandy, and L. Lamport, “Distributed
Snapshots: Determining global states of distrib-
uted systems,” ACM Transactions on Computer
Systems, no. 1, February 1985, pp. 63-75.

[4] R. Cooper and K. Marzullo, “Consistent De-
tection of Global Predicates,” Proc. of the
ACM/ONR Workshop on Parallel and Distrib-
uted Debugging, May 1991, pp. 163-173.

[6] Cynthia Dwork, Nancy Lynch, and Larry Stock-
meyer. Consensus in the presence of partial syn-
chrony. Journal of the ACM, 35(2):288-323, April
1988.

[6] C.J. Fidge. Partial orders for parallel debugging.
Proceedings of the ACM SIGPLAN/SIGOPS
Workshop on Parallel and Distributed Debugging,
published in ACM SIGPLAN Notices, 24(1):183-
194, January 1989.

[7] M. Fischer, N. Lynch, M. Paterson, “Impossib-
ility of Distributed Consensus with One Faulty
Process,” Journal of the ACM, vol. 32, n0.2, 1985,
pp-374-382.

[8] V. K. Garg, C. M. Chase, R. Kilgore and J. R.
Mitchell, “Efficient Detection of Channel Predic-
ates in a Distributed System,” Journal of Par-
allel and Distributed Computing, Vol. 45, No. 2,
September 1997, pp. 134 — 147.

[9] V. K. Garg, C. Chase, “Distributed Algorithms
for Detecting conjunctive Predicates,” Proceed-
ings of the Int’l Conference on Distributed Com-
puting Systems, June 1995, pp. 423-430.

[10] V. K. Garg, and B. Waldecker, “Detection of
Weak Unstable Predicates in Distributed Pro-
grams,” IEEFE Trans. on Parallel and Distributed
Systems, Vol. 5, No. 3, Mar 1994, pp. 299-307.

[11] V.K. Garg, J. R. Mitchell, “Infinitely Often Ac-
curate failure detectors in a faulty asynchronous
environment,” ECE dept, University of Texas,

Tech. Report TR-PDS-1998-04.

[12] M. Hurfin, M. Mizuno, M. Raynal, M. Singhal,
“Efficient Distributed Detection of Conjunctions
of Local Predicates,” TRISA technical report, PI-
967, 1995.

[13] L. Lamport, “Time, Clocks, and the Ordering of
Events in a Distributed System,” Communica-
tions of the ACM, vol. 21, no. 7, July 1978, pp.
558-565.

[14] P. Li, B. McMillin, “Fault-Tolerant Distributed
Deadlock Detection/Resolution,” Proceedings of
the 17th International COMPSAC, November,
1993, pp. 224-230.

[15] F. Mattern, “Virtual Time and Global States of
Distributed Systems,” Parallel and Distributed
Algorithms, 1989, pp. 215-226.

[16] J. R. Mitchell, “Algorithms for building fault tol-
erant distributed systems,” Ph.D. dissertation,
University of Texas at Austin, 1997.

[17] Y.-C. Tseng. Detecting termination by weight-
throwing in a faulty distributed system. Journal
of Parallel and Distributed Computing, 25:7-15,
1995.

[18] S. Venkatesan, “Reliable protocols for distrib-
uted termination detection,” IEEFE Transactions
on Reliability, Vol. 38, No.1, April 1989, pp 103—
110.

[19] M. Woods. Fault-tolerant management of distrib-
uted applications using the reactive system archi-
tecture. Ph.D. dissertation, January 1992.

