
Distributed predicate detection in a faulty environmentVijay K. Garg� J. Roger Mitchellyhttp://maple.ece.utexas.eduDepartment of Electrical and Computer EngineeringThe University of Texas at Austin,Austin, TX 78712-1084AbstractThere has been very little research in distributedpredicate detection for faulty, asynchronous environ-ments. In this paper we de�ne a class of predicatescalled set decreasing predicates which can be detec-ted in such an environment. We introduce a set offailure detectors called in�nitely often accurate detect-ors which are implementable in asynchronous systems.Based on these failure detectors we present an al-gorithm to detect conjunction of local predicates andsend-monotonic channel predicates. Since perfect fail-ure detection is impossible in an asynchronous system,we cannot guarantee that our detection algorithm willnot have false detections. However, if the predicateever holds then it is guaranteed to be detected.1 IntroductionDetecting a distributed predicate is a fundamentalproblem in distributed systems. However, very littleresearch has been done for detecting these predicatesin a faulty environment. Providing predicate detec-tion amid failures can be useful for monitoring predic-ates that correspond to \bad states." Some examplesof such predicates are: \no leader," \no token," or\no process or channel active." Consider an applica-tion which requires that a token be passed among aset of processes. The failure of a process which holdsthe token, or failure of a message containing the tokenmeans the token is no longer in the system. It is use-ful to detect this condition so that a new token can begenerated.A perfect predicate detection algorithm is expectedto satisfy two properties - completeness and accuracy.A predicate detection algorithm is complete if it de-tects any occurrence of the predicate. A predicate de-tection algorithm is accurate if it it avoids false detec-�supported in part by the NSF Grants ECS-9414780, CCR-9520540, Texas Education Board Grant ARP-320, a GeneralMotors Fellowship, and an IBM grant (garg@ece.utexas.edu)ysupported in part by a Virginia& Ernest Cockrell fellowship

tion. Since failure detection is a special case of generalpredicate detection, and perfect failure detection is notpossible in an asynchronous system [2, 7], it followsthat perfect predicate detection is also impossible in afaulty, asynchronous system. In this paper we presenta method for monitoring predicates in a faulty systemin which we accept the limitations of failure detection.Our algorithm uses a class of failure detectors calledin�nitely often accurate (IO) detectors [11, 16]. Thesefailure detectors guarantee that a failed process is al-ways suspected; however, they may sometimes suspectan unfailed process. It is guaranteed that a false sus-picion will not hold permanently at any process. Thechief advantage of these failure detectors is that theycan be implemented in an asynchronous environment.Using IO failure detectors we describe an algorithmfor detecting those global predicates which satisfy twoproperties. We require predicates to be set decreasingand conjunctive. A global predicate is set decreasing ifwhenever it holds for a set of processes and channels,it also holds for a subset of these processes and chan-nels (with possibly fewer messages). For example, \notoken" in the system is a set decreasing predicate. Thisproperty allows the algorithm to remove from consid-eration the suspected processes, channels or messagesfor the purpose of predicate evaluation. If the globalpredicate is false for the smaller set, then it must befalse for the entire system even if the suspicions wereincorrect. A set decreasing global predicate is con-junctive if it can be written as a conjunction of localpredicates and send-monotonic channel predicates [8].This property allows e�cient evaluation of even un-stable predicates.We show that our predicate detection algorithm sat-is�es completeness, i.e. if the predicate holds it is de-tected by the algorithm. Since our failure detectionmechanism is not perfect, it is clear that our predicatedetection algorithm may sometimes give false detec-tion. These false predicate detections arise from inac-curate failure detection. In fact if all failure detectors

are accurate for some computation, then our predicatedetector is also accurate for that computation.There is a large body of research for predicate de-tection in a non-faulty environment. Chandy and Lam-port [3] present a method for detecting stable globalpredicates (predicates such as termination which, oncetrue, remain true) using snapshots. Cooper and Mar-zullo [4] detect any stable or unstable predicate butrequire a search of the entire exponential state space.Garg and Waldecker [10] present an e�cient on-linemethod of detection for conjunctive process predicatesusing control messages and a central checker process.In [8] and [9] Garg, et. al. present centralized andnon-centralized on-line methods for detecting unstableconjunctions of process and channel predicates usingcontrol messages. In [12], Hur�n, et. al. give a distrib-uted on-line method for detecting process predicatesusing only application messages.For predicate detection in a faulty distributed en-vironment, previous work has considered only speci�cglobal conditions. Li and McMillin, [14] give a methodfor deadlock detection and Venkatesan [18] gives amethod for termination detection. In Meta [1], combin-ations of process conditions can be detected, but thisapproach requires underlying causal message orderingand broadcasts of control messages for detection. Allof these algorithms assume perfect failure detection.Our approach is not based on perfect failure detectionand can be implemented in an asynchronous system.2 ModelThe environment we consider is a system of N pro-cesses which communicate solely by passing messagesvia channels. The processes do not share a globalclock or memory. We use Pi,Pj,Pk as identi�ers forprocesses. The run of a process, Pi, is a sequence ofstates. We use s, t, and u to denote states. The rela-tion s � t means that s and t are states at the sameprocess and s occurred before t. The relation s � tmeans that s � t or s is equal to t. The relation,!, isused to order states in the same manner as Lamport'shappened before relation on events [13]. Therefore,s ! t is the smallest transitive relation satisfying 1)s � t implies s ! t, and 2) if s is the state immedi-ately preceding the send of a message and t is the stateimmediately following the receive of that message thens! t.A global state, G, is de�ned as a set containingexactly one state from every process. The state of Piin G is represented by G[i]. We also use the � relationon global states. H � G () 8i : H[i] � G[i] ^ 9j :H[j] � G[j]. A consistent global state is a global statesuch that for all s; t 2 G : s 6! t ^ t 6! s. That is,

all s; t in G are concurrent. For the remainder of thepaper, we will only consider consistent global states.In our model we allow processes to crash, channelsto fail and messages to be lost. A process crashes byceasing all its activity. We assume that once a processhas failed (or crashed) it stays failed throughout therun. The predicate failed(i) holds if the process i hasfailed in the given run. A process that has not failed iscalled a correct process. We assume that at least oneof the processes in the system is correct. Let C denotethe set of states on correct processes and Cj denotethe set of states on any correct process j.We de�ne a channel failure as the condition whena channel stops delivering messages or when a processadjacent to the channel crashes. As for processes, oncea channel fails it is assumed to stay failed. In a dis-tributed system, a process failure is indistinguishablefrom failures of all channels adjacent to it. However,it is possible for a process to distinguish a channel fail-ure from a process failure when a message is receivedfrom the suspected process along a di�erent channel.A message loss corresponds to a message that issent by the sender but never received by the receiver.Note that a channel failure is a stronger condition thana message failure.Finally, we assume that the run of a computation isin�nite and every state of every process is eventually inthe causal past of every process except where processcrashes or channel crashes preclude this. This assump-tion is used for guaranteeing detection of predicates.If the computation is �nite or some of the processesterminate, then it is su�cient to require that everyprocess sends message to all processes before termin-ation. This will ensure that if the predicate occurs inthe computation then it will be detected even when thecomputation is �nite.2.1 Failure detectionA failure detector is responsible for maintaining thevalue of a predicate suspects at all correct processes.The predicate suspects(s; i) holds if the process i issuspected in the state s (by the process which containss). Note that this process may stop suspecting processi in some later state t.We would like our failure detectors to satisfy certaincompleteness and accuracy properties. The complete-ness properties require suspicion of failed processes.The weak completeness property requires that everyfailed process is eventually permanently suspected bysome correct process. Let the predicate permsusp(s; i)be de�ned aspermsusp(s; i) � 8t : s � t : suspects(t; i)

A detector is de�ned to be weak complete if for anyrun, 8i : hfailed(i)) 9s 2 C : permsusp(s; i)iThe strong completeness property requires thefailed process to be eventually suspected by all cor-rect processes. Formally,8i; j : failed(i)^:failed(j)) 9s 2 Cj : permsusp(s; i)In [2], four accuracy properties have been presen-ted. The weakest of these properties is eventual weakaccuracy. A detector satis�es eventual weak accuracyif eventually some correct process is never suspectedby any correct process, i.e., there exists a correct pro-cess i such that for all correct processes j9s 2 Cj; 8t : s � t : :suspects(t; i)However, as shown in [2] a failure detector whichsatis�es weak completeness and eventual weak accur-acy, called eventually weak detector (3 W), can beused to solve the consensus problem in an asynchron-ous system[7]. This implies that all of the failure de-tectors in [2] are impossible to implement in asyn-chronous systems.We now introduce a weaker accuracy propertywhich we call in�nitely often accuracy. A detector isin�nitely often accurate if no correct process perman-ently suspects an unfailed process. Formally,De�nition 1 A detector is in�nitely often accurate if8i : h:failed(i)) 8s 2 C : :permsusp(s; i)iAn IO detector is a failure detector which satis-�es weak completeness and in�nitely often accuracy.By combining the two properties, we get the followingpleasant property of an IO detector.8i : hfailed(i) � 9s 2 C : permsusp(s; i)iIntuitively, this says that a failure of a process isequivalent to permanent suspicion by some correctprocess.A possible implementation of an IO detector isshown in Fig. 1. This implementation is similar to thatproposed by [5]. The algorithm maintains a timeoutperiod for each process. The variable watch[i] is thetimer for the process Pi. When the timer expires, theprocess is suspected. On the other hand when a mes-sage is received while a process is under a suspicion,the suspicion is removed and the timeout period forthat process is increased. It is easy to verify that this

varsuspects : set of processes initially fg;timeout: array[1..N] of integer initially t;watch: array[1..N] 0f timer initially set to timeout;After every t units;send \alive" to all processes;On receiving \alive" from Pi;if i 2 suspects thensuspects := suspects � fig;timeout[i]++;Set watch[i] timer for timeout;On expiry of watch[i]suspects := suspects [fig;Figure 1: Implementation of an IO detector at Pjdetector satis�es strong completeness and in�nitely of-ten accuracy. From now on we will assume both ofthese properties for our failure detectors.Observe that one needs to be careful with design-ing algorithms for failure detectors. For example, theapproach of sending a query message and waiting fora reply for a certain timeout period does not satisfythe IO-property. The reply from a correct process to aquery may always arrive after the timeout period caus-ing a process to permanently suspect a correct process.We have discussed suspicions for process failures.Simple mechanisms that satisfy IO-property can alsobe built for channel failures and message loss. An IOdetector for channel failure can be implemented by thereceiver of the channel as follows. Each process sends\alive" messages to all other processes in�nitely oftenvia di�erent paths. If the receiver does not receive anymessage on a channel for some timeout interval then itstarts suspecting the channel. Similarly, a message mis suspected if a message sent later than m is receivedbut m is not. It is easy to verify that for channelfailures as well as message loss we have completenessand IO-accuracy. In fact, all of them satisfy strongcompleteness and IO-accuracy.2.2 Detectable predicatesWe now de�ne a class of predicates for which wecan guarantee e�cient detection. In a faulty environ-ment we must exclude from consideration the entity(process, channel or message) which failed. We calla predicate set decreasing if it continues to hold uponremoval of a process, a channel, or a message. Thepredicate \no token in system" is set decreasing.Formally, let S denote the set of entities that should

be excluded from consideration. We say that B(G)holds with S to denote that B holds in the global stateG from which processes, channels and messages in Sare removed from consideration. Now the property ofset decreasing predicates can be de�ned as below.De�nition 2 A predicate, B, is a set decreasing pre-dicate if for any global state G and lists of entities tobe excluded S and S0:(B(G) holds with S)^ (S � S0)) B(G) holds with S'The set decreasing property gives us the followingdesirable assertion on the detection algorithm. If theglobal predicate B is false for the system from whichentities that are suspected are removed, then it mustbe false for the entire system. This assertion allowsthe detection algorithm to be complete even when sus-picions are inaccurate.An example of a predicate which is not set decreas-ing is - \there are more than k tokens in the system".An inaccurate suspicion of a process may lead the pre-dicate to evaluate to false on a subsytem even thoughit may be true on the entire system.For e�ciency, we also restrict the global predicateG to be a conjunction of local predicates and send-monotonic channel predicates. A local predicate is anyboolean predicate which can be evaluated on the stateof a single process. We use LPi(G) to mean that thelocal predicate is true on state G[i]. A channel pre-dicate CPij on a global state G is a boolean valuedfunction on the state of the channel from Pi to Pj inG where the state of a channel is de�ned as the set ofmessages sent before G[i] but not received before G[j].A channel predicate is send-monotonic if it satis�es thecondition that if it is false for any global state, thenit will remain false on sending more messages withoutany receives. The predicate \the channel is empty"is send-monotonic. If it is false, sending more mes-sages will not make it true. Conjunctive predicatesreduce the global state space to search from O(MN)to O(MN) states, where M is the maximum numberof messages sent by any process.Thus, predicates we detect are of the formB(G) � î LPi(G) ^ î;j CPij(G) (E1)For example, the predicate \no token in system," canbe expressed within this equation by setting LPi to\token not held" for all i, and CPij to \token notin channel" for all i,j. For the distributed predicate\no leader", LPi() would be \process not leader" andCPij() would be TRUE.Since our environment is faulty the algorithm ex-cludes components that are suspected. Let S(G)

denote the entities suspected in the global state G.We use functions named SP(G; i), SC(G; (i; j)), andSM(G;m) that return true if the process i, channel(i; j) or the message m is suspected in the global stateG. Therefore, we modify E1 to:B(G) � î [LPi(G) _ SP (G; i)] ^î;j [CPij(G� fm j SM (G;m)g) _ SC(G; (i; j))] (E2)where CPij(G�fm j SM (G;m)g) corresponds to eval-uation of the channel predicate on the state of the chan-nel from which the suspected messages are removed.It is easy to see that the predicate E1 is a set de-creasing predicate. If a process (and all its adjacentchannels), or a channel is excluded from evaluation ofB due to suspicions, then the truthness of B continuesto hold. Similarly, if some messages are removed dueto suspicions, then the truthness of B still holds dueto send-monotonicity of channel predicates. Thus, ouralgorithm uses E2 for evaluation of B(G) instead ofE1. We have the following Theorem.Theorem 3 Assume that B is set decreasing and thatIO failure detectors are used for failure detection.1. E1) E2.2. If all IO failure detectors are accurate on G, thenE2) E1.Proof: 1. Let B hold on G with failures in G. SinceIO detectors are strong complete, the set of all thefailed entities is a subset of S(G). Since B is a setdecreasing predicate it follows that B also holds on Gwith suspicions S(G).2. If all failure detectors are accurate on G, thenS(G) is a subset of all the failed entities in G. There-fore, if B holds on G with S(G), then it also holds onG with failures.3 Algorithm for detecting predicatesOur predicate detection algorithm is completely dis-tributed so that it works in spite of failures. It is basedon the algorithm for weak conjunctive predicate detec-tion in [12]. In our algorithm every process performspredicate detection and no reliance is made on controlmessages for detection. It includes predicate inform-ation in application messages so that at any time aprocess can determine if a predicate holds in its causalpast.Failure detectors reside at every process and thesuspicions they generate are input to the algorithm viasuspicion sets. It is important to note that the al-gorithm cannot simply exclude processes, channels or

messages that are currently suspected. Processes needto maintain the information regarding when the suspi-cion for any entity was true. In our algorithm, we willsimply assume that the failure detector provides valuesof the functions SP(G; i), SC(G; (i; j)) and SM(G;m)at all processes.3.1 Data StructuresIn our algorithm, three important data structures- VC, F, ML - are maintained at every process andsent in every application message. The �rst is thevector clock VC which is a slight variant of the oneproposed in literature [12, 6, 15]. VC is an array withN components, one per process, each of which is astructure of two �elds - val and LP. The de�nition ofVC is based on the notion of a state interval. A stateinterval is a sequence of states between two externalevents (send of a message, receive of a message, be-ginning of the process, or termination of a process).Now VC for the process Pk can be de�ned as follows.The �eld VC[k].val indicates the current state intervalnumber of Pk where the state interval number is equalto the number of messages sent or received by Pk. Theentry VC[i].val at Pk for i di�erent from k denotes thenumber of state intervals at Pi which causally precedethe current interval at Pk. Thus, initially the value ofVC[i].val is 0 for all i. For process Pk, the componentVC[k].val is incremented for every send and receive.Further, the vector clock is included in all outgoingmessages. On receiving a vector clock in a message,the process takes a component-wise maximum of itsown vector clock with that received. It can be easilyshown that the vector clock (as de�ned here) alwayscorresponds to a consistent cut.The second �eld LP indicates the value of the localpredicate in the state indicated by the vector clock.This �eld is also updated when a message is received.The operation of taking maximum of two vector clocksX and Y will return a vector clock Z as follows. Forany i,Z[i].val = max(X[i].val, Y[i].val),Z[i].LP= 8<: X[i].LP if X[i].val > Y[i].valY[i].LP if X[i].val < Y[i].valX[i].LP _ Y[i].LP if X[i].val = Y[i].valThe data structure �rst cut, F, represents the earli-est global state for which the predicate detected couldbe true. It has the identical structure as VC. The vari-able F has tags indicating the current state (F[i].val),and the state of LPi (F[i].LP) on the global state rep-resented by F. The algorithm maintains the invariantthat F always represents a consistent global state and

that no consistent global state earlier than F has theconjunctive predicate true. This operation is similar tothe algorithm of [12]. To update F a process also main-tains a FIFO queue of states in its local past after F inwhich the local predicate is true. This queue, calledSL (State List) is similar to that maintained by themonitor process in the distributed algorithm for weakconjunctive predicates [9].The �rst cut F is initially set to VC and is passedwith every message. F uses the same algorithm asvector clocks for combining the received entries of Fwith that of the local process (Note that F[k].val is notincremented after the send or receive event). Afterperforming this combinationwhen receiving a message,the local F is also combined with the earliest VC in SL(which is not earlier than F). If SL is empty, F isset to the current VC. By performing these actions,F always represents the earliest global state for whichthe predicate being detected could be true.Finally, ML is the set of messages sent in the pastwhich have not been received before the global stateidenti�ed by F. This set is used to compute the state ofthe channel in the consistent cut F. Based on this statethe channel predicate can be evaluated. Each messagem is identi�ed with four �elds - sent, rcvd, source, anddest - corresponding to the state a message was sent in,received in, and the source and destination processes.3.2 Actions of the AlgorithmThe algorithm can be understood by consideringwhat a process does when the local predicate becomestrue, when it sends a message and when it receives amessage. We will discuss the events at a process Pk.Our algorithm is symmetric; all processes execute thesame program.When the local predicate becomes true for the �rsttime for the state VC[k], the process adds the vectorclock for that state to SL. Further, if F[k].val is equalto VC[k].val then F[k].LP is set to true. Since theglobal predicate could now be true, we check for itby eval global (described in Section 3.3). Formally,Upon LPk true �rst time for VC[k]VC[k].LP true;add VC to SL;if (F[k].val = VC[k].val) thenF[k].LP true;eval global();To send a message m, the only action required bythe algorithm is to send the vector clock VC , the �rstcut F and the message listML with the algorithm. Thestructure corresponding to the message m is included

in the message list with the �elds m.send, m.source andm.dest set appropriately. Formally,When sending message m:m.send VC[k].val;ML ML [fmg;VC[k].val VC[k].val + 1;send VC, F, and ML as part of the message;On receiving a message m with the vector clockVCm, the �rst cut Fm and the message list MLm,Pk updates its own variables as follows. The vectorclock is updated by taking the component-wise max-imum as usual. It also updates its �rst cut by takingcomponent-wise maximum with the received F. Anystate in the state list SL which is before F is discarded.The message list is updated by taking the union ofthe message list with the list received in the message.All messages received before the global state F are dis-carded. At this point, Pk is ready to check if the globalpredicate is true. Formally,On Receiving a message m with VCm, Fm, and MLmm.rcvd VC[k].val;VC max(VC, VCm);VC[k].val VC[k].val + 1;F max(F, Fm);SL fVC' 2 SLj (VC'[k].val > F[k].val) g;if (SL= NULL) then F VC;else F max(F, �rst entry in SL);ML fm'2 (ML[MLm) j F[m0:dest].val < m'.rcvdg;eval global();3.3 Evaluation of Global PredicateTo check whether the global predicate is true onF, we need to verify that all local predicates and allchannel predicates are true. The
ag global indicateswhether the global predicate is true or not. It is ini-tialized to true and set to false when it is determinedthat one of the local or the channel predicates is false.If it is found that the global predicate is false becauseof Pk then F needs to advance on Pk. This conditionis captured by the
ag advance. We already know thatF is a consistent global state by our invariant. Wenext check that for each j, either F[j].LP is true orthe process Pj is suspected in the global state F (i.e.SP(F; j)). In this manner we eliminate processes fromconsideration that are suspected to have failed. If thiscondition holds true then channel predicates are com-puted. Only those channels are considered which werenot suspected in the cut F. First a subset of mes-

sage list ML is constructed which includes only thosemessages which have been sent before F. Further, allmessages that are suspected to be lost are removedfrom the message list. Now the channel predicate isevaluated. If a channel predicate evaluates to false,then by send-monotonicity of the channel predicate,we know that the state corresponding to the receiver isineligible and we can advance the cut F by deleting theentry corresponding to the receiver. If all such channelpredicates evaluate to true then the global predicatehas been detected.eval global() at process Pkvarglobal: boolean initially true;advance: boolean initially false;/* check for all local predicates */for all j: : SP(F,j) doif : F[j].LP thenglobal := false;if (j = k) then advance := true;/* check for all channel predicates */for all i; j : (i 6= j) ^ : SC(F,(i; j)) domm fm 2 MLj m.source = i ^ m.dest = j ^m.send < F[i].val ^: SM(F,m)g;if channel predicate is false for mm thenglobal := false;if (j = k) then advance := true;break;if (global) then issue detected;else if (advance) thenif (SL= NULL) then F VC;else F max(F, �rst entry in SL);We now show the correctness of our algorithm.Lemma 41. F for any process always represents a consistentglobal state.2. F is eventually advanced if it does not satisfy theglobal predicate.3. Any global state which precedes F does not satisfythe global predicate.Proof: 1. F is initialized to a consistent global state.Whenever it is modi�ed, it is either set to VC, com-bined with the F from a message or the �rst entry inSL. Since VC always de�nes a consistent global stateand combining two consistent global states produces aconsistent global state[15], the result follows.

2. If a local predicate LPk is false, then the processPk will eventually advance its own F (see eval global).All other processes will eventually receive a messagewith the new F and therefore advance their F as well.The similar reasoning applies when a channel predicateis false.3. F at Pk is advanced only when the local pre-dicate is false, the channel predicate for which Pk is areceiver is false or when combining with F received ina message. In the �rst two cases, by the de�nition ofthe local predicate and send-monotonicity, the lemmaholds. In the last case it can be shown to hold by usinginduction.Theorem 5 The algorithm is complete, i.e. if theglobal predicate is true then the algorithm issues detec-ted in spite of failures (so long as at least one processis alive.) Conversely, if the algorithm issues detectedon a global state F , then the global predicate is truewith the suspicions (i.e. if all suspicions are accuratethen the global predicate is true on the cut F .)Proof : From Lemma 4 part 2 and part 3, F inany correct process will eventually be advanced to theglobal state in which the global predicate is true. Nowdue to the set decreasing property of the global predic-ate, it will evaluate to true even if there are incorrectsuspicions of processes, channels or messages. There-fore, the algorithm is complete. The converse is obvi-ous from the procedure eval global.4 Discussion4.1 OverheadThe algorithm appends O(N) integers for VC and Fand O(M) information for ML to every message whereM is the number of messages sent by any processin the causal past which have not been received be-fore F. In many cases, this overhead can be reduced.For example, when detecting the predicate \no tokenin system," only token messages need to be tracked.The computation overhead for maintaining VC and Fis O(N). The overhead to check whether channel pre-dicates are true is O(N2) assuming that each channelpredicate can be evaluated in O(1) time. We have ig-nored overhead of suspicion list maintenance in thisanalysis.In the algorithm presented above each process eval-uates channel predicates for all the channels. Thisoverhead can be reduced by requiring only the receiverof a channel to evaluate the predicate. Just as we havea tag with each component of F for the local predic-ate, we will then have a tag for the channel predicateas well. During the evaluation of the global predic-ate, a process would be required to check for all local

predicates and channel predicates through these tags.This may, however, increase the latency of detection.4.2 Action on DetectionAlthough our algorithm correctly detects all predic-ates which actually hold, it may detect a predicatewhich has not held in the past because of inaccuratesuspicions. For some applications, a human can de-termine whether the predicate detection was true andtake the corrective action. Sometimes we may wantthe corrective action to be taken automatically. For ex-ample, for the predicate \no token in system," we maywish to generate a new token. There are two problemswith this approach. First, the detection of a lost tokenmay be false. If a new token is generated, then therewill be multiple tokens in the system. For some applic-ations this may be okay if it is required that there beat least one token at all times and preferably only onefor e�ciency reasons. For example, if we require theprocess with the token to carry out some task (respondto a query) the computation will still be in good stateafter the false detection. Further, by keeping numberswith a token we can force processes to discard any oldtokens.The second problem is how to coordinate processesso that exactly one of them generates the new token.Unfortunately, it is impossible to guarantee this in anasynchronous environment in which a process can fail.Formally, de�ne the problem of unique action asDevise an algorithm so that some process inthe system performs an action and all othersdo not perform that action.The next theorem demonstrates that implementingsuch an action is as di�cult as implementing con-sensus.Theorem 6 There is no terminating protocol for theunique action problem.Proof: We show that the problem of the unique ac-tion is at least as di�cult as the consensus problemin Fischer, Lynch, and Paterson [7]. Assuming thatthere exists a protocol for unique action, we solve theconsensus problem as follows. The action we requirefrom exactly one correct process is that it send its in-put value to all other processes in a special messagecalled action message. By requiring all processes tooutput the value they receive in an action message, wemeet all the requirements for consensus.Thus, any protocol for unique action cannot bothbe safe and live. One solution is to use idempotentactions so that application of multiple actions is equi-valent to a single action. For example in a process

control application the action may be to open somevalve. If the valve is already open then performing theaction again would not change anything.4.3 Synchronous EnvironmentWe de�ne a synchronous environment as one whichguarantees that all messages are received with abounded delay. In a synchronous environment ourfailure detectors will eventually be accurate. This isbecause we increase our timeout period after any falsesuspicion and therefore the timeout period will eventu-ally become greater than the bound on the delay. Afterthis point of time all suspicions will be accurate. Sincethe loss of accuracy in our predicate detection is onlydue to inaccuracy of failure detection, it follows thateventually our predicate detection scheme will be bothcomplete and accurate in a synchronous environment.Note that we only require that the message delays bebounded and not that the bound is known. No matterwhat the bound is, the algorithm will eventually makeonly accurate detections.References[1] K. P. Birman and R. V. Renesse. Reliable Dis-tributed Computing with the Isis Toolkit, 1993.[2] Tushar Deepak Chandra and Sam Toueg. Unreli-able failure detectors for reliable distributed sys-tems. Journal of the ACM, 43(2):225{267, March1996.[3] K. M. Chandy, and L. Lamport, \DistributedSnapshots: Determining global states of distrib-uted systems," ACM Transactions on ComputerSystems, no. 1, February 1985, pp. 63-75.[4] R. Cooper and K. Marzullo, \Consistent De-tection of Global Predicates," Proc. of theACM/ONR Workshop on Parallel and Distrib-uted Debugging, May 1991, pp. 163-173.[5] Cynthia Dwork, Nancy Lynch, and Larry Stock-meyer. Consensus in the presence of partial syn-chrony. Journal of the ACM, 35(2):288{323,April1988.[6] C. J. Fidge. Partial orders for parallel debugging.Proceedings of the ACM SIGPLAN/SIGOPSWorkshop on Parallel and Distributed Debugging,published in ACM SIGPLAN Notices, 24(1):183{194, January 1989.[7] M. Fischer, N. Lynch, M. Paterson, \Impossib-ility of Distributed Consensus with One FaultyProcess," Journal of the ACM, vol. 32, no.2, 1985,pp.374-382.

[8] V. K. Garg, C. M. Chase, R. Kilgore and J. R.Mitchell, \E�cient Detection of Channel Predic-ates in a Distributed System," Journal of Par-allel and Distributed Computing, Vol. 45, No. 2,September 1997, pp. 134 { 147.[9] V. K. Garg, C. Chase, \Distributed Algorithmsfor Detecting conjunctive Predicates," Proceed-ings of the Int'l Conference on Distributed Com-puting Systems, June 1995, pp. 423-430.[10] V. K. Garg, and B. Waldecker, \Detection ofWeak Unstable Predicates in Distributed Pro-grams," IEEE Trans. on Parallel and DistributedSystems, Vol. 5, No. 3, Mar 1994, pp. 299-307.[11] V.K. Garg, J. R. Mitchell, \In�nitely Often Ac-curate failure detectors in a faulty asynchronousenvironment," ECE dept, University of Texas,Tech. Report TR-PDS-1998-04.[12] M. Hur�n, M. Mizuno, M. Raynal, M. Singhal,\E�cient Distributed Detection of Conjunctionsof Local Predicates," IRISA technical report, PI-967, 1995.[13] L. Lamport, \Time, Clocks, and the Ordering ofEvents in a Distributed System," Communica-tions of the ACM, vol. 21, no. 7, July 1978, pp.558-565.[14] P. Li, B. McMillin, \Fault-Tolerant DistributedDeadlock Detection/Resolution," Proceedings ofthe 17th International COMPSAC, November,1993, pp. 224-230.[15] F. Mattern, \Virtual Time and Global States ofDistributed Systems," Parallel and DistributedAlgorithms, 1989, pp. 215-226.[16] J. R. Mitchell, \Algorithms for building fault tol-erant distributed systems," Ph.D. dissertation,University of Texas at Austin, 1997.[17] Y.-C. Tseng. Detecting termination by weight-throwing in a faulty distributed system. Journalof Parallel and Distributed Computing, 25:7{15,1995.[18] S. Venkatesan, \Reliable protocols for distrib-uted termination detection," IEEE Transactionson Reliability, Vol. 38, No.1, April 1989, pp 103{110.[19] M. Woods. Fault-tolerant management of distrib-uted applications using the reactive system archi-tecture. Ph.D. dissertation, January 1992.

