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1 Introduction

The emergence of mobile computing devices, such as notebook computers and personal digital as-
sistants with communication capabilities, has had a significant impact on distributed computing.
These devices provide users the freedom to move anywhere under the service area while retaining
network connection. However, mobile computing devices have limited resources compared to sta-
tionary machines. For example, mobile devices have small memory space, limited power supply,
and less computing capability. Furthermore, the communication between mobile devices and wired
network employs wireless channels which are susceptible to errors and distortions. Also, the cost
of using these wireless channels is relatively expensive. Distributed algorithms that run on the sys-
tem with mobile computing devices therefore require some modifications to compensate for these
factors.

A mobile computing system consists of two kinds of processing units: mobile hosts, and mobile
support stations. A mobile host (MH) is a host that can move while retaining its network connec-
tions. A mobile support stations (MSS) is a machine that can communicate directly with mobile
hosts. The coverage area under an MSS is called a cell. Even though cells may physically overlap,
an MH can be directly connected through a wireless channel to at most one MSS at any given time.
An MH can communicate with other MHs and MSSs only through the MSS to which it is directly
connected. All MSSs and communication paths between them form the wired network. Figure 1
illustrates a mobile computing system. Throughout the paper, we use the terms mobile host and
host, and mobile support station and support station interchangeably.

In this paper, we consider causal message ordering required in many distributed applications
such as management of replicated data [10, 11], distributed monitoring [8], resource allocation
[19], distributed shared memory [4], and multimedia systems [1]. Algorithms to implement causal
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Figure 1: A mobile computing system.

message ordering in systems with static hosts have been presented in [3, 11, 17, 19, 20, 21]. These al-
gorithms, however, require high message and memory overheads; therefore, they cannot be directly
employed in mobile computing systems. We propose a new protocol suited to mobile computing
systems in which message overhead is small compared to those for static systems and limited re-
sources on mobile hosts are efficiently utilized. Our protocol is also suitable for systems where
the number of participating hosts is varied dynamically. Moreover, the proposed protocol is more
scalable than existing protocols since our message overhead is independent of the number of hosts
in the system.

While ordering of messages in distributed systems with static hosts has received wide atten-
tion, there has been little work on causal message ordering in mobile computing systems. Alagar
and Venkatesan [6] proposed three algorithms based on the algorithm presented in [19]. The first
algorithm(.4L;) maintains causal ordering among all MHs. Message overhead is therefore propor-
tional to the square of the number of hosts(ny). However, data structures required in the algorithm
are stored in MSSs to reduce load on mobile hosts and wireless links. In the second algorithm(ALz),
causal ordering is exclusively maintained among MSSs. This is sufficient for causal ordering among
MHs only when each wireless channel is FIFO and MHs never change cell. Message overhead re-
duces to the square of the number of MSSs(n,). However, the procedure for handling host migration
(handoff) is more complex than that of the first algorithm. Since stronger ordering is imposed, mes-
sages may experience unnecessarily delay even though they do not violate causal ordering among
mobile hosts. Their third algorithm(AL3) is aimed to reduce this unnecessary delay by partitioning
each physical MSS into k logical support stations. As k increases, the degree of unnecessary delay
decreases, but message overhead and the cost of handling host migration increase.

Yen, Huang, and Hwang [22] proposed another algorithm based on [19]. Message overhead
in their algorithm falls between AL; and ALy. In particular, each MSS maintains a matrix of
size ng X nyp; this matrix is attached to each message sent by an MSS. Unnecessary delay in this
algorithm is lower than ALy. Handoff protocol in this algorithm is also less complicated than AL,.



Prakash, Raynal, and Singhal [18] presented an algorithm to implement causal message ordering
in which each message carries information only about its direct predecessors with respect to each
destination process. Message overhead in their algorithm is relatively low; however, in the worst
case, it can be O(n7). Furthermore, the size of their message overhead varies when the number of
participating processes dynamically changes. This make their algorithm not suitable for dynamic
systems.

In the proposed protocol, we are able to decrease the unnecessary delivery delay while maintain-
ing message overhead at O(n? +ny,), in the worst case. Our handoff protocol is more efficient than
that in ALs and AL3 because we do not require causal ordering among messages sent as part of
the handoff. We also provide the formal proof for both static and handoff protocols. Furthermore,
the condition for which messages are delayed in the protocol is also formally stated and proved.

2 System model

A message passing mobile computation consists of a set of ny processes running on mobile hosts,
H ={h; |1 <i<mny}. Let S be the set of mobile support stations, Si,...,S,,. We use H; to
denote the set of mobile hosts in the cell of S;. In general, nj > ns;. These MH processes do not
share a global memory or a global clock, and they communicate asynchronously with each other.
Each process in a computation generates an execution trace, which is a finite sequence of local
states and events. A state corresponds to the values of all variables and the program counter in
the process. Events in each process are classified into three types: send events, receive events, and
local events. Delivery events are local events that represent the delivery of a received message to
the application or applications running in that process.

A mobile computation can be illustrated using a graphical representation referred to as concrete
diagram. Figure 2 illustrates such a diagram where the horizontal lines represent MH and MSS
processes, with time progressing from left to right. h; is in the cell of S;. ho and hg are in the
cell of Sy. A solid arrow represents a message sent between a MH process and a MSS process. A
dashed arrow represents a message sent from a MSS process to another MSS process. Filled circles
at the base and the head of an arrow represent send and receive events of that message. A concrete
diagram in which only MH processes are shown is referred to as an abstract diagram.

For any two events, e and f on some mobile host, we write e <, f iff e occurs before f. We
use —, to denote the Lamport’s happened before relation [16] in the abstract diagram. Similarly,
e <s f iff e occurs before f on some mobile support station. Also, let — denote the Lamport’s
happened before relation in the concrete diagram.

A data message is a message sent by an MH intended for another MH. Since mobile hosts do not
communicate with each other directly, an MH, say hg, send a data message m to its local support
station, say S;, which then forwards it to the local support station, S, of the destination host, hy.
Using our notation, m.src and m.dst denote the source and the destination hosts of m. In other
words, m.src = hy and m.dst = hy. Furthermore, m.snd denotes the send event of m on h. Also,
m.rcv and m.dlv denote the receive and delivery events respectively of m on hg.

Let 77 denote the message which S; sends to S; (containing the data message m along with a
matrix for ensuring causality), requesting it to deliver m to hg. Again, m.src denotes the support
station of hg (in this case S;) when m is dispatched. Similarly, ri.dst denotes the support station
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Figure 2: A concrete diagram of a mobile computation

to which S; forwards m (in this case S;). As before using our notation, m.snd denotes the send
event of m on the support station S;. Similarly, m.rcv and m.dlv denote the receive and delivery
events respectively of m on S;j. When it is clear from the context, we use message in place of data
message.

For any two messages m; and my, we say that m; causally precedes my in abstract view if
my.snd —p, mg.snd. We say that m, causally precedes my in concrete view if m.snd — Sy.snd
We assume that every message sent in both wired and wireless networks is eventually received, and
there are no spurious messages. We also assume that messages exchanged between any two MSSs
are received in the order sent, and all wireless channels are FIFO.

3 Sufficient Conditions

A mobile computation is causally ordered if the following property holds for any two messages, m4
and mo
my.snd —p ma.snd = —(ma.dlv <; mq.dlv) (CO)

We next show the sufficient conditions for causal message ordering in mobile computation.
Theorem 1 : A mobile computation with multiple MSSs is causally ordered if

(C1) all wireless channels are FIFO,
(Ca) messages in the wired network is causally ordered, and
(C3) each MSS sends out messages in the order they are received.

Proof: Let message mi be sent from h; to h; and message mo be sent from hy to h;. Given
my.snd —p, mo.snd, we need to show that if C;, Co, and C3 are satisfied, then m; and mo are
delivered at h; in that order.

Since there is no direct communication between MHs, each message from an MH to another
MH must be sent through the MSS(s). From m;.snd —}, ma.snd, there must be a message path



from h; to hy via S; and Sy if S; is the MSS of h;, and S}, is the MSS of hy. From C; and the fact
that mq.snd — mo.snd, mi.snd —, mo.snd. Note that this is still true even if h; and hy are in
the same cell, or there are more than one message involved in the causal chain between s; and ss.
From Cg, it implies that m; will be delivered by S; before my. By C; and Cg, h; will deliver m;
and mo in that order. Figure 3 illustrates a causally ordered computation in which all MHs are
located in different MSSs. [ ]
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Figure 3: A concrete diagram showing a causally ordered mobile computation.

Sufficient conditions shown in Theorem 1 were implicitly used in [6]. For systems with static
hosts, Theorem 1 gives a lightweight protocol for causal message ordering. In the extreme case when
the entire computation is in one cell, causal ordering can be provided by simply using FIFO between
MHs and the MSS. This is significantly more efficient than using matrices as in [19] although it is
centralized.

We show that Cy, Co, and Cs3 are not necessary by a counter-example. In Figure 4, s; — s3
and d; < dz. Therefore, this mobile computation is causally ordered, but C; and Cy do not hold.
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(a) Concrete diagram (b) Abstract diagram

Figure 4: A counter-example to show that C;, Cy, and Cg are not necessary.



Let us consider a computation in Figure 5. In this example, M H, is in the cell of S;, M Hy and
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Figure 5: A mobile computation in which m; —4 mg, but my /4 mg.

MH, in the cell of S}, and hg in the cell of Si. Since there does not exist a message path from s;
to sz in the abstract diagram of the computation in Figure 5, m; /4 ms. Therefore, ms can be
delivered to hg before m; without violating CO. However, m; —; m3. Observe that if m —p m/,
then m —4 m' when the channel between each MH and its MSS is FIFO.

We can formally state condition Cs as follows:

my.snd —g mo.snd = —(mg.dlv <5 my.dlv) (o

The algorithm presented by Alagar and Venkatesan [6] enforces CO’ in order to achieve CO. This
algorithm delays messages that violate CO’ even though they do not violate CO. This can be
illustrated in a computation in Figure 6. In this example, message m; does not causally precede
m3 in the abstract view, but it does in the concrete view. With CO’, mg3 is unnecessarily delayed
until m; is delivered.
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Figure 6: An example of our implementation

Our goal is to reduce this extra delay, while maintaining the size of message overhead in the
wired network at O(n?).

4 The Protocol

To reduce the unnecessary delay in ALy, we propose a new protocol that implements a prop-
erty weaker than CO'. We first introduce the protocol, and then formally state the implemented

property.



Static protocol

Our static protocol is based on the algorithm proposed by Raynal et al. [19]. We assign the
following data structures to each mobile host h,: (1) an integer matrix, M, of size ng x ng, (2) a
message queue, ack(),. Both are maintained by the local MSS of h,. Each support station, S;, also
maintains the following data structures for itself: (1) a message queue, rcv@;, and (2) two integer
arrays, lastrcvd; and lastsent;, of size ng. The static algorithm is given in Figure 7. For the simple
exposition of the protocol, we here assume that channels among MSSs are FIFO.

Whenever an h, wants to send a message m to hy, h, must first send m to its local support
station, say S;. Then, S; increments lastsent;[j] (let S; be the local MSS of hg), and attaches
lastsent;[j], and matrix M, to m before sending m to S;. S; then updates entry My[s,j] by
lastsent;[7].

Once message m(M,, seqno) arrives at Sj, it is added into rcv@;. Note that channels in the
wired network are assumed FIFO. At this point, we say that m is received at S;. A received message
is deliverable to h, when conditions in step (A4) are satisfied. The delivered message is removed
from rcv@; and added into the ack@,. Messages stored in ack(@), are sent, in sequence, to h, over
a wireless link. S; waits for an acknowledgement from A4, before matrix M, is updated according
to (A6). This prevents m from being considered causally preceded any outgoing message from hy
that is sent before m is received by hg.

In the following section, we prove that the static protocol implements CO” under assumption
that channels among MSSs are FIFO. We can formally state CO" as follows. For any message m

and meo,

(FImy, - my.dst = my.dst : (Mi.snd 2 my.snd) A (mg.snd =y, mj.snd))
= a(mj.div <p, mi.dlv) A =(mj.dlv <, m;.rev) (co")
where e <X fiff (e = f) V (e < f).
For a fair comparison with the previous protocols, we have to state the property implemented by
our protocol without the assumption that channels among MSSs are FIFO. If the channels among
support station are not FIFO then the static protocol satisfies,

CO" A mig.snd <s mo.snd = —(ma.dlv <5 my.rev)

Handoff protocol

To ensure causal ordering (CO) when MHs move, handoff protocol must be executed every time an
MH changes cell. This can be illustrated by the following example. Let m; —} mo and both are
intended for the same MH hy. Assume that hgy moves from the cell of S; to Sj, it leaves S; before
my arrives. Also, assume that my is sent to S;. It is easy to see that with only static protocol, ma
will be delivered to hy before my violating CO.

Our handoff protocol is more efficient than Alagar’s handoff protocol. This is because we do not
require causal ordering among data messages and messages sent as part of the handoff protocol.
The handoff protocol is given in Figure 9 and Figure 10. The modification of the static protocol
due to host mobility is shown in Figure 8

In our handoff protocol, each MH h maintains an integer, mbl (mobility count), initially 0. mbl
is incremented each time mobile host switches cell. Each support station S; maintains an array
cell;[1...ny] of pair (mbl,mss). Entry cell;[d].mss represents the current location(cell) of host d



known by S;. cell;[d].mbl is the mobility number associated with cell;[d].mss. We assume that
initially each MSS knows the exact location of each MH.

Here we give a brief description of our handoff protocol. We refer to messages sent as part of
the handoff protocol as signals. Consider a scenario when a mobile host 4 moves from S; to Sj.
Once h enters the cell of S}, it sends a signal register(mbl, S;) to S; to inform S; of its presence.
On receiving register from h, S; updates cell[h] with (mbl, S;), and sends handoff_begin(h, mbl)
signal to S;.

When S; receives handoff-begin(h, mbl), S; updates its own cell[h], and sends enable signal along
with M}, and ackQy, to S;. S; then broadcasts notify(h, mbl, Sj) to all MSSs except S; and S;. On
receiving enable from S;, S; resends all messages in ackQy. Then, S; can start sending messages
on behalf of host h. However, messages destined for A must wait until S; receives handoff_over
signal from S;.

When an MSS Sy receives notify from S;, Sy updates cell[h], and sends last(h) back to S;.
Since messages among MSSs are FIFO, when S; delivers last from S, it implies that there is no
messages in transition sending from Sy to S; intended for host h.

When messages intended for h received by S; after S; receives handoff-begin and before S;
receives all last signals become deliverable (step A4 in static protocol), S; marks them as old and
forwards to S;. Once S; receives last from each support station except S;, it sends handoff_over to
Sj.

Since messages in the wired network are not causally ordered, for any two messages, m; and
my intended for the same host d such that m; —, mg, it is possible that my is sent to the new
MSS, but msq is sent the old MSS. To ensure CO, we attach additional information, up_cell, to each
data message, data message tagged as old, and enable signal sent from any MSS S; to S; (steps
A2, A5’ A13). up_cell is a list of 3-tuple, (hy,cell[k].mbl, cell[k].mss), for each host hy that has
changed cell according to S;’s knowledge since up_cell last sent to Sj;.

When S; receives messages (signals) attached with up_cell, S; updates cell;[k] if the location
of hy in up_cell is more updated than that in cell;[k], that is, the mobility count in cell;[k] is less
than that in up_cell (step A3’).

The handoff protocol terminates at S; after handoff-over(k) is received by S;. If S; receives
handoff-begin(k, mbl) from some other MSS before the current handoff of host & terminates, S; will
respond to the signal only after the handoff completes.

5 Proof of Correctness

We first prove that the combination of static and handoff protocols implement causal message
ordering (CO). Then, we show that our static protocol implements CO".

5.1 Safety and Liveness Proofs

Here we prove that our static and handoff protocols implement CO.

5.2 Static protocol implements CO"

Here we prove that our static protocol implements CO".



For the following proofs, we need to define an auxiliary variable pred for any message m as
follows:
m.pred[i, j| = (max p.seqno : fi.src = S;, fi.dst = S; N p —p, m)

Thus, m.pred[i, j] is the message (say p) with the biggest seqno that causally precedes m and
fi.src = S; and fi.dst = S;. If there is no such message, we define m.pred[i, j| = L, and L.seqno = 0.

Let us introduce some notations used in the following Lemma. Let (p,n) denote the sequence
of states (interval) between the (n — 1) and n'* external events (send and delivery events) in h,,.
When we say a message m* is happened before an interval (p,n), we mean that (1) m*.snd —, e,
where e is the (n — 1) external event of host p, or (2) m*.s is e. We also use M’ to denote the
matrix of host h;, corresponding to the interval (p,n). Note that M} = m.M if m is the message

sent initiating the interval (p,n + 1).
Lemma 2 m.M|[i,j] = m.pred[i, j|.seqno

Proof: Let m is sent from host p. We prove by induction on n, the number of intervals in p.

Base(n = 1): Since the initial matrix is 0, the message m initiating the interval (p, 2) is tagged
with zero matrix. The Lemma follows.

Induction(n > 1): Assume true for (p,n) and every interval in the past of (p,n). Suppose
the event initiating (p,n + 1) is the send of m and the value of seqno of (p,n) is Is. By induction
hypothesis, m.M[i, j] = m.pred][i, j].seqgno. From the program text, we know that m.M = M} and
m.seqno = Is + 1. If m.src = S; and m.dst = S, we get Mg“[i,j] = Is + 1. Otherwise, we get
M *i, j] = M}[i, j]. The Lemma follows.

Suppose the event initiating (p,n+1) is the receive of W tagged with matrix M,,. By induction
hypothesis, we obtain that M,y[i,j] = W.predli, j].seqno, and M,'[i,j] is the seqno of the last
message happened before (p,n) sent through S; and S;. From step (A6) in the program text, we
get that M;}“[i, j] is also the seqno of the last message happened before (p,n + 1) sent through S;
and Sj. ]

Lemma 3 For any two messages my and my such that mi.src = S; and mo.dst = S;, the static
protocol satisfies

(TImy : my.dst = myg.dst : (my.snd < mg.snd) A (mg.snd —p, ma.snd)) <= mj.seqno < mg.M][i, j]

Proof:
(=)
(A.1) my.snd —p, mg.snd = my.seqno < my.M]i, j]
We prove this by induction on n the number of messages in the causal chain among m;.snd and

mo.snd.

Base Case: n = 0. It implies that m;.snd <; ma.snd. From the sending routine, m;.seqno <
mQ.M[i, ]]

Induction: Let e, be the last message in the causal chain. By induction, we get mi.seqno <
en-Mli,j]. Since e, must be delivered to mg.dst before mgy.snd, we know that e,.MJi,j] <
ma.M[i, j]. Therefore, mi.snd —j, ma.snd = my.seqno < ma.M|i, j]



(A.2) (Imy, : my.dst = my.dst : (M;.snd <s Mg.snd) A (my.snd —p, mj.snd)) = mi.seqno < my.M[i, j]

From mi,.dst = my.dst and miq.snd <s mMyg.snd,

m1.seqno < Mmy.Seqno (1)
Since my.snd —p, ma.snd, we get from (A.1) that

mg.seqno < mo.M][i, j] (2)

From ( 1) and ( 2), we get mj.seqno < mg.M|i, j].

(<)

Let mo.M[i, j| = , and my be sent from Sj on behalf of h,. There are two cases:

(B.1) k#1

From Lemma 2, there must be a message m such that m.snd —, ma.snd A m.src = S;,m.dst €
S; N m.seqno = x. Since my.src = S;,my.dst = S, and my.seqno < z, we know that mii.snd <
m.snd.

(B.2) k=1

If my and my are sent from the same mobile host, we get from (A2) that my.snd —p ma.snd.
If they are sent from different mobile hosts, there must be a message m such that m.snd <j
mo.snd A m.seqno = x. ]

Theorem 4 The static protocol implements
(FImy, - my.dst = my.dst : (mi.snd = miyg.snd) A (mg.snd —p, mj.snd))
= =(mj.dlv <, mi.dlv) N =(mj.dlv <, m;.rev),
where e <X f iff (e = f)V (e <s f), under the assumption that the channels among support
stations are FIFO.

Proof: Let Xp and Ao be the set of executions accepted by the proposed protocol and condition
CO", respectively. To prove that the static protocol implements CO”, we need to show that Xp =
Xeor. In the proof, we write m; — m; iff (Imy : my.dst = mig.dst : (m;.snd < miyg.snd) A
(my.snd —p, mj.snd))

Xeor € Xp: Let chann(G, z) be the set of all messages sent to the support station S in the
channel in the consistent cut G' (which includes state z € S). Let D = min(chann(G, z)) represent
the set of messages minimal in chann(G, z) with respect to <. Let m(s,d) € D. We show that m
is deliverable. We show the contrapositive, that is, if m is not deliverable at z, then m ¢ D.

The fact that m is not deliverable at z, implies that
(1) 3z : lastrec;[z] < m.My[z,i], or
(2) 3m' € RCV D; intended for hy and sent from Sy such that m'.seqno < m.M, [k, i]

We show that both (1) and (2) falsify CO”. (1). It implies that Im’ : lastrec[z] < m'.seqno <
m.My[z,i] A m' &€ rcv@;. From Lemma 3, we know that m’ < m holds. Contradiction. (2). From
Lemma 3, we know that m’ < m. Contradiction.

Xp C Xpoor: Given that m; < mo and both messages are intended for the same host hyg,
we need to show that (my.dlv <, mg.dlv) V (my.rcv <5 mse.dlv) never hold in any computation
accepted by the protocol.

10



If (s; =4 s2) V ((3s 2 B(s1,s)As =, s2)), we know from Lemma 3 that m;.seqno < mo.M]i, j].
If m has been received by S; but not delivered to hg, that is, mi € rcv@Q;. By step (A4), hy must
deliver m; before my. If m; has not been received by Sj, then lastrec;[i] < m.seqno. Therefore,
lastrec;[i] < mg.M[i,j]. Again, from (A4) my must be delayed until m; is received by S;. [

6 Discussion

The proposed static protocol implements CO”. This condition is weaker than CO’ implemented by
ALs. As a result, unnecessary delay in our protocol is lower than that imposed in AL5. In the
worst case, message overhead in our protocol is O(n? + ny). Our memory overhead in each MSS
is O(k * n2), where k is the number of MHs currently in the cell of the MSS. Even though this
overhead is higher than that of ALs, it can be easily accommodated by MSSs due to their rich
memory resources.

Prakash’s algorithm [18] is not suitable for systems where the number of mobile hosts dynam-
ically changes because the structure of information carried by each message in their algorithm
depends on the number of participating processes. In our protocol, the information carried by
each message in the wired network does not vary with the number of MHs in the system. So, our
protocol is more suitable to dynamic systems. Prakash’s protocol, however, incurs no unnecessary
delay in message delivery.

Yen'’s static protocol [22] satisfies

mi.snd —s ma.snd = —(ma.dlv < my.dlv)

Their message overhead in the wired network is O(ng x np). This overhead is higher than ours
but lower than ALy. Their unnecessary delay is strictly lower than Alagar’s. When comparing in
term of unnecessary delay, their delay is lower than ours in the average case. However, there exists
cases where our protocol does not impose delivery delay, but their protocol does. Let consider the
example given in Figure 6. If mo was sent from different MH in cell S;, and mg was sent from h,,
after hs delivers mo, then Yen’s algorithm would delay mg until m, is delivered. In our protocol,
mg can be deliverd before m;.

One can further reduce the unnecessary delay in Yen’s protocol using technique introduced in
this paper. By assigning a matrix of size ns X np to each host, the enforced condition becomes

(Imy - my.dst = my.dst : (Mi.snd 2 my.snd)A(my.snd —p, mj.snd)) = —(mj.dlv <y m;.dlv) A =(mj.dlv <s m;

where e <X fiff (e = f) V (e <5 f).
The table below summarizes the comparison between our protocol and previous work.

‘ Algorithm ‘ Message overhead ‘ Extra delay in message Well-suited for ‘
delivery dynamic systems
Alagar
Venkatesan O(n?) High Yes
Prakash ]
et al O(n}) None No
Yen
et al O(ns X np) UD No
Skawratananond
Mittal and Garg O(n? +ny) UD Yes

ny: the number of MHs.

11
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ns: the number of MSSs.

Conclusions

conclusion is here.
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var
rcv@ @ queue of messages, initially ¢;
cell : array[l..np] of pair (mbl,mss), initially [(0, S¥))1<k<n,;
lastsent, lastrcvd : array[l..ng] of integers, initially 0;
M : set of matrices (ns x ns), ({My | hy € H;}), each initially 0;
ackQ) : set of FIFO queues of messages, ({ackQy. | hi, € H;}), each initially ¢;
sndQ : set of FIFO queues of messages, ({sndQy | hi € 7-[1{) each initially ¢;
canSend : set of boolean variables, ({canSendy, | by, € H;}), each initially true;
canDeliver : set of boolean variables, ({canDelivery, | hy € H;}), each initially true;

(A1) On receiving a data message m from hg;
send an acknowledgement to hyg;
put m in sndQs;
call process_sndQ(hs);

(A2) On calling process_sndQ(hs);
if (canSends) then
while (snd@ # ¢) do
remove m from the head of sndQ,;
let m be destined for hy and S; be cell[d].mss;
lastsent[j] + +;
send (m, Mj,lastsent[j]) to S;;
MsLi,j] := lastsent[j];
endwhile;
endif;

(A3) On receiving (m, M, seqno) from Sj;
lastrcvd[j] := seqno;
put (m, M, seqno) in rcv@;
call process_rcvQ();

(A4) On calling process_rcv@;
repeat
forall (m, M, seqno) € rcv@ do
let m be destined for hy;
if (canDeliverq A (Vk :: lastrcvd[k] > M[k,zJ> A
(A (m',M', seqno’) € rcv@ :: (S sent m' for hyq) A (seqno’ < Mk, i])) ) then
remove (m, M, seqno) from rcv@;
call deliver({m, M, seqno));
endif;
endforall;
until (rcv@ = ¢) V (no more messages can be delivered);

(A5) On calling deliver({m, M, seqno));
let m be destined for hy;
put (m, M, seqno) in ackQg4;
send m to hy;

(A6) On receiving an acknowledgement from hg;
remove (m, M, segno) from the head of ackQq and let S; sent m;
Mglj, ] := max{Mylj,i], seqno};
Mg := max{Mgy, M},

Figure 7: The static protocol for a mobile support station .S;
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S;

(A2') On calling process_snd@Q(hs);
if (canSends) then
while (snd@ # ¢) do
remove m from the head of sndQ@,;
let m be destined for hy and S; be cell[d].mss;
lastsent[j] + +;
let up_cell be {(hg, cell[k].mbl, cell[k].mss) | hy, has changed cell since up_cell
was last sent to S; };
send (m, M, lastsent[j]) to S;;
Msgi,j] := lastsent[j];
endwhile;
endif;

(A3') On receiving (m, M, seqno, up_cell) from Sj;
forall (hy,mbl, S,,) € up_cell do
if (cell[k].mbl < mbl) then cell[k] := (mbl, Sp);
endforall;
lastrevd[j] := seqno;
put (m, M, seqno) in rcv@;
call process_rcvQ();

(A5") On calling deliver({m, M, seqno));
let m be destined for hy;
if (cell[d].mss = S;) then
put {(m, M, seqno) in ackQg4;
send m to hy;
else
let up_cell be {{hy, cell[k].mbl, cell[k].mss) | hi, has changed cell since up_cell was
last sent to cell[d].mss};
dsfend (m, M, seqno, old, up_cell) to cell[d].mss;
endif;

Figure 8: The modification in static protocol in presence of host movement in mobile support
station S;
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S;

var
noO f Last : set of integers, ({noO fLasty, | hy € H;}), each initially 0;
handoff Over : set of boolean variables, ({handoff Overy, | hy, € H;}), each initially true;
handoff @ : set of priority queue of messages, ({handoff Q. | hy, € H}), each initially ¢;

(A7) On receiving (register, mbl, S;) from hy;
put (register,mbl, S;) in handoff Q; using mbl as the key;
call process_handoff Q(h;);

(A8) On receiving (handoff_begin, h;, mbl) from S;;
put (handoff-begin, mbl, S;) in handoff ; using mbl as the key;
call process_handoff Q(h;);

(A9) On receiving (notify, h;, mbl, Sy,) from S;;
if (cell[l].mbl < mbl) then cell[l] := (mbl, Sy);
send (last, hy) to S;;
call process_handoff Q(h;);

(A10) On receiving (enable, hy, M', ackQ', up_cell);
forall (hy,mbl, S,) € up_cell do
if (cell[k].mbl < mbl) then cell[k] := (mbl, S,);
endforall;
Ml = M’;
while (ackQ' # ¢) do
remove (m, M, seqno) from the head of ackQ' and let S; sent m;
put {(m, M, seqno) in ackQ;
send m to hy;
Ml[j? Z] = maX{Ml[ja Z]7 Sean};
M; := max{M;, ;
endwhile;
canSend; := true;
call process_sndQ(h;);

(A11) On receiving (last, hy);

noO f Last; + +;

if (noO fLast; = ns — 2) then
canDeliver; := false;
send (handoff-over, h;) to cell[l].mss;
remove h; from H;;
call process_handoff Q(hy);

endif;

(A12) On receiving (handoff-over, h;);
canDeliver; := true,
handoff Over; := true;
process_handoff Q(hy);
process_rcvQ();

Figure 9: The handoff protocol for a mobile support station .S;
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S;

(A13) On calling process_handoff Q(h;);
let (type, mbl, S;) be at the head of handoffQ;;
if ((type = register) A (mbl = cell[l].mbl + 1) A (hy & H;)) then
remove the message from the head of handoff Qy;
add hy to H;; 5
cellll] :== (mbl, S;);
can[ﬁjendl<:: falsZe;
canDeliver; := false;
handoff Over; := false;
send (handoff-begin, hy, mbl) to Sj;
else if ((type = handoff -begin) A (mbl = cell[l].mbl + 1) A handoff Over;) then
remove the message from the head of handoff Q;;
cell[l] :== (mbl, S;);
let up_cell be {(hg, cell[k].mbl, cell[k].mss) | hy, has changed cell since up_cell was
last sent to S;};
send (enable, hy, M;, ackQq, up_cell) to Sj;
broadcast (notify, hy, mbl, S;) to S\ {S;,S;};
endif;

(A14) On receiving (m, M, seqno, old, up_cell);
forall (hy,mbl, S,) € up_cell do
if (cell[k].mbl < mbl) then cell[k] := (mbl, S,);
endforall;
call deliver({m, M, seqno});

Figure 10: The handoff protocol for a mobile support station S; (contd.)
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