
A Lightweight Algorithm for Causal Message Ordering in MobileComputing SystemsChakarat Skawratananond, Neeraj Mittal, and Vijay K. Garg�Parallel and Distributed Systems Laboratoryhttp://maple.ece.utexas.eduElectrical and Computer Engineering DepartmentThe University of Texas at Austin,Austin, Texas 78712
1 IntroductionThe emergence of mobile computing devices, such as notebook computers and personal digital as-sistants with communication capabilities, has had a signi�cant impact on distributed computing.These devices provide users the freedom to move anywhere under the service area while retainingnetwork connection. However, mobile computing devices have limited resources compared to sta-tionary machines. For example, mobile devices have small memory space, limited power supply,and less computing capability. Furthermore, the communication between mobile devices and wirednetwork employs wireless channels which are susceptible to errors and distortions. Also, the costof using these wireless channels is relatively expensive. Distributed algorithms that run on the sys-tem with mobile computing devices therefore require some modi�cations to compensate for thesefactors.A mobile computing system consists of two kinds of processing units: mobile hosts, and mobilesupport stations. A mobile host (MH) is a host that can move while retaining its network connec-tions. A mobile support stations (MSS) is a machine that can communicate directly with mobilehosts. The coverage area under an MSS is called a cell. Even though cells may physically overlap,an MH can be directly connected through a wireless channel to at most one MSS at any given time.An MH can communicate with other MHs and MSSs only through the MSS to which it is directlyconnected. All MSSs and communication paths between them form the wired network. Figure 1illustrates a mobile computing system. Throughout the paper, we use the terms mobile host andhost, and mobile support station and support station interchangeably.In this paper, we consider causal message ordering required in many distributed applicationssuch as management of replicated data [10, 11], distributed monitoring [8], resource allocation[19], distributed shared memory [4], and multimedia systems [1]. Algorithms to implement causal�supported in part by the NSF Grants ECS-9414780, CCR-9520540, a TRW faculty assistantship award, a GeneralMotors Fellowship, and an IBM grant. 1

MH

Wired network

MSS
MSS

MSS
MSS

Wireless cell

Wireless cell

Wireless cell

Wireless cell

MSS

MH MH

MH

MH

Figure 1: A mobile computing system.message ordering in systems with static hosts have been presented in [3, 11, 17, 19, 20, 21]. These al-gorithms, however, require high message and memory overheads; therefore, they cannot be directlyemployed in mobile computing systems. We propose a new protocol suited to mobile computingsystems in which message overhead is small compared to those for static systems and limited re-sources on mobile hosts are e�ciently utilized. Our protocol is also suitable for systems wherethe number of participating hosts is varied dynamically. Moreover, the proposed protocol is morescalable than existing protocols since our message overhead is independent of the number of hostsin the system.While ordering of messages in distributed systems with static hosts has received wide atten-tion, there has been little work on causal message ordering in mobile computing systems. Alagarand Venkatesan [6] proposed three algorithms based on the algorithm presented in [19]. The �rstalgorithm(AL1) maintains causal ordering among all MHs. Message overhead is therefore propor-tional to the square of the number of hosts(nh). However, data structures required in the algorithmare stored in MSSs to reduce load on mobile hosts and wireless links. In the second algorithm(AL2),causal ordering is exclusively maintained among MSSs. This is su�cient for causal ordering amongMHs only when each wireless channel is FIFO and MHs never change cell. Message overhead re-duces to the square of the number of MSSs(ns). However, the procedure for handling host migration(hando�) is more complex than that of the �rst algorithm. Since stronger ordering is imposed, mes-sages may experience unnecessarily delay even though they do not violate causal ordering amongmobile hosts. Their third algorithm(AL3) is aimed to reduce this unnecessary delay by partitioningeach physical MSS into k logical support stations. As k increases, the degree of unnecessary delaydecreases, but message overhead and the cost of handling host migration increase.Yen, Huang, and Hwang [22] proposed another algorithm based on [19]. Message overheadin their algorithm falls between AL1 and AL2. In particular, each MSS maintains a matrix ofsize ns � nh; this matrix is attached to each message sent by an MSS. Unnecessary delay in thisalgorithm is lower than AL2. Hando� protocol in this algorithm is also less complicated than AL2.2

Prakash, Raynal, and Singhal [18] presented an algorithm to implement causal message orderingin which each message carries information only about its direct predecessors with respect to eachdestination process. Message overhead in their algorithm is relatively low; however, in the worstcase, it can be O(n2h). Furthermore, the size of their message overhead varies when the number ofparticipating processes dynamically changes. This make their algorithm not suitable for dynamicsystems.In the proposed protocol, we are able to decrease the unnecessary delivery delay while maintain-ing message overhead at O(n2s +nh), in the worst case. Our hando� protocol is more e�cient thanthat in AL2 and AL3 because we do not require causal ordering among messages sent as part ofthe hando�. We also provide the formal proof for both static and hando� protocols. Furthermore,the condition for which messages are delayed in the protocol is also formally stated and proved.2 System modelA message passing mobile computation consists of a set of nh processes running on mobile hosts,H = fhi j 1 � i � nhg. Let S be the set of mobile support stations, S1; : : : ; Sns . We use Hi todenote the set of mobile hosts in the cell of Si. In general, nh � ns. These MH processes do notshare a global memory or a global clock, and they communicate asynchronously with each other.Each process in a computation generates an execution trace, which is a �nite sequence of localstates and events. A state corresponds to the values of all variables and the program counter inthe process. Events in each process are classi�ed into three types: send events, receive events, andlocal events. Delivery events are local events that represent the delivery of a received message tothe application or applications running in that process.A mobile computation can be illustrated using a graphical representation referred to as concretediagram. Figure 2 illustrates such a diagram where the horizontal lines represent MH and MSSprocesses, with time progressing from left to right. h1 is in the cell of S1. h2 and h3 are in thecell of S2. A solid arrow represents a message sent between a MH process and a MSS process. Adashed arrow represents a message sent from a MSS process to another MSS process. Filled circlesat the base and the head of an arrow represent send and receive events of that message. A concretediagram in which only MH processes are shown is referred to as an abstract diagram.For any two events, e and f on some mobile host, we write e �h f i� e occurs before f . Weuse !h to denote the Lamport's happened before relation [16] in the abstract diagram. Similarly,e �s f i� e occurs before f on some mobile support station. Also, let !s denote the Lamport'shappened before relation in the concrete diagram.A data message is a message sent by an MH intended for another MH. Since mobile hosts do notcommunicate with each other directly, an MH, say hs, send a data message m to its local supportstation, say Si, which then forwards it to the local support station, Sj, of the destination host, hd.Using our notation, m:src and m:dst denote the source and the destination hosts of m. In otherwords, m:src = hs and m:dst = hd. Furthermore, m:snd denotes the send event of m on hs. Also,m:rcv and m:dlv denote the receive and delivery events respectively of m on hd.Let m̂ denote the message which Si sends to Sj (containing the data message m along with amatrix for ensuring causality), requesting it to deliver m to hd. Again, m̂:src denotes the supportstation of hs (in this case Si) when m is dispatched. Similarly, m̂:dst denotes the support station3

d3

S1

m1

m2 m3

S2

MH1

MH2

MH3

a

b c

d

e

s1

d1

s2

d2

s3Figure 2: A concrete diagram of a mobile computationto which Si forwards m (in this case Sj). As before using our notation, m̂:snd denotes the sendevent of m̂ on the support station Si. Similarly, m̂:rcv and m̂:dlv denote the receive and deliveryevents respectively of m̂ on Sj . When it is clear from the context, we use message in place of datamessage.For any two messages m1 and m2, we say that m1 causally precedes m2 in abstract view ifm1:snd !h m2:snd. We say that m1 causally precedes m2 in concrete view if m̂1:snd !s ŝ2:sndWe assume that every message sent in both wired and wireless networks is eventually received, andthere are no spurious messages. We also assume that messages exchanged between any two MSSsare received in the order sent, and all wireless channels are FIFO.3 Su�cient ConditionsA mobile computation is causally ordered if the following property holds for any two messages, m1and m2 m1:snd!h m2:snd =) :(m2:dlv �h m1:dlv) (CO)We next show the su�cient conditions for causal message ordering in mobile computation.Theorem 1 : A mobile computation with multiple MSSs is causally ordered if(C1) all wireless channels are FIFO,(C2) messages in the wired network is causally ordered, and(C3) each MSS sends out messages in the order they are received.Proof: Let message m1 be sent from hi to hj and message m2 be sent from hk to hj . Givenm1:snd !h m2:snd, we need to show that if C1, C2, and C3 are satis�ed, then m1 and m2 aredelivered at hj in that order.Since there is no direct communication between MHs, each message from an MH to anotherMH must be sent through the MSS(s). From m1:snd !h m2:snd, there must be a message path4

from hi to hk via Si and Sk if Si is the MSS of hi, and Sk is the MSS of hk. From C1 and the factthat m1:snd !h m2:snd, m̂1:snd !s m̂2:snd. Note that this is still true even if hi and hk are inthe same cell, or there are more than one message involved in the causal chain between s1 and s2.From C2, it implies that m1 will be delivered by Sj before m2. By C1 and C3, hj will deliver m1and m2 in that order. Figure 3 illustrates a causally ordered computation in which all MHs arelocated in di�erent MSSs.

d2

Si

Sk

Sj

s1

s2

m1

m2

MHi

MHk

MHj
d1Figure 3: A concrete diagram showing a causally ordered mobile computation.Su�cient conditions shown in Theorem 1 were implicitly used in [6]. For systems with statichosts, Theorem 1 gives a lightweight protocol for causal message ordering. In the extreme case whenthe entire computation is in one cell, causal ordering can be provided by simply using FIFO betweenMHs and the MSS. This is signi�cantly more e�cient than using matrices as in [19] although it iscentralized.We show that C1, C2, and C3 are not necessary by a counter-example. In Figure 4, s1 ! s3and d1 � d3. Therefore, this mobile computation is causally ordered, but C1 and C2 do not hold.

s1

d1

MHi
s2

s3

d3

d2

s1

d1

s2

d2

s3

d3

MHi

Sx

Sy

MHj

MHk

(a) Concrete diagram (b) Abstract diagram

MHk

MHj

Figure 4: A counter-example to show that C1, C2, and C3 are not necessary.5

Let us consider a computation in Figure 5. In this example, MHa is in the cell of Si, MHb and
Si

MHd

.

d3

Sj

m3
m1

s1 s2

m2

d1

d2
s3

Sk

MHa
MHb
MHc

Figure 5: A mobile computation in which m1 !s m3, but m1 6! m3.MHc in the cell of Sj, and hd in the cell of Sk. Since there does not exist a message path from s1to s3 in the abstract diagram of the computation in Figure 5, m1 6!h m3. Therefore, m3 can bedelivered to hd before m1 without violating CO. However, m1 !s m3. Observe that if m !h m0,then m!s m0 when the channel between each MH and its MSS is FIFO.We can formally state condition C2 as follows:m̂1:snd!s m̂2:snd =) :(m̂2:dlv �s m̂1:dlv) (CO0)The algorithm presented by Alagar and Venkatesan [6] enforces CO0 in order to achieve CO. Thisalgorithm delays messages that violate CO0 even though they do not violate CO. This can beillustrated in a computation in Figure 6. In this example, message m1 does not causally precedem3 in the abstract view, but it does in the concrete view. With CO0, m3 is unnecessarily delayeduntil m1 is delivered.
Si

MHd

.

s2

d2m1

s1

d3 d1

s3

m3m2

Sj

Sk

MHa
MHb
MHc

Figure 6: An example of our implementationOur goal is to reduce this extra delay, while maintaining the size of message overhead in thewired network at O(n2s).4 The ProtocolTo reduce the unnecessary delay in AL2, we propose a new protocol that implements a prop-erty weaker than CO0. We �rst introduce the protocol, and then formally state the implementedproperty. 6

Static protocolOur static protocol is based on the algorithm proposed by Raynal et al. [19]. We assign thefollowing data structures to each mobile host hp: (1) an integer matrix, Mp, of size ns � ns, (2) amessage queue, ackQp. Both are maintained by the local MSS of hp. Each support station, Si, alsomaintains the following data structures for itself: (1) a message queue, rcvQi, and (2) two integerarrays, lastrcvdi and lastsenti, of size ns. The static algorithm is given in Figure 7. For the simpleexposition of the protocol, we here assume that channels among MSSs are FIFO.Whenever an hp wants to send a message m to hq, hp must �rst send m to its local supportstation, say Si. Then, Si increments lastsenti[j] (let Sj be the local MSS of hq), and attacheslastsenti[j], and matrix Mp to m before sending m to Sj. Si then updates entry Mp[i; j] bylastsenti[j].Once message m(Mu; seqno) arrives at Sj, it is added into rcvQi. Note that channels in thewired network are assumed FIFO. At this point, we say thatm is received at Sj . A received messageis deliverable to hq when conditions in step (A4) are satis�ed. The delivered message is removedfrom rcvQi and added into the ackQp. Messages stored in ackQp are sent, in sequence, to hp overa wireless link. Sj waits for an acknowledgement from hd, before matrix Mp is updated accordingto (A6). This prevents m from being considered causally preceded any outgoing message from hdthat is sent before m is received by hd.In the following section, we prove that the static protocol implements CO00 under assumptionthat channels among MSSs are FIFO. We can formally state CO00 as follows. For any message m1and m2,h9mk : m̂i:dst = m̂k:dst : (m̂i:snd � m̂k:snd) ^ (mk:snd!h mj :snd)i=) :(mj:dlv �h mi:dlv) ^ :(m̂j:dlv �s m̂i:rcv) (CO00)where e � f i� (e = f) _ (e �s f).For a fair comparison with the previous protocols, we have to state the property implemented byour protocol without the assumption that channels among MSSs are FIFO. If the channels amongsupport station are not FIFO then the static protocol satis�es,CO00 ^ m̂1:snd �s m̂2:snd =) :(m̂2:dlv �s m̂1:rcv)Hando� protocolTo ensure causal ordering (CO) when MHs move, hando� protocol must be executed every time anMH changes cell. This can be illustrated by the following example. Let m1 !h m2 and both areintended for the same MH hd. Assume that hd moves from the cell of Si to Sj, it leaves Si beforem1 arrives. Also, assume that m2 is sent to Sj. It is easy to see that with only static protocol, m2will be delivered to hd before m1 violating CO.Our hando� protocol is more e�cient than Alagar's hando� protocol. This is because we do notrequire causal ordering among data messages and messages sent as part of the hando� protocol.The hando� protocol is given in Figure 9 and Figure 10. The modi�cation of the static protocoldue to host mobility is shown in Figure 8In our hando� protocol, each MH h maintains an integer, mbl (mobility count), initially 0. mblis incremented each time mobile host switches cell. Each support station Si maintains an arraycelli[1 : : : nh] of pair hmbl;mssi. Entry celli[d]:mss represents the current location(cell) of host d7

known by Si. celli[d]:mbl is the mobility number associated with celli[d]:mss. We assume thatinitially each MSS knows the exact location of each MH.Here we give a brief description of our hando� protocol. We refer to messages sent as part ofthe hando� protocol as signals. Consider a scenario when a mobile host h moves from Si to Sj .Once h enters the cell of Sj, it sends a signal register(mbl; Si) to Sj to inform Sj of its presence.On receiving register from h, Sj updates cell[h] with hmbl; Sii, and sends handoff begin(h;mbl)signal to Si.When Si receives handoff begin(h;mbl), Si updates its own cell[h], and sends enable signal alongwith Mh and ackQh to Sj. Si then broadcasts notify(h;mbl; Sj) to all MSSs except Si and Sj. Onreceiving enable from Si, Sj resends all messages in ackQh. Then, Sj can start sending messageson behalf of host h. However, messages destined for h must wait until Sj receives handoff oversignal from Si.When an MSS Sk receives notify from Si, Sk updates cell[h], and sends last(h) back to Si.Since messages among MSSs are FIFO, when Si delivers last from Sk, it implies that there is nomessages in transition sending from Sk to Si intended for host h.When messages intended for h received by Si after Si receives handoff begin and before Sireceives all last signals become deliverable (step A4 in static protocol), Si marks them as old andforwards to Sj. Once Si receives last from each support station except Sj, it sends handoff over toSj. Since messages in the wired network are not causally ordered, for any two messages, m1 andm2 intended for the same host d such that m1 !h m2, it is possible that m1 is sent to the newMSS, but m2 is sent the old MSS. To ensure CO, we attach additional information, up cell, to eachdata message, data message tagged as old, and enable signal sent from any MSS Si to Sj (stepsA2', A5', A13). up cell is a list of 3-tuple, hhk; cell[k]:mbl; cell[k]:mssi, for each host hk that haschanged cell according to Si's knowledge since up cell last sent to Sj.When Sj receives messages (signals) attached with up cell, Sj updates cellj [k] if the locationof hk in up cell is more updated than that in cellj [k], that is, the mobility count in cellj [k] is lessthan that in up cell (step A3').The hando� protocol terminates at Sj after handoff over(k) is received by Sj. If Sj receiveshandoff begin(k;mbl) from some other MSS before the current hando� of host k terminates, Sj willrespond to the signal only after the hando� completes.5 Proof of CorrectnessWe �rst prove that the combination of static and hando� protocols implement causal messageordering (CO). Then, we show that our static protocol implements CO00.5.1 Safety and Liveness ProofsHere we prove that our static and hando� protocols implement CO.5.2 Static protocol implements CO00Here we prove that our static protocol implements CO00.8

For the following proofs, we need to de�ne an auxiliary variable pred for any message m asfollows: m:pred[i; j] = (max �:seqno : �̂:src = Si; �̂:dst = Sj ^ �!h m)Thus, m:pred[i; j] is the message (say �) with the biggest seqno that causally precedes m and�̂:src = Si and �̂:dst = Sj. If there is no such message, we de�nem:pred[i; j] = ?, and?:seqno = 0.Let us introduce some notations used in the following Lemma. Let (p; n) denote the sequenceof states (interval) between the (n� 1)th and nth external events (send and delivery events) in hp.When we say a message m� is happened before an interval (p; n), we mean that (1) m�:snd!h e,where e is the (n � 1)th external event of host p, or (2) m�:s is e. We also use Mnp to denote thematrix of host hp corresponding to the interval (p; n). Note that Mnp = m:M if m is the messagesent initiating the interval (p; n+ 1).Lemma 2 m:M [i; j] = m:pred[i; j]:seqnoProof: Let m is sent from host p. We prove by induction on n, the number of intervals in p.Base(n = 1): Since the initial matrix is 0, the message m initiating the interval (p; 2) is taggedwith zero matrix. The Lemma follows.Induction(n > 1): Assume true for (p; n) and every interval in the past of (p; n). Supposethe event initiating (p; n+ 1) is the send of m and the value of seqno of (p; n) is ls. By inductionhypothesis, m:M [i; j] = m:pred[i; j]:seqno. From the program text, we know that m:M =Mnp andm:seqno = ls + 1. If m̂:src = Si and m̂:dst = Sj , we get Mn+1p [i; j] = ls + 1. Otherwise, we getMn+1p [i; j] =Mnp [i; j]. The Lemma follows.Suppose the event initiating (p; n+1) is the receive of W tagged with matrixMw. By inductionhypothesis, we obtain that Mw[i; j] = W:pred[i; j]:seqno, and Mnp [i; j] is the seqno of the lastmessage happened before (p; n) sent through Si and Sj. From step (A6) in the program text, weget that Mn+1p [i; j] is also the seqno of the last message happened before (p; n+1) sent through Siand Sj.Lemma 3 For any two messages m1 and m2 such that m̂1:src = Si and m̂2:dst = Sj, the staticprotocol satis�esh9mk : m̂1:dst = m̂k:dst : (m̂1:snd � m̂k:snd) ^ (mk:snd!h m2:snd)i () m1:seqno � m2:M [i; j]Proof:())(A.1) m1:snd!h m2:snd =) m1:seqno � m2:M [i; j]We prove this by induction on n the number of messages in the causal chain among m1:snd andm2:snd.Base Case: n = 0. It implies that m1:snd �h m2:snd. From the sending routine, m1:seqno �m2:M [i; j].Induction: Let en be the last message in the causal chain. By induction, we get m1:seqno �en:M [i; j]. Since en must be delivered to m2:dst before m2:snd, we know that en:M [i; j] �m2:M [i; j]. Therefore, m1:snd!h m2:snd =) m1:seqno � m2:M [i; j]9

(A.2) h9mk : m̂i:dst = m̂k:dst : (m̂i:snd �s m̂k:snd) ^ (mk:snd!h mj:snd)i =) m1:seqno � m2:M [i; j]From m̂1:dst = m̂k:dst and m̂1:snd �s m̂k:snd,m1:seqno < mk:seqno (1)Since mk:snd!h m2:snd, we get from (A.1) thatmk:seqno � m2:M [i; j] (2)From (1) and (2), we get m1:seqno < m2:M [i; j].(()Let m2:M [i; j] = x, and m2 be sent from Sk on behalf of hp. There are two cases:(B.1) k 6= iFrom Lemma 2, there must be a message m such thatm:snd!h m2:snd ^ m̂:src = Si; m̂:dst 2Sj ^ m:seqno = x. Since m̂1:src = Si; m̂1:dst = Sj, and m1:seqno � x, we know that m̂1:snd �sm̂:snd.(B.2) k = iIf m1 and m2 are sent from the same mobile host, we get from (A2) that m1:snd !h m2:snd.If they are sent from di�erent mobile hosts, there must be a message m such that m:snd �hm2:snd ^m:seqno = x.Theorem 4 The static protocol implementsh9mk : m̂i:dst = m̂k:dst : (m̂i:snd � m̂k:snd) ^ (mk:snd!h mj :snd)i=) :(mj:dlv �h mi:dlv) ^ :(m̂j:dlv �s m̂i:rcv);where e � f i� (e = f) _ (e �s f), under the assumption that the channels among supportstations are FIFO.Proof: Let XP and XCO00 be the set of executions accepted by the proposed protocol and conditionCO00, respectively. To prove that the static protocol implements CO00, we need to show that XP =XCO00 . In the proof, we write mi ,! mj i� h9mk : m̂i:dst = m̂k:dst : (m̂i:snd � m̂k:snd) ^(mk:snd!h mj:snd)iXCO00 � XP : Let chann(G; z) be the set of all messages sent to the support station S in thechannel in the consistent cut G (which includes state z 2 S). Let D = min(chann(G; z)) representthe set of messages minimal in chann(G; z) with respect to ,!. Let m(s; d) 2 D. We show that mis deliverable. We show the contrapositive, that is, if m is not deliverable at z, then m 62 D.The fact that m is not deliverable at z, implies that(1) 9x : lastreci[x] < m:Mu[x; i], or(2) 9m0 2 RCVDi intended for hd and sent from Sk such that m0:seqno � m:Mu[k; i]We show that both (1) and (2) falsify CO00. (1). It implies that 9m0 : lastrec[x] < m0:seqno �m:Mu[x; i] ^ m0 62 rcvQi. From Lemma 3, we know that m0 ,! m holds. Contradiction. (2). FromLemma 3, we know that m0 ,! m. Contradiction.XP � XCO00 : Given that m1 ,! m2 and both messages are intended for the same host hd,we need to show that (m1:dlv �h m2:dlv) _ (m̂1:rcv �s m̂2:dlv) never hold in any computationaccepted by the protocol. 10

If (s1 !h s2) _ (h9s :: B(s1; s)^s!h s2i), we know from Lemma 3 thatm1:seqno � m2:M [i; j].If m1 has been received by Sj but not delivered to hd, that is, m1 2 rcvQj . By step (A4), hd mustdeliver m1 before m2. If m1 has not been received by Sj, then lastrecj[i] < m1:seqno. Therefore,lastrecj[i] < m2:M [i; j]. Again, from (A4) m2 must be delayed until m1 is received by Sj.6 DiscussionThe proposed static protocol implements CO00. This condition is weaker than CO0 implemented byAL2. As a result, unnecessary delay in our protocol is lower than that imposed in AL2. In theworst case, message overhead in our protocol is O(n2s + nh). Our memory overhead in each MSSis O(k � n2s), where k is the number of MHs currently in the cell of the MSS. Even though thisoverhead is higher than that of AL2, it can be easily accommodated by MSSs due to their richmemory resources.Prakash's algorithm [18] is not suitable for systems where the number of mobile hosts dynam-ically changes because the structure of information carried by each message in their algorithmdepends on the number of participating processes. In our protocol, the information carried byeach message in the wired network does not vary with the number of MHs in the system. So, ourprotocol is more suitable to dynamic systems. Prakash's protocol, however, incurs no unnecessarydelay in message delivery.Yen's static protocol [22] satis�esm̂1:snd!s m̂2:snd =) :(m2:dlv �h m1:dlv)Their message overhead in the wired network is O(ns � nh). This overhead is higher than oursbut lower than AL2. Their unnecessary delay is strictly lower than Alagar's. When comparing interm of unnecessary delay, their delay is lower than ours in the average case. However, there existscases where our protocol does not impose delivery delay, but their protocol does. Let consider theexample given in Figure 6. If m2 was sent from di�erent MH in cell Si, and m3 was sent from hc,after h3 delivers m2, then Yen's algorithm would delay m3 until m1 is delivered. In our protocol,m3 can be deliverd before m1.One can further reduce the unnecessary delay in Yen's protocol using technique introduced inthis paper. By assigning a matrix of size ns � nh to each host, the enforced condition becomesh9mk : mi:dst = mk:dst : (m̂i:snd � m̂k:snd)^(mk:snd!h mj:snd)i =) :(mj:dlv �h mi:dlv) ^ :(m̂j:dlv �s m̂i:rcv)where e � f i� (e = f) _ (e �s f).The table below summarizes the comparison between our protocol and previous work.Algorithm Message overhead Extra delay in message Well-suited fordelivery dynamic systemsAlagarVenkatesan O(n2s) High YesPrakashet al O(n2h) None NoYenet al O(ns � nh) UD NoSkawratananondMittal and Garg O(n2s + nh) UD Yesnh: the number of MHs. 11

ns: the number of MSSs.7 Conclusionsconclusion is here.References[1] F. Adelstein and M. Singhal. Real-time Causal Message Ordering in Multimedia Systems.In Proceedings of the 15th International Conference on Distributed Computing Systems, June1995, pp. 36-43.[2] M. Ahuja. An Implementation of F-channels. In IEEE Transactions on Parallel and DistributedSystems, Vol. 4, NO. 6, June 1993, pp. 658-667.[3] A. D. Kshemkalyani, M. Singhal. An Optimal Algorithm for Generalized Causal MessageOrdering. In Proceedings of the 15th Annual ACM Symposium on Principles of DistributedComputing, Philadelphia, Pennsylvania, May 1996, pages 87-88.[4] M. Ahamad, P. Hutto, R. John. Implementing and Programming Causal Distributed Memory.In Proceedings of the 11th IEEE International Conference on Distributed Computing Systems,pages 271-281, 1991.[5] Arup Acharya and B.R. Badrinath. Delivering multicast messages in networks with mobilehosts. In Proceedings of the 13th International Conference on Distributed Computing Systems,May 1993, pp. 292-299.[6] S. Alagar and S. Venkatesan, Causal Ordering in Distributed Mobile Systems, In IEEE Trans-actions of Computers, Vol. 46, No. 3, March 1997.[7] B. Awerbuch, D. Peleg, Concurrent online tracking of mobile users, In Proceedings of ACMSIGCOMM Symposium on Communication, Architectures and Protocols, September 1991, pp.221-233.[8] O. Babaoglu and K. Marzullo. Consistent Global States of Distributed Systems: FundamentalConcepts and Mechanisms. In Distributed Systems, Edited by Sape Mullender, pp.55-96 ,Addison-Wesley, 1993.[9] P. Bhagwat and C.E. Perkins. A Mobile Networking System Based on Internet Protocol(IP).In Proceedings of the USENIX Symposium on Mobile and Location-Independent Computing,pages 69-82, August 1993.[10] K. Birman and T. Joseph. Reliable Communication in Presence of Failures. In ACM Transac-tions on Computer Systems, February 1987, 5(1):47-46.[11] K. Birman, A. Schiper, and P. Stephenson. Lightweight Causal and Atomic Broadcast. InACM Transactions on Computer Systems, 9(3):272-314, 1991.12

[12] B. Charron-Bost, F. Mattern, and G. Tel, Synchronous and Asynchronous Communicationin Distributed Computations, Tech Report TR91.55, LITP, University Paris 7, France, Sept.1991.[13] G. Cho and L.F. Marshall, An E�cient Location and Routing Scheme for Mobile ComputingEnvironments, In IEEE Journal on Selected Areas in Communications, Vol. 13, No. 5, June1995, pp. 868-879.[14] David B. Johnson, Scalable and Robust Internetwork Routing for Mobile Hosts, In Proceedingsof the 14th International Conference on Distributed Computing Systems, June 1994, pp. 2-11.[15] J. Ioannidis, D. Duchamp, and G. Q. Maguire. Ip-based protocols for mobile internetwork-ing, In Proceedings of ACM SIGCOMM Symposium on Communication, Architectures andProtocols, September 1991, pp. 235-245.[16] L. Lamport. Time, Clocks, and the ordering of events in a distributed system. Communicationsof the ACM 21(7), July 1978, pp. 558-565.[17] A. Mostefaoui and M. Raynal. Causal Multicasts in Overlapping Groups: Towards a LowCost Approach. In Proceedings of the 4th IEEE International Conference on Future Trends inDistributed Computing Systems, pages 136-142, Lisbon, September 1993.[18] R. Prakash, M. Raynal, M. Singhal. An e�cient causal ordering algorithm for mobile comput-ing environments. Proceedings of the 16th International Conference on Distributed ComputingSystems, 1996.[19] M. Raynal, A. Schiper, and S. Toueg. Causal Ordering abstraction and a simple way to im-plement it. Information Processing Letters, 39(6):1991, pp. 343-350.[20] L. Rodrigues and P. Verissimo. Causal Separators for Large-Scale Multicast Communication.In Proceedings of the 15th IEEE International Conference on Distributed Computing Systems,pages 83-91, Vancouver, June 1995.[21] A. Schiper, J. Eggli, and A. Sandoz. A New Algorithm To Implement Causal Ordering. InProceedings of the 3rd International Workshop on Distributed Algorithms, LNCS-392, pages219-232, Berlin, 1989.[22] Li-Hsing Yen, Ting-Lu Huang and Shu-Yuen Hwang. A Protocol for Causally Ordered MessageDelivery in Mobile Computing Systems. InMobile Networks and Applications, 2(1997) 365-372.A Appendix
13

Si ::varrcvQ : queue of messages, initially �;cell : array[1::nh] of pair hmbl;mssi, initially [h0; Sk0 i]1�k�nh ;lastsent, lastrcvd : array[1::ns] of integers, initially 0;M : set of matrices (ns � ns), (fMk j hk 2 Hig), each initially 0;ackQ : set of FIFO queues of messages, (fackQk j hk 2 Hig), each initially �;sndQ : set of FIFO queues of messages, (fsndQk j hk 2 Hig), each initially �;canSend : set of boolean variables, (fcanSendk j hk 2 Hig), each initially true;canDeliver : set of boolean variables, (fcanDeliverk j hk 2 Hig), each initially true;(A1) On receiving a data message m from hs;send an acknowledgement to hs;put m in sndQs;call process sndQ(hs);(A2) On calling process sndQ(hs);if (canSends) thenwhile (sndQ 6= �) doremove m from the head of sndQs;let m be destined for hd and Sj be cell[d]:mss;lastsent[j] + +;send hm;Ms; lastsent[j]i to Sj ;Ms[i; j] := lastsent[j];endwhile;endif;(A3) On receiving hm;M; seqnoi from Sj ;lastrcvd[j] := seqno;put hm;M; seqnoi in rcvQ;call process rcvQ();(A4) On calling process rcvQ;repeatforall hm;M; seqnoi 2 rcvQ dolet m be destined for hd;if (canDeliverd ^ h8k :: lastrcvd[k] �M [k; i]i ^h6 9 hm0;M 0; seqno0i 2 rcvQ :: (Sk sent m0 for hd) ^ (seqno0 �M [k; i])i) thenremove hm;M; seqnoi from rcvQ;call deliver(hm;M; seqnoi);endif;endforall;until (rcvQ = �) _ (no more messages can be delivered);(A5) On calling deliver(hm;M; seqnoi);let m be destined for hd;put hm;M; seqnoi in ackQd;send m to hd;(A6) On receiving an acknowledgement from hd;remove hm;M; seqnoi from the head of ackQd and let Sj sent m;Md[j; i] := maxfMd[j; i]; seqnog;Md := maxfMd;Mg;Figure 7: The static protocol for a mobile support station Si
14

Si ::(A2') On calling process sndQ(hs);if (canSends) thenwhile (sndQ 6= �) doremove m from the head of sndQs;let m be destined for hd and Sj be cell[d]:mss;lastsent[j] + +;let up cell be fhhk; cell[k]:mbl; cell[k]:mssi j hk has changed cell since up cellwas last sent to Sjg;send hm;Ms; lastsent[j]i to Sj ;Ms[i; j] := lastsent[j];endwhile;endif;(A3') On receiving hm;M; seqno; up celli from Sj ;forall hhk;mbl; Sni 2 up cell doif (cell[k]:mbl < mbl) then cell[k] := hmbl; Sni;endforall;lastrcvd[j] := seqno;put hm;M; seqnoi in rcvQ;call process rcvQ();(A5') On calling deliver(hm;M; seqnoi);let m be destined for hd;if (cell[d]:mss = Si) thenput hm;M; seqnoi in ackQd;send m to hd;elselet up cell be fhhk; cell[k]:mbl; cell[k]:mssi j hk has changed cell since up cell waslast sent to cell[d]:mssg;send hm;M; seqno; old; up celli to cell[d]:mss;endif;Figure 8: The modi�cation in static protocol in presence of host movement in mobile supportstation Si

15

Si ::varnoOfLast : set of integers, (fnoOfLastk j hk 2 Hig), each initially 0;handoffOver : set of boolean variables, (fhandoffOverk j hk 2 Hig), each initially true;handoffQ : set of priority queue of messages, (fhandoffQk j hk 2 Hg), each initially �;(A7) On receiving hregister;mbl; Sji from hl;put hregister;mbl; Sji in handoffQl using mbl as the key;call process handoffQ(hl);(A8) On receiving hhandoff begin; hl;mbli from Sj ;put hhandoff begin;mbl; Sji in handoffQl using mbl as the key;call process handoffQ(hl);(A9) On receiving hnotify; hl;mbl; Sni from Sj ;if (cell[l]:mbl < mbl) then cell[l] := hmbl; Sni;send hlast; hli to Sj ;call process handoffQ(hl);(A10) On receiving henable; hl;M 0; ackQ0; up celli;forall hhk;mbl; Sni 2 up cell doif (cell[k]:mbl < mbl) then cell[k] := hmbl; Sni;endforall;Ml := M 0;while (ackQ0 6= �) doremove hm;M; seqnoi from the head of ackQ0 and let Sj sent m;put hm;M; seqnoi in ackQl;send m to hl;Ml[j; i] := maxfMl[j; i]; seqnog;Ml := maxfMl;Mg;endwhile;canSendl := true;call process sndQ(hl);(A11) On receiving hlast; hli;noOfLastl ++;if (noOfLastl = ns � 2) thencanDeliverl := false;send hhandoff over; hli to cell[l]:mss;remove hl from Hi;call process handoffQ(hl);endif;(A12) On receiving hhandoff over; hli;canDeliverl := true;handoffOverl := true;process handoffQ(hl);process rcvQ();Figure 9: The hando� protocol for a mobile support station Si
16

Si ::(A13) On calling process handoffQ(hl);let htype;mbl; Sji be at the head of handoffQl;if ((type = register) ^ (mbl = cell[l]:mbl+ 1) ^ (hl 62 Hi)) thenremove the message from the head of handoffQl;add hl to Hi;cell[l] := hmbl; Sii;canSendl := false;canDeliverl := false;handoffOverl := false;send hhandoff begin; hl;mbli to Sj ;else if ((type = handoff begin) ^ (mbl = cell[l]:mbl+ 1) ^ handoffOverl) thenremove the message from the head of handoffQl;cell[l] := hmbl; Sji;let up cell be fhhk; cell[k]:mbl; cell[k]:mssi j hk has changed cell since up cell waslast sent to Sjg;send henable; hl;Ml; ackQl; up celli to Sj ;broadcast hnotify; hl;mbl; Sji to S n fSi; Sjg;endif;(A14) On receiving hm;M; seqno; old; up celli;forall hhk;mbl; Sni 2 up cell doif (cell[k]:mbl < mbl) then cell[k] := hmbl; Sni;endforall;call deliver(hm;M; seqnoi);Figure 10: The hando� protocol for a mobile support station Si (contd.)

17

