
Ashis Tarafdar Vijay K. Garg
ashis@cs.utexas.edu garg@ece.utexas.edu

Parallel and Distributed Systems Laboratory
Department of Electrical and Computer Engineering

University of Texas at Austin
Austin, USA 78712

http://maple.ece.utexas.edu

Software Fault Tolerance of Concurrent Programs
Using Controlled Re-execution

Introduction

Software Fault Tolerance:

to ensure that the system continues normal operation despite the presence
of software faults (bugs)

software faults cause software failures

Goals

A new approach to software fault tolerance

The predicate control problem: introduction and results

Background: Software Fault Tolerance

 The Progressive Retry Approach: [Wang et al, 1997]

 software failures are often transient

 rollback and re-execute

 no guarantees

Background: Races in Concurrent Programs

What is a race?

A race occurs when two processes can concurrently access the same
shared resource.

critical section synchronization

cs1cs1

cs2cs2

aa

bb

A race in a concurrent computation A race-free computation

Races are an important class of software faults. [Iyer & Lee, 95]

P1

P2P2

P1

The Controlled Re-execution Approach

1. Tracing an execution

2. Detecting a race failure

3. Determining a control strategy

4. Re-executing under control

cs1

cs2

cs3

cs4
P1

P2

P3

cs1

cs2

cs3

cs4
P1

P2

P3

a

b

c

d

Traced Computation Controlling Computation

added synchronization

Model

cs1

cs2

cs3

cs4
P1

P2

P3

d

a

b

e

G H

inconsistentconsistent

states
computation (happened before)
global state
consistent global state
global predicate (e.g. mutual exclusion)

c f

The Off-line Predicate Control Problem

cs1

cs2

cs3

cs4
P1

P2

P3

G

Problem Statement:

Given a computation C and a global predicate B, find a controlling
computation of B in C

cs1

cs2

cs3

cs4
P1

P2

P3

a

b

c

d
G

Controlling Computation C'
 of B in CB = mutual exclusion

Computation C

Note : A controlling computation must have no cycles !

Off-line Mutual Exclusion

Theorem: The off-line predicate control problem is NP-Hard
 [Tarafdar & Garg, 98]

Off-line Mutual Exclusion

Variants of Off-line Mutual Exclusion

Off-line Readers Writers

Off-line Independent
Read-Write Mutual
Exclusion

Off-line Independent
Mutual Exclusion

A Relation on Critical Sections

 cs1 cs2 iff cs1 starts before cs2 finishes

cs1

cs2

P1

P2

P3

cs1

cs2

P1

P2
cs1

cs2

P1

P2

P3

b

c

e

f

d

a

a

a
b

b c

d

Off-line Readers Writers: Result

Sufficient:

Theorem : For a computation C and a global predicate Brw ,

 a controlling computation of Brw in C exists
 iff
 all cycles in contain only read critical sections

cs1

cs2

cs3

P1

P2

P3

strongly connected
components

R R

RR

WR

write critical section

Proof : Key Ideas:

Necessary:

Off-line Readers Writers: Algorithm

Algorithm 2: O(n2p)

P1

P2

P4

cs1

cs2

cs4

cs6

cs5

cs8

A B

n : number of processes
p : number of critical sections in computation

Algorithm 3: O(np)

Algorithm 1: O(p2)

Key Idea :
Only "new" CS's need be considered

Key Idea :
An SCC contains at most one CS per process

P3
cs3

cs7

Summary
A new approach to software fault tolerance

introduced the controlled re-execution approach for race faults

focussed on the problem of determining a control strategy

The off-line predicate control problem: introduction and results

defined the off-line predicate control problem

necessary and sufficient conditions for the off-line readers writers problem

O(np) algorithm for the off-line readers writers problem

 also: other variants of off-line mutual exclusion

On-line Mutual Exclusion is Impossible

cs1

cs2
P2

P1

G

cs1

cs2 d

b

P2

P1

H

cs1

cs2 a

b

P2

P1

H
c

a

