
Copyright

by

Bharath Balasubramanian

2012

The Dissertation Committee for Bharath Balasubramanian
certifies that this is the approved version of the following dissertation:

Fault Tolerance in Distributed Systems: A

Coding-Theoretic Approach

Committee:

Vijay K. Garg, Supervisor

Christine L. Julien

Craig M. Chase

Greg Plaxton

Nur A. Touba

Sriram Vishwanath

Fault Tolerance in Distributed Systems: A

Coding-Theoretic Approach

by

Bharath Balasubramanian, B.E.; M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2012

To my parents, B. Sudha and R. Balasubramanian.

Acknowledgments

I wish to use this opportunity to thank the people who helped me

during the course of my PhD. My advisor, Dr. Garg, had to face the challenge

of supervising me while he was on a two year sabbatical. He was in full control

of my PhD, from problem definition to my dissertation and future statement

of teaching and research. The following are some of his qualities that I wish

to emulate: (i) His keen appreciation of fundamental problems, immaterial of

how easy or hard they look at first glance. (ii) A passion for concise elegant

writing. For at least two of my papers, we have sat down together and he

would read each and every line of important sections aloud, following which

we would discuss if the line was framed right. (iii) The motivation to keep

writing single author papers and Java code for a lot of his work, even at this

level of seniority, all by himself. (iv) His pleasant zen-like manner, never once

pushing more than is required. Even if nothing else goes right academically

from here on, no one can take away the fact that Dr. Garg was more or less

happy with my PhD. Despite the modern dictates of first-name addressal, he

will always be ‘Sir’ to me.

Dr. Touba, Dr. Plaxton and Dr. Vishwanath helped shape this disser-

tation with their comments and suggestions during both the proposal and the

defense. Dr. Christine has been generous with her advice at various points of

my PhD. I am amazed at the thoroughness with which she has read and com-

mented on this dissertation. Her presence on my committee gave me a sense of

calm and support. Dr. Chase has been my biggest source of academic strength

v

after Dr. Garg. Doing well in Dr. Chase’s class was the first time I genuinely

felt I belonged at UT. Never has computer science looked more cooler than

when he taught it. He had an influence on many aspects of this work. I also

wish to thank my favourite teachers Arun Roy, Dr. Garg, Dr. Chase, Dr.

Plaxton, Dr. De Viciana and Dr. Patt for shaping my fundamentals. Your

passion for teaching is an inspiration.

RoseAnna has ensured that I never had to worry about the administra-

tive side of the PhD, making sure that all payments and reimbursments went

through with minimal effort from my side. Melanie can add one more to the

list of ECE graduates she has nurtured and shepherded through school, always

taking that additional step to make sure that everything is in place for us.

The conviction that I could do my PhD started with Vinit Ogale, who

first taught me in my undergraduate college. He had a dominating influence in

the courses that I took at UT, the lab that I joined and eventually the papers

that I wrote. That apart, I have wonderful memories of our research sessions

(80% gossip + 20% research). I thank the members of PDSLAB: Selma, John,

Yen-Jung, Wei-Lun and Himanshu for their patience while both talking and

listening to me.

It is with great fondness that I look upon my academic discussions

with Aditya, Ayis, Bofi, Harish, Khubaib, Meghana, Np, Roopsha and Vas-

anth. Talking about my work with them helped clarify many a point. More

importantly, it was gratifying to hear them discuss their work and solicit my

opinions on it. And how can I forget the many afternoons spent around the

ENS porch with these guys, discussing just about everything under the sun?

If I have completed this PhD, despite some upheaval, it is because of

a tremendous support system. Amresh, Arun, Ashwin, Bhal, Bong, Manoj,

vi

Mayank, Poorna, Rohan, Sangeetha, Shobha, Simone, Smita, Thiagu, Tinny,

Uk and Vineet have been a constant source of material and emotional support.

I am yet to face pain deep enough that it cannot be controlled by spending

time with these friends. There is only so much one can brood, when there is

so much fun to be had.

The RC family had an early influence on me by making math and

science seem like fun. The RVG family, my quasi grandparents, have spoilt

and pampered me to a fault. Karthik, my brother, still remains one of the

most interesting people to talk to. In moments of laziness, his uncompromising

attitude towards his passions, often servers as a check.

My late mother, has made many a sacrifice to ensure that our family

functions well. That she is no longer around to see me graduate is a tragedy

that will never leave me. Nevertheless, her qualities will live on through me and

my brother. And of course, that most fault tolerant of finite state machines,

my father. He encouraged me to continue my PhD at a time when all logic

demanded that I stop it and stay with him. I hope I have inherited some of

that bullish will to survive, flourish and improve.

Last and least, I wish to thank two auxiliary components that have kept

me sane through my PhD. I wish to thank every one remotely associated with

Indian cricket between the 2000 ICC knockout tournament to the crowning

glory of the 2011 ICC world cup. Cricket’s influence on my moods and thereby

my work never ceases to baffle me. Finally, my beloved, overpriced, JP’s Java

coffee shop, deserves a doff of the hat for sometimes achieving what gleaming

labs and brand new buildings could not: making the graduate student work.

vii

Fault Tolerance in Distributed Systems: A

Coding-Theoretic Approach

Publication No.

Bharath Balasubramanian, Ph.D.

The University of Texas at Austin, 2012

Supervisor: Vijay K. Garg

Distributed systems are rapidly increasing in importance due to the

need for scalable computations on huge volumes of data. This fact is re-

flected in many real-world distributed applications such as Amazon’s EC2

cloud computing service, Facebook’s Cassandra key-value store or Apache’s

Hadoop MapReduce framework. Multi-core architectures developed by com-

panies such as Intel and AMD have further brought this to prominence, since

workloads can now be distributed across many individual cores. The nodes

or entities in such systems are often built using commodity hardware and are

prone to physical failures and security vulnerabilities. Achieving fault toler-

ance in such systems is a challenging task, since it is not easy to observe and

control these distributed entities.

Replication is a standard approach for fault tolerance in distributed

systems. The main advantage of this approach is that the backups incur very

little overhead in terms of the time taken for normal operation or recovery.

viii

However, replication is grossly wasteful in terms of the number of backups

required for fault tolerance. The large number of backups has two major

implications. First, the total space or memory required for fault tolerance

is considerably high. Second, there is a significant cost of resources such as

the power required to run the backup processes. Given the large number of

distributed servers employed in real-world applications, it is a hard task to

provide fault tolerance while achieving both space and operational efficiency.

In the world of data fault tolerance and communication, coding theory

is used as the space efficient alternate for replication. A direct application of

coding theory to distributed servers, treating the servers as blocks of data,

is very inefficient in terms of the updates to the backups. This is primarily

because each update to the server will affect many blocks in memory, all of

which have to be re-encoded at the backups. This leads us to the following

thesis statement: Can we design a mechanism for fault tolerance in distributed

systems that combines the space efficiency of coding theory with the low op-

erational overhead of replication?

We present a new paradigm to solve this problem, broadly referred to

as fusion. We provide fusion-based solutions for two models of computation

that are representative of a large class of applications: (i) Systems modeled

as deterministic finite state machines and, (ii) Systems modeled as programs

containing data structures. For finite state machines, we use the notion of

Hamming distances to present a polynomial time algorithm to generate effi-

cient backup state machines. For programs hosting data structures, we use

a combination of erasure codes and selective replication to generate efficient

backups for most commonly used data structures such as queues, array lists,

linked lists, vectors and maps. We present theoretical and experimental re-

ix

sults that demonstrate the efficiency of our schemes over replication. Finally,

we use our schemes to design an efficient solution for fault tolerance in two

real-world applications: Amazons Dynamo key-value store, and Google’s Map

Reduce framework.

x

Table of Contents

Acknowledgments v

Abstract viii

List of Tables xiv

List of Figures xv

Chapter 1. Introduction 1

1.1 Fused State Machines . 8

1.1.1 Contributions . 11

1.2 Fused Data Structures . 14

1.2.1 Contributions . 16

1.3 System Model and Assumptions 18

1.4 Overview of the Dissertation 20

Chapter 2. Related Work 21

2.1 Replication . 21

2.2 Coding Theory . 24

2.3 Other Areas of Work . 28

Chapter 3. Background 31

3.1 Machine Decomposition . 31

3.1.1 Lattices . 31

3.1.2 Closed Partition Set . 33

3.2 Basics of Linear Coding . 36

3.2.1 Concepts from Abstract Algebra 37

3.2.2 Constructing Finite Fields 39

3.2.3 Linear Codes . 42

3.2.3.1 Reed-Solomon Codes 45

xi

Chapter 4. Fused State Machines 48

4.1 Framework for Fault Tolerance in DFSMs 48

4.1.1 DFSMs and their Reachable Cross Product 49

4.1.2 Decomposition of the Reachable Cross Product 50

4.1.3 Fault Graphs and Hamming Distances 52

4.1.4 Theory of (f , m)-fusion 57

4.2 Algorithm to Generate Fused Backup Machines 61

4.2.1 Properties of the genFusion Algorithm 67

4.2.2 Time Complexity of the genFusion Algorithm 69

4.2.3 Incremental Approach to Generate Fusions 72

4.3 Event-Based Decomposition of Machines 75

4.4 Detection and Correction of Faults 80

4.4.1 Detection of Byzantine Faults 80

4.4.2 Correction of Faults . 83

4.4.2.1 Crash Correction 85

4.4.2.2 Byzantine Correction 87

4.5 Comparison of Replication and Fusion 90

Chapter 5. Fused Data Structures 93

5.1 Model and Notation . 93

5.2 Fusion-based Fault Tolerant Data Structures 95

5.2.1 Fused Backups for Linked Lists 96

5.2.2 Concurrent Updates . 102

5.2.3 Fused Backups for Complex Data Structures 104

5.2.4 Reed-Solomon Codes for f faults 106

5.3 Theory of Fused Data Structures 108

5.3.1 Space Optimality . 108

5.3.2 Efficient Updates . 110

5.3.3 Order Independence . 111

5.3.4 Fault Tolerance with Limited Backup Servers 112

5.4 Detection and Correction of Faults 118

5.4.1 Crash Faults . 118

5.4.2 Byzantine Faults . 119

5.5 Comparison of Replication and Fusion 126

xii

Chapter 6. Practical Evaluation 131

6.1 Building Fusion-based Fault Tolerant Systems 132

6.1.1 Agreement . 134

6.1.2 Order . 134

6.1.3 Recovery . 136

6.2 Fusion-based Grep in MapReduce 138

6.2.1 Existing MapReduce Design 138

6.2.2 Hybrid Fusion-based Design 139

6.3 Fused DFSM Design Tool . 141

6.3.1 Experiments and Results 141

6.4 Fusion-based Key-Value Store 142

6.4.1 Existing Dynamo Design 143

6.4.2 Hybrid Fusion-based Design 145

6.5 Fused Data Structure Library 147

6.5.1 Experiments and Results 148

Chapter 7. Conclusion and Future Work 153

7.1 Fused State Machines . 153

7.2 Fused Data Structures . 154

7.3 Future Work . 155

Bibliography 161

Index 175

Vita 176

xiii

List of Tables

1.1 Comparison of Replication, Coding and Fusion 6

4.1 Symbols/Notation used in this chapter 49

4.2 Replication vs. Fusion for State Machines 91

5.1 Replication vs. Fusion for Data Structures 127

6.1 Evaluation of Fusion on the MCNC’91 Benchmarks 143

xiv

List of Figures

1.1 Lock Servers: Fused Circular Queue. 3

1.2 Sensors with Event Counters: Fused Event Counter. 5

1.3 Correcting one crash fault among {A,B,C} using just one backup. 9

1.4 Event-based decomposition of a machine. 12

1.5 Correcting one crash fault among X1 and X2 using just one
backup. 15

3.1 Closed partition set of >. 34

4.1 Correcting one crash fault among {A,B,C} using just one backup. 50

4.2 Set of machines less than R (all machines not shown due to
space constraints). 51

4.3 Fault Graphs, G(R,M), for sets of machines shown in Fig. 4.2.
All eight nodes r0-r7 with their edges have not been shown due
to space constraints. 53

4.4 Closed partition set for the RCP of {A,B}. 54

4.5 Fault Graphs for sets of machines shown in Fig. 4.4. 54

4.6 Algorithm to generate an (f , f)-fusion for a given set of primaries. 62

4.7 Algorithm to generate reduced-state machines. 63

4.8 Algorithm to generate reduced-event machines. 64

4.9 Incremental fusion algorithm. 72

4.10 Incremental Approach: first generate F ′ and then F 72

4.11 Algorithm for the event-based decomposition of a machine. . . 76

4.12 Example for the Event-based decomposition of a machine. . . 78

4.13 Detection of Byzantine faults. 80

4.14 LSH example for fusion states in Fig. 4.2 with k = 2, L = 2. . 84

4.15 Correction of crash faults. 85

4.16 Correction of Byzantine faults. 88

5.1 Old Fusion [34] . 95

xv

5.2 Fused Backups for Linked Lists (Keys not shown in F1, F2 due
to space constraint) . 96

5.4 Fused Backup Design: Inserts 99

5.6 Fused Backup Design: Deletes 101

5.7 Concurrent Fused Backup Design: Inserts 103

5.8 Concurrent Fused Backup Design: Deletes 104

5.9 Fused Backups for Balanced Binary Search Trees (Keys not
shown due to space constraint) 105

5.10 Detecting Byzantine Faults [33] 121

5.11 Correcting Byzantine Faults: Detect Faulty Primaries [33] . . 122

5.12 Correcting Byzantine Faults: Correct Faulty Primary [33] . . . 123

6.1 Replication vs. Fusion for grep in MapReduce. 139

6.2 Design Strategies for Dynamo 145

6.3 Linked Lists: Experimental evaluation. 149

6.4 Maps: Experimental evaluation. 150

xvi

Chapter 1

Introduction

The replicated state machine approach is a standard method for imple-

menting a fault-tolerant service by replicating servers and coordinating client

interactions with server replicas [25, 51, 53, 82, 83, 86, 89, 91]. In this approach,

to correct f crashes [82] of a primary server, one must have f + 1 identical

copies of that server. If all f + 1 servers/processes start with identical state,

are completely deterministic in execution, and agree on the set and the order

of commands they execute, then their state will be identical at all times. This

means that failure of f of them will leave at least one copy available.

To correct f Byzantine faults [53], where a faulty server can lie and

behave maliciously, one must have 2f + 1 copies of each server. This ensures

that the majority among the copies is guaranteed to be correct. If we have n

distinct servers in the system (referred to as primaries), replication requires nf

additional backup servers for crash faults and 2nf additional backup servers

for Byzantine faults.

Replication is prevalent in many real-world distributed applications.

For example, it is used in map-reduce based fault-tolerant distributed compu-

tation [24] where different tasks are sent out to workers that run on machines

that can fail. In these systems, a single task is farmed out to multiple workers

to ensure that it is completed in spite of faults. As another example, con-

sider a system of n robots (or sensors) performing different sets of tasks, or

1

similar tasks on different data. To correct the failure of a single robot, say

due to power loss or physical damage, the replication approach requires one

additional copy of each of the robots. Common to these examples is the fact

that computation is replicated to correct failures. Since we maintain a replica

for each primary, this approach is expensive in terms of both the storage space

consumed by the backups as well as the resources such as the power required

to maintain them.

It must be noted that replication has been considered wasteful in the

context of data fault-tolerance for many decades. In data storage and com-

munication, coding theory [9, 57, 73] is extensively used to recover from faults.

For example, to tolerate a single crash fault (or erasure) among two data

items A and B, rather than keep a copy of both these items, we can just keep

the XOR or sum of A and B. Either of the failed items can be recovered

using the backup and the surviving data item. This is the basic premise of

RAID disks that use disk striping and parity based schemes to recover from

disk faults [18, 72, 74]. Erasure codes are used extensively in the area of dis-

tributed storage of data [16, 41]. Similarly, network coding [15, 60] has been

used for recovering from packet loss or to reduce the communication overhead

for multicast. In these applications, the data is viewed as a set of data entities

such as disk blocks for storage applications and packets for network applica-

tions. These coding-theoretic techniques give much better space utilization

than replication.

Each of the above two methods, replication and coding theory, have

their advantages and disadvantages. Replication is expensive from the space

perspective, especially when there are a large number of primary servers. How-

ever, backup maintenance and recovery from failure is simple for replication.

2

Coding theory is efficient in space or resource utilization but is rarely applied

to backup active servers. This is mainly because, with each update, the system

state changes considerably and re-encoding the backups corresponding to each

of these updates is expensive both in terms of computation and communica-

tion. The natural scientific and practical question that arises is if we can get

the best of both these worlds or at least a mechanism that is close to coding

in resource utilization and close to replication in the efficiency of maintaining

backups.

tail1

a3 + b1

a5 + b3

a6 + b4

tail2

a8

a2a1

head2

head1

(iii) Fused Queue

a4 + b2

a7 + b5

b1

b2

b3b5 b4

head
a2

a3

a4

a5

a6a8

a1

(i) Primary Queue 1

head

a7

(ii) Primary Queue 2

tailtail

Figure 1.1: Lock Servers: Fused Circular Queue.

For example, consider a set of lock servers that maintain and coordinate

the use of locks. Each lock server maintains a list of pending requests in

3

the form of a queue. To correct even one crash fault among n such servers,

replication requires n backups. A simple coding-theoretic solution to this

problem is to treat the memory in these servers as blocks of striped data and

maintain checksum blocks corresponding to them. Using appropriate codes,

one crash fault can be corrected using just one additional checksum block.

This is n times more space efficient than replication. However, when an update

occurs at the lock server, all the stripes that have changed need to be sent to

the backups. Since these servers are complex, a simple update will result in a

change in many of the stripes, rendering the updates expensive.

In this dissertation, we propose an alternate method called fusion for

fault-tolerance in distributed systems that is efficient in resource utilization

as well as maintenance of backups. Consider the example of the primary lock

server queues shown in Fig. 1.1. To correct one crash fault among these queues

we can maintain a single backup server that contains a fused queue. Here, the

nodes of the fused queue contain the primary elements in the coded form (in

this case, simply sum). When an element is added to a primary queue, it is

sent to the backup, which updates its queue accordingly. This solution is as

space efficient as coding theory, and an update to the backup takes only as

long as it does at the primary.

As another example of fusion, consider two sensors or robots counting

two distinct events such as the number of people entering a room and the num-

ber of people leaving a room. In Fig. 1.2, sensor A is executing a deterministic

finite state machine (referred to as DFSM or just machine) that counts the

number of events I0, modulo 3. Sensor B executes a machine that counts the

number of events I1, modulo 3. To correct one crash fault among these two

machines i.e, to recover the state in which the machine was executing, repli-

4

b2b1

(ii) B(I1 mod 3 ounter)

a2a1

f 0
1 f 1

1
f 2
1

(i) A(I0 mod 3 ounter)

b0

a0

(iii) F ({I0 + I1} mod 3 ounter)

Event I0
Event I1

Figure 1.2: Sensors with Event Counters: Fused Event Counter.

cation requires a copy of each of these machines. For this simple example, it

is clear that we can correct one fault by maintaining just one additional fused

machine F that counts the number of events {I0 + I1}, modulo 3, as shown

in Fig. 1.2. If A, B and F start from their initial states and receive the same

sequence of input events, then, given the state of any two machines, we can

generate the state of the remaining machine.

In this case, fusion requires just one backup with three states as com-

pared to replication that requires two backups each containing three states.

Since the backups are independently executing machines, an update to the

backup takes only as much time as the corresponding update to the primary.

This brings us to some of the basic goals of fusion and the project:

5

• The case of lock servers or counters was easy. Can this be extended to

computations involving complicated data structures or state machines?

• Is there an efficient way to detect faults in untrusted systems?

• How can we correct multiple crash and Byzantine faults?

There are three fundamental characteristics that distinguish our pro-

posed notion of fusion from replication and coding as summarized in Table

1.1. The first difference is that when an operation is applied to primary data,

in replication we apply the same operation to data at the backup, i.e., back-

ups are operation-oriented and need no data from the primaries. For coding,

we ignore the computation and simply focus on data. When data changes,

the resulting code needs to be recomputed from the new data sent by the

primary. Thus, coding theory is data-oriented. Fusion uses a combination of

redundancy in computation and data to maintain the backups. The update

to backup data may require some computation that is operation specific and

some that is data specific depending upon the nature of the update.

Characteristic Replication Coding Fusion

Update of Backups Operation-Oriented Data-Oriented Combination

Treatment of Data Complete replication No replication Selective replication

Operation Awareness None None Aware

Table 1.1: Comparison of Replication, Coding and Fusion

The second difference is in the treatment of data. Both replication

and coding treat all data items uniformly; one replicates all data, and the

other replicates none. Fusion selectively replicates data so that updates to the

backups can be carried out efficiently. Finally, note that both replication and

6

coding theory are oblivious to the computation and the structure of primary

data that we want to make fault-tolerant. For example, in coding theory

the details of actual operations on the data are ignored, and the techniques

simply recompute the encoded backups after any write update. Fusion, on

the other hand, exploits the structure of the service that we want to make

fault-tolerant. Thus, the fusion algorithm for queues may be different from

the fusion algorithm for binary trees.

To make our techniques useful in a wide range of distributed applica-

tions, we explore fusion in two contexts: (i) distributed systems modeled as

deterministic finite state machines [5, 7, 66] and (ii) distributed applications

hosting large data structures [3, 6].

Given a set of n different primary DFSMs, we present a technique

to correct f crash faults or bf/2c Byzantine faults using just f additional

fused state machines. Further, we present a fusion algorithm that ensures

that the backups are optimized for states as well as events. Our experiments

on common benchmarks for DFSMs indicate that fusion achieves significant

savings in space over replication (38% on average).

Given a set of n different primary data structures, we present a tech-

nique to correct f crash faults using just f additional fused data structures.

We present a design of fused backups for most commonly used data structures

such as lists, sets, maps and trees. The fused backups achieve O(n) savings

over replication while incurring no additional overhead for updates. Our ex-

perimental evaluation confirms that fusion achieves almost n times savings in

space over replication, while it is only 1.5 times slower in terms of the update

time. As expected, recovery is much faster in replication.

It is important to note that there are at least two advantages of running

7

fewer backup processes. First, the amount of state and therefore the storage

maintained at the backup servers is reduced. Second, by reducing the number

of processes in the system, we save on the power and other resources required

to run the backup servers. However, there are also disadvantages to this

approach. Since the data elements at the backup process are maintained in the

fused/coded form, recovery is expensive. The other significant disadvantage of

fusion is the increased load that needs to be serviced at the backup processes.

As each backup contains the data elements belonging to all the primaries, it

also needs to receive updates corresponding to all of them. In many practical

scenarios, the backup may not have the necessary bandwidth or resources to

service these many requests, especially when n is large.

In the future, we wish to explore techniques that offer different trade-

offs between space, load and recovery cost. For example, rather than main-

taining backups that contain elements from all primaries, we can partition the

set of primaries and maintain backups for these smaller blocks. In the follow-

ing sections, we summarize our fusion-based techniques for state machines and

data structures.

1.1 Fused State Machines

Distributed applications often use DFSMs to model computations such

as regular expressions for pattern detection, syntactical analysis of documents

or mining algorithms for large data sets [43, 54, 65]. DFSMs are also used in

many other areas such as digital hardware systems, network protocol specifi-

cation and sensor networks [12, 28, 40, 42, 46, 94]. In this section, we present a

fusion-based solution for fault tolerance in DFSMs that is much more space

efficient than replication.

8

(ii) RCP: Ineffecient Backup

c0
a1b0

c1

a0b0

c1

a1b1

c1

a0b1

c1
a1b1

c0
a1b0

c0

a0b1

c0

f 2
2

f 3
2

a0 a1

0, 2

0, 2

b0 b1

1, 2

1, 2

0c0 c10

B (Parity of 1s, 2s)

C (Parity of 0s)

0

0

0

0
0

0

2 2

1

1

1

2 2

1
1

2 2 2 2

0 1
1

0

1

r1

r7

r3

r6

r5r4

r0 r2

R (8 states, 3 events)

A (Parity of 0s, 2s)

(i) Primaries

(iii) State and Event Efficient Backup

1

1
f 0
1 f 1

1

F1 (2 states, 1 event)

(iv) State Efficient Backup

f 1
2

2

2
f 0
2

0, 1

0, 1

0, 1
0, 1

2
2

F2 (4 states, 3 events)

a0b0

Figure 1.3: Correcting one crash fault among {A,B,C} using just one backup.

Consider a distributed application that is searching for three different

string patterns in a file, as modeled by the three parity-check machines A, B

and C shown in Fig. 1.3. In this example, A checks for the parity of {0+2}s in

the input file. So if the input sequence seen by A is 2→ 0→ 2, then starting

from the initial state a0, A’s transitions are: a0 → a1 → a0 → a1. The state

of machine A after acting on the input sequence, i.e., state a1, confirms that

there is an odd number of {0 + 2}s in the input sequence. Machines B and C

check for the parity of {1 + 2}s and {0}s respectively.

Another way of looking at replication in DFSMs is to construct a

backup machine that is the reachable cross product or RCP (defined formally

in section 4.1.1) of the original machines. The reachable cross product R of

the primaries A, B and C is shown in Fig. 1.3. Each state of R is a tuple in

which the elements correspond to the states of A, B and C respectively. Let

each of the machines A, B, C and R start from their initial state. If some

input sequence 0→ 2→ 1 is applied on these machines, then the states of R,

A, B and C are r6 = {a0b0c1}, a0, b0 and c1 respectively. Here, even if one of

9

the primaries crash, using the state of R, we can determine the state of the

crashed primary. Hence, the RCP is a valid backup machine.

However, using the RCP as a backup has two major disadvantages: (i)

Given n primaries each containing O(s) states, the number of states in the

RCP is O(sn), which is exponential in the number of primaries. In Fig. 1.3,

since each primary has two states, R has eight states. (ii) The event set of

the RCP is the union of the event sets of the primaries. In Fig. 1.3 while A

and B have two events in their event set, R has three events. This translates

to increased load on the backup. Can we generate backup machines that are

more efficient than the RCP in terms of states and events?

Consider machine F1 shown in Fig. 1.3. If an input sequence 0→ 0→
1→ 2 is applied on the machines A, B, C and F1, then they will be in states

a1, b0, c0 and f 1
1 . Assume a crash fault in C. Given the parity of 1s (state of

F1) and the parity of {1 + 2}s (state of B), we can first determine the parity

of 2s. Using this, and the parity of {0+2}s (state of A), we can determine the

parity of 0s (state of C). Hence, we can determine the state of C as c0 using

the states of A, B and F1. This argument can be extended to correcting one

fault among any of the machines in {A,B,C, F1}.

Fault tolerance using F1 consumes fewer backups than replication (one

vs. three), fewer states than the RCP (two states vs. eight states) and fewer

events than the RCP (one event vs. three events). How can we generate such

a backup for any arbitrary set of machines? In Fig. 1.3, can F1 and F2 can

correct two crash faults among the primaries? Further, how do we correct the

faults? In this dissertation, we address such questions through the following

contributions.

10

1.1.1 Contributions

Framework for Fault Tolerance in DFSMs We develop a framework to

understand fault tolerance in DFSMs based on the idea of a fault graph and

Hamming distances [38] for a set of machines. Using this framework, we can

specify the exact number of crash or Byzantine faults a set of machines can

correct. Further, we introduce the concept of an (f , m)-fusion, which is a set

of m machines that can correct f crash faults, detect f Byzantine faults or

correct bf/2c Byzantine faults. We refer to the machines as fusions or fused

backups. It can be shown that machines F1 and F2 in Fig. 1.3 can correct two

crash faults among {A,B,C}. Hence {F1, F2} is a (2, 2)-fusion of {A,B,C}.
Replication is just a special case of (f , m)-fusion where m = nf . We prove

properties on the (f , m)-fusion for a given set of machines including lower

bounds for the existence of such fusions.

Algorithm to Generate Fused Backup Machines Given a set of n pri-

maries we present an algorithm that generates an (f , f)-fusion corresponding

to them, i.e., we generate a set of f backup machines that can correct f crash

or bf/2c Byzantine faults among them. Note that, replication requires nf

backups to correct the same number of faults. We show that our backups are

efficient in terms of: (i) number of states in each backup (ii) number of events

in each backup, and (iii) minimality of the entire set of backups in terms of

states. Further, we show that if our algorithm does not achieve state and event

reduction, then no solution with the same number of backups achieves it. Our

algorithm has time complexity polynomial in N , where N is the number of

states in the RCP of the primaries. We present an incremental approach to

this algorithm that improves the time complexity by a factor of O(ρn), where

11

ρ is the average state savings achieved by fusion.

0 0

1

0 0

1

1

m0

1

m1

m3 m2

M (Dual Parity Cheker)
1

1p0 p1

0

0q0 q1

P (Parity of 1s)
Q (Parity of 0s)

Figure 1.4: Event-based decomposition of a machine.

Event-based Decomposition of DFSMs We pose a question that is fun-

damental to the understanding of DFSMs, independent of fault-tolerance:

Given a machine M , can it be replaced by two or more machines executing in

parallel, each containing fewer events than M? In other words, given the state

of these fewer-event machines, can we uniquely determine the state of M? In

Fig. 1.4, the 2-event machine M (it contains events 0 and 1 in its event set),

checks for the parity of 0s and 1s. M can be replaced by two 1-event machines

P and Q, that check for the parity of just 1s or 0s respectively. Given the

state of P and Q, we can determine the state of M . How can we generate

these event-reduced machines (if they exist) for any given machine? While

there has been work on both the state-based decomposition [39, 55] and the

minimization of completely specified machines [44, 45], this is the first work

that addresses the problem of event-reduction.

In this dissertation, we define the concept of a (k,e)-event decomposi-

tion of a machine M that is a set of k machines, each with at least e events

12

fewer than the event set of M , such that given the state of these machines, we

can determine the state of M . We present an algorithm to generate such ma-

chines with time complexity O(|XM ||ΣM |e+1 + |XM |3|ΣM |e), where XM is the

set of states and ΣM is the set of events of M . The load on a process running

a machine is directly proportional to the number of events in the event-set

of the machine. Hence, this decomposition is crucial for applications such as

sensor networks in which there are strict limits on the number of events that

each process can service.

Detection and Correction of Faults We present a Byzantine detection

algorithm with time complexity O(nf) on average, which is the same as the

time complexity of detection for replication. Hence, for a system that needs to

periodically detect liars, fusion causes no additional overhead. We reduce the

problem of fault correction to one of finding points within a certain Hamming

distance of a given query point in n-dimensional space and present algorithms

to correct crash and Byzantine faults with time complexity O(nρf) with high

probability (w.h.p). The time complexities for crash and Byzantine correction

in replication are O(f) and O(nf) respectively. Hence, for small values of n

and ρ, fusion causes almost no overhead for recovery.

Fusion-based Grep in the MapReduce Framework To illustrate the

practical use of fusion, we apply its design to the grep application of the

MapReduce framework [24]. Currently, many large scale distributed applica-

tions are built using the MapReduce framework. The grep functionality is

used in many applications such as data mining, machine learning, and query

log analysis, that need to identify patterns in large volumes of textual data.

13

Using a simple example, we show that a pure replication-based approach for

fault tolerance needs 1.8 million map tasks while our fusion-based solution re-

quires only 1.4 million map tasks. Further, we show that our approach causes

minimal overhead during normal operation or recovery.

Fusion-based Design Tool and Experimental Evaluation We provide

a Java design tool [4], based on our fusion algorithm, that takes a set of input

machines and generates fused backup machines corresponding to them. We

evaluate our fusion algorithm on the MCNC’91 [95] benchmarks for DFSMs,

that are widely used in the fields of logic synthesis and circuit design. Our

results show that the average state space savings in fusion (over replication)

is 38% (range 0-99%), while the average event-reduction is 4% (range 0-45%).

Further, the average savings in time by the incremental approach for generating

the fusions (over the non-incremental approach) is 8%. In the following section,

we present our fusion-based approach for fault tolerance in data structures.

1.2 Fused Data Structures

Servers in a distributed system often maintain large instance of data

structures to store and manipulate data. Examples include Amazon’s Dynamo

or Facebook’s Cassandra key-value store, the OceanStore storage service or

Google’s Chubby lock service [13, 25, 48, 49]. In this section, we present a tech-

nique for fault tolerance in data structures using fused backups that combines

the space efficiency of coding and the minimal update overhead of replication.

The fused backups maintain primary data in the coded form to save space,

while they replicate the index structure of each primary to enable efficient

updates.

14

tos
a2
a1Primary Stak X1

tos

b2

b3

b1Primary Stak X2 Fused Stak F1

tos[1]

tos[2]
b3

a1 + b1

a2 + b2

Figure 1.5: Correcting one crash fault among X1 and X2 using just one backup.

In Fig. 1.5, we show the fused backup corresponding to two primary

array-based stacks X1 and X2. The backup is implemented as a stack whose

nodes contain the sum of the values of the nodes in the primaries. We replicate

the index structure of the primaries (just the top of stack pointers) at the fused

stack. When an element a3 is pushed on to X1, this element is sent to the

fused stack and the value of the second node (counting from zero) is updated

to a3 + b3. Similarly, in the case of a pop to X2, of say b3, the second node of

F1 is updated to a3.

The set of data structures in Fig. 1.5 can tolerate one crash fault. For

example, if X1 crashes, the values of its nodes can be computed by subtracting

the values of the nodes in X2 from the appropriate nodes of F1. The savings

in space is achieved by fusing the data nodes, while the index structure at the

backups allows for efficient updates. Note that, to correct one crash fault, the

fusion-based solution just requires one backup with three nodes as compared

to replication which requires two backups each containing three nodes. How

can we correct faults among other data structures such as tree-maps and hash

tables? Can we ensure that each backup has a minimum number of nodes?

How do we perform recovery efficiently? We answer such questions through

the following contributions.

15

1.2.1 Contributions

Fusion-based Fault Tolerant Data Structures We present a technique

for fault tolerance in data structures using fused backups. Using our technique,

we can correct f crash faults among n instances of most commonly used data

structures such as stacks, vectors, binary search trees, hash maps and hash

tables using just f additional backups. Note that, replication requires nf

backups to correct the same number of faults. In Fig. 1.5, we can maintain

another fused stack F2 that has identical structure to F1, but with nodes that

contain the difference in values of the primary elements rather than the sum.

These set of data structures can tolerate two crash faults. We extend this

idea for values of f greater than two using Reed-Solomon (RS) erasure codes

[11, 76, 79], which are widely used to generate the optimal number of parity

blocks in RAID-like systems.

Detection and Correction of Faults We present algorithms for the detec-

tion and correction of faults among the primary data structures and the fused

backups. Crash faults in a synchronous system, such as the one assumed in

our model, can easily be detected using time outs. To detect Byzantine faults,

the state of the data structures needs to be inspected on every update to en-

sure that there are no liars in the system. In this dissertation, we present a

solution to correct f Byzantine faults among n primary data structures using

just nf + f backup structures as compared to the 2nf backups required by

replication. We use a combination of replication and fusion to ensure minimal

overhead during normal operation.

16

Theory of Fused Data Structures We prove properties on our fused back-

ups such as space optimality, update efficiency and order independence. Given

n primaries, our approach achieves O(n) times savings in space over replica-

tion. The time complexity of updates to our backups is identical to that for

replication, and the updates to the backups can be done with a high level of

concurrency. Further, we show that the updates to different backups from

distinct primaries can be received in any order, thereby eliminating the need

for synchronization at the backups.

In practical systems, sufficient servers may not be available to host all

the backup structures and hence some of the backups have to be distributed

among the servers hosting the primaries. These servers can crash, resulting

in the loss of all data structures residing on them. Consider a set of n data

structures, each residing on a distinct server. We need to tolerate f crash faults

among the servers given only γ additional servers to host the backup structures.

We present a solution to this problem that requires dn/(n+γ−f)ef backups

and show that this is the necessary and sufficient number of backups for this

problem. We also present a way to compare (or order) sets of backups of the

same size, based on the number of primaries that they need to service. This is

an important parameter because the load on a backup is directly proportional

to the number of primaries it has to service. We show that our partitioning

algorithm generates a minimal set of backups.

Fusion-based Key-Value Store To illustrate the practical usefulness of

fusion, we apply our design to Amazon’s Dynamo [25], which is the data-store

underlying many of the services provided by Amazon. Dynamo achieves its

twin goals of fault tolerance (durability) and fast response time for writes

17

(availability) using a simple replication-based approach. We propose an alter-

nate design using a combination of both fusion and replication, which requires

far fewer backups, while providing almost the same levels of durability and

availability for writes. In a typical host cluster, where there are 100 dynamo

hosts each hosting a data structure, the current replication-based approach

requires 300 backup structures. Our approach, on the other hand, requires

only 120 backup structures. This translates to significant savings in both the

space occupied by the backups as well as the infrastructure costs such as the

power required to run these backups.

Fused Data Structure Library and Experimental Evaluation We pro-

vide a Java library/package of fused backups [2] for all the data structures in

the Java Collection Framework. This includes most commonly used data struc-

tures such as lists, maps, vectors, and stacks. We also performed experiments

comparing the performance of the fused data structures with replication. The

results indicate that the current version of fusion is very space efficient as com-

pared to replication (approximately n times) while the time taken to update

the backups is only marginally more (approximately 1.5 times slower). Though

the time taken for recovery is far more in fusion as compared to replication,

in absolute terms, it is still low enough to be practical (order of milliseconds).

In the following section, we describe our system model and assumptions,

applicable to both fused data structures and fused state machines.

1.3 System Model and Assumptions

The model used in our work is based on the model presented in Fred

Schneider’s tutorial on the replicated state machine approach [83]. Our sys-

18

tem consists of a set of distinct distributed processes or servers with no shared

memory among them. Each process defines a state machine that consists of

(i) a set of states, (ii) a set of atomic actions each of which deterministically

transitions the state machine from one state to another (iii) an output associ-

ated with each state transition. The clients of these processes send requests to

the processes with the action that they need to perform. Further, the clients

receive and act on the output received from the processes. These are the main

assumptions we make on our system:

• The processes can undergo two types of faults or failures:

1. Crash or Fail-stop faults in which there is a loss in the state of the

process and/or the process stops responding. This kind of failure

can be detected by other processes.

2. Byzantine faults in which the process can behave in an arbitrarily

malicious manner and even collude with other processes to foil any

protocol. However, they cannot corrupt their identity. Byzantine

faults are the worst kind of faults any system can face. The require-

ment on identity is easily achieved by maintaining the cryptographic

hash of the identity of each process at every other process.

• The given set of processes or state machines in our system cannot detect

or correct a single fault just by themselves. Hence, we need to add

backup processes to make the system fault tolerant.

• Our system is fully connected, and the clients and the processes can

send messages to each other. The communication channels are loss-less

and guarantee the first-in-first-out property (FIFO). In other words, if

19

a process A sends message m1 followed by message m2 to some other

process B, then B receives m1 followed by m2. Both these requirements

are guaranteed by implementing the TCP protocol for communication.

• There is a strict upper bound on the time taken for all actions in our

system (including message delivery), i.e., we assume a synchronous sys-

tem. Note that building fault-tolerant systems in the presence of even

crash faults is impossible in fully asynchronous systems [30].

• The clients in our system are fault-free. It may be possible to consider

the client as one of the processes defining a state machine and build a

fault tolerant system in which the clients fail [83]. However, for most

practical systems it is far more relevant to reason about the correctness

of the system assuming that the clients are fault-free.

1.4 Overview of the Dissertation

The rest of this dissertation is organized as follows. In chapter 2, we

compare fusion with other related areas of work. In chapter 3, we present

some of the standard concepts in the literature that we use in our work. In

chapters 4 and 5 we present our fusion-based solutions for fault tolerance in

state machines and data structures respectively. Chapter 6 deals with the

practical applications of our work. Finally, we conclude the dissertation in

chapter 7 and present future directions in which this work can be extended.

20

Chapter 2

Related Work

In this chapter we discuss the main areas of work related to the topic

of this dissertation. In the first two sections, we describe the two major topics

of direct comparison to our work: replication and coding theory. In the final

section, we discuss other associated areas such as rollback recovery protocols

and finite state machine minimization.

2.1 Replication

Replication [25, 51, 53, 82, 83, 86, 89, 91] is the prevalent solution for fault

tolerance in distributed systems. To tolerate f crash faults among n primary

processes (or servers) in a distributed system, replication maintains f + 1

replicas of each process, resulting in a total of nf backups. These replicas can

also tolerate bf/2c Byzantine faults since there is always a majority of correct

copies available for each server.

Replication has many advantages. The solution is easy to design since

the backups are identical to the primaries. The algorithms for the maintenance

and recovery of the backups are straightforward. Each backup has to serve only

as many requests as the corresponding primary, so the backups will be loaded

only as much as the primary. Hence, there is very little overhead for normal

operation. Also, recovery in replication is cheap in terms of time complexity

21

and message complexity.

However, if we have n independent servers in the system, the repli-

cated state machine approach results in nf backups for f crash faults or bf/2c
Byzantine faults. This is extremely wasteful in terms of space and other in-

frastructure resources such as the power required to run these backups. In the

following paragraphs we present an overview of the differences between repli-

cation and our fusion-based solutions for state machines and data structures.

A detailed comparison of the various parameters are provided in sections 4.5

and 5.5.

Given n different DFSMs, we present a fusion-based solution that re-

quires only f backups to correct f crash or bf/2c Byzantine faults as com-

pared to the nf backups required by replication. Similar to replication, the

backup state machines transition independently on events/inputs applied by

the client, without any communication with the other machines. While in the

worst case, our backup machines require as much state space as replication,

our experimental results in section 6.3 confirm that for most examples, we

achieve significant state space reduction. Our algorithm for the detection and

correction of faults has almost the same time complexity as that for replication.

The main disadvantages of our fusion-based solution for DFSMs over

replication are: (i) Our algorithm for generating the backup machines has

exponential time complexity in n, where n is the number of primary machines.

In replication, we just have to generate copies of the backups, and so, the

time complexity for the generation of the backups is linear in n. However, the

backups have to be generated only once and hence, this might be an acceptable

cost for fusion. (ii) The event set of each fused backup is the union of the event

sets of the primaries. This results in increased load on each backup. In section

22

4.2 we discuss a technique to reduce the number of events in the event set of

each backup. Our results show that for many examples, the number of events

can be reduced.

Given n different data structures, we present a fusion-based solution

that requires only f backups to correct f crash faults as compared to the nf

backups required by replication. We show that our backups achieve O(n) sav-

ings in state space over replication. Further, we detect and correct f Byzantine

faults using just nf + f backups as compared to the 2nf backups required by

replication. The main intuition behind our solution is to combine ideas from

both coding and replication. In our fused data structures, the savings in state

space is obtained by maintaining the data in the coded form, while the update

efficiency is achieved because the index information is being replicated. Fur-

ther, for the efficient detection and correction of Byzantine faults, we explicitly

maintain replicas of each primary.

Our work in fused data structures has the following disadvantages over

replication: (i) Similar to the case of state machines, each fused backup data

structure has to service requests corresponding to all the primaries. (ii) In

our current design of fused backups, we use the Reed Solomon erasure codes

[79], whose recovery time complexity is O(nf) times more expensive than

replication. Note that both these disadvantages can be alleviated by fusing a

smaller number of primaries, thereby compromising on the savings in space to

improve the recovery time and the backup load. Also, other codes can be used

that offer better trade-offs for these parameters [9, 73].

We make two observation regarding the terminology in this dissertation

for both state machines and data structures. First, in replication, the replicas

or backups for each server are identical. Hence, in most of the literature,

23

replication is said to maintain ‘f + 1 replicas’ to correct f crash faults. In

fusion, the backups are not identical to the primary servers. For consistency

in terminology, we say that replication requires f additional copies of each

primary while fusion requires f additional fused backups for the entire set

of primaries. Second, since replication is a fault-masking technique, in the

literature, replication is said to ‘tolerate’ faults. However, for fusion, we need

to decode the values and correct the faults in the system. In this dissertation

we use the terms ‘tolerate’ and ‘correct’ interchangeably for both replication

and fusion.

2.2 Coding Theory

Coding theory [9, 73] has been used as a space-efficient alternative to

replication in the fields of communication and data storage. Data that needs

to be transmitted across a channel is encoded using redundant bits that can

correct errors introduced by a noisy channel [31, 58, 61, 85]. Network coding is

a paradigm in which coding theory is used to improve the throughput while

transmitting data across a network [15, 27, 60]. Applications of coding theory

in the storage domain include RAID disks [18, 72, 74] for persistent storage

or information dispersal algorithms (IDA) for fault tolerance in a set of data

blocks [77]. Recently, the use of erasure codes for the distributed storage

of data has gained prominence [16, 41, 56, 67, 93]. In these approaches to fault

tolerance, data is divided into smaller chunks and a space efficient error/erasure

code is used to store the data.

These storage techniques, though very space efficient, are primarily

used to backup data that is maintained on disks. Real-world distributed sys-

tems often export services that have strict deadlines to meet. In such cases,

24

data is rarely maintained on disks due to their slow access times. The ac-

tive data structures in such systems are usually maintained in main memory

or RAM. In fact, a recent proposal of ‘RAMClouds’ [68] suggests that online

storage of data must be held in a distributed RAM, to enable fast access. In

these cases, a direct use of coding-theoretic solutions, that are oblivious to the

exact structure of the applications, is often wasteful. In the following para-

graphs we compare our fusion-based solution with a direct coding-theoretic

solution for fault tolerance in state machines and data structures.

In a direct coding-theoretic approach to fault tolerance in DFSMs, we

have to maintain a distinct parity server that maintains the checksums for

the states of the primaries. If we wish to maintain exactly f backups, then

these checksums need to be some MDS code (explained in section 3.2) such

as Reed Solomon codes. When the state of a primary changes, this change in

state has to be communicated to the checksum servers, which can then locally

update their codes. This direct coding-theoretic approach will guarantee O(n)

savings in state space over replication. However, this technique has two major

disadvantages: (i) If each DFSM has O(s) states then O(log s) bits need to be

communicated to the checksum devices with every state change. (ii) In any

MDS code such as Reed Solomon codes, recovery time complexity is O(nf)

times more than replication.

In our work on fused state machines, we use the notion of Hamming

distances to design backup finite state machines that act independently on the

events applied by the client or the environment. So there is no communication

necessary between the primaries and the backups. Further, we show that our

algorithms for the detection and correction of faults cause very little overhead

over replication. In the worst case, the state space required by our approach

25

can be much worse than this direct-coding theoretic approach. However, the

experimental results indicate that for many examples, we do achieve significant

savings in state space.

We now consider the case of distributed programs hosting data struc-

tures in main memory. In a simple coding-theoretic solution, we have to encode

the memory blocks occupied by the data structures. Since a data structure is

rarely maintained contiguously in main memory, a structure-oblivious solution

will have to encode all memory blocks that are associated with the implemen-

tation of this data structure in main memory. This approach has the following

disadvantages: (i) it is not space efficient, since there could be a large number

of such blocks in the form of free lists and memory book keeping information,

(ii) every small change to the memory map associated with this lock has to

be communicated to the backup, rendering it expensive in terms of commu-

nication and computation and, (iii) each operating system manages the heap

in a different way and the solution to code the blocks is not operating system

independent.

In our work on fused data structures, we present a design of backup

data structures that is based on the design of the primary data structures. We

use erasure codes, but only to encode the data elements of the primary and

not the entire heap associated with the data structure. Since our solution is

at the abstraction of the data structure, we are not concerned with how the

operating system manages these structures in main memory. We also ensure

that the communication and computation overhead for normal operation is

similar to replication. The one disadvantage with our approach as compared

to a structure-oblivious approach is that our design varies according to the

primary data structure. So we have a different solution for linked lists and

26

a different one for tree maps and so on. We alleviate this by providing a

generic design which can be easily extended for all types of data structures.

Further, we provide a library of such data structures for all the containers in

the Java Collection Framework. Hence, users of the software are shielded from

the complexity of design.

We also wish to point out another major difference between our use of

coding theory and the standard usage in erasure-coded storage solutions. In

distributed storage using erasure codes, a data element of a distributed process

is split into many smaller chunks and then encoded. In our solution, we never

split the data elements and instead fuse data elements of different processes

to achieve savings in space. This difference is mainly because, unlike storage

solutions, our approach is mainly designed for active systems. In such systems,

data often needs to be read. For example, a data item could be a shopping

cart entry in a key-value store. If this is data item is split, then to respond

to a client read request, in the standard erasure-coded solutions we need to

reconstruct the data block.

For example, assume two processes in the system, denoted by A and

B respectively. In erasure-coded stores, to correct one fault, a data element a

belonging to A is split into a1 and a2 and three blocks: a1, a2 and a1(XOR)a2

are maintained on different servers. In fusion, however, if the elements a and

b belong to two primary data structures A and B respectively, we maintain

a(XOR)b in the fused data structure. In the former solution, to read the

state of a, we need to acquire a1 and a2. In the fusion-based solution a is still

available for efficient reads.

27

2.3 Other Areas of Work

Rollback Recovery Protocols Many distributed systems use checkpoint-

ing and rollback protocols for fault tolerance [21, 24, 29]. The basis of these

approaches is that most processes in a distributed system have access to some

form of stable storage such as hard disks. In checkpointing based approaches,

the processes regularly log or write their state to stable storage, while in log-

ging based approaches, processes log both their state and the non deterministic

events that occur during execution. When a fault occurs, the state of the pro-

cess can be recovered from storage and the process can be restarted or rolled

back from that state. This approach requires no additional processes for fault

tolerance. Also, recovery is simple and cheap in terms of time complexity.

The major disadvantage of this approach is that every time the process

changes state, the new state has to be written to the stable storage/hard disk

and disk access times are usually very high. So these approaches increase

the time taken for fault-free normal operation. This is unacceptable for most

application which have deadlines. Our fusion-based solution has only as much

overhead as replication in terms of the time taken for normal operation.

Monitor Machines In digital systems, concurrent error detection tech-

niques are often used to detect errors in the DFSMs of the system [28, 62].

The key idea behind this technique is to maintain one auxiliary machine for

each primary DFSM. The auxiliary machine is designed in such a way that

an error can be detected in the primary machine execution for each state

transition. The main goal is to ensure that the auxiliary machine is as small

as possible, so that it consumes lesser hardware than a simple replica of the

primary machine.

28

A common way to design these auxiliary machines is to generate a

machine homomorphic (explained in section 3.1) to the primary machine, by

partitioning the states of the primary machine to create a smaller machine

[70, 71]. This homomorphic machine, also referred to as a monitor machine,

executes in lock-step with the corresponding primary machine. For any fault

model, if the true and faulty successors of each state of the primary machine are

in different blocks of the partition of the monitor machine, then an error can

be detected. While we too generate machines homomorphic to the reachable

cross product of the primary machines, our work is different from the work on

monitor machines in the following ways: (i) Monitor machines focus on error

detection in just one primary DFSM, while we focus on faults among a set of

independent DFSMs (ii) The concurrent error detection techniques are only

for error detection, while in our work, we handle the detection and correction

of crash faults (similar to erasures) and Byzantine faults (similar to errors).

(iii) In the fault model of monitor machines, each primary machine can enter

only a small set of faulty states. This allows the reduction in the states of the

monitor machine. In our work, the machines can enter any arbitrary state.

We achieve reduction through the fact that, in the case of faults, recovery can

be performed using information from the remaining machines.

DFSM Minimization Extensive work has been done [44, 45] on the mini-

mization of completely specified DFSMs. In these approaches, the basic idea is

to create equivalence classes of the state space of the DFSM and then combine

them based on the transition functions. Even though we focus on reducing the

reachable cross product of a given set of machines, it is important to note that

the machines we generate may not be equivalent to the combined DFSM. Also,

29

we implicitly assume that the input machines to our algorithm are reduced a

priori using these minimization techniques.

30

Chapter 3

Background

In this chapter we present some of the standard concepts and results

in the literature that are fundamental to our work. First, we describe the

concept of machine decomposition that is relevant for our work on fused state

machines. Second, we introduce the basics of linear coding with a focus on

Reed-Solomon codes, which is an important part of fused data structures.

3.1 Machine Decomposition

Given a machine, we can partition its state space to generate other

machines [39, 55]. Further, we can define a partial order over this set of ma-

chines, which in fact, forms a special structure called a lattice. In the following

section, we define the concept of a lattice. Readers are referred to [10, 23] for a

thorough treatment. Later, we describe the closed partition lattice of a given

machine.

3.1.1 Lattices

A relation R over any set X is a subset of X × X. A relation R is

reflexive if for each x ∈ X, (x, x) ∈ R. A relation R is antisymmetric if for all

x, y ∈ X, {(x, y) ∈ R and (y, x) ∈ R} implies, x = y. Finally, a relation R is

transitive if for all x, y, z ∈ X, {(x, y) ∈ R and (y, z) ∈ R} implies (x, z) ∈ R.

31

For example, if X is the set of natural numbers N , then R ≡ “x divides y” is

a reflexive, antisymmetric and transitive relation over N . Clearly, (2, 4) ∈ R
while (3, 7) 6∈ R.

A reflexive partial order (or simply partial order) over a set is any

relation that is reflexive, antisymmetric and transitive. The partial order is

usually denoted by “≤”. A set X, along with a partial order ≤, on its elements,

is denoted by 〈X,≤〉 and is called a partially ordered set or a poset.

Definition 1. (Join and Meet of two elements) Let a, b ∈ X where 〈X,≤〉 is a

poset.

For any element c ∈ X, we say that c is the join of a and b, i.e., c = atb
iff,

1. a ≤ c and b ≤ c

2. ∀c′ ∈ X, (a ≤ c′ ∧ b ≤ c′)⇒ c ≤ c′.

For any c ∈ X, we say that c is the meet of a and b, i.e., c = a u b iff,

1. c ≤ a and c ≤ b

2. ∀c′ ∈ X, (c′ ≤ a ∧ c′ ≤ b)⇒ c′ ≤ c.

Note that the join and meet are also referred to as the lowest upper

bound (LUB) and the greatest lower bound (GLB) respectively. Consider the

poset 〈N,≤〉, where N is the set of natural numbers and ≤ ≡ “x divides y”.

For any two elements in N , clearly the join is their lowest common multiple

(LCM) and the meet is their highest common factor (HCF). Such a poset in

which both the meet and join exist for all pairs of elements is called a lattice.

32

Definition 2. (Lattice) A poset 〈X,≤〉 is a lattice iff ∀a, b ∈ X, at b ∈ X and

a u b ∈ X.

We now define two special types of lattices, which for many algorithms

on lattices, allow efficient computation.

Definition 3. (Distributive Lattice) A poset 〈X,≤〉 is a distributive lattice iff

∀a, b, c ∈ X : a t (b u c) = (a t b) u (a t c)

Definition 4. (Modular Lattice) A poset 〈X,≤〉 is a modular lattice iff ∀a, b, c ∈
X : a ≥ c⇒ a u (b t c) = (a u b) t c.

In the following section, we explain the concept of machine decomposi-

tion and the closed partition set of a given machine, based on the description

in [55].

3.1.2 Closed Partition Set

Definition 5. A deterministic finite state machine (DFSM), denoted by A, is

a quadruple, (XA,ΣA, αA, a
0), where,

• XA is the finite set of states corresponding to A.

• ΣA is the finite set of events corresponding to A.

• αA : XA × ΣA → XA, is the transition function corresponding to A. If

the current state of A is s, and an event σ ∈ ΣA is applied on it, the

next state can be uniquely determined as αA(s, σ).

• a0 is the initial state corresponding to A.

A partition P , on the state setXA of a machineA is the set {B1, . . . , Bk},
of disjoint subsets of XA, such that

⋃k
i=1 Bi = XA and Bi ∩ Bj = φ for i 6= j.

33

t0, t1t1, t2
t3

⊤
t3

t1t0

⊥

t0 t1t1 t2 t0 t3

M7 M8 M1 M2

M3 M4 M5 M6

t2

t3t1 t1, t2t0, t3

t1 t0, t3

t0, t2t2, t3

, t3
t0, t2 t0

, t2

t1, t2

, t3

Figure 3.1: Closed partition set of >.

An element Bi of a partition is called a block. If two states s and t are in the

same block, we denote s ≡ t(P). A partition, P , is said to be closed if each

event, σ ∈ ΣA, maps a block of P into another block of P . Formally, P is

closed if for all σ ∈ ΣA and s ≡ t(P), αA(s, σ) ≡ αA(t, σ).

A closed partition P , corresponds to a distinct machine. For example,

consider machine > shown in Fig. 3.1. Machine M1 corresponds to a closed

partition of the states of >. The blocks of the partition, {t0, t2}, {t1} and

{t3}, correspond to the states of M1. The closed partitions described here are

34

also referred to as substitution property partitions or SP partitions in other

literature [39]. We now define a partial order among machines.

Definition 6. (≤ relation among machines) Given a machine A, consider two

machines P1 and P2 corresponding to two closed partitions of XA. Machine

P1 is less than or equal to P2 (P1 ≤ P2) if each block of P2 is contained in a

block of P1.

P1 is incomparable to P2 (P1||P2) if P1 � P2 and P2 � P1. In Fig. 3.1,

each block of M1 is contained in some block of M6 and hence, M6 < M1. Since

M1 �M8 and M8 �M1, M1||M8. Consider machines M1 and M6. If the same

sequence of events are applied to both these machines, then given that the

state of M1 is {t1}, the state of M6 (< M1) is {t0, t1, t2}.

In the literature on state machine decomposition, the less than or equal

to relation among machines is referred to as homomorphism among machines.

So, if P1 < P2, then P1 is homomorphic to P2. If P1 < P2 and P2 < P1, then

P1 and P2 are isomorphic to each other.

Observation 1. Given two machines P1 and P2 such that P1 ≤ P2, if both

machines act on the exact same event sequence, then given the state of P2, we

can uniquely determine the state of P1.

The set of all machines lesser than a given machine is called the closed

partition set of the machine. Fig. 3.1 shows the closed partition set of machine

>. In the figure, we shown an arrow from one machine P to another machine

Q if P < Q and there exists no machine greater than P that is less than Q.

Given any two machines in this set, their join and meet are uniquely defined

and belong to the closed partition set. Hence, the set of all closed partitions

corresponding to a machine, form a lattice under the ≤ relation [39]. This

lattice is referred to as the closed partition lattice.

35

Note that, in the literature [55], the top-most machine in the closed

partition set is shown as the machine with all the states of > combined and

the bottom-most machine is the original machine, i.e., >. However, in this

dissertation, similar to Fig. 3.1, the top-most machine is the original machine

and the bottom-most machine is the machine containing states in the same

block. This is because, we wish to convey the fact that the top-most machine

has the maximum information in terms of states and the bottom-most machine

has the least information. We now define the lower cover of a machine.

Definition 7. (Lower Cover) Given a machine A, its lower cover, denoted by

C, is a set of machines such that:

1. All machines in C are lesser than A and,

2. There exists no machine C ′ greater than any machine in C that is lesser

than A.

In Fig. 3.1, the lower cover of > consist of machines {M1,M2,M7,M8}.
In [55], the authors present an algorithm to generate the lower cover of a given

machine A with time complexity O(|ΣA||XA|2) (best-known in terms of time

complexity).

3.2 Basics of Linear Coding

In this section, we explain the basic concepts of linear coding, based

on the description in [74, 76, 81]. In this dissertation, we assume that we are

given n primary servers, among which we want to correct f crash faults using

f additional backups. However, in the standard literature for coding theory,

it is assumed that we are given k data words and they are encoded onto n

36

coding words. In this section, we use the standard notation used in coding

theory literature. We start with some fundamental concepts from abstract

algebra.

3.2.1 Concepts from Abstract Algebra

A group, denoted by (G,+), is a non-empty set G with a binary oper-

ation “+” that satisfies the following properties:

• Closure: ∀a, b ∈ G : a+ b ∈ G.

• Associativity: ∀a, b, c ∈ G : (a+ b) + c = a+ (b+ c).

• Identity: There exists an element, denoted by “0”, belonging to G such

that ∀a ∈ G : a+ 0 = 0 + a = a.

• Inverse: ∀a ∈ G : ∃a−1 ∈ G : a+ a−1 = a−1 + a = 0.

A group is called commutative or Abelian if ∀a, b ∈ G : a + b = b + a.

For example, the set of integers Z, is a commutative group with respect to the

addition operation, with the identity element being 0 ∈ Z and for all a ∈ Z,

the inverse element is (−a). Clearly, (a) + (−a) is equal to 0, i.e, the identity

element.

A ring, denoted by (R,+, ·) is a non-empty set R with two binary

operations “+” and “·” that satisfies the following properties:

• (R,+) is a commutative group.

• Associativity of “·”: ∀a, b, c ∈ R : (a · b) · c = a · (b · c).

37

• Distributivity: ∀a, b, c ∈ R : a · (b+ c) = (a · b) + (a · c) and (b+ c) · a =

(b · a) + (c · a).

A ring is called commutative if the “·” operation is commutative. The

set of integers Z with “+” being the addition operation and “·” being the

multiplication operation is a commutative ring.

A field is a commutative ring (R,+, ·) in which the non-zero elements

from a group with respect to the “·” operation. The identity element of the

group (R− {0}, ·) is called the multiplicative identity of F and is denoted by

“1”. The identity element of (R,+) is called the additive inverse of F and is

denoted by “0”.

For example, the set of real numbers with respect to addition (+) and

multiplication (·) is a field. However, the set of integers Z with respect to

addition and multiplication is not a field. This is because, all elements of

Z − {0} do not have an inverse with respect to multiplication. Hence, the

non-zero elements of Z do not form a group under “·”. A field with a finite

set of elements is called a finite field or a Galois field. A finite field with q

elements is denoted by GF (q).

A vector space over a finite field F is a group V with a “scalar multi-

plication” that satisfies the following properties:

• ∀λ, µ ∈ F, v ∈ V : (λ+ µ)v = λv + µv.

• ∀λ, µ ∈ F, v ∈ V : λ(µv) = (λµ)v.

• ∀λ ∈ F, v, w ∈ V : λ(v + w) = λv + λw.

• ∀v ∈ V : 1v = v, where 1 is the multiplicative identity of F .

38

A set of vectors v1, v2, . . . vn ∈ V , is called a generator set for V if,

for all v ∈ V , there exists λ1, λ2, . . . , λn ∈ F such that v = λ1v1 + λ2v2 +

. . . λnvn. In other words, linear combinations of the elements of the generator

set can generate all the elements of the vector space. For example, F n =

{(a1, a2, . . . an) : a1, a2, . . . ∈ F} is a vector space over a field F with a generator

set G = {(1, 0, . . . 0), (0, 1, . . . 0), . . . (0, 0, . . . 1)}.

A set of vectors v1, v2, . . . vn ∈ V , is called linearly independent if the

only solution to λ1v1 + λ2v2 + . . . λnvn = 0, is λ1 = λ2 = . . . λn = 0, where

λi ∈ F . A set of generators that is linearly independent is called a basis.

Informally, the basis of a vector space is the tightest possible representation

of the vector space. For example, the set of prime numbers can represent the

entire set of integers. It can been shown that all bases of a vector space have

the same cardinality. This cardinality is referred to as the dimension of the

vector space. A vector subspace or linear subspace W is a subset of V such

that W is a vector space over F with the same binary operations as defined

by V .

Consider the vector space F n over the finite field F . Given any two

vectors v, w ∈ F n, indexed by [n], the Hamming distance between them, de-

noted by d(v, w), is given by |{i : v[i] 6= w[i]}|. The hamming norm of any

vector v ∈ F n, denoted by |v|, is d(v, 0). In the following section, we present

a brief overview on the construction of finite fields.

3.2.2 Constructing Finite Fields

Since computers use fixed-size words, the computation and algebra in

coding must work for these fixed-size words. Assuming each data word to

contain w bits, we need to construct finite fields of size 2w. For w = 1, we

39

can simply use the finite field GF (2) = {0, 1}, where 0, 1 ∈ Z, and addition

and multiplication are defined modulo 2. In other words, (+) is defined as the

XOR of the elements and (·) is defined as the AND of the elements.

For values of w greater than one, we cannot define the field to be the

set of integers {0 . . . 2w−1}, with addition and multiplication performed modulo

2w. This is because, the set thus defined is not closed under multiplication for

all values of w. For example, consider the set S = {0, 1, 2, 3} for w = 2, with

addition and multiplication defined modulo 4. Clearly, S is not a field because

the element 2 has no multiplicative inverse, i.e, there is no element a ∈ S such

that 2a ≡ 1 (modulo 4).

In this section, we describe a common way to construct fields of size

2w, based on operations on polynomials in some variable x with coefficients in

GF (2). Later, we describe how these polynomials can be mapped into binary

words. These are the steps to construct finite fields of size 2w, denoted by

GF (2w):

1. Construct a primitive polynomial q(x) of degree w whose coefficients are

in GF (2). A polynomial P (x) is said to be irreducible or primitive if

the degree of P (x) is greater than zero and P (x) = a(x) · b(x) ⇒ deg

a(x) = 0 or deg b(x) = 0. In other words, these polynomials cannot be

factored any further. These polynomials can be found in standard texts

for coding theory. Some examples are: x2 + x+ 1 for w = 2, x4 + x+ 1

for w = 4 and x8 + x4 + x3 + x2 + 1 for w = 8.

2. Construct the set GF (2w) starting with elements 0, 1 and x, and subse-

quently enumerate the elements of the set by multiplying the last gener-

ated element by x, modulo q(x) . The enumeration of the set ends when

40

the number of elements is 2w. The set thus generated is a finite field and

is also denoted by GF (2)[x]/q[x].

Consider the construction of GF (4). Since w = 2, q(x) = x2 + x + 1. The

first there elements of the field are 0, 1 and x. To generate the next element,

multiply the last element by x. Then take the result of this newly generated

element, i.e, x ·x = x2, modulo q(x). This is standard polynomial long division

and x2 modulo (x2 + x + 1) = x + 1. Hence the elements of GF (4), denoted

GF (2)[x]/(x2 + x+ 1) = {0, 1, x, x+ 1}.

Addition of elements belonging to the field is polynomial addition,

while multiplication and division is polynomial multiplication and division

performed modulo q(x). For example, the sum of two elements x and x + 1

belonging to GF (4) is (1 + 1) · x + 1 = 0 + 1 = 1, where 0, 1 ∈ GF (2). The

product of these two elements is (x2 + x) modulo x2 + x+ 1 which is equal to

one.

Given a polynomial r(x) ∈ GF (2w), we can map it to a binary word

b with w bits by setting the ith bit of b to the coefficient of xi in r(x). For

example, if the field is GF (4), then the polynomial 1, i.e., x0, is mapped to

b = 01 since the coefficient of x0 is 1, while the coefficient of x1 is 0. Similarly,

x+ 1 is mapped to 11.

Addition of two binary elements b1, b2 ∈ GF (2w) is simply b1 XOR b2,

since the coefficients of the polynomials all belong to GF (2). To multiply or

divide the binary elements, we need to first convert them to the polynomials

in the field, perform the multiplication or division and then convert the result

to binary. For efficiency, this operation is implemented using look-up tables

between the binary elements and the polynomials of the field. In the following

41

section, we describe linear codes, which are essentially vector spaces defined

over finite fields.

3.2.3 Linear Codes

Linear codes are the most commonly studied and implemented class of

codes owing to their structure which allows for efficient encoding and decoding.

Given data or information, the main purpose of coding is to add additional

information or redundancy to the given data to make it resilient to failures.

Here, we consider two types of failures: (i) erasures, in which the data is lost

and (ii) errors, in which the data is corrupted. First, we formally define a

linear code.

Definition 8. (linear code) An [n, k, d] linear code C is a vector subspace of

the vector space F n, defined over a finite field F , where k is the dimension of

C and d is the minimum Hamming distance between any two vectors in C.

A generator matrix G, of an [n, k, d] linear code C, is a k × n matrix

whose rows form a basis of C. G is called a systematic generator matrix if it is

of the form (I|A), where I is the k× k identity matrix, and A is a k× (n− k)

matrix. Given the data words, we use the generator matrix to encode the data

to generate words belonging to the code.

Definition 9. (encoding) Given a vector u belonging to F k we can generate a

vector belonging to C by multiplying u with G. The elements of u are referred

to as the information/data words and the elements of uG are referred to as

the code words.

Hence, given a k-length data word we add information to convert it

to an n-length code word. The rate of a code, defined as (k/n) captures the

redundancy of the code.

42

For example, the [3, 2, 2] parity code is a linear code over GF (2).

From the definition of parity (say even parity of 1s), we know that the code

words corresponding to the data words [00], [01], [10] and [11] are C =

{[000], [011], [101], [110]}. Clearly, a basis for C is {[101], [011]}, since lin-

ear combinations of these two elements can generate all the elements in C.

For example, [101] · 1 + [011] · 1 = [110]. Hence, k = 2. Also, the minimum

Hamming distance among any two elements of C is two and hence, d = 2. A

systematic generator matrix for this code is given by,

G =

[
1 0 1
0 1 1

]
Let C be an [n, k, d] linear code over F . A parity-check matrix of C, is a

matrix H, such that for every c ∈ F n, c ∈ C ⇔ HcT = 0. It can be shown that

given a generator matrix G of a code, we can generate a parity-check matrix

and vice-versa. In the special case where G is a systematic matrix (I|A), the

matrix H = (−AT |I) can be taken as a parity-check matrix.

Given a data word u ∈ F k, we first encode u to generate a word c ∈ C.

Let us assume that c gets corrupted by some additive noise, i.e., the corrupted

word can be represented as y = c+ e, where y, c, e ∈ F n. To retrieve the data

word u, we need to decode y.

Definition 10. (nearest code word decoding) Consider an [n, k, d] linear code

C. Given a vector y ∈ F n, the goal of a decoder is to find a codeword c ∈ C
that minimizes d(y, c). Equivalently, the decoder needs to find a word e ∈ F n

with minimum Hamming norm such that (y − e) ∈ C.

It can be shown that, for any [n, k, d] code C over a finite field F ,

∀x ∈ F n, there is at-most one v ∈ C with d(c, x) less than bd/2c. Hence,

43

using nearest code word decoding, we can correct less than or equal to b(d−
1)/2c errors in the corrupted word y and generate the correct code word c.

Subsequently, we can generate the data word u. We generalize this result in

the following theorem.

Theorem 1. An [n, k, d] linear code can correct less than or equal to b(d−1)/2c
errors, detect less than or equal (d− 1) errors or correct less than or equal to

(d− 1) erasures.

Definition 11. (MDS Codes) An [n, k, d] linear code is said to be maximum

distance separable if d = n− k + 1.

Clearly, to correct d−1 erasures, we need at least d−1 additional units

of redundancy. Since n− k = d− 1 for MDS codes, they are optimal in terms

of the amount of redundancy needed to correct errors or erasures. The [3, 2, 2]

parity code is a simple example of an MDS code.

In the following paragraph we describe a standard technique to imple-

ment nearest code word decoding, referred to as syndrome decoding. Given a

code with parity-check matrix H, the syndrome of any word y ∈ F n is defined

by S = HyT . Syndrome decoding can be performed through the following

steps:

1. Given the word y ∈ F n, compute its syndrome S = HyT .

2. Find a word e with minimum Hamming norm such that, S = HeT .

From the definition of the parity-check matrix, HyT = HeT ⇒ (y−e) ∈
C. Since e has the minimum Hamming norm, (y − e) ∈ C is the code word

nearest to the encoded data word. The first step in syndrome decoding involves

simple matrix multiplication. The second step, however, is computationally

44

expensive. Many commonly used codes have parity-check matrices with spe-

cial structures that allow the second step to be performed efficiently. In the

following section, we focus on the widely used Reed-Solomon codes.

3.2.3.1 Reed-Solomon Codes

The Reed-Solomon (RS) erasure codes are the only known MDS codes

for all possible values of n and k. In this section, we focus on the construction

of RS codes and the technique for correcting erasures. There is extensive lit-

erature on decoding RS codes to correct errors as well [9, 32, 36, 88]. However,

due to their high decoding time complexities, we do not use the error-correction

routines for RS decoding. In this section, we first describe properties common

to all variants of RS coding.

The k×n generator matrix for RS coding, referred to as the information

dispersal matrix B, is chosen to satisfy the following properties:

• The k × k matrix in the first k columns is an identity matrix.

• Any sub-matrix formed by the deletion of n− k columns of the matrix,

is invertible.

Let D be the data vector and P the encoded vector obtained after

multiplying D with B. In the case of erasures, we can first recover the data

words using the encoded vector P and the information dispersal matrix B.

Erasures are reflected by deleting the corresponding columns from B and P

to obtain B′ and P ′ that satisfy the equation, D × B′ = P ′. For example, if

D = {d1, d2, d3} and the erasure is in d2, then the second columns of B and

P are deleted to obtain B′ and P ′. When exactly n− k erasures occur, B′ is

45

a k × k matrix. As mentioned above, any sub-matrix generated by deleting

n− k rows from B is an invertible matrix. Hence, matrix B′ is guaranteed to

be invertible. The data words can be generated as: P ′ × (B′)−1 = D. Given

the data words, we can regenerate any of the erased code words. If the actual

number of erasures are t, then the cost of decoding is O(kt2) [74].

In this section, we discuss two variants of RS coding. First, we describe

the classical Vandermonde RS codes followed by Cauchy RS codes which are

the best known implementation of RS codes [11, 76]. The generator matrix for

the Vandermonde RS code, is based on the k×n Vandermonde matrix, in which

the (i, j)th element is ji. For example, for k = 3, n = 4, the Vandermonde

matrix is,

V =

1 1 1 1
0 1 2 3
0 1 22 32

The generator matrix for the Vanderomonde RS codes is constructed

by performing a sequence of elementary matrix operations to reduce V to

the systematic form (I|S), where I is the k × k identity matrix and S is a

k × n − k matrix. All operations are performed over the finite field GF (2w),

where n ≤ 2w.

Assume a set of data blocks that we wish to encode, each containing B

bytes of data. Since the data words for Vandermonde RS coding must contain

w bits, each data block is divided into 8B/w data words of w bits each.

We now study a technique for RS coding, referred to as Cauchy RS

coding that is much more efficient. In Cauchy RS coding, the generator or

information dispersal matrix is derived from a Cauchy matrix. A k × n − k

46

Cauchy matrix is defined over the finite field GF (2w), where n ≤ 2w as follows

[76]: Let X = {x1 . . . xn−k} and Y = {y1 . . . yk} be defined such that xi, yi are

distinct elements of GF (2w) and X ∩ Y = φ. The Cauchy matrix T defined

by X and Y has 1/(xj + yi) as the (i, j)th element. The generator matrix is

given by (I|T), where I is the k × k identity matrix.

In Cauchy RS coding, each element of GF (2w) can be projected onto

a 1 × w vector of bits (refer to [11] for details) such that all operations over

GF (2w) can be replaced with operations over GF (2). The information disper-

sal matrix is now converted into a wk×wn matrix. Given a set of data blocks,

each containing B bytes, the data block is divided into w packets where each

packet contains 8B/w bits.

These are the main advantages of Cauchy RS coding over Vandermonde

RS coding:

1. In Vandermonde RS coding, all operations are performed over the ele-

ments of GF (2w). As seen in section 3.2.2, multiplication and division

of elements in the field involve multiple table look-ups. In Cauchy RS

coding, encoding simply involves the XOR operation for addition and

the AND operation for multiplication. Hence, it is much more efficient.

2. In Vandermonde RS coding, since the data block is divided into words

of w bits, the typical values of w are chosen to be 4, 8 and 16 so that 32

and 64 bit machine words can be evenly divided into words. In Cauchy

RS coding, since the data block is divided into w packets each containing

8B/w bits, w can chosen to be any number as long as 8B/w divides 32

or 64.

47

Chapter 4

Fused State Machines

In this chapter, we present the theory and algorithms of our fusion-

based solution for fault tolerance in deterministic finite state machines (re-

ferred to as DFSMs or machines). We build a framework for fault tolerance

in DFSMs and introduce the concept of an (f , m)-fusion, which is a set of

m backup machines that can correct f crash faults or bf/2c Byzantine faults

among a given set of machines. Further, we present an algorithm to generate

an (f , f)-fusion for a given set of n machines. We ensure that our backups

are efficient in terms of the size of their state and event sets. Note that, our

solution only requires f backups as compared to the nf backups required by

replication. Finally, we present algorithms for the detection and correction of

faults that are almost as efficient as replication.

4.1 Framework for Fault Tolerance in DFSMs

In this section, we describe our framework for fault tolerance in DFSMs,

using which we can specify the exact number of crash or Byzantine faults that

any set of machines can correct. Further, we introduce the concept of an (f ,

m)-fusion for a set of primaries that is a set of machines that can correct f

crash faults, detect f Byzantine faults and correct bf/2c Byzantine faults.

Table 4.1 summarizes the notation used in this chapter.

48

Table 4.1: Symbols/Notation used in this chapter

P Set of primaries n Number of primaries

RCP Reachable Cross Product N Number of states in the RCP

f No. of crash faults s Maximum number of states among primaries

F Set of fusions/backups ρ Average State Reduction in fusion

Σ Union of primary event-sets β Average Event Reduction in fusion

4.1.1 DFSMs and their Reachable Cross Product

A DFSM, denoted by A, consists of a set of states XA, set of events ΣA,

transition function αA : XA × ΣA → XA and initial state a0. The size of A,

denoted by |A| is the number of states in XA. A state, s ∈ XA, is reachable iff

there exists a sequence of events, which, when applied on the initial state a0,

takes the machine to state s. Consider any two machines, A (XA, ΣA, αA, a
0)

and B (XB, ΣB, αB, b
0). Now construct another machine that consists of

all the states in the product set of XA and XB with the transition function

α′({a, b}, σ) = {αA(a, σ), αB(b, σ)} for all {a, b} ∈ XA×XB and σ ∈ ΣA∪ΣB.

This machine (XA ×XB, ΣA ∪ ΣB, α
′, {a0, b0}) may have states that are not

reachable from the initial state {a0, b0}. If all such unreachable states are

pruned, we get the reachable cross product of A and B.

In Fig. 4.1, R is the reachable cross product of A, B and C. Throughout

the dissertation, when we just say RCP , we refer to the reachable cross product

of the set of primary machines. Given a set of primaries, the number of states

in its RCP is denoted by N and its event set, which is the union of the event

sets of the primaries is denoted by Σ. Given the state of the RCP , we can

determine the state of each of the primary machines and vice versa. However,

the RCP has states exponential in n and an event set that is the union of

all primary event sets. Can we generate backup machines that contain fewer

49

(ii) RCP: Ineffecient Backup

c0
a1b0

c1

a0b0

c1

a1b1

c1

a0b1

c1
a1b1

c0
a1b0

c0

a0b1

c0

f 2
2

f 3
2

a0 a1

0, 2

0, 2

b0 b1

1, 2

1, 2

0c0 c10

B (Parity of 1s, 2s)

C (Parity of 0s)

0

0

0

0
0

0

2 2

1

1

1

2 2

1
1

2 2 2 2

0 1
1

0

1

r1

r7

r3

r6

r5r4

r0 r2

R (8 states, 3 events)

A (Parity of 0s, 2s)

(i) Primaries

(iii) State and Event Efficient Backup

1

1
f 0
1 f 1

1

F1 (2 states, 1 event)

(iv) State Efficient Backup

f 1
2

2

2
f 0
2

0, 1

0, 1

0, 1
0, 1

2
2

F2 (4 states, 3 events)

a0b0

Figure 4.1: Correcting one crash fault among {A,B,C} using just one backup.

states and events than the RCP? In the following section, we describe the

closed partition set of the RCP .

4.1.2 Decomposition of the Reachable Cross Product

In section 3.1, we describe the decomposition of any give machine A.

Given any machine A, we can partition its state space such that the transition

function αA, maps each block of the partition to another block for all events

in ΣA [39, 55]. The set of all the machines generated by partitioning the state

space of A is referred to as the closed partition set of A. In this section, we

discuss the closed partitions corresponding to the RCP of the primaries. In

Fig. 4.2, we show the closed partition set of the RCP of {A,B,C} (labeled

R).

Consider machine M2 in Fig. 4.2, generated by combining the states r0

and r2 of R. Note that, on event 1, r0 transitions to r1 and r2 transitions to r3.

Hence, we need to combine the states r1 and r3. Continuing this procedure,

50

r0..r7 R⊥

F1C B

a1b0c0

M2

r6, r7

r4, r5

2

2

1

1

2 1
1

r0, r2 r1, r3

2

r5, r7

r4, r6

r1, r2
2

2

2

r0, r3

2 0, 1
0, 1

0, 1

0, 1

F2

f 0
2

f 3
2

f 1
2 f 2

2

r6

0

0

0

0
0

0

2 2

1

1

1

1

2 2

1
1

2 2 2 2

0 1
1

r7 r5

0

R

r0 r2 r3r1

r0, r2, r4, r5
1

1
r1, r3, r6, r7r0, r1, r5, r6 r2, r3, r4, r7

0, 2

0, 2
r2, r3, r6, r5 r1, r3, r4, r5r0, r1, r4, r7

0

0
r0, r2, r6, r7

1, 2

1, 2

a0 a1 c0 c1 b0 b1

A

f 0
1 f 1

1

r4

r2, r5

r3, r6

r0, r4
0

0

1

1

0 1
1

r1, r7

0

M1

r0 r2 r3 r4 r5 r6 r7r1
a1b1c1a0b0c0 a0b1c0 a1b0c1 a0b0c1a1b1c0 a0b1c1

Figure 4.2: Set of machines less than R (all machines not shown due to space
constraints).

we obtain the combined states in M2. Hence, we have reduced the RCP to

generate M . By combining different pairs of states and by further reducing

the machines thus formed, we can construct the entire closed partition set of

R.

We can define an order (≤) among any two machines P and Q in this

set as follows: P ≤ Q, if each block of Q is contained in a block of P (shown

by an arrow from P to Q). Intuitively, given the state of Q we can determine

the state of P . Machines P and Q are incomparable, i.e., P ||Q, if P 6< Q and

Q 6< P . In Fig. 4.2, F1 < M2, while M1||M2. Given the state of the primaries,

we can determine the state of the RCP and vice versa. Hence, the primary

machines are always part of the closed partition set of the RCP (see A, B and

51

C in Fig. 4.2).

Among the machines shown in Fig. 4.2, some of them, like F2 (4 states,

3 events) have reduced states, while some like M1 (4 states, 2 events) and F1

(2 states, 1 event) have both reduced states and events as compared to R (8

states, 3 events). Which among these machines can act as backups? In the

following section, we describe the concept of fault graphs and their Hamming

distances to answer this question.

4.1.3 Fault Graphs and Hamming Distances

We begin with the idea of a fault graph of a set of machines M, for a

machine T , where all machines in M are less than or equal to T . This is a

weighted graph and is denoted by G(T,M). The fault graph is an indicator

of the capability of the set of machines in M to correctly identify the current

state of T . As described in the previous section, since all the machines in M

are less than or equal to T , the set of states of any machine in M corresponds

to a closed partition of the set of states of T . Hence, given the state of T , we

can determine the state of all the machines in M and vice versa.

Definition 12. (Fault Graph) Given a set of machines M and a machine T =

(XT ,ΣT , αT , t
0) such that ∀M ∈ M : M ≤ T , the fault graph G(T,M) is a

fully connected weighted graph where,

• Every node of the graph corresponds to a state in XT

• The weight of the edge (ti, tj) between two nodes, where ti, tj ∈ XT , is

the number of machines in M that have states ti and tj in distinct blocks

We construct the fault graph G(R, {A}), referring to Fig. 4.2. A has

two states, a0 = {r0, r1, r5, r6} and a1 = {r2, r3, r4, r7}. Given just the current

52

(iv) G({A,B,C, F1})

r3 r1

r0

r2

0

1

1

(i) G({A})

r3 r1

r0

r2

2

3

r3 r1

r0

r2

2

3 r3 r1

r2

2

r0

r1

r0

r2

3

3

(iii) G({A,B,C,R})(ii) G({A,B,C}) (v) G({A,B,C, F1, F2})

1
2

13

1

1

0
2

4

3
4 2 4

2

24

r3

3 4
3

4

Figure 4.3: Fault Graphs, G(R,M), for sets of machines shown in Fig. 4.2.
All eight nodes r0-r7 with their edges have not been shown due to space con-
straints.

state of A, it is possible to determine if R is in state r0 or r2 (exact) or one

of r0 and r1 (ambiguity). Here, A distinguishes between the (r0, r2) but not

between (r0, r1). Hence, in the fault graph G(R, {A}) in Fig. 4.3 (i), the edge

(r0, r2) has weight one, while (r0, r1) has weight zero. A machine M ∈ M, is

said to cover an edge (ti, tj) or separate the pair of states ti, tj, if ti and tj lie

in separate blocks of M . In Fig. 4.2, A covers (r0, r2). In Fig. 4.4 and 4.5,

we show an example of the closed partition set and fault graphs for a different

set of primaries.

Given the states of |M| − x machines in |M|, it is always possible to

determine if T is in state ti or tj iff the weight of the edge (ti, tj) is greater

than x. Consider the graph shown in Fig. 4.3 (ii). Given the state of any

two machines in {A,B,C}, we can determine if R is in state r0 or r2, since

the weight of that edge is greater than one, but cannot do the same for the

edge (r0, r1), since the weight of the edge is one. In coding theory [9, 73], the

concept of Hamming distance [38] is widely used to specify the fault tolerance

of an erasure code. If an erasure code has minimum Hamming distance greater

than d, then it can correct d erasures or bd/2c errors. To understand the fault

tolerance of a set of machines, we define a similar notion of distances for the

53

t0, t1t1, t2
t3

⊤
t3

t1t0

⊥

t0 t1t1 t2 t0 t3

A B M1 M2

M3 M4 M5 M6

t2

t3t1 t1, t2t0, t3

t1 t0, t3

t0, t2t2, t3

, t3
t0, t2 t0

, t2

t1, t2

, t3

Figure 4.4: Closed partition set for the RCP of {A,B}.

3

t3 t1

t0

t2

1

1

1

(i) G({A})

t3 t1

t0

t2

2

2

t3 t1

t0

t2

4

4 t3 t1

t2

4

t0

t1

t0

t2

3

4

(iv) G({A,B,M1,⊤})(iii) G({A,B,M1,M2})(ii) G({A,B}) (v) G({A,B,M6,⊤})

1
2

21

1

0

1
3

3

3
3 3 4

3

43

t3

3 3
3

Figure 4.5: Fault Graphs for sets of machines shown in Fig. 4.4.

fault graph.

Definition 13. (distance) Given a set of machines M and their reachable cross

54

product T (XT ,ΣT , αT , t
0), the distance between any two states ti, tj ∈ XT ,

denoted by d(ti, tj), is the weight of the edge (ti, tj) in the fault graph G(T,M).

The least distance in G(T,M) is denoted by dmin(T,M).

Given a fault graph, G(T,M), the smallest distance between the nodes

in the fault graph specifies the fault tolerance of M. Consider the graph,

G(R, {A,B,C, F1, F2}), shown in Fig. 4.3 (v). Since the smallest distance in

the graph is three, we can remove any two machines from {A,B,C, F1, F2}
and still regenerate the current state of R. As seen before, given the state of

R, we can determine the state of any machine less than R. Therefore, the set

of machines {A,B,C, F1, F2} can correct two crash faults.

Theorem 2. A set of machines M, can correct up to f crash faults iff dmin(T,M) >

f , where T is the reachable cross-product of all machines in M.

Proof. (⇒) Given that dmin(T,M) > f , we show that any M − f machines

from M can accurately determine the current state of T , thereby recovering the

state of the crashed machines. Since dmin(T,M) > f at least f + 1 machines

separate any two states of XT . Hence, for any pair of states (ti, tj) ∈ XT , even

after f crash failures in M, at least one machine remains that can distinguish

between ti and tj. This implies that it is possible to accurately determine the

current state of T by using any M− f machines from M.

(⇐) Given that dmin(T,M) ≤ f , we show that the system cannot

correct f crash faults. The condition dmin(T,M) ≤ f implies that there exists

states ti and tj in G(T,M) separated by distance k, where k ≤ f . Hence there

exist exactly k machines in M that can distinguish between states ti, tj ∈ XT .

Assume that all these k machines crash (since k ≤ f) when T is in either

ti or tj. Using the states of the remaining machines in M, it is not possible

55

to determine whether T was in state ti or tj. Therefore, it is not possible to

exactly regenerate the state of any machine in M using the remaining machines.

Byzantine faults may include machines that lie about their state. Con-

sider the machines {A,B,C, F1, F2} shown in Fig. 4.2. From Fig. 4.3 (v), Let

the execution states of the machines A, B, C, F1 and F2 be a0 = {r0, r1, r5, r6},
b1 = {r1, r3, r4, r5}, c0 = {r0, r1, r4, r7}, f 0

1 = {r0, r2, r4, r5} and f 0
2 = {r0, r3}

respectively. Since r0 appears four times (greater than majority) among these

states, even if there is one liar we can determine that R is in state r0. But if R

is in state r0, then B must have been in state b0 which contains r0. So clearly,

B is lying and its correct state is b1. Here, we can determine the correct state

of the liar, since dmin(R, {A,B,C, F1, F2}) = 3, and the majority of machines

distinguish between all pairs of states.

Theorem 3. A set of machines M, can correct up to f Byzantine faults iff

dmin(T,M) > 2f , where T is the reachable cross-product of all machines in

M.

Proof. (⇒) Given that dmin(T,M) > 2f , we show that any M − f correct

machines from M can accurately determine the current state of T in spite of f

liars. Since dmin(T,M) > 2f , at least 2f + 1 machines separate any two states

of XT . Hence, for any pair of states ti, tj ∈ XT , after f Byzantine failures in

M, there will always be at least f + 1 correct machines that can distinguish

between ti and tj. This implies that it is possible to accurately determine the

current state of T by simply taking a majority vote.

(⇐) Given that dmin(T,M) ≤ 2f , we show that the system cannot

correct f Byzantine faults. dmin(T,M) ≤ 2f implies that there exists states

56

ti, tj ∈ XT separated by distance k, where k ≤ 2f . If f among these k machines

lie about their state, we have only k − f correct machines remaining. Since,

k − f ≤ f , it is impossible to distinguish the liars from the truthful machines

and regenerate the correct state of T .

In this dissertation, we are concerned only with the fault graph of

machines w.r.t the RCP of the primaries P. For notational convenience, we use

G(M) instead of G(RCP,M) and dmin(M) instead of dmin(RCP,M). From

theorems 2 and 3, it is clear that a set of nmachines P, can correct (dmin(P)−1)

crash faults and b(dmin(P) − 1)/2c Byzantine faults. Henceforth, we only

consider backup machines less than or equal to the RCP of the primaries. In

the following section, we describe the theory of such backup machines.

4.1.4 Theory of (f , m)-fusion

To correct faults in a given set of machines, we need to add backup

machines so that the fault tolerance of the system (original set of machines

along with the backups) increases to the desired value. To simplify the discus-

sion, in the remainder of this dissertation, unless specified otherwise, we mean

crash faults when we simply say faults. Given a set of n machines P, we add

m backup machines F, each less than or equal to the RCP , such that the set

of machines in A ∪ F can correct f faults. We call the set of m machines in

F, an (f , m)-fusion of P. From theorem 2, we know that, dmin(A ∪ F) > f .

Definition 14. (Fusion) Given a set of n machines P, we call the set of m

machines F, an (f , m)-fusion of P, if dmin(A ∪ F) > f .

Any machine belonging to F is referred to as a fused backup or just

a fusion. Consider the set of machines, P = {A,B,C}, shown in Fig. 4.1.

57

From Fig. 4.3 (ii), dmin({A,B,C}) = 1. Hence the set of machines P, cannot

correct a single fault. To generate a set of machines F, such that, P ∪ F can

correct two faults, consider Fig. 4.3 (v). Since dmin({A,B,C, F1, F2}) = 3,

{A,B,C, F1, F2} can correct two faults. Hence, {F1, F2} is a (2, 2)-fusion of

{A,B,C}. Note that the set of machines in {A,A,B,B,C,C}, i.e., replication,

is a (2, 6)-fusion of {A,B,C}.

Any machine in the set {A,B,C, F1, F2} can at most contribute a value

of one to the weight of any edge in the graph G({A,B,C, F1, F2}). Hence, even

if we remove one of the machines, say F2, from this set, dmin({A,B,C, F1}) is

greater than one. So {F1} is an (1, 1)-fusion of {A,B,C}.

Theorem 4. (Subset of a Fusion) Given a set of n machines P, and an (f ,

m)-fusion F, corresponding to it, any subset F′ ⊆ F such that |F′| = m− t is

a (f − t, m− t)-fusion when t ≤ min(f,m).

Proof. Since, F is an (f , m)-fusion of P, dmin(A ∪ F) > f . Any machine,

F ∈ F, can at most contribute a value of one to the weight of any edge of

the graph, G(A ∪ F). Therefore, even if we remove t machines from the set

of machines in F, dmin(A ∪ F) > f − t. Hence, for any subset F′ ⊆ F, of size

m − t, dmin(A ∪ F′) > f − t. This implies that F′ is an (f − t, m − t)-fusion

of P.

It is important to note that the converse of this theorem is not true.

In Fig. 4.2, while {M2} and {F1} are (1, 1)-fusions of {A,B,C}, since

dmin({A,B,C,M2, F1}) = 2, {M2, F1} is not a (2, 2)-fusion of {A,B,C}. We

now consider the existence of an (f , m)-fusion for a given set of machines P.

Consider the existence of a (2, 1)-fusion for {A,B,C} in Fig. 4.2. From Fig.

4.3 (ii), dmin({A,B,C}) = 1. Clearly, R covers each pair of edges in the fault

58

graph. Even if we add R to this set, from Fig. 4.3 (iii), dmin({A,B,C,R}) < 3.

Hence, there cannot exist a (2, 1)-fusion for {A,B,C}.

Theorem 5. (Existence of Fusions) Given a set of n machines P, there exists

an (f , m)-fusion of P iff m+ dmin(P) > f .

Proof. (⇒) Assume that there exists an (f , m)-fusion F for the given set of

machines P. Since, F is an (f , m)-fusion of P, dmin(P ∪ F) > f . The m

machines in F, can at most contribute a value of m to the weight of each edge

in G(P ∪ F). Hence, m+ dmin(P) has to be greater than f .

(⇐) Assume that m + dmin(P) > f . Consider a set of m machines F,

containing m copies of the RCP . These copies contribute exactly m to the

weight of each edge in G(P ∪ F). Since, dmin(P) > f −m, dmin(P ∪ F) > f .

Hence, F is an (f , m)-fusion of P.

Given a set of machines, we now define an order among (f , m)-fusions

corresponding to them.

Definition 15. (Order among (f , m)-fusions) Given a set of n machines P,

an (f , m)-fusion F = {F1, ..Fm}, is less than another (f , m)-fusion G, i.e,

F < G, iff the machines in G can be ordered as {G1, G2, ..Gm} such that

∀1 ≤ i ≤ m : (Fi ≤ Gi) ∧ (∃j : Fj < Gj).

An (f , m)-fusion F is minimal, if there exists no (f , m)-fusion F′, such

that, F′ < F. It can be seen that, dmin({A,B,C,M2, F2}) = 3, and hence,

F′ = {M2, F2} is a (2, 2)-fusion of {A,B,C}. We have seen that F = {F1, F2},
is a (2, 2)-fusion of {A,B,C}. From Fig. 4.2, since F1 < M2, F < F′. In Fig.

59

4.2, since R⊥ cannot be a fusion for {A,B,C}, there exists no (2, 2)-fusion

less than {F1, F2}. Hence, {F1, F2} is a minimal (2, 2)-fusion of {A,B,C}.

We now prove a property of the fusion machines that is crucial for

practical applications. Consider a set of primaries P and an (f , m)-fusion F

corresponding to it. The client sends updates addressed to the primaries to all

the backups as well. We show that events or inputs that belong to distinct set

of primaries, can be received in any order at each of the fused backups. This

eliminates the need for synchrony at the backups.

Consider a fusion F ∈ F. Since the states of F are essentially partitions

of the state set of the RCP , the state transitions of F are defined by the state

transitions of the RCP . For example, machine M1 in Fig. 4.2 transitions

from {r0, r2} to {r1, r3} on event 1, because r0 and r2 transition to r1 and

r3 respectively on event 1. Hence, if we show that the state of the RCP

is independent of the order in which it receives events addressed to different

primaries, then the same applies to the fusions.

Theorem 4.1.1 (Commutativity). The state of a fused backup after acting

on a sequence of events, is independent of the order in which the events are

received, as long as the events belong to distinct sets of primaries.

Proof. We first prove the theorem for the RCP , which is also a valid fused

backup. Let the set of primaries be P = {P1 . . . Pn}. Consider an event ei

that belongs to the set of primaries Si ⊆ P. If the RCP is in state r, its next

state transition on event ei depends only on the transition functions of the

primaries in Si. Hence, the state of the RCP after acting on two events ea

and eb is independent of the order in which these events are received by the

60

RCP , as long as Sa ∪ Sb = φ. The proof of the theorem follows directly from

this.

So far, we have presented the framework to understand fault tolerance

among machines. Given a set of machines, we can determine if they are a

valid set of backups by constructing the fault graph of those machines. In the

following section, we present a technique to generate such backups automati-

cally.

4.2 Algorithm to Generate Fused Backup Machines

Given a set of n primaries P, we present the genFusion algorithm in

Fig. 4.6 to generate an (f , f)-fusion F of P. The algorithm takes as input

two parameters 4s and 4e and ensures (if possible) that each machine in F

has at most (N −4s) states and at most (|Σ| − 4e) events, where N is the

number of states in the RCP and Σ is the event set of the RCP . Further,

we show that F is a minimal fusion of P. The algorithm has time complexity

polynomial in N .

The genFusion algorithm executes f iterations and in each iteration

adds a machine to F that increases dmin(P ∪ F) (referred to as dmin) by one.

At the end of f iterations, dmin increases to f + 1 and hence P ∪ F can correct

f faults. The algorithm ensures that the backup selected in each iteration is

optimized for states and events. The algorithms for state reduction and event

reduction are presented in Fig. 4.7 and 4.8 respectively. In the following para-

graphs, we explain the genFusion algorithm in detail, followed by an example

to illustrate its working.

In each iteration of the genFusion algorithm (Outer Loop), we first

61

genFusion

Input: Primaries P, faults f , state-reduction parameter 4s,
event-reduction parameter 4e;
Output: (f , f)-fusion of P;

F ← {};
//Outer Loop

for (i = 1 to f)

Identify weakest edges in fault graph G(P ∪ F);

M← {RCP (P)};
//State Reduction Loop

for (j = 1 to 4s)
S← {};
for (M ∈M)

S = S ∪ reduceState(M);

M = All machines in S that increment dmin(P ∪ F);

//Event Reduction Loop

for (j = 1 to 4e)
E← {};
for (M ∈M)

E = E ∪ reduceEvent(M);

M = All machines in E that increment dmin(P ∪ F);

//Minimality Loop

M ← Any machine in M;

while (all states of M have not been combined)

C← reduceState(M);

M= Any machine in C that increments dmin(P ∪ F);

F ← {M}⋃F;

return F;

Figure 4.6: Algorithm to generate an (f , f)-fusion for a given set of primaries.

62

reduceState

Input: Machine P with state set XP , event set ΣP

and transition function αP ;

Output: Largest Machines < P with ≤ |XP | − 1 states;

B = {};
for (si, sj ∈ XP)

//combine states si and sj
Set of states, XB = XP with (si, sj) combined;

B = B ∪ {Largest machine consistent with XB};
return Incomparable machines in B;

Figure 4.7: Algorithm to generate reduced-state machines.

identify the set of weakest edges (lowest weight) in P ∪ F and then find a

machine that covers these edges, thereby increasing dmin by one. We start

with the RCP , since it always increases dmin. The ‘State Reduction Loop’

and the ‘Event Reduction Loop’ successively reduce the states and events of

the RCP . Finally the ‘Minimality Loop’ searches as deep into the closed

partition set of the RCP as possible for a reduced-state machine, without

explicitly constructing the lattice.

State Reduction Loop This loop uses the reduceState algorithm in Fig. 4.7

to iteratively generate machines with fewer states than the RCP that increase

dmin by one. The reduceState algorithm, takes as input, a machine P and

generates a set of machines in which at least two states of P are combined.

For each pair of states si, sj in XP , the reduceState algorithm, first creates

a partition of blocks in which (si, sj) are combined and then constructs the

largest machine consistent with this partition. Note that, ‘largest’ is based on

the order specified in section 4.1.2. This procedure is repeated for all pairs

in XP and the incomparable machines among them are returned. At the end

63

reduceEvent

Input: Machine P with state set XP , event set ΣP

and transition function αP ;

Output: Largest Machines < P with ≤ |ΣP | − 1 events;

B = {};
for (σ ∈ ΣP)

Set of states, XB = XP ;

//combine states to self-loop on σ

for (s ∈ XB)

s = s ∪ αP (s, σ);

B = B ∪ {Largest machine consistent with XB};
return Incomparable machines in B;

Figure 4.8: Algorithm to generate reduced-event machines.

of 4s iterations of the state reduction loop, we generate a set of machines M

each of which increases dmin by one and contains at most (N −4s) states, if

such machines exist.

Event Reduction Loop Starting with the state reduced machines in M,

the event reduction loop uses the reduceEvent algorithm in Fig. 4.8 to generate

reduced event machines that increase dmin by one. The reduceEvent algorithm,

takes as input, a machine P and generates a set of machines that contain at

least one event less than ΣP . To generate a machine less than any given input

machine P , that does not contain an event σ in its event set, the reduceEvent

algorithm combines the states such that they loop onto themselves on σ. The

algorithm then constructs the largest machine that contains these states in

the combined form. This machine, in effect, ignores σ. This procedure is

repeated for all events in ΣP and the incomparable machines among them are

returned. At the end of 4e iterations of the event reduction loop, we generate

64

a set of machines M each of which increases dmin by one and contains at most

(N −4s) states and at most (|Σ| − 4e) events, if such machines exist.

Minimality Loop This loop picks any machine M among the state and

event reduced machines in M and uses the reduceState algorithm iteratively

to generate a machine less than M that increases dmin by one until no further

state reduction is possible i.e., all the states of M have been combined. Unlike

the state reduction loop (which also uses the reduceState algorithm), in the

minimality loop we never exhaustively explore all state reduced machines.

After each iteration of the minimality loop, we only pick one machine that

increases dmin by one.

Note that, in all three of these inner loops, if in any iteration, no reduc-

tion is achieved, then we simply exit the loop with the machines generated in

the previous iteration. We use the example in Fig. 4.2 with P = {A,B,C}, f =

2,4s = 1 and 4e = 1, to explain the genFusion algorithm. Since f = 2, there

are two iterations of the outer loop and in each iteration we generate one ma-

chine. Consider the first iteration of the outer loop. Initially, F is empty and

we need to add a machine that covers the weakest edges in G({A,B,C}).

To identify the weakest edges, we need to identify the mapping between

the states of the RCP and the states of the primaries. For example, in Fig.

4.2, we need to map the states of the RCP to A. The starting states are

always mapped to each other and hence r0 is mapped to a0. Now r0 on

event 0 transitions to r2, while a0 on event 0 transitions to a1. Hence, r2

is mapped to a1. Continuing this procedure for all states and events, we

obtain the mapping shown, i.e, a0 = {r0, r1, r5, r6} and a1 = {r2, r3, r4, r7}.
Following this procedure for all primaries, we can identify the weakest edges

65

in G({A,B,C}) (Fig. 4.3 (ii)). In Fig. 4.2, M1, M2 and F2 are some of the

largest incomparable machines that contain at least one state less than the

RCP (the entire set is too large to be enumerated here). All three of these

machines increase dmin and at the end of the one and only iteration of the

state reduction loop, M will contain at least these three machines.

The event reduction loop tries to find machines with fewer events than

the machines in M. For example, to generate a machine less than M2 that

does not contain, say event 2, the reduceEvent algorithm combines the blocks

of M2 such that they do not transition on event 2. Hence, {r0, r2} in M2

is combined with {r4, r5} and {r1, r3} is combined with {r6, r7} to generate

machine F1 that does not act on event 2. The only machine less than M2

that does not act on event 1 is R⊥. Since the reduceEvent algorithm returns

incomparable machines, only F1 is returned when M1 is the input. Similarly,

with M2 as input, the reduceEvent algorithm returns {C,F1} and with F2

as input it returns R⊥. Among these machines only F1 increases dmin. For

example, C does not cover the weakest edge (r0, r1) of G(P). Hence, at the

end of the one and only iteration of the event reduction loop, M = {F1}.

As there exists no machine less than F1, that increases dmin, at the

end of the minimality loop, M = F1. Similarly, in the second iteration of the

outer loop M = F2 and the genFusion algorithm returns {F1, F2} as the fusion

machines that increases dmin to three. Hence, using the genFusion algorithm,

we have automatically generated the backups F1 and F2 shown in Fig. 4.1.

In the worst case, there may exist no efficient backups and the genFusion

algorithm may just return a set of f copies of the RCP . However, our results

in section 6.3 indicate that for many examples, efficient backups do exist.

66

4.2.1 Properties of the genFusion Algorithm

In this section, we prove properties of the genFusion algorithm with

respect to: (i) the number of fusion/backup machines (ii) the number of states

in each fusion machine, (iii) the number of events in each fusion machine and

(iv) the minimality of the set of fusion machines F. We first introduce concepts

that are relevant to the proof of these properties.

Lemma 1. Given a set of primary machines P, dmin(P) = 1.

Proof. Given the state of all the primary machines, the state of the RCP

can be uniquely determined. Hence, there is at least one machine among the

primaries that distinguishes between each pair of states in the RCP and so,

dmin(P) ≥ 1. In section 1.3, we state our assumption that the set of machines

in P cannot correct a single fault and this implies that, dmin(P) ≤ 1. Hence,

dmin(P) = 1.

Lemma 2. Given a set of primary machines P, let F′ be an (f , f)-fusion of P.

Each fusion machine F ∈ F′ has to cover the weakest edges in G(P).

Proof. From lemma 1, the weakest edges of G(P) have weight equal to one.

Since F′ is an (f , f)-fusion of P, dmin(P ∪ F′) > f . Also, each machine in F′

can increase the weight of any edge by at most one. Hence, all f machines in

F′ have to cover the weakest edges in G(P).

Let the weakest edges of G(P ∪ F) at the start of the ith iteration of the

outer loop of the genFusion algorithm be denoted Ei. In the following lemma,

we show that the set of weakest edges does not decrease with each iteration.

Lemma 3. In the genFusion algorithm, for any two iterations i and j, if i < j,

then Ei ⊆ Ej.

67

Proof. Let the value of dmin for the ith iteration be d and the edges with this

weight be Ei. Any machine added to F can at most increase the weight of

each edge by one and it has to increase the weight of all edges in Ei by one.

So, dmin for the (i+1)th iteration is d+1 and the weight of the edges in Ei will

increase to d + 1. Hence, Ei will be among the weakest edges in the (i + 1)th

iteration, or in other words, Ei ⊆ Ei+1. This trivially extends to the result:

for any two iterations numbered i and j of the genFusion algorithm, if i < j,

then Ei ⊆ Ej.

We now prove one of the main theorems of this dissertation.

Theorem 6. (Fusion Algorithm) Given a set of n machines P, the genFusion

algorithm generates a set of machines F such that:

1. (Correctness) F is an (f , f)-fusion of P.

2. (State & Event Efficiency) If each machine in F has greater than (N−4s)
states and (|Σ| − 4e) events, then no (f , f)-fusion of P contains a

machine with less than or equal to (N − 4s) states and (|Σ| − 4e)
events.

3. (Minimality) F is a minimal (f , f)-fusion of P.

Proof. We prove each of the mentioned properties:

1. From lemma 1, dmin(P) = 1. Starting with the RCP , which always

increases dmin by one, we add one machine in each iteration to F that

increases by dmin(P∪F) by one. Hence, at the end of f iterations of the

genFusion algorithm, we add exactly f machines to F that increase dmin

to f + 1. Hence, F is an (f , f)-fusion of P.

68

2. Assume that each machine in F has greater than (N −4s) states and

(|Σ| −4e) events. Let there be another (f , f)-fusion of P that contains

a machine F ′ with less than or equal to (N −4s) states and (|Σ| −4e)
events. From lemma 2, F ′ covers the weakest edges in G(P). However,

in the first iteration of the outer loop, the genFusion algorithm searches

exhaustively for a fusion with less than or equal to (N −4s) states and

(|Σ| −4e) events that covers the weakest edges in G(P). Hence, if such

a machine F ′ existed, then the algorithm would have chosen it.

3. Let there be an (f , f)-fusion G = {G1, ..Gf} of P, such that G is less

than (f , f)-fusion F = {F2, F1, ..., Ff}. Hence ∀j : Gj ≤ Fj. Let Gi < Fi

and let Ei be the set of edges that needed to be covered by Fi. It follows

from the genFusion algorithm, that Gi does not cover at least one edge

say e in Ei (otherwise the algorithm would have returned Gi instead of

Fi). From lemma 3, it follows that if e is covered by k machines in F,

then e has to be covered by k machines in G. We know that there is a

pair of machines Fi, Gi such that Fi covers e and Gi does not cover e.

For all other pairs Fj, Gj if Gj covers e then Fj covers e (since Gj ≤ Fj).

Hence e can be covered by no more than k − 1 machines in G. This

implies that G is not an (f , f)-fusion of P.

4.2.2 Time Complexity of the genFusion Algorithm

The time complexity of the genFusion algorithm is the sum of the time

complexities of the inner loops multiplied by the number of iterations, f . We

analyze the time complexity of each of the inner loops. Let the set of machines

in M at the start of the ith iteration of the outer loop be denoted Mi.

69

State Reduction Loop: The time complexity of the state reduction loop

for the ith iteration of the outer loop is T1 +T2, where T1 is the time complexity

to reduce the states of the machines in Mi and T2 is the time complexity to

find the machines among S that increment dmin. First, let us consider T1.

Note that, initially M, i.e, M1, contains only the RCP with O(N) states and

for any iteration of the state reduction loop, each of the machines in Mi has

O(N) states. Given a machine M with O(N) states, the reduceState algorithm

generates machines with fewer states than M . For each pair of states in M ,

the time complexity to generate the largest closed partition that contains these

states in a combined block is just O(N |Σ|). Since there are O(N2) pairs of

states in M , the time complexity of the reduceState algorithm is O(N3|Σ|).
Hence, T1 = O(|Mi|N3|Σ|).

Now, we consider T2. Since, there are O(N2) pairs of states in each

machine in Mi, the reduceState algorithm returns O(N2) machines. So, |S| =
O(N2|Mi|). Since there are O(N2) nodes in the fault graph of G(P ∪ F), given

any machine in S, the time complexity to check if it increments dmin is O(N2).

Hence, T2 = O(|S|N2) = O(N4|Mi|). So, the time complexity of each iteration

of the state reduction loop is T1 + T2 = O(|Mi|N3|Σ|+N4|Mi|).

Since the reduceState algorithm generates O(N2) machines per machine

in Mi, |Mi+1| = N2|Mi|. In the first iteration M just contains the RCP

and |M1| = 1. Hence, the time complexity of the state reduction loop is,

O((N3|Σ|+N4)(1 +N2 +N4 . . .+N2(4s−1))) = O((N3|Σ|+N4)(N
24s−1
N2−1

) (the

series is a geometric progression). This reduces to O(N4s+1|Σ|+N4s+2). Also,

M contains O(N24s) machines at the end of the state reduction loop.

Event Reduction Loop: The time complexity analysis for the event re-

duction loop is similar, except for the fact that the reduceEvent algorithm

70

iterates through |Σ| events of each machine in M and returns O(|Σ|) ma-

chines per machine in M. Also, while the state reduction loop starts with

just one machine in M, the event reduction loop starts with O(N24s) ma-

chines in M. Hence, the time complexity of each iteration of the event re-

duction loop is O((N |Σ|2 + N2|Σ|)(N24s)(1 + |Σ| + |Σ|2 . . . + |Σ|4e−1)) =

O((N |Σ|2 +N2|Σ|)(N24s)(|Σ|
4e−1
|Σ|−1

)) = O(N4s+1|Σ|4e+1 +N4s+2|Σ|4e).

Minimality Loop: In the minimality loop, we use the reduceState al-

gorithm, but only select one machine per iteration. Also, in each itera-

tion of the minimality loop, the number of states in M is at least one less

than than the number of states in M for the previous iteration. Hence,

the minimality loop executes O(N) iterations with total time complexity,

O((N3|Σ|+N4)(N)) = O(N4|Σ|+N5).

Since there are f iterations of the outer loop, the time complexity

of the genFusion algorithm is, O(fN4s+1|Σ| + fN4s+2 + fN4s+1|Σ|4e+1 +

fN4s+2|Σ|4e + fN4|Σ|+ fN5). This reduces to,

O(fN4s+1|Σ|4e+1 + fN4s+2|Σ|4e + fN4|Σ|+ fN5)

Observation 2. For parameters 4s = 0 and 4e = 0, the genFusion algorithm

generates a minimal (f , f)-fusion of P with time complexity O(fN4|Σ|+fN5).

Hence, the time complexity is polynomial in the number of states of the RCP .

If there are n primaries each with O(s) states, then N is O(sn). Hence,

the time complexity of the genFusion algorithm reduces to O(sn|Σ|f). Even

though the time complexity of generating the fusions is exponential in n, note

that the fusions have to be generated only once. Further, in the following

section, we present an incremental approach for the generation of fusions that

improves the time complexity by a factor of O(ρn) for constant values of ρ,

71

incFusion

Input: Primaries P = {P1, P2, . . . Pn}, faults f ,

state-reduction parameter 4s, event-reduction parameter 4e;
Output: (f , f)-fusion of P;

F ← {P1};
for (i = 2 to n)

N← {Pi} ∪RCP (F);

F ← genFusion(N, f,4s,4e);
return F;

Figure 4.9: Incremental fusion algorithm.

where ρ is the average state reduction achieved by fusion, i.e., (N/Average

size of a fusion).

4.2.3 Incremental Approach to Generate Fusions

In Fig. 4.9, we present an incremental approach to generate the fu-

sions, referred to as the incFusion algorithm, in which we may never have to

reduce the RCP of all the primaries. In each iteration, we generate the fusion

corresponding to a new primary and the RCP of the (possibly small) fusions

generated for the set of primaries in the previous iteration.

a0 a1

A (Parity of 0s,2s)
0, 2

0, 2

F ′

f ′0
f ′1

F ′

f ′0
f ′1

B (Parity of 1s,2s)
1

1
f 0

f 1

0c0 c1

C (Parity of 0s)0

0, 1

0, 1

0, 1

0, 1

F
b0 b1

1, 2

1, 2

Figure 4.10: Incremental Approach: first generate F ′ and then F .

In Fig. 4.10, rather than generate a fusion by reducing the 8-state RCP

72

of {A,B,C}, we can reduce the 4-state RCP of {A,B} to generate fusion F ′

and then reduce the 4-state RCP of {C,F ′} to generate fusion F . In the

following paragraph, we present the proof of correctness for the incremental

approach and show that it has time complexity O(ρn) times better than that

of the genFusion algorithm, where ρ is the average state reduction achieved

by fusion.

Theorem 7. Given a set of n machines P, the incFusion algorithm generates

an (f , f)-fusion of P.

Proof. We prove the theorem using induction on the variable i in the algorithm.

For the base case, i.e., i = 2, N = {P1, P2} (since RCP ({P1}) = P1). Let

the (f , f)-fusion generated by the genFusion algorithm for N = {P1, P2} be

denoted F1. For i = 3, let the (f , f)-fusion generated for N = {P3, RCP (F1)}
be denoted F2. We show that F2 is an (f , f)-fusion of {P1, P2, P3}. Assume f

crash faults among {P1P2, P3} ∪ F2. Clearly, less than or equal to f machines

in {P3} ∪ F2 have crashed. Since F2 is an (f , f)-fusion of {P3, RCP (F1)}, we

can generate the state of all the machines in RCP (F1) and the state of the

crashed machines among {P3}∪F2. Similarly, less than or equal to f machines

have crashed among {P1, P2}. Hence, using the state of the available machines

among {P1, P2} and the states of all the machines in F1 we can generate the

state of the crashed machines among {P1, P2}.

Induction Hypothesis: Assume that the set of machines Fi, generated

in iteration i, is an (f , f)-fusion of {P1 . . . Pi+1}. Let the (f , f)-fusion of

{Pi+2, RCP (Fi)} generated in iteration i+ 1 be denoted Fi+1. To prove: Fi+1

is an (f , f)-fusion of {P1 . . . Pi+2}. The proof is similar to that for the base

case. Using the state of the available machines in {Pi+2}∪Fi+1, we can generate

73

the state of all the machines in Fi and {Pi+2} ∪ Fi+1. Subsequently, we can

generate the state of the crashed machines in {P1 . . . Pi+1}.

From observation 2, the genfusion algorithm has time complexity,

O(fN4|Σ|+fN5) (assuming 4s = 0 and 4e = 0 for simplicity). Hence, if the

size of N in the ith iteration of the incFusion algorithm is denoted by Ni, then

the time complexity of the incFusion algorithm, Tinc is given by the expression

Σi=n
i=2O(fN4

i |Σ|+ fN5
i).

Let the number of states in each primary be s. For i = 2, the primaries

are {P1, P2} and N1 = O(s2). For i = 3, the primaries are {RCP (F1), P3}.
Note that RCP (F1) is also a fusion machine. Since we assume an average

reduction of ρ (size of RCP of primaries/average size of each fusion), the

number of states in RCP (F1) is O(s2/ρ). Hence, N2 = O(s3/ρ). Similarly,

N3 = O(s4/ρ2) and Ni = O(si+1/ρi−1). Hence, Tinc = O(|Σ|fΣi=n
i=2s

4i+4/ρ4i−4+

fΣi=n
i=2s

5i+5/ρ5i−5) = O(|Σ|fs4ρ4Σi=n
i=2 (s/ρ)4i + fs5ρ5Σi=n

i=2 (s/ρ)5i). This is the

sum of a geometric progression and hence,

Tinc = O(|Σ|fs4ρ4(s/ρ)4n + fs5ρ5(s/ρ)5n)

Assuming ρ and s are constants, Tinc = O(f |Σ|sn/ρn + fsn/ρn). Note that,

the time complexity of the genFusion algorithm in Fig. 4.6 is O(f |Σ|sn+fsn).

Hence, the incFusion algorithm achieves O(ρn) savings in time complexity over

the genFusion algorithm. In the following section, we consider the event-based

decomposition of machines, based on the reduceEvent algorithm presented in

Fig. 4.8.

74

4.3 Event-Based Decomposition of Machines

In this section, we explore the problem of replacing a given machine M

with two or more machines, each containing fewer events than M . We present

an algorithm to generate such event-reduced machines with time complexity

polynomial in the size of M . This is important for applications with limits

on the number of events each individual process running a DFSM can service.

Note that, the contributions in this section are independent of fault tolerance.

We first define the notion of event-based decomposition.

Definition 16. A (k,e)-event decomposition of a machine M(XM , αM ,ΣM ,m
0)

is a set of k machines E, each less than M , such that dmin(M,E) > 0 and

∀P (XP , αP ,ΣP , p
0) ∈ E, |ΣP | ≤ |ΣM | − e.

As dmin(M,E) > 0, given the state of the machines in E, the state of M

can be determined. So, the machines in E, each containing at most |ΣM | − e
events, can effectively replace M . In Fig. 4.11, we present the eventDecompose

algorithm that takes as input, machine M , parameter e, and returns a (k,e)-

event decomposition of M (if it exists) for some k ≤ |XM |2.

In each iteration, Loop 1 generates machines that contain at least one

event less than the machines of the previous iteration. So, starting with M

in the first iteration, at the end of e iterations, M contains the set of largest

machines less than M , each containing at most |ΣM | − e events.

Loop 2, iterates through each machine P generated in the previous

iteration, and uses the reduceEvent algorithm presented in Fig. 4.8 to generate

the set of largest machines less than P containing at least one event less than

ΣP . Loop 3 constructs an event-decomposition E of M , by iteratively adding

at least one machine from M to separate each pair of states in M , thereby

75

eventDecompose

Input: Machine M with state set XM , event set ΣM

and transition function αM ;

Output: (k,e)-event decomposition of M for

some k ≤ |XM |2;

M = {M};
for (j = 1 to e) //Loop 1

G← {};
for (P ∈M) //Loop 2

G = G ∪ reduceEvent(P);

M = G;

E← {};
for (mi,mj ∈ XM) //Loop 3

if (∃E ∈M : E separates mi,mj)

E← E ∪ {E};
else

return {};
return E;

Figure 4.11: Algorithm for the event-based decomposition of a machine.

76

ensuring that dmin(E) > 0. Since each machine added to E can separate more

than one pair of states, an efficient way to implement Loop 3 is to check for

the pairs that still need to be separated in each iteration and add machines

until no pair remains.

Let the 4-event machine M shown in Fig. 4.12 be the input to the

eventDecompose algorithm with e = 1. In the first and only iteration of

Loop 1, P = M and the reduceEvent algorithm generates the set of largest

3-event machines less than M , by successively eliminating each event. To

eliminate event 0, since m0 transitions to m3 on event 0, these two states are

combined. This is repeated for all states and the largest machine containing

all the combined states self looping on event 0 is M1. Similarly, the largest

machines not acting on events 3,1 and 2 are M2, M3 and M⊥ respectively. The

reduceEvent algorithm returns M1 and M2 as the only incomparable machines

in this set. The eventDecompose algorithm returns E = {M1, M2}, since each

pair of states in M are separated by M1 or M2. Hence, the 4-event M can

be replaced by the 3-event M1 and M2, i.e., E = {M1,M2} is a (2,1)-event

decomposition of M .

Theorem 8. Given machine M (XM , αM ,ΣM ,m
0), the eventDecompose al-

gorithm generates a (k,e)-event decomposition of M (if it exists) for some

k ≤ |XM |2.

Proof. The reduceEvent algorithm exhaustively generates the largest incom-

parable machines that ignore at least one event in ΣM . After e such reduc-

tion in events, Loop 3 selects one machine (if it exists) among M to separate

each pair of states in XM . This ensures that at the end of Loop 3, either

dmin(E) > 0 or the algorithm has returned {} (no (k,e)-event decomposition

77

m0,m3

0,1,2
m0 m1,m2,m3

M2 (No event 3)

31 1
m1

2
2m0

m2

m3

M

M3 (No events 0,1)
M⊥ (self-loops on all events)

states self-loop on event 0
11 22m1 m2

3
M1 (No event 0)

m2m0,m1,m3 23

0
21

Figure 4.12: Example for the Event-based decomposition of a machine.

78

exists). Since there are at most |XM |2 pairs of states in XM , there are at most

|XM |2 iterations of Loop 3, in which we pick one machine per iteration. Hence,

k ≤ |XM |2.

The reduceEvent algorithm visits each state of machine M to create

blocks of states that loop to the same block on event σ ∈ ΣM . This has

time complexity O(|XM |) per event. The cost of generating the largest closed

partition corresponding to this block is O(|XM ||ΣM |) per event. Since we

need to do this for all events in ΣM , the time complexity to reduce at least one

event is O(|XM ||ΣM |2). In the eventDecompose algorithm, the first iteration

generates at most |ΣM | machines, the second iteration at most |ΣM |2 machines

and the eth iteration will contain O(|ΣM |e) machines. The rest of the analysis

is similar to the one presented in section 4.2.2 and the time complexity of the

reduceEvent algorithm is O(|XM ||ΣM |e+1).

To generate the (k,e)-event decomposition from the set of machines in

M, we find a machine in M to separate each pair of states in XM . Since there

are O(|XM |2) such pairs, the number of iterations of Loop 3 is O(|XM |2). In

each iteration of Loop 3, we find a machine among the O(|ΣM |e) machines

of M that separates a pair mi,mj ∈ XM . To check if a machine separates a

pair of states just takes O(|XM |) time. Hence the time complexity of Loop 3

is O(|XM |3|ΣM |e). So, the overall time complexity of the eventDecompose

algorithm is the sum of the time complexities of Loop 1 and 3, which is

O(|XM ||ΣM |e+1 + |XM |3|ΣM |e). So far, we have described our fusion-based

approach for generating backup machines. In the following section, we focus

on the algorithms for the detection and correction of faults in a fusion-based

system.

79

detectByz

Input: set of f fusion states B, primary tuple r;

Output: true if there is a Byzantine fault and false if not;

for (b ∈ B)

if ¬(hash table(b) · contains(r))
return true;

return false;

Figure 4.13: Detection of Byzantine faults.

4.4 Detection and Correction of Faults

Consider a set of n primary machines and an (f , f)-fusion correspond-

ing to it. In this section, we provide algorithms to detect Byzantine faults

with time complexity O(nf), on average, and correct crash/Byzantine faults

with time complexity O(nρf), with high probability, where n is the number of

primaries, f is the number of crash faults and ρ is the average state reduction

achieved by fusion. Throughout this section, we refer to Fig. 4.2, with pri-

maries, P = {A,B,C} and backups F = {F1, F2}, that can correct two crash

faults. The execution state of the primaries is represented collectively as a n-

tuple (referred to as the primary tuple) while the state of each backup/fusion

is represented as the set of primary tuples it corresponds to (referred to as the

tuple-set). In Fig. 4.2, if A, B, C and F1 are in their initial states, then the pri-

mary tuple is a0b0c0 and the state of F1 is f 0
1 = {a0b0c0, a1b0c1, a1b1c0, a0b1c1}

(which corresponds to {r0, r2, r4, r5}).

4.4.1 Detection of Byzantine Faults

Given the primary tuple and the tuple-sets corresponding to the fusion

states, the detectByz algorithm in Fig. 4.13 detects up to f Byzantine faults

80

(liars). Assuming that the tuple-set of each fusion state is stored in a perma-

nent hash table at the recovery agent, the detectByz algorithm simply checks

if the primary tuple r is present in each backup tuple-set b. In Fig. 4.2, if the

states of machines A, B, C, F1 and F2 are a1, b1, c0, f 1
1 and f 1

2 respectively,

then the algorithm flags a Byzantine fault, since a1b1c0 is not present in either

f 1
1 = {a0b1c0, a1b1c1, a0b0c1, a1b0c0} or f 1

2 = {a0b1c0, a1b0c1}.

To show that r is not present in at least one of the backup tuple-sets

in B when there are liars, we make two observations. First, we are only

concerned about machines that lie within their state set. For example, in Fig.

4.2, suppose the true state of F2 is f 0
2 . To lie, if F2 says it state is any number

apart from f 1
2 , f 2

2 and f 3
2 , then that can be detected easily.

Second, like the fusion states, each primary state can be expressed

as a tuple-set that contains the RCP states it belongs to. Immaterial of

whether r is correct or incorrect, it will be present in all the truthful primary

states. For example, in Fig. 4.2, if the correct primary tuple is a0b0c0 then

a0 = {a0b0c0, a0b1c0, a0b1c1, a0b0c1} contains a0b0c0. If B lies, then the primary

tuple will be a0b1c0, which is incorrect. Clearly, a0 contains this incorrect

primary tuple as well.

Theorem 9. Given a set of n machines P and an (f , f)-fusion F corresponding

to it, the detectByz algorithm detects up to f Byzantine faults among them.

Proof. Let r be the correct primary tuple. Each primary tuple is present in

exactly one fusion state (the fusion states partition the RCP states), i.e, the

correct fusion state. Hence, the incorrect fusion states (liars) will not contain

r and the fault will be detected. If r is incorrect (with liars), then for the fault

to go undetected, r must be present in all the fusion states.

81

If rc is the correct primary tuple, then the truthful fusion states have to

contain rc as well, which implies that they contain {r, rc} in the same tuple-set.

As observed above, the truthful primaries will also contain {r, rc} in the same

tuple-set. So the execution state of all the truthful machines contain {r, rc}
in the same tuple-set. Hence less than or equal to f machines, i.e, the liars,

can contain r and rc in distinct tuple-sets. This contradicts the fact that F

is a (f , f)-fusion with greater than f machines separating each pair of RCP

states.

We consider the space complexity for maintaining the hash tables at

the recovery agent. Note that, the space complexity to maintain a hash table

is simply the number of points in the hash table multiplied by the size of each

point. In our solution we hash the tuples belonging to the fusion states. In

each fusion machine, there are N such tuples, since the fusion states partition

the states of the RCP . Each tuple contains n primary states each of size log s,

where s is the maximum number of states in any primary. For example, a0b1c0

in f 1
1 contains three primary states (n = 3) and since there are two states

in A (s = 2) we need just one bit to represent it. Since there are f fusion

machines, we hash a total of Nf points, each of size O(n log s). Hence, the

space complexity at the recovery agent is O(Nfn log s).

Since each fusion state is maintained as a hash table, it will take O(n)

time (on average) to check if a primary tuple with n primary states is present

in the fusion state. Since there are f fusion states, the time complexity for the

detectByz algorithm is O(nf) on average. Even for replication, the recovery

agent needs to compare the state of n primaries with the state of each of

its f copies, with time complexity O(nf). In terms of worst-case message

82

complexity, in fusion, we need to acquire the state of n+ f machines to detect

the faults, while for replication, we need to acquire the state of 2nf machines.

4.4.2 Correction of Faults

Given a primary tuple r and the tuple-set of a fusion state, say b,

consider the problem of finding the tuples in b that are within Hamming

distance f of r. This is the key concept that we use for the correction of

faults, as explained in sections 4.4.2.1 and 4.4.2.2. In Fig. 4.2, the tuples in

f 0
1 = {a0b0c0, a1b0c1, a1b1c0, a0b1c1} that are within Hamming distance one of a

primary tuple a0b0c1 are a0b0c0, a1b0c1 and a0b1c1. An efficient solution to find-

ing the points among a large set within a certain Hamming distance of a query

point is locality sensitive hashing (LSH) [1, 35]. Based on this idea, we first

select L hash functions {g1 . . . gL} and for each gj we associate an ordered set

(increasing order) of k numbers Cj picked uniformly at random from {0 . . . n}.
The hash function gj takes as input an n-tuple, selects the coordinates from

them as specified by the numbers in Cj and returns the concatenated bit rep-

resentation of these coordinates. At the recovery agent, for each fusion state

we maintain L hash tables, with the functions selected above, and hash each

tuple in the fusion state. In Fig. 4.14 (i), g1 and g2 are associated with the

sets C1 = {0, 1} and C2 = {0, 2} respectively. Hence, the tuple a1b0c1 of f 0
1 , is

hashed into the 2nd bucket of g1 and the 3rd bucket of g2.

Given a primary tuple r and a fusion state b, to find the tuples among

b that are within a Hamming distance f of r, we obtain the points found in

the buckets gj(r) for j = 1 . . . L maintained for b and return those that are

within distance of f from r. In Fig. 4.14 (i), let r = a0b1c0, f = 2, and b = f 0
1 .

The primary tuple r hashes into the 1st bucket of g1 and the 0th bucket of g2

83

3
2 (a1b0c1)

1
0 (a0b0c0)

(a0b1c1)

oordinates 0 and 1are 01 3
2 (a1b1c0)

1
0 (a0b0c0)

(a0b1c1)

(a1b1c0) 3
2
1
0 (a0b0c0)

3 (a1b1c1)

2
1
0 (a0b0c0)

(a1b1c1)(a1b0c1)

(i) Fusion State f 0
1 = {a0b0c0, a1b0c1, a1b1c0, a0b1c1} (ii) Fusion State f 0

2 = {a0b0c0, a1b1c1}

g1 (Coordinates 0 and 1) g2 (Coordinates 0 and 2) g1 (Coordinates 0 and 1) g2 (Coordinates 0 and 2)

Figure 4.14: LSH example for fusion states in Fig. 4.2 with k = 2, L = 2.

which contains the points a0b1c1 and a0b0c0 respectively. Since both of them

are withing Hamming distance two of r, both of the points are returned.

Assume a set of n-dimensional points P hashed using the LSH hash

functions {g1 . . . gL}, where for each gi, we associate k indices or positions as

described above. Consider an n-dimensional query point q. We hash q with

each of the L hash functions and return the points found in the buckets that

are within a Hamming distance f of q, i.e, the f -neighbors of q. We now state

and prove the main property of the LSH technique, as applicable to our work

[1, 35].

Theorem 10. If we set L = log1−γk δ, such that (1 − γk)L ≤ δ, where γ =

1 − f/n, then each f -neighbor of q in P is returned with probability at least

1− δ.

Proof. Consider two n-dimensional points a and b indexed by [n]. The prob-

ability that a[i] = b[i], for some i in [n], is equal to the fraction of coordinates

on which a and b are the same. If the hamming distance between a and b is

lesser than or equal to f , this probability is equal to 1− f/n.

Let G denote the probability that gi(a) = gi(b) for some i ∈ L. In each

hash function gi, we pick k coordinates from the same positions from both a

and b (positions selected uniformly at random). Hence, G =
∏i=k

i=1(probability

84

correctCrash

Input: set of available fusion states B, primary tuple r,

number of faults among the primaries t;

Output: corrected primary n-tuple;

D ← {} //list of tuple-sets

//find tuples in b within Hamming distance t of r

for (b ∈ B)

S ← lsh tables(b) · search(r, t);

D · add(S);

return Intersection of sets in D;

Figure 4.15: Correction of crash faults.

that a[i] = b[i]) = (1− f/n)k. Clearly, this probability is the same for all the

hash functions in {g1 . . . gL}.

The probability that an f -neighbor p of q is returned, denoted by S,

is the probability that gi(p) = gi(q) for at least one value of i ∈ L. Hence,

S = 1−(1−G)L. If we set L = log1−G δ, such that (1−G)L ≤ δ, then S ≥ 1−δ.
The proof follows by substituting G = (1− f/n)k.

In the following sections, we present algorithms for the correction of

crash and Byzantine faults based on the LSH functions.

4.4.2.1 Crash Correction

Given the primary tuple (with possible gaps because of faults) and the

tuple-sets of the available fusion states, the correctCrash algorithm in Fig.

4.15 corrects up to f crash faults. The algorithm finds the set of tuple-sets S

in each fusion state b, where each tuple belonging to S is within a Hamming

distance t of the primary tuple r. Here, t is the number of faults among the

85

primaries. To do this efficiently, we use the LSH tables of each fusion state.

The set S returned for each fusion state is stored in a list D. If the intersection

of the sets in D is singleton, then we return that as the correct primary tuple.

If the intersection is empty, we need to exhaustively search each fusion state

for points within distance t of r (LSH has not returned all of them), but this

happens with a very low probability [1, 35].

In Fig. 4.2, assume crash faults in primaries B and C among {A,B,C}.
Given the states of A, F1 and F2 as a0, f 0

1 and f 0
2 respectively, the tu-

ples within Hamming distance two of r = a0.{empty}.{empty} among f 0
1 =

{a0b0c0, a1b0c1, a1b1c0, a0b1c1} and f 0
2 = {a0b0c0, a1b1c1} are {a0b0c0, a0b1c1}

and {a0b0c0} respectively. The algorithm returns their intersection, a0b0c0

as the corrected primary tuple. In the following theorem, we prove that the

correctCrash algorithm returns a unique primary tuple.

Theorem 11. Given a set of n machines P and an (f , f)-fusion F corresponding

to it, the correctCrash algorithm corrects up to f crash faults among them.

Proof. Since there are t gaps due to t faults in the primary tuple r, the tu-

ples among the backup tuple-sets within a Hamming distance t of r, are the

tuples that contain r (definition of Hamming distance). Let us assume that

the intersection of the tuple-sets among the fusion states containing r is not

singleton. Hence all the available fusion states have at least two RCP states,

{ri, rj}, that contain r. Similar to the proof in theorem 9, since both ri and

rj contain r, these states will be present in the same tuple-sets of all the avail-

able primaries as well. Hence less than or equal to f machines, i.e, the failed

machines, can contain ri and rj in distinct tuple-sets. This contradicts the

fact that F is an (f , f)-fusion with greater than f machines separating each

pair of RCP states.

86

The space complexity analysis is similar to that for Byzantine detection

since we maintain hash tables for each fusion state and hash all the tuples

belonging to them. Assuming L is a constant, the space complexity of storage

at the recovery agent is O(Nfn log s).

Let ρ be the average state reduction achieved by our fusion-based tech-

nique. Each fusion machine partitions the states of the RCP and the average

size of each fusion machine is N/ρ. Hence, the number of tuples (or points) in

each fusion state is ρ. This implies that there can be O(ρ) tuples in each fusion

state that are within distance f of r. So, the cost of hashing r and retrieving

O(ρ) n-dimensional points from O(f) fusion states in B is O(nρf) w.h.p (as-

suming k, L for the LSH tables are constants). So, the cost of generating D is

O(nρf) w.h.p. Also, the number of tuple sets in D is O(ρf).

In order to find the intersection of the tuple-sets in D in linear time,

we can hash the elements of the smallest tuple-set and check if the elements

of the other tuple-sets are part of this set. The time complexity to find the

intersection among the O(ρf) points in D, each of size n is simply O(nρf).

Hence, the overall time complexity of the correctCrash algorithm is O(nρf)

w.h.p. Crash correction in replication involves copying the state of the copies

of the f failed primaries which has time complexity θ(f). In terms of message

complexity, in fusion, we need to acquire the state of all n machines that

remain after f faults. In replication we just need to acquire the copies of the

f failed primaries.

4.4.2.2 Byzantine Correction

Given the primary tuple and the tuple-sets of the fusion states, the

correctByz algorithm in Fig. 4.16 corrects up to bf/2c Byzantine faults. The

87

correctByz

Input: set of f fusion states B, primary tuple r;

Output: corrected primary n-tuple;

D ← {} //list of tuple-sets

//find tuples in b within Hamming distance bf/2c of r

for (b ∈ B)

S ← lsh tables(b) · search(r, bf/2c);
D · add(S);

G← Set of tuples that appear in D;

V← Vote array of size |G|;
for (g ∈ G)

// get votes from fusions

V [g]← Number of times g appears in D;

// get votes from primaries

for (i = 1 to n)

if(r[i] ∈ g)

V [g] + +;

return Tuple g such that V [g] ≥ n+ bf/2c;

Figure 4.16: Correction of Byzantine faults.

88

algorithm finds the set of tuples among the tuple-sets of each fusion state that

are within Hamming distance bf/2c of the primary tuple r using the LSH

tables and stores them in list D. It then constructs a vote vector V for each

unique tuple in this list. The vote for each tuple g ∈ V is the number of times

it appears in D plus the number of primary states of r that appear in g. The

tuple with greater than or equal to n+bf/2c votes is the correct primary tuple.

When there is no such tuple, we need to exhaustively search each fusion state

for points within distance bf/2c of r (LSH has not returned all of them). In

Fig. 4.2, let the states of machines A, B, C F1 and F2 be a0, b1, c0, f 0
1 and f 0

2

respectively, with one liar among them (bf/2c = 1). The tuples within Ham-

ming distance one of r = a0b1c0 among f 0
1 = {a0b0c0, a1b0c1, a1b1c0, a0b1c1}

and f 0
2 = {a0b0c0, a1b1c1} are {a0b0c0, a1b1c0, a0b1c1} and {a0b0c0} respectively.

Here, a0b0c0 wins a vote each from F1 and F2 since a0b0c0 is present in f 0
1 and

f 0
2 . It also wins a vote each from A and C, since the current states of A and

C, a0 and c0, are present in a0b0c0. The algorithm returns a0b0c0 as the true

primary tuple, since n+ bf/2c = 3 + 1 = 4. We show in the following theorem

that the true primary tuple will always get sufficient votes.

Theorem 12. Given a set of n machines P and an (f , f)-fusion F corresponding

to it, the correctByz algorithm corrects up to bf/2c Byzantine faults among

them.

Proof. We prove that the true primary tuple, rc will uniquely get greater than

or equal to (n + bf/2c) votes. Since there are less than or equal to bf/2c
liars, rc will be present in the tuple-sets of greater than or equal to n+ bf/2c
machines. Hence the number of votes to rc, V [rc] is greater than or equal to

(n + bf/2c). An incorrect primary tuple rw can get votes from less than or

equal to bf/2c machines (i.e, the liars) and the truthful machines that contain

89

both rc and rw in the same tuple-set. Since F is an (f , f)-fusion of P, among

all the n + f machines, fewer than n of them contain {rc, rw} in the same

tuple-set. Hence, the number of votes to rw, V [rw], is less than (n + bf/2c),
which is less than V [rc].

The space complexity analysis is similar to crash correction. The time

complexity to generate D, same as that for crash fault correction is O(nρf)

w.h.p. If we maintain G as a hash table (standard hash functions), to obtain

votes from the fusions, we just need to iterate through the f sets in D, each

containing O(ρ) points of size n each and check for their presence in G in

constant time. Hence the time complexity to obtain votes from the backups is

O(nρf). Since the size of G is O(ρf), the time complexity to obtain votes from

the primaries is again O(nρf), giving an over all time complexity of O(nρf)

w.h.p. In the case of replication, we just need to obtain the majority across f

copies of each primary with time complexity O(nf). The message complexity

analysis is the same as Byzantine detection, because correction can take place

only after detection.

4.5 Comparison of Replication and Fusion

In this section, we summarize the main differences between replication

and fusion (Table 4.2) for state machines. Throughout this section, we assume

n primary machines, containing at most O(s) states. We assume that the

system can correct either f crash faults or f Byzantine faults.

Number of Backups To correct f crash faults among n primaries, replica-

tion requires nf backups while the genFusion algorithm in Fig. 4.6 generates

90

Table 4.2: Replication vs. Fusion for State Machines

Replication
Crash

Fusion
Crash

Replication
Byzantine

Fusion
Byzantine

Number of Backups nf f 2nf 2f

Backup Space snf (sn/ρ)f s2nf (sn/ρ)2f

Average
Events/Backup

|Σ|/n |Σ|/β |Σ|/n |Σ|/β

Backup Generation
Time Complexity

O(nsf) O(sn|Σ|f/ρn) O(nsf) O(sn|Σ|f/ρn)

Fault Detection
Time

O(1) O(1) O(nf) O(nf) on avg.

Fault Correction
Time

O(f) O(nρf) w.h.p O(nf) O(nρf) w.h.p

Fault Detection
Messages

O(1) O(1) 2nf n+ f

Fault Correction
Messages

f n 2nf n+ f

f backups. To correct f Byzantine faults, fusion requires 2f backups as com-

pared to the 2nf backups required by replication.

Backup Space In replication we maintain nf additional backup copies each

of size O(s) and hence the total state space is O(snf). Given n primaries

each with O(s) states, their RCP has O(sn) states. Since the average state

reduction is ρ, the size of each fusion is O(sn/ρ). Hence the total backup state

space in fusion is O(sn/ρ)f . The only difference for Byzantine faults is that

we maintain 2f backups for fusion and 2nf backups for replication.

Average Events/Backup If the union of the event sets of all primary ma-

chines is denoted by Σ, then the average number of events in each primary

copy is |Σ|/n. Hence, for replication, the average number of events per backup

91

is |Σ|/n. In the case of fusion, we assume that the average event reduction

achieved over the RCP is β. Since the RCP contains |Σ| events, the average

events per backup in fusion is |Σ|/β. Note that, this is one of the major trade-

offs between replication and fusion. For small values of β, the number of events

in each backup can be much larger than replication, leading to increased load

on the backup servers.

Backup Generation Time Complexity In replication, we just generate

nf copies with time complexity O(nsf). The time complexity to generate

fusions, as shown in section 4.2.3 is O(sn|Σ|f/ρn). The results are similar for

Byzantine faults. Since the time complexity to generate backups in fusion is far

more than in replication, this is the other major trade-off between replication

and fusion.

Detection and Correction of Faults The explanation for the remaining

rows in the table can be found in section 4.4. For small values of nρ, fusion

causes almost no overhead over replication in terms of the time complexity for

the detection and correction of faults. Also, fusion causes more message over-

head for recovery in crash faults, while it causes lesser overhead for Byzantine

faults.

92

Chapter 5

Fused Data Structures

In this chapter, we present the design of fused data structures and the

theoretical properties guaranteed by them. Given a set of n different data

structures, we correct f crash faults using just f backups as compared to

the nf backups required by replication. In addition, we ensure O(n) savings

in space over replication. We present the design of fused backups for most

commonly used data structures such as lists, stacks, vectors and hash tables.

Further, we correct f Byzantine faults using just nf + f backups as compared

to the 2nf backups required by replication. Our theoretical results illustrate

that the fused backups are space-efficient as compared to replication while they

cause very little additional overhead for normal operation. In the following

section, we extend the model presented in section 1.3 to focus on aspects

specific to data structures.

5.1 Model and Notation

Our system consists of independent distributed servers hosting data

structures. We denote the n given data structures, also referred to as primaries,

X1 . . . Xn. The backup data structures that are generated based on our idea of

fusing primary data are referred to as fused backups or fused data structures.

The operator used to combine primary data is called the fusion operator. The

number of fused backups, t, depends on the fusion operator and the number

93

of faults that need to be corrected. The fused backups are denoted F1 . . . Ft.

For example, when XOR/sum is the fusion operator, we maintain one fused

backup.

The data structures are modeled as a set of data nodes and an index

structure that specifies order information about these data nodes. For ex-

ample, the index structure for a linked list includes the head, tail and next

pointers. The data structures in our system have a state as well as an output

associated with them. The state of a data structure is a snapshot of the values

in the data nodes and the index structure. The output is the value visible

to the external world or client. On application of an event/update, the data

structure transitions from one state to another and changes its output value.

For example, the state associated with a linked list is the value of its nodes,

next pointers, tail and head pointers. When we insert data into a linked list

with a certain key, the value of the nodes and pointers change (state) and it

responds with either success or failure (output). We make two assumptions

regarding the primary data structures in our system:

1. The size of data in the data structure far exceeds the size of its index

structure. This is usually true for most practical applications in which

the data nodes are in the order of megabytes while the index structures

are in the order of bytes (for example, next pointers in a linked list).

2. The data nodes in the data structures are completely uncorrelated and

cannot be compressed further.

In the following section, we present the design of fused backups. The

design of the fused data structures is independent of the fault model and for

94

simplicity we explain the design assuming only crash faults. Henceforth, when

we simply say faults, we refer to crash faults.

5.2 Fusion-based Fault Tolerant Data Structures

a3

a1

a2

(i) Primary X1

11

11

11

a3

a2 + b2

(iii) Fused Bakup F1

a1+b1

+b3

(ii) Primary X2

b3

b1

b2

Figure 5.1: Old Fusion [34]

Design Motivation In [34], the authors present a design to fuse array and

list-based primaries that can correct one crash fault. We highlight the main

drawback of their approach for linked lists. The fused structure for linked list

primaries in [34] is a linked list whose nodes contain the XOR (or sum) of

the primary values. Each node contains a bit array of size n with each bit

indicating the presence of a primary element in that node. A primary element

is inserted in the correct position at the backup by iterating through the fused

nodes using the bit array; a similar operation is performed for deletes. An

example is shown in Fig. 5.1 with two primaries and one backup. After the

deletion of primary elements a1 and b3, the first and third nodes of the fused

backup F1 are updated to b1 and a3 respectively (deleted elements in grey

scale). After the deletes, while the primaries each contain only two nodes, the

fused backup contains three nodes. If there are a series of inserts to the head

of X1 and to the tail of X2 following this, the number of nodes in the fused

backup will be very high. This brings us to the main design motivation of

95

this section: Can we provide a generic design of fused backups, for all types of

data structures such that the fused backup contains only as many nodes as the

largest primary, while guaranteeing efficient updates? We present a solution

for linked lists and then generalize it for complex data structures.

6, b3

5, a2

2, a1Primary X1

auxList
primLinkedList

key, value
(i) Two Fused Bakups for two rash faults

a2 − b2

b3

a1 − b1Fused Bakup F2

tos[1]
tos[2]

a2 + b2

b3

a1 + b1

dataStack

Fused Bakup F1

indexList[2]

1, b1

4, b2

Primary X2

4, b2

6, b3

Primary X2

a2 + b2

a1 + b3Fused Bakup F1(iii) After delete(1) at X2

a∗1

2, a1

3, a∗1

Primary X1

a2 + b2

a1 + b1Fused Bakup F1

5, a2

a∗1 + b3

(ii) After insert(3, a∗1) at X1

indexList[1]

Figure 5.2: Fused Backups for Linked Lists (Keys not shown in F1, F2 due to
space constraint)

5.2.1 Fused Backups for Linked Lists

We use a combination of replication and erasure codes to implement

fused backups each of which are identical in structure and differ only in the

values of the data nodes. In our design of the fused backup, we maintain a

stack of nodes, referred to as fused nodes that contains the data elements of

the primaries in the coded form. The fused nodes at the same position across

the backups contain the same primary elements and correspond to the code

96

words of those elements. Fig. 5.2 shows two primary sorted linked lists X1

and X2 and two fused backups F1 and F2 that can correct two faults among

the primaries. The fused node in the 0th position at the backups contain the

elements a1 and b1 with F1 holding their sum and F2 their difference. At each

fused backup, we also maintain index structures that replicate the ordering

information of the primaries. The index structure corresponding to primary

Xi is identical in structure to Xi, but while Xi consists of data nodes, the index

structure only contains pointers to the fused nodes. The savings in space is

achieved because primary nodes are being fused, while updates are efficient

since we maintain the index structure of each primary at the backup.

We begin with a high-level description of how we restrict the number of

nodes in the backup stack. At each backup, elements of primary Xi are simply

inserted one on top of the other in the stack with a corresponding update to

the index structure to preserve the actual ordering information. The case of

deletes is more complex. If we just delete the element at the backup, then

similar to Fig. 5.1, a ‘hole’ is created and the fused backups can grow very

large. In our solution, we shift the top-most element of Xi in the backup stack,

to plug this hole. This ensures that the stack never contains more nodes than

the primary with the most number of nodes.

Since the top-most element is present in the fused form, the primary

has to send this value with every delete to enable this shift. To know which

element to send with every delete, the primary has to track the order of its

elements at the backup stack. We achieve this by maintaining an auxiliary

list at the primary, which mimics the operations of the backup stack. When

an element is inserted into the primary, we insert a pointer to this element at

the end of its auxiliary list. When an element is deleted from the primary, we

97

delete the element in the auxiliary list that contains a pointer to this element

and shift the final auxiliary element to this position. Hence, the primary

knows exactly which element to send with every delete. Fig. 5.2 illustrates

these operations with an example. We explain them in greater detail in the

following paragraphs.

Insert at Primaries Xi :: i = 1..n
Input: key k, data value d;
Var: Linked List primaryLinkedList (given data
structure), auxList (order of data at each backup);
if (primaryLinkedList · contains(k))

/* key present, just update its value*/
old = primaryLinkedList · get(k) · value
primaryLinkedList · update(k, d);
send(k, d, old) to all fused backups;

else
/* key not present, create new node*/
primNode p = new primNode;
p · value = d;
auxNode a = new auxNode;
a · primNode = p;
p · auxNode = a;
/* mimic backup stack */
auxList.insertAtEnd(a);
primaryLinkedList · insert(k, p);
send(k, d, null) to all fused backups;

Figure 5.3: Primary Design: Inserts

Inserts Fig. 5.3 and 5.4 show the algorithms for the insert of a key-value pair

at the primaries and the backups. When the client sends an insert to a primary

Xi, if the key is not already present, Xi creates a new node containing this

key-value, inserts it into the primary linked list (denoted primaryLinkedList)

98

Insert at Fused Backups Fj :: j = 1..t
Input: key k, new value di, old value oldi;
Var: Stack dataStack (stack of fused nodes),
Linked Lists[] indexList[n] (order of primary data),
Pointer to Fused Nodes[] tos[n] (top of stack pointers);
if (indexList[i] · contains(k))

fusedNode f = indexList[i] · get(k);
f · updateCode(oldi, di);

else
fusedNode p = tos[i] + +;
if (p == null)

p = new fusedNode;
dataStack · push(p);

p · updateCode(0, di);
p · refCount+ +;
/* mimic primary linked list */
indexNode a = new indexNode;
a · fusedNode = p;
p · indexNode[i] = a;
indexList[i] · insert(k, a);

Figure 5.4: Fused Backup Design: Inserts

and inserts a pointer to this node at the end of the aux list (auxList). The

primary sends the key, the new value to be added and the old value associated

with the key to all the fused backups.

Each fused backup maintains a stack (dataStack) that contains the

primary elements in the coded form. On receiving the insert from Xi, if the

key is not already present, the backup updates the code value of the fused

node following the one containing the top-most element of Xi (pointed to

by tos[i]). To maintain order information, the backup inserts a pointer to

the newly updated fused node, into the index structure (indexList[i]) for Xi

with the key received. A reference count (refCount) tracking the number of

99

elements in the fused node is maintained to enable efficient deletes.

Fig. 5.2(ii) shows the state of X1 and F1 after the insert of (3, a∗1). We

assume that the keys are sorted in this linked list and hence the key-value

pair (3, a∗1) is inserted at index 1 of the primary linked list and a pointer to

a∗1 is inserted at the end of the aux list. At F1, the value of the second node

(nodes numbered from zero) is updated to a∗1 + b3 and a pointer to this node

is inserted at index 1 of indexList[1]. The identical operation is performed at

F2 (not shown in the figure due to space constraints), with the only difference

being that the second fused node is updated to a∗1 − b3. Observe that the aux

list at X1 specifies the exact order of elements maintained at the backup stack

(a1 → a2 → a∗1). Analogously, indexList[1] at the fused backup points to the

fused nodes that contain elements of X1 in the correct order (a1 → a∗1 → a2).

Delete at Primaries Xi :: i = 1..n
Input: key k;
Var: Linked List primaryLinkedList (given data
structure), auxList (order of data at each backup);
p = primaryLinkedList · delete(k);
old = p · value;
/* tail node of aux list points to top-most

element of Xi at backup stack */
auxNode auxTail = auxList · getTail();
tos = auxTail · primNode · value;
send(k, old, tos) to all fused backups;
auxNode a = p · auxNode;
/* shift tail of aux list to replace a */
(a · prev) · next = auxTail;
auxTail · next = a · next;
delete a;

Figure 5.5: Primary Design: Deletes

100

Delete at Fused Backups Fj :: j = 1..t
Input: key k, old value oldi, end value tosi;
Var: Stack dataStack (stack of fused nodes),
Linked Lists[] indexList[n] (order of primary data),
Pointer to Fused Nodes[] tos[n] (top of stack pointers);
/* update fused node containing oldi

with primary element of Xi at tos[i]*/
indexNode a = indexList[i] · delete(k);
fusedNode p = a · fusedNode;
p · updateCode(oldi, tosi);
tos[i] · updateCode(tosi, 0);
tos[i] · refCount−−;
/* update index node pointing to tos[i] */
tos[i] · indexNode[i] · fusedNode = p;
if (tos[i].refCount == 0)

dataStack.pop();
tos[i]−−;

Figure 5.6: Fused Backup Design: Deletes

Deletes Fig. 5.5 and 5.6 show the algorithms for the delete of a key at the

primaries and the backups. Xi deletes the node associated with the key from

the primary and obtains its value which needs to be sent to the backups. Along

with this value and the key k, the primary also sends the value of the element

pointed by the tail node of the aux list. This corresponds to the top-most

element of Xi at the backup stack and is hence required for the shift operation

that will be performed at the backup. After sending these values, the primary

shifts the final node of the aux list to the position of the aux node pointing to

the deleted element, to mimic the shift of the final element at the backup.

At the backup, since indexList[i] preserves the exact order information

of Xi, by a simple double dereference, we can obtain the fused node p that

contains the element of Xi associated with k. The value of p is updated with

101

the top-most element (sent by the primary as tos) to simulate the shift. The

pointers of indexList[i] are updated to reflect this shift. Figure 5.2 (iii) shows

the state of X1 and F1 after the deletion of b1. The key facts to note are: (i)

at F1, b3 has been shifted from the end to the 0th node (ii) the aux list at X2

reflects the correct order of its elements at the backup stack (b3 → b2) and

(iii) indexList[2] reflects the correct order of elements at X2 (b2 → b3).

As specified in section 5.1, we assume that the size of the data far

exceeds the size of the index structure. This assumption extends to the auxil-

iary structures which are also in the order of bytes. So the space overhead of

maintaining these auxiliary/index structures is negligible. Also, the auxiliary

structures at the primary can be updated in constant time for both inserts

and deletes with the use of double-ended pointers. Hence, they do not cause

any additional overhead in terms of time. In the following section, we modify

the algorithms in Fig. 5.4 and 5.6 to enable concurrent updates at the fused

backups, by threads belonging to different primaries.

5.2.2 Concurrent Updates

Since the primaries are independent of each other, in many cases the

updates to the backup can be to different fused nodes. We present an algorithm

for concurrent updates in which we never have to lock the entire data stack

at the fused backups. This can achieve considerable speed-up during normal

operation.

Consider the algorithms shown in Fig. 5.7 and 5.8. We assume that

all the operations on the fused nodes are atomic. The only difference in the

algorithm for concurrent updates is the lock-unlock commands for some sec-

tions of the algorithm. This simply means that the lines of the algorithm (or

102

Inserts at Fused Backups Fj :: j = 1..t
Input: key k, new value di, old value oldi;
Var: Stack dataStack (stack of fused nodes),
Linked Lists[] indexList[n] (order of primary data),
Pointer to Fused Nodes[] tos[n] (top of stack pointers);
if (indexList[i] · contains(k))

fusedNode f = indexList[i] · get(k);
f · updateCode(oldi, di);

else
lock{

fusedNode p = tos[i] + +;
if (p == null)

p = new fusedNode;
dataStack · push(p);

}unlock;
p · updateCode(0, di);
p · refCount+ +;
/* mimic primary linked list */
indexNode a = new indexNode;
a · fusedNode = p;
p · indexNode[i] = a;
indexList[i] · insert(k, a);

Figure 5.7: Concurrent Fused Backup Design: Inserts

program) within these sections are executed atomically. The atomicity for

both the fused nodes and these lock-unlock sections can be implemented using

standard locks.

Since we focus on concurrency among primary threads of distinct pri-

maries, we do not lock any of the operations involving the index lists/index

nodes. Further, the operations on the fused nodes are atomic. Hence, we only

need to lock the sections of the program that change the data stack at the

fused backup, i.e., lines that add nodes to the data stack or delete nodes from

the data stack. This is reflected in the algorithms shown in Fig. 5.7 and 5.8,

103

Deletes at Fused Backups Fj :: j = 1..t
Input: key k, old value oldi, end value tosi;
Var: Stack dataStack (stack of fused nodes),
Linked Lists[] indexList[n] (order of primary data),
Pointer to Fused Nodes[] tos[n] (top of stack pointers);
/* update fused node containing oldi

with primary element of Xi at tos[i]*/
indexNode a = indexList[i] · delete(k);
fusedNode p = a · fusedNode;
p · updateCode(oldi, tosi);
tos[i] · updateCode(tosi, 0);
tos[i] · refCount−−;
/* update index node pointing to tos[i] */
tos[i] · indexNode[i] · fusedNode = p;
lock{

if (tos[i].refCount == 0)
dataStack.pop();

}unlock;
tos[i]−−;

Figure 5.8: Concurrent Fused Backup Design: Deletes

where we ensure that the sections of the algorithms that push nodes and pop

nodes from the data stack are executed atomically. Hence, with just a few

lines of sequential execution, we allow high levels of concurrency at the fused

backups. In the following section, we extend our solution for linked lists and

present a generic solution for more complex data structures.

5.2.3 Fused Backups for Complex Data Structures

The design of fused backup for linked lists can be generalized for most

commonly used data structures. We explain this using the example of balanced

binary search trees (BBST). Fig. 5.9 (i) shows two primary BBSTs and a fused

backup. For simplicity, we explain the design using just one backup that can

104

correct one crash fault. The index structure at F1 for X1 is a BBST containing

a root and two children, identical in structure to X1. The algorithms for inserts

and deletes at both primaries and backups are similar to linked lists except

for the fact that at the primary, we are inserting into a primary BBST and

similarly at the backup we are inserting into a BBST containing the order

information rather than a list. The update to the backup stack is identical to

that of linked list primaries. Fig. 5.9 (ii) shows the state of X1 and F1 after

the deletion of a3 followed by the insertion of a4. The aux list at X1 specifies

the order (a1 → a2 → a4), which is the order in which the elements of X1 are

maintained at F1. Similarly, indexBBS[1] maintains the order of the elements

at X1. For example, as the root at X1 contains a1, the root of indexBBST [1]

points to the fused node containing a1.

a2

X1

a3

auxLista1

primBBST
b1

b2

dataStackTos

dataStack

indexBBST [2]

X2

a1

a2

a4

a4
a4

a2 a1

a4

(ii) X1, F1 after delete a3 and insert a4 (iii) X1, F1 after balane
a2 + b2

a1 + b1

a2 + b2

a1 + b1

F1

a2 + b2

a1 + b1

tos[2]

a3

indexBBST [1]

tos[1]

(i) Fused Bakup for BBSTs

Figure 5.9: Fused Backups for Balanced Binary Search Trees (Keys not shown
due to space constraint)

So far we have focused only on the insert and delete operations to the

data structure, since those are the operations that add and delete data nodes.

However, since we maintain the entire index structure at the backups, we sup-

105

port all operations that do not involve decoding the values in the fused nodes

of the backup. We illustrate this with the example of the balance operation in

the BBST shown in Fig. 5.9 (iii). The balance at the primary just involves a

change in the relative ordering of the elements. The update corresponding to

this at the fused backup will change the relative ordering of the elements in

the index BBST, identical to that at the primary.

In conclusion, our design for fused backups can support all types of

data structures with many complex operations. Based on this design, we have

implemented fused backups for linked lists, vectors, queues, hash tables and

tree maps. So far we have only focused on one or two crash faults. In the

following section, we extend this solution, using Reed-Solomon (RS) codes

[79], to correct any number of faults.

5.2.4 Reed-Solomon Codes for f faults

In section 3.2.3.1 we explain the basics of RS coding. In this section,

we focus on its use as a fusion operator for the fused data structures. Let the

n data words corresponding to n data nodes of the respective primaries be

denoted by D = {d1, d2, . . . dn}. RS coding generates f checksum/code words

{c1, c2, . . . cf} that can correct f erasures among the data and the checksum

words. The f fused nodes at the same position in each of the f fused backups

contain these checksum words. Hence, we correct f faults among the primaries

using f backups.

Let the encoding/information dispersal matrix for the code be denoted

by B. Let P the encoded vector obtained after multiplying D with B, i.e.,[
D
]
×
[
B
]

=
[
D
]
×
[
I S

]
=
[
P
]

=
[
D C

]
, where C is the set of checksum

words (fused data) computed for the data words in D (primary data). In the

106

following paragraphs, we focus on the fusion operations that use the RS coding

routines.

Update: Whenever a data word di is updated to d′i, all the code words

can be updated just using the difference d′i − di and cj:

c′j = cj + bj,i(d
′
i − di)

where bj,i is (j, i)th element of the information dispersal matrix B. Since the

new code word is computed without the value of the other code words, up-

dates are very efficient in RS erasure coding. This update corresponds to the

updateCode routine used in Fig. 5.4 and 5.6.

Recovery (Decoding): In the case of erasures, we can recover the data

words using the encoded vector P and the information dispersal matrix B.

Data word erasures are reflected by deleting the corresponding columns from

B and P to obtain B′ and P ′ that satisfy to the equation, D × B′ = P ′.

When exactly f data words fail, B′ is a n× n matrix. The data words can be

generated as follows: P ′ × (B′)−1 = D.

In Fig. 5.2, we have used simple sum-difference as the fusion operator

that can correct two crash faults. We now present an example using RS codes

to correct three crash faults. Here, we maintain three fused backups F1, F2 and

F3, each of identical structure but with different values in the fused nodes. We

first generate the information dispersal matrix B =
[
I S

]
for n = 3, f = 3

(explained in section 3.2.3.1).

In Fig. 5.2, consider the fused node in the 0th position in F1 and

F2, that contain the sum and difference of the primary elements a1 and b1.

For RS codes, we first generate the checksum blocks, C =
[
c1 c2 c3

]
for

D =
[
a1 b1

]
. The fused nodes in the 0th position of F1, F2 and F3 will

107

contain the values c1, c2 and c3 respectively. In Fig. 5.2 (ii), when an element

is inserted into X1, the 2nd node of F1 and F2 is updated to a∗1 + b3 and a∗1− b3

respectively. With RS codes as the fusion operator, the code value of the 2nd

node in the fused backup Fj (j : 1 . . . 3) is updated with [old code value +

(bj,1)(a∗1)].

So far, we have presented the design of fused backups for commonly

used data structures to correct f faults among the primaries. In the following

section we present the theoretical properties of these fused backups.

5.3 Theory of Fused Data Structures

In this section we prove properties on the fused backups such as size

optimality, update efficiency and update order independence, all of which are

important considerations when implementing a system using these backups.

These properties ensure that the overhead in space and time caused due to

these backups is minimal. The results in this section apply for all types of

primary data structures and are independent of the fusion operator used. The

only assumption we make is that the codes can be updated locally in constant

time (like updates in RS codes).

5.3.1 Space Optimality

Consider n primaries, each containing O(m) nodes, each of size O(s). In

[34], to correct one crash fault, the backup for linked lists and list-based queues

requires O(nms) space, which is as bad as replication. We show that the fused

backups presented in this dissertation require only O(ms) space. Further, to

correct f faults, we show that the fused backups need only O(msf) space.

Replication, on the other hand requires O(mnsf) space, which is O(n) times

108

more than fusion. To correct f crash faults, we use RS codes that require f

fused backups, which is the minimum number of backups required for f faults.

For example, in Fig. 5.2, the number of fused nodes in F1 or F2 is always

equal to the number of nodes in the largest primary. The optimal size of the

data stack in our backups combined with RS codes as the fusion operator,

leads to the result that our solution is space optimal when the data across the

primaries is uncorrelated and incompressible.

Theorem 5.3.1 (Space Optimality). The fused backups generated by our de-

sign using RS codes as the fusion operator are of optimal size.

Proof. We first show that the data stack of each backup contains only m fused

nodes. A hole is defined as a fused node that does not contain an element

from a primary followed by a fused node that contains an element from that

primary. When there are no holes in the data stack, each primary element is

stacked one on top of the other and the stack contains only m nodes i.e as

many nodes as the largest primary. We maintain the invariant that our data

stack never has holes.

In inserts to Xi, we always update the fused node on top of the last

fused node containing an element from Xi. Hence, no hole is created. For

deletes, when a hole is created, we shift the final element of the primary,

pointed by tos[i] to plug this hole. So, each fused backup contains at most m

nodes.

If the size of each node is O(s), then the backup space required by our

solution to correct f crash faults is O(msf). Now, f crash faults among the

primaries will result in the failure of at least O(mf) data nodes, each of size

O(s). Hence, any solution for fault tolerance requires O(msf) space.

109

5.3.2 Efficient Updates

In [34], to update the backup for linked lists, we may have to iterate

through all the fused nodes. Since the number of fused nodes in the backup

is O(nm), the time complexity of updates is O(nm). However, since each

primary linked list has O(m) nodes, the update to a primary takes only O(m)

time. Hence the solution in [34] is not update efficient.

We show that updates to the fused backups presented in this disserta-

tion take only as much time as that at the corresponding primary. So, fusion

causes minimal overhead during normal operation as compared to replication.

Our proof is based on the following simple intuition. The time complexity of

update to the primaries depends on its index structure. For example, in the

case of a linked list the index structure consists of next pointers. So to update

a linked list with O(m) nodes it takes O(m) time. Since we replicate the index

structure of each primary completely at the backup, the time complexity of

the update to the fused backup is same as that at the primary.

Theorem 5.3.2 (Update Efficieny). The time complexity of the updates to a

fused backup is of the same order as that at the primary.

Proof. In the case of inserts, we obtain the node following the top most element

of Xi in the data stack and update it in constant time. The update to the

index structure consists of an insertion of an element with key k, which is the

identical operation at the primary. Similarly, for deletes, we first remove the

node with key k from the index structure, an operation that was executed on

the data structure of the same type at the primary. Hence, it takes as much

time as that at the primary. Shifting the final element of this primary to the

fused node that contains the deleted element is done in constant time.

110

This argument for inserts and deletes extends to more complex opera-

tions: any operation performed on the primary will also be performed on the

index structure at the backup. Updating the data nodes of the stack takes

constant time.

5.3.3 Order Independence

In the absence of any synchronization at the backups, updates from

different primaries can be received in any order at the backups. The assump-

tion of FIFO communication channels only guarantees that the updates from

the same primary will be received by all the backups in the same order. A

direct extension of the solution in [34] for multiple faults can result in a state

from which recovery is impossible. For example, in Fig. 5.2, F1 may receive

the insert to X1 followed by the delete to X2 while F2 may receive the delete

update followed by the insert. To achieve recovery, it is important that the

fused nodes at the same position at different fused backups contain the same

primary elements (in different coded forms). In Fig. 5.2 (i), if the 0th node of

F1 contains a1 + b1, while the 0th node of F2 contains a2 − b1, then we cannot

recover the primary elements when X1 and X2 fail.

We show that in the current design of fused backups, the nodes in

the same position across the fused backups always contain the same primary

elements independent of the order in which the updates are received at the

backups. Also, the index structures at the backups are also independent of the

order in which the updates are received. Consider the updates shown in Fig.

5.2. The updates to the index lists commute since they are to different lists.

As far as updates to the stack are concerned, the update from X1 depends

only on the last fused node containing an element from X1 and is independent

111

of the update from X2 which does not change the order of elements of X1 at

the fused backup. Similarly the update from X2 is to the first and third nodes

of the stack immaterial of whether a∗1 has been inserted.

Theorem 5.3.3 (Order Independence/Commutativity). The state of the fused

backups after a set of updates is independent of the order in which the updates

are received, as long as updates from the same primary are received in FIFO

order.

Proof. Clearly, updates to the index structure commute. As far as updates

to the stack are concerned, the proof follows from two facts about our design.

First, updates on the backup for a certain primary do not affect the order of

elements of the other primaries at the backup. Second, the state of the backup

after an update from a primary depends only on the order of elements of that

primary. The same argument extends to other complex operations that only

affect the index structure.

5.3.4 Fault Tolerance with Limited Backup Servers

So far we have implicitly assumed that the primary and backup struc-

tures reside on independent servers for the fusion-based solution. In many

practical scenarios, the number of servers available maybe less than the num-

ber of fused backups. In these cases, some of the backups have to be distributed

among the servers hosting the primaries. Consider a set of n data structures,

each residing on a distinct server. We need to correct f crash faults among

the servers given only γ additional servers to host the backup structures. We

present a solution to this problem that requires dn/(n + γ − f)ef backups

and show that this is the necessary and sufficient number of backups for this

112

problem. Further, we present an algorithm for generating the optimal number

of backups.

To simplify our discussion, we start with the assumption that no ad-

ditional servers are available for hosting the backups (γ = 0). As some of

the servers host more than one backup structure, f faults among the servers,

results in more than f faults among the data structures. Hence, a direct

fusion-based solution cannot be applied to this problem. Given a set of five

primaries, {X1 . . . X5}, each residing on a distinct server labelled, {H1 . . . H5},
consider the problem of correcting three crash faults among the servers (n = 5,

f = 3). In a direct fusion-based solution, we will just generate three backups

F1, F2, F3, and distribute them among any three servers, say, H1, H2 and H3

respectively. Crash faults among these three servers will result in the crash

of six data structures, whereas these set of backups can only correct three

crash faults. We solve this problem by partitioning the set of primaries and

generating backups for each individual block.

In this example, we can partition the primaries into three blocks [X1, X2],

[X3, X4] and [X5] and generate three fused backups for each block of pri-

maries. Henceforth, we denote the f backups obtained by fusing the primaries

Xi1 , Xi2 , . . . , Xit , by F1(i1, i2, . . . , it), F2(i1, i2, . . . , it) . . . Ff (i1, i2, . . . , it). For

example, the backups for [X1, X2] are denoted as F1(1, 2) . . . F3(1, 2). Con-

sider the following distribution of backups among hosts:

H1 = [X1, F1(3, 4), F1(5)], H2 = [X2, F2(3, 4), F2(5)]

H3 = [X3, F1(1, 2), F3(5)], H4 = [X4, F2(1, 2)]

H5 = [X5, F3(1, 2), F3(3, 4)]

113

Note that, the backups for any block of primaries, do not reside on any

of the servers hosting the primaries in that block. Three server faults will result

in at most three faults among the primaries belonging to any single block and

its backups. Since the fused backups of any block correct three faults among

the data structures in a block, this partitioning scheme can correct three server

faults.

For example, assume crash faults in the servers H2, H4 and H5. Con-

sider the recovery of X2 on the crashed server, H2. Since, F1(1, 2), F2(1, 2),

F3(1, 2) are the three fused backups for [X1, X2], given the state of any two

data structures among {X1, X2, F1(1, 2), F2(1, 2), F3(1, 2)}, we can recover the

state of the remaining three. In our example, we can obtain the state of X1

on server H1, and the state of F1(1, 2) on server H3 (servers that have not

crashed). Given the state of these two data structures we can recover the

state of X2, F2(1, 2) and F3(1, 2). Here, each block of primaries requires at

least three distinct servers (other than those hosting them) to host their back-

ups. Hence, for n = 5, the size of any block in this partition cannot exceed

n − f = 2. Based on this idea, we present an algorithm to correct f faults

among the servers.

Partitioning Algorithm: Partition the set of n primaries, each residing

on a distinct server as evenly as possible into dn/(n− f)e blocks, generate the

f fused backups for each such block and place them on distinct servers not

hosting the primaries in that block.

The number of blocks generated by the partitioning algorithm is dn/(n−
f)e and hence, the number of backup structures required is dn/(n − f)ef .

Replication, on the other hand requires nf backup structures which is always

greater than or equal to dn/(n− f)ef . We show that dn/(n− f)ef is a tight

114

bound for the number of backup structures required to correct f faults among

the servers. For the example where n = 5, f = 3, the partitioning algorithm

requires nine backups. Consider a solution with eight backups. In any distri-

bution of the backups among the servers, the three servers with the maximum

number of data structures will host at least nine data structures in total. For

example, if the backups are distributed as evenly as possible, the three servers

hosting the maximum number of backups will each host two backups and a

primary. Failure of these servers will result in the failure of nine data struc-

tures. Using just eight backups, we cannot correct nine faults among the data

structures. We generalize this result in the following theorem.

Theorem 5.3.4. Given a set of n data structures, each residing on a distinct

server, to correct f crash faults among the servers, it is necessary and sufficient

to add dn/(n+ γ − f)ef backup structures, when there are only γ additional

servers available to host the backup structures.

Proof. We first prove sufficiency, followed by the proof showing that it is nec-

essary to maintain that many backups.

(Sufficiency): We modify the partitioning algorithm for γ additional

servers simply by partitioning the primaries into dn/(n+γ−f)e blocks rather

than dn/(n−f)e blocks. Since the maximum number of primaries in any block

of the partitioning algorithm is n+ γ − f , there are at least f distinct servers

(not hosting the primaries in the block) available to host the f fused backups

of any block of primaries. So, the fused backups can be distributed among the

host servers such that f server faults only lead to f faults among the backups

and primaries corresponding to each block. Hence the fused backups generated

by the partitioning algorithm can correct f server faults.

115

(Necessity): Suppose there is a scheme with t backups such that t <

dn/(n+γ−f)ef . In any distribution of the backups among the servers, choose

f servers with the largest number of backups. We claim that the total number

of backups in these f servers is strictly greater than t − f . Failure of these

servers, will result in more than t − f + f faults (adding faults of f primary

structures). This would be impossible to correct with t backups. We know

that,

t < dn/(n+ γ − f)ef
⇒ t < d1 + f/(n+ γ − f)ef
⇒ (t− f) < df/(n+ γ − f)ef
⇒ (t− f)/f < df/(n+ γ − f)e

If the f servers with the largest number of backups have less than or

equal to t − f backups in all, then the server with the smallest number of

backups among them will have less than the average number of backups which

is (t − f)/f . Since the remaining n + γ − f servers have more than or equal

to f backups, the server with the largest number of backups among them will

have as many or greater than the average number of backups, df/(n+γ−f)e.
Since, (t − f)/f < df/(n + γ − f)e, we get a contradiction that the smallest

among the f servers hosting the largest number of backups, hosts less number

of backups than the largest among the remaining n− f servers.

Minimality We now define a partial order among equal sized sets of backups

and prove that the partitioning algorithm generates a minimal set of backups.

Given a set of four data structures, {X1 . . . X4}, each residing on a distinct

server, consider the problem of correcting two faults among the servers, with no

116

additional backup servers (n = 4, f = 2, γ = 0). Since, dn/(n+γ−f)e = 2, the

partitioning algorithm will partition the set of primaries into two blocks, say

[X1, X2] and [X3, X4] and generate four fused backups, F1(1, 2), F2(1, 2) and

F1(3, 4), F2(3, 4). An alternate solution to the problem is to fuse the entire set

of primaries to generate four fused backups, F1(1, 2, 3, 4) . . . F4(1, 2, 3, 4). Here,

F1(1, 2) is obtained by fusing the primaries X1 and X2, whereas F1(1, 2, 3, 4) is

obtained by fusing all four primaries. In the latter case, maintenance is more

expensive, since the backups need to receive and act on updates correspond-

ing to all the primaries, whereas in the former, each backup receives inputs

corresponding to just two primaries. Based on this idea, we define an order

among backups.

Given a set of n data structures, X, consider backups F and F ′, ob-

tained by fusing together a set of primaries, M ⊆ X and N ⊆ X respec-

tively. F is less than F ′ (F < F ′) if M (N . In the example discussed,

F1(1, 2) < F1(1, 2, 3, 4), as {X1, X2} ({X1, X2, X3, X4}. We extend this to

define an order among sets of backups that correct f faults among the servers.

Definition 17. (Order among Sets of Backups) Given a set of n data structures,

each residing on a distinct server, consider two sets of t backups, Y and Y ′

that correct f faults among the servers. Y is less than Y ′, denoted Y < Y ′,

if the backups in Y can be ordered as {F1, ..Ft} and the backups is Y ′ can be

ordered as {F ′1, ..F ′t} such that (∀1 ≤ i ≤ t : Fi ≤ F ′i) ∧ (∃j : Fj < F ′j).

A set of backups Y is minimal if there exists no set of backups Y ′ such

that Y ′ < Y . In the example for n = 4, f = 2, the set of backups, Y =

{F1(1, 2), F2(1, 2), F1(3, 4), F2(3, 4)}, generated by the partitioning algorithm

is clearly less than the set of backups, Y ′ = {F1(1, 2, 3, 4) . . . F4(1, 2, 3, 4)}. We

show that the partitioning algorithm generates a minimal set of backups.

117

Theorem 5.3.5. Given a set of n data structures, each residing on a dis-

tinct server, to correct f faults among the servers, the partitioning algorithm

generates a minimal set of backups.

Proof. When a backup F is generated by fusing together a set of primaries, we

say that each primary in the set appears in the backup. Given a set of backups

that can correct f faults among the servers, each primary has to appear at

least f times across all the backups. The partitioning algorithm generates a

set of backups Yp, in which each primary appears exactly f times. Any other

solution in which the primaries appear exactly f times will be incomparable

to Yp.

In the following section, we present the algorithms for the detection

and correction of faults.

5.4 Detection and Correction of Faults

Given n primary data structures, each with O(m) nodes of size O(s)

each, we present an algorithm to correct f crash faults with time complexity

O(nmsf 2). Further, we present a solution to detect and correct f Byzantine

faults using just nf + f backups that causes no additional overhead during

normal operation. The time complexity of recovery in Byzantine faults is

O(msft2 + nst2), where t is the actual number of liars in the system.

5.4.1 Crash Faults

To correct crash faults, the client needs to accquire the state of all the

available data structures, both primaries and backups. As seen in Section

118

5.2, the fused node at the same position at all the fused backups contains the

codeword for the primary elements belonging to these nodes. To obtain the

missing primary elements belonging to this node, we decode the code words

of these nodes along with the data values of the available primary elements

belonging to this node. The decoding algorithm depends on the erasure code

used. In Fig. 5.2 (i), to recover the state of the failed primaries, we obtain

the state F1 and F2 and iterate through their nodes. The 0th fused node of

F1 contains the value a1 + b1, while the 0th node of F2 contains the value

a1 − b1. Using these, we can obtain the values of a1 and b1. The value of all

the primary nodes can be obtained this way and their order can be obtained

using the index structure at each backup. Note that, even though we have

explained the recovery algorithm mainly for crashed primaries, this can be

easily extended to faults among the fused backups.

We consider the time complexity of recovery using RS codes as the

fusion operator. Given n data values, the cost of recovering f values, each

of size s by RS decoding is O(nsf 2) [74]. Since the number of nodes in the

fused list is bound by the size of the primary list, m, the time complexity for

recovery is O(nmsf 2) where each primary has O(m) nodes of O(s) size each.

Recovery is much cheaper in replication and has time complexity O(msf).

5.4.2 Byzantine Faults

To correct f Byzantine faults among n primaries pure replication re-

quires 2f additional copies of each primary, which ensures that a non-faulty

majority of f + 1 copies are always available. Hence, the correct state of the

data structure can easily be ascertained. This approach requires 2nf backup

data structures in total. In this section, we present a hybrid solution that com-

119

bines fusion with replication to correct f Byzantine faults using just nf + f

backup structures, while ensuring minimal overhead during normal opera-

tion. However, the time complexity for recovery in fusion is O(msft2 + nst2),

whereas it is only O(mst) for replication, where m is the number of nodes in

each data structure, s is the size of each node and t is the actual number of

Byzantine faults. In a system with infrequent faults, this maybe an acceptable

compromise for the savings in the number of backups.

In [33], the author presents a fusion-based algorithm for correcting

Byzantine faults. The solution in that paper uses the older version of fused

data structures [34]. In this section, we present those algorithms and proofs

with minor extensions for the current version of fused data structures.

To correct Byzantine faults, we maintain f additional copies of each

primary that enable efficient detection of Byzantine faults. This maintains

the invariant that there is at least one correct copy in spite of f Byzantine

faults. We also maintain f fused backups for the entire set of primaries, which

is used to identify and correct the Byzantine primaries, after the detection of

the faults. Thus, we have a total of nf + f backup data structures. The only

requirement on the fused backups {Fj, j = 1..f} is that if Fj is not faulty, then

given the state of any n−1 data structures among {X1 . . . Xn}, we can recover

the state of the missing one. Thus, a simple XOR or sum based fused backup

is sufficient. Even though we are correcting f faults, the requirement on the

fused copy is only for a single fault (because we are also using replication).

The primary Xi and its f copies are called unfused copies of Xi. If any

of the f + 1 unfused copies differ, we call the primary, mismatched. Let the

state of one of the primaries Xi be v. The number of unfused copies of Xi

with state v is called the multiplicity of Xi.

120

Client:
send update to all unfused f + 1 copies;
if (all f + 1 responses identical)

use the response;
else invoke recovery algorithm;

Unfused Copies:
on receiving any message from client,

update local copy;
send state update to fused processes;
send response to the client;

Fused Copies:

on receiving updates from unfused copies,

if (all f + 1 updates identical)

carry out the update;

else invoke recovery algorithm;

Figure 5.10: Detecting Byzantine Faults [33]

We describe an algorithm in Fig. 5.10, 5.11 and 5.12 to correct f

Byzantine faults. We keep f copies for each primary and f fused data struc-

tures overall. This results in additional nf + f data structures in the system.

If there are no faults among the unfused copies, all f + 1 copies will result

in the same output and therefore the system will incur the same overhead

as the replication-based approach. If the client or one of the fused backups

detects a mismatch among the values received from the unfused copies, then

the recovery algorithm is invoked. The recovery algorithm first reduces the

number of mismatched primaries to one and then uses the locate algorithm to

identify the correct primary. We describe the algorithm in greater detail in

the following paragraphs.

The recovery algorithm in Fig. 5.11 first checks the number of primaries

121

Recovery Algorithm:

Accquire all available data structures;

Let t be the number of mismatched primaries;

while (t > 1) do

choose a copy of some primary Xi with largest multiplicity;

restart unfused copies of Xi with the state of the chosen copy;

t = t− 1;

endwhile;

// Can assume that t equals one.

// Let Xc be the mismatched primary.

Locate faulty copy among unfused copies of Xc

using the locate algorithm;

Figure 5.11: Correcting Byzantine Faults: Detect Faulty Primaries [33]

that are mismatched. First consider the case when there is a single mismatched

primary, say Xc. Now given the state of all other primaries, we can successively

retrieve the state of Xc from fused data structures Fj, j = 1..f until we find a

copy of Xc that has f + 1 multiplicity.

Lemma 4. Assume that among the n primaries, there is a mismatch for at least

two primaries, say Xc and Xd. Let α(c) and α(d) be the largest multiplicity

among unfused copies of Xc and Xd respectively. Without loss of generality,

assume that α(c) ≥ α(d). The copy with multiplicity α(c) is correct.

Proof. If this copy is not correct, then there are at least α(c) liars among

unfused copies of Xc. We now claim that there are at least f + 1− α(d) liars

among unfused copies of Xd which gives us the total number of liars as α(c) +

f + 1− α(d) ≥ f + 1 contradicting the assumption on the maximum number

of liars. Consider the copy among unfused copies of Xd with multiplicity α(d).

If this copy is correct we have f + 1− α(d) liars. If this copy is incorrect, we

122

Locate Algorithm:

Input: primary Xc with mismatched copies;

Z: set of unfused copies of Xc;

Discard copies in Z and fused backups

with wrong index/aux structures;

while (there are mismatched copies in Z)

w = min{r : ∃p, q ∈ Z : valuep[r] 6= valueq[r]};
Y : set of values of state[w] for each copy in Z;

j = 1;

while (no value in Y with multiplicity f + 1)

create, v=state[w] using Fj and all Xi, i 6= c;

add v to Y ;

j = j + 1;

endwhile;

delete copies from Z in which state[w] 6= v;

endwhile;

Figure 5.12: Correcting Byzantine Faults: Correct Faulty Primary [33]

know that the correct value has multiplicity less than or equal to α(d) and

therefore there are at least f + 1 − α(d) liars among unfused copies of Xd.

Hence, the primary with multiplicity α(c) is correct.

By identifying the correct primary, we have reduced the number of

mismatched primaries by one. By repeating this argument, we get to the case

when there is exactly one mismatched primary, say Xc. We use the locate

algorithm in Fig. 5.12 to locate the correct copy of Xc.

In the locate algorithm, we first identify errors in the auxiliary and

index structures. Since this information is replicated at all the f fused backups,

we can obtain 2f + 1 versions of this information among which at least f + 1

versions are identical (at most f liars). The remaining f versions are certainly

123

faulty and unfused copies with this information can be discarded. If there are

no errors among the auxiliary/index structures, we identify errors in the data

elements.

The set Z in Fig. 5.12 maintains the invariant that it includes all

the correct unfused copies (and may include incorrect copies as well). The

invariant is initially true because all indices from 1..f + 1 are in Z. Since the

set has f + 1 indices and there are at most f faults, we know that the set Z

always contains at least one correct copy.

The outer while loop of the locate algorithm, iterates until all copies

are identical. If all copies in Z are identical, from the invariant it follows that

all of them must be correct and we can simply return any of the copies in Z.

Otherwise, there exist at least two different copies in Z, say p and q. Let w

be the first key in which states of copies p and q differ. Either copy p or the

copy q (or both) are liars. We now use the fused data structures to recreate

copies of state[w], the value associated with key w.

Since we have the correct copies of all other primaries Xi, i 6= c, we can

use them with the fused backups Fj, j = 1..f . Note that the fused backups

may themselves be wrong so it is necessary to get enough multiplicity for any

value to determine if some copy is faulty. Suppose that for some v, we get

multiplicity of f + 1. This implies that any copy with state[w] 6= v must be

faulty and therefore can safely be deleted from Z. We are guaranteed to get

a value with multiplicity f + 1 out of total 2f + 1 values, viz. f + 1 values

from unfused copies of Xc and f values decoded using the f fused backups and

remaining correct primaries. Further, since copies p and q differ in state[w],

we are guaranteed to delete at least one of them in each iteration of the inner

while loop. Eventually, the set Z would either be singleton or will contain only

124

identical copies, which implies that we have located a correct copy.

Our approach combines the advantages of replication and coding theory.

We have enough replication to guarantee that there is at least one correct

copy at all times and therefore we do not need to decode the entire state data

structure but only locate the correct copy. We have also taken advantage of

coding theory to reduce the number of copies from 2f to f . It can be seen

that our algorithm is optimal in the number of unfused and fused backups it

maintains to guarantee that there is at least one correct unfused copy and that

faults of any f data structures can be corrected. The first requirement dictates

that there be at least f + 1 unfused copies and the recovery from Byzantine

faults requires that there be at least 2f + 1 fused or unfused copies in all.

Time Complexity Analysis : The recovery algorithm has two compo-

nents. First we reduce the number of mismatched primaries to one. Then,

we identify the faulty primary using the locate algorithm. To reduce the mis-

matched primaries, we use the while loop in Fig. 5.11, which can have at

most t iterations. In each iteration we find the copy with the greatest mul-

tiplicity among the f + 1 unfused copies of each mismatched primary. There

can be O(t) mismatched primaries and each primary has O(m) nodes of size

O(s) each. Hence, the time complexity of each iteration of the while loop in

Fig. 5.11 is O(mstf). So, the time complexity of reducing the mismatched

primaries to one is O(msft2).

We now analyze the time complexity of the locate algorithm. Checking

for errors in the auxiliary/index structures, which contain m pointers, can be

performed in in O(mf) time across all the f fused backups. Assume that there

are t ≤ f actual faults that occurred. We delete at least one unfused copy

of Xc in each iteration of the outer while loop and there are at most t faulty

125

data structures giving us the bound of t for the number of iterations of the

while loop. In each iteration, creating state[w] requires at most O(s) state to

be decoded at each fused data structure at the cost of O(ns). The maximum

number of fused data structures that would be required is t. Thus, O(nts)

work is required for a single iteration of the outer while loop before a copy is

deleted from Z. To determine w in incremental fashion requires O(mfs) work

cumulative over all iterations. Combining these costs we get the complexity

of the locate algorithm to be O(mfs+ nst2). So overall, the time complexity

of the recovery algorithm is O(nst2 +msft2).

Recovery in replication reduces to finding the state with t + 1 votes

among the 2f + 1 copies of each primary, where t is the actual number of

faults. Since this majority can be found by inspecting at most 2t+1 copies

among the primaries, recovery has time complexity O(mst), where m is the

number of nodes in each data structure and s is the size of each data structure.

In the following section, we summarize the results of this chapter through a

comparison of replication with fusion.

5.5 Comparison of Replication and Fusion

In this section, we describe the main differences between replication

and fusion (Table 5.1). Throughout this section, we assume n primary data

structures, containing at most O(m) nodes of size O(s) each. Each primary

can be updated in O(p) time. We assume that the system can correct either

f crash faults or f Byzantine faults, and t is the actual number of faults that

occur. Note that, the comparison in this section is independent of the type of

data structure used. We assume that the fusion operator is RS coding, which

only requires f backup blocks to correct f erasures among a given set of data

126

Table 5.1: Replication vs. Fusion for Data Structures

Replication
Crash

Fusion
Crash

Repilication
Byzantine

Fusion Byzan-
tine

Number of
Backups

nf f 2nf nf + f

Backup
Space

nmsf msf 2nmsf nmsf +msf

Max
Load/Backup

O(1) O(n) O(1) O(n)

Normal Op-
eration Time

O(p) O(p) O(p) O(p)

Recovery
Time

O(mst) O(mst2n) O(mst) O(msft2 + nst2)

Normal Op-
eration Mes-
sages

f msgs, size s
each

f msgs, size
2s each

2f msgs, size
s each

f msgs size s, f
msgs size 2s

Recovery
Messages

t msgs, size
ms each

n+f−t msgs,
size ms each

2t + 1 msgs,
size ms each

nf + n+ f msgs,
size ms each

127

blocks.

Number of Backups To correct f crash faults among n primaries, fusion

requires f backup data structures as compared to the nf backup data struc-

tures required by replication. For Byzantine faults, fusion requires nf + f

backups as compared to the 2nf backups required by replication.

Backup Space For crash faults, the total space occupied by the fused back-

ups is msf (f backups of size ms each) as compared to nmsf for replication

(nf backups of size ms each). For Byzantine faults, since we maintain f copies

of each primary along with f fused backups, the space complexity for fusion

is nfms+msf as compared to 2nmsf for replication.

Maximum Load on any Backup We define load as the number of pri-

maries each backup has to service. Since each fused backup has to receive

requests from all n primaries the maximum load on the fused backup is n

times more than the load for replication. Note that, the higher the value of

n, more the savings in space/number of backups (O(n) times), but more the

maximum load on any backup (again, O(n) times).

Normal (fault-free) Operation Time The fused backups in our system

can be updated with the same time complexity as that for updating the corre-

sponding primary i.e., O(p). We have shown that the updates at the backup

can be received in any order and hence, there is no need for synchrony. Also,

if Byzantine faults/liars need to be detected with every update in a system,

then fusion causes no overhead in time.

128

Recovery Time This parameter refers to the time complexity of recovery

at the client, after it has acquired the state of the relevant data structures. In

the case of fusion, to recover from t (t ≤ f) crash faults, we need to decode

the backups with total time complexity O(mst2n). For replication, this is

only O(mst). For Byzantine faults, fusion takes O(mfs + nst2) to correct t

Byzantine faults. In the case of replication, on detecting a mismatch among

the 2f + 1 responses, the client needs to obtain the majority among these

copies. As there are t liars in the system, replication only needs to look at

2t + 1 copies, before obtaining a majority. Since each copy contains O(m)

nodes of size O(s) each, this takes time complexity O(mst) . Thus, replication

is much more efficient than fusion in terms of the time taken for recovery.

However, for small values of f (for most applications, f = 1 or f = 2) the cost

of recovery may be acceptable.

Normal (fault-free) Operation Messages This parameter refers to the

number of messages that the primary needs to send to the backups for any

update. We assume that the size of the key for insert or delete is insignificantly

small as compared to the data values. In fusion, for crash faults, every update

sent to the primary needs to be sent to f backups. The size of each message

is 2s since we need to send the new value and old value to the backups. For

deletes, the size of each message is 2s since we need to send the old value and

the value of the top-of-stack element (as shown in Fig. 5.5). Hence, for crash

faults, in fusion, for any update, f messages of size 2s need to be exchanged.

For replication, in inserts, only the new value needs to be sent to the f copies

of the primary and for deletes, only the key to be deleted needs to be sent.

Hence, for crash faults in replication, for any update f messages of size at

most s need to be exchanged.

129

For Byzantine faults, for fusion, since we maintain f copies of each

primary and f fused backups, it needs f messages of size s and f messages of

size 2s respectively. In replication, 2f messages of size s need to be sent to

the 2f copies of the primary for inserts and for deletes, only 2f keys need to

be sent.

Recovery Messages This refers to the number of messages that need to be

exchanged once a fault has been detected. When t crash faults are detected, in

fusion, the client needs to acquire the state of all the remaining data structures.

This requires n+ f − t messages of size O(ms) each. In replication the client

only needs to acquire the state of the failed copies requiring only t messages

of size O(ms) each. For Byzantine faults, in fusion, the state of all n+nf + f

data structures (primaries and backups) needs to be acquired. This requires

nf + f + f messages of size O(ms) each. In replication, only the state of any

2t+ 1 copies of the faulty primary are needed, requiring just 2t+ 1 messages

of size O(ms) each.

130

Chapter 6

Practical Evaluation

In this chapter, we consider the practical use of our fusion-based solu-

tions. For fused state machines, we present a design for the grep application

in the MapReduce framework [24] that requires only 1.4 million worker tasks

as compare to the 1.8 million worker tasks required by replication. We provide

a design tool to generate fused state machines, based on our fusion algorithm.

Our evaluation of this tool on the commonly used MCNC’91 benchmarks [95]

shows that fusion achieves 38% savings in state space over replication.

For fused data structures, we present a design for fault tolerance in

Amazon’s Dynamo key-value store [25] that requires just 120 backups as com-

pared to the 300 backups required by replication. Further, we present a li-

brary/package of fused data structures for all the containers in the Java Col-

lection framework. Our experimental evaluation of fused data structures in

a distributed implementation confirms that fusion is O(n) times more space

efficient as compared to replication, where n is the number of primaries.

In our design for Dynamo and MapReduce, we use a combination of fu-

sion and replication, as compared to a pure replication-based solution. While

fusion achieves the savings in space, the partial replication minimizes the over-

head for normal operation. In the following section, we address the practical

challenges faced in building systems that combine fusion and replication.

131

6.1 Building Fusion-based Fault Tolerant Systems

In a pure replication-based system there will be no fused backups, while

in a pure fusion-based system there will be no replicas. However, for most real-

world systems, in which fault tolerance and load-balancing are both serious

concerns, we need to consider a hybrid solution with both fusion and replica-

tion. This section is based on the standard tutorial for the replicated state

machine approach [83].

We maintain the following types of processes in our system:

• Primaries and their copies : We are given a set of n distinct primary

state machines P1 . . . Pn, each of which model the computation of the

system. For each primary, we maintain a set of identical copies for both

fault tolerance and load-balancing. The primary Pi with its copies is

referred to as the ensemble of Pi. For convenience, we refer to any of the

machines in the ensemble of Pi as primary Pi.

• Fused Backups : These are the backup machines used purely for fault

tolerance. We describe the design of these fused backups in detail in

chapters 4 and 5. However, for the purpose of overall system design,

we note just the following two facts about fused backups: (i) the fused

backups need to receive and act on every distinct request addressed to

each Pi, for i : 1 to n and, (ii) to recover the state of any failed process

using the fused backups, we need the state of one primary from each

primary ensemble and the state of all available fused backups.

In our system, the fault-free clients of the state machines send requests

addressed to the primaries. Based on how these requests are propagated to

the copies of the primaries and the fused backups, we defined two models:

132

• Client-centric model: In this model, a client sends the request addressed

to a certain primary Pi to all the primaries in the ensemble of Pi and all

the fused backups.

• Primary-centric model: In this model, a client sends the request ad-

dressed to a certain primary Pi to one of the primaries in the ensemble

of Pi. This designated primary sends the requests to other primaries in

the ensemble of Pi and all the fused backups.

The choice of the appropriate model among these two will be dictated

by the system under consideration. For example, a system that uses fused

data structures will have to be based on the primary-centric model, since the

fused data structures require information from the primaries. On the other

hand, the client-centric model maybe more suited for a system with fused state

machines. Detection and correction of faults is performed by any of the clients.

The key requirements for building a fault tolerant system are as follows:

• C1 (Agreement): Requests addressed to a primary Pi must be received

by all the primaries in the ensemble of Pi and all the fused backups.

• C2 (Order): Requests addressed to a primary Pi must be processed by

all the primaries in the ensemble of Pi and all the fused backups in the

same relative order.

• C3 (Commutativity): The state of the fused backups is independent of

the order in which they process requests addressed to different primaries.

In chapters 4 and 5, we prove that our design achieves commutativity.

In the following sections, we focus on techniques to guarantee agreement and

order in the presence of both crash and Byzantine faults.

133

6.1.1 Agreement

In the client-centric model, the non-faulty client sends the requests to

the primary ensemble and the fused backups. Since processes cannot change

their identity, each of the processes in the system accepts requests only from

the client. So even if there are Byzantine faults among the primaries or the

fused backups, they cannot send erroneous requests. Hence, trivially, the

agreement condition C1 is achieved.

In the primary-centric model, it is more difficult to achieve agreement.

In this model, the processes receive requests either directly from the client or

from other processes in the system. Hence, a designated process may either

not send a client request (due to a crash fault) or in the worst case, a non-

designated Byzantine process might send an erroneous request to break the

system. So, for the primary-centric model, we need to follow a consensus or

agreement protocol in which the client is modeled as one of the processes.

Consensus or agreement in the presence of faults is a well studied prob-

lem in distributed systems [17, 19, 20, 30, 47, 52] and it guarantees the follow-

ing properties: (i) all non-faulty processes agree on the same value and, (ii)

if the transmitter of the value (in this case, the client) is non-faulty, then all

non-faulty processes use this as the agreed upon value. Hence, based on this

protocol, we can achieve agreement even in the primary-centric model. In the

following section, we present a technique for achieving condition C2, i.e., order.

6.1.2 Order

Since there are multiple clients sending requests addressed to the same

primary, in both the client-centric and primary-centric model, we need to

ensure that the primary ensemble and the fused backups process the requests

134

in the same order. The first step is to define a total ordering mechanism that

assigns unique identifiers (referred to as time-stamps) to each request. Let the

time-stamp assigned to request r be denoted by T (r). The ordering mechanism

must satisfy these two conditions:

• If r1 and r2 are two requests made by a client to a certain primary Pi

such that r1 was made before r2, then T (r1) < T (r2).

• If a request r1 made by a client to a primary Pi causes another request

r2 to be made by some other client to Pi, then T (r1) < T (r2).

We can use any of the total ordering mechanisms in the literature [26,

63] that achieves these two conditions, such as Lamport’s logical clocks [50] or

synchronized real-time clocks [22, 78].

Each process hosting either a primary or backup has a queue of requests

among which it needs to choose a request to act on next. To achieve the order

condition C2, each process in the system must next act on a request r that

satisfies the following conditions:

1. Request r must have the lowest unique time-stamp T (r) among all re-

quests in the queue.

2. The process must have received at least one request from each client with

time stamp greater than T (r).

Ties among the requests are broken arbitrarily. To implement the sec-

ond condition mentioned above, each client can periodically send “null” re-

quests to each process in the system. In the following section we focus on the

recovery of the failed processes.

135

6.1.3 Recovery

When a client of the system detects a fault among either the primary

ensemble or the fused backups, it acquires the state of all the necessary pro-

cesses and performs recovery to regenerate the state of the failed processes.

The actual details of the recovery operation are specific to the nature of the

backups and this is explained in chapters 4 and 5. In this section, we focus on

the steps to ensure the correctness of the recovery operation.

As mentioned in section 1.3, the clients of the processes receive the

outputs of the processes and can hence detect faults among them. When faults

are detected, say among the primary ensemble and the fused backups, these

are the sequential steps the client needs to follow to ensure correct recovery of

each failed process.

Step 1, Recover failed primary processes in whose ensemble at least

one copy remains: For each such process Pi, the client acquires the state

and request queues of any one of the primaries in the ensemble of Pi. Then,

it restarts the failed primary processes in this ensemble with the state and

request queue of this selected primary.

Let the request with the greatest time-stamp in this queue be denoted

by r. Let rc be the first request received by the restarted process. The client

relays all the requests whose time-stamps are greater than or equal to r and

lesser than or equal to rc to the restarted process. Now the restarted process

can start executing.

Step 2, Recover remaining failed processes: The client acquires the

state and request queues of all the fused backups and the state and request

136

queue of one primary (if available) from the ensembles of all the primaries. Let

the processes from which the client acquired the state and request queues be

referred to as the recovery processes. The recovery processes on sending their

state and request queues to the client, stop acting on any client requests.

Among all the acquired request queues, let the request with the largest

time-stamp addressed to primary Pi be denoted by ri. The client first ensures

that each distinct primary Pi among the recovery processes executes up to

request ri. The client then ensures that all the fused backups among the

recovery processes execute up to ri for each value of i. The client can now re-

acquire the state and request queue of the recovery processes and recover the

state of the failed processes. The recovery processes can now resume execution.

The client restarts the failed processes with the recovered state. Let rc

be the first request received by the restarted process. If the restarted process is

a primary Pi, the client relays all the requests whose time-stamps are greater

than or equal to ri and lesser than or equal to rc to the restarted process.

Let the request with the smallest time-stamp among ri, for each value of i, be

denoted by rm. If the restarted process is a fused backup, then the client has

to relay all the requests with time-stamps greater than rm and lesser than or

equal to rc. Now the restarted processes can start executing.

In this section, we have seen the various aspects of system design while

building systems that combine fusion with replication. In the following section,

we outline our solution for the MapReduce framework.

137

6.2 Fusion-based Grep in MapReduce

In many large scale distributed stream processing applications, active

replication is often used for fault tolerance [8, 84]. A common function on the

streams, is the grep function, which checks if every line of the file matches pat-

terns defined by regular expressions (modeled as DFSMs). These distributed

applications can be modeled using the MapReduce framework [24]. Typi-

cally, the Map-Reduce framework is built using the master-worker configura-

tion where the master assigns the map and reduce tasks to various workers.

While the map tasks perform the actual computation on the data files received

by it as <key, value> pairs, the reducer tasks aggregate the results according

to the keys and writes them to the output file.

In this section, we compare the existing replication-based design of

the grep application in the MapReduce framework with a hybrid fusion-based

design (Fig. 6.1). Specifically, we assume that the regular expressions for grep

are ((0 + 1)(0 + 1))*, ((0 + 2)(0 + 2))* and (00)* modeled by A, B, C shown

in Fig. 4.1. We show that the current replication based solution requires 1.8

million map tasks while our solution that combines fusion with replication

requires only 1.4 million map tasks. This results in considerable savings in

space and other computational resources.

6.2.1 Existing MapReduce Design

We first outline a simplified version of a pure replication based solution

to correct two crash faults. Given an input file stream, the master splits the

file into smaller partitions (or streams) and breaks these partitions into <file

name, file content> tuples. For each partition, we maintain three primary map

tasks mA, mB and mC that output the lines that match the regular expressions

138

mC

mA mB mC

mA mB mC

mA mB mC

mA mB mC

mA mB mC

mA mB mC

Pa
rt

iti
on

1
Pa

rt
iti

on
0

Hybrid: 14 Map Tasks

Pa
rt

iti
on

1
Pa

rt
iti

on
0

Replication: 18 Map Tasks

In
pu

t
Fi

le
Pa

rt
iti

on
s/

St
re

am
s

Map Tasks

mA mB mC

mA mB mC

mA mB mC

mF

mF

mA mB

Figure 6.1: Replication vs. Fusion for grep in MapReduce.

modeled by A, B and C respectively. To correct two crash faults, we maintain

two additional copies of each primary map task for every partition. The master

sends tuples belonging to each partition to the primaries and the copies. The

reduce phase just collects all lines from these map task and passes them to

the user. Note that, the reducer receives inputs from the primaries and its

copies and simply discards duplicate inputs. Hence, the copies help in both

fault tolerance and load-balancing.

When map tasks fail, the state of the failed tasks can be recovered from

one of the remaining copies. From Fig. 6.1, in replication, it is clear that each

file partition requires nine map tasks. In such systems, typically, the input

files are large enough to be partitioned into 200,000 partitions [24]. Hence,

replication requires 1.8 million map tasks.

6.2.2 Hybrid Fusion-based Design

In this section, we outline an alternate solution based on a combination

of replication and fusion. For each partition, we maintain just one additional

139

copy of each primary and also maintain one fused map task, denoted mF

for the entire set of primaries. The fused map task searches for the regular

expression (11)* modeled by F1 in Fig. 4.1. Clearly, this solution can correct

two crash faults among the primary map tasks, identical to the replication-

based solution. The reducer operation remains identical. The output of the

fused map task is relevant only for fault tolerance and hence it does not send

its output to the reducer. Note that since there is only one additional copy

of each primary, we compromise on the load balancing as compared to pure

replication. However, we require only seven map tasks as compared to the

nine map tasks required by pure replication.

When only one fault occurs among the map tasks, the state of the failed

map task can be recovered from the remaining copy with very little overhead.

Similarly, if two faults occur across the primary map tasks, i.e., mA and mB

fail, then their state can be recovered from the remaining copies. Only in

the relatively rare event that two faults occur among the copies of the same

primary, does the fused map task have to be used for recovery. For example,

if both copies of mA fail, then mF needs to acquire the state of mB and mC

(any of the copies) and perform the algorithm for crash correction in 4.4.2.1

to recover the state of mA.

Considering 200,000 partitions, the hybrid approach needs only 1.4 mil-

lion map tasks which is 22% less than the map tasks required by replication.

Note that as n increases, the savings in the number of map tasks increases even

further. This results in considerable savings in terms of (i) the state space re-

quired by these map tasks and, (ii) resources such as the power consumed by

them. In the following section, we describe the implementation of our design

tool to generate efficient backups, followed by the experimental evaluation.

140

6.3 Fused DFSM Design Tool

In this section, we evaluate our DFSM design tool [4], implemented in

Java, based on the incremental version of the genFusion algorithm presented

in section 4.2.3. The input to the tool is a set of n primary machines P, the

number of faults f that need to be corrected, the state reduction 4s and the

event reduction 4e required. The output of the tool is a minimal set of f

backups that can correct f crash or bf/2c Byzantine faults among P. Each

backup contains at most N −4s states and |Σ| − 4e events, where N is the

number of states in the reachable cross product of the primaries and Σ is the

union of the events sets of the primaries.

The parameters 4s and 4e can be chosen according to the require-

ments of the specific application in concern. For example, if the amount of

memory allocated for each backup is 10 bits, then the number of states in

each backup cannot exceed 210 = 1024 states. So, the user can first de-

termine the number of reachable cross product states, N , and then specify

4s = max(N − 1024, 0). Similarly, the bandwidth allocated for each backup

could be 10Mbps. Assuming that the bandwidth required for each input/event

stream is 1Mbps and the union of events among the primaries is Σ, the user

can specify 4e = max(|Σ| − 10, 0). Note that, this is just one potential way

to generate 4s and 4e. Different systems may have different constraints that

need to be translated to these parameters.

6.3.1 Experiments and Results

In this section, we evaluate our tool using the MCNC’91 benchmarks

[95] for DFSMs, widely used for research in the fields of logic synthesis and

finite state machine synthesis [64, 96]. We compared the performance of fusion

141

with replication for 100 different combinations of the benchmark machines,

with n = 3, f = 2, 4e = 3 and present some of the results in Table 6.1. The

implementation with detailed results are available in [4].

Let the primaries be denoted P1, P2 and P3 and the fused-backups F1

and F2. Column 1 of Table 6.1 specifies the names of three primary DFSMs.

Column 2 specifies the backup space required for replication (
∏1=3

i=1 |Pi|f), col-

umn 3 specifies the backup space for fusion (
∏i=2

i=1 |Fi|) and column 4 specifies

the percentage state space savings ((column 2-column 3)* 100/column 2). Col-

umn 5 specifies |Σ|, column 6 specifies the average number of events across

F1 and F2 and the last column specifies the percentage reduction in events

((column 5-column 6)*100/column 5).

The average state space savings in fusion (over replication) is 38%

(range 0-99%) over the 100 combination of benchmark machines, while the

average event-reduction is 4% (range 0-45%). We also present results in [4]

that show that the average savings in time by the incremental approach for

generating the fusions (over the non-incremental approach) is 8%. Hence, fu-

sion achieves significant savings in space for standard benchmarks, while the

event-reduction indicates that for many cases, the backups will not contain

a large number of events. In the following section, we present the practical

evaluation of our fused data structures.

6.4 Fusion-based Key-Value Store

In this section, we illustrate the usefulness of fused data structures

in a real-world distributed system. Amazon’s Dynamo [25] is a distributed

data store that needs to provide both durability and very low response times

(availability) for writes to the end user. They achieve this using a replication-

142

Table 6.1: Evaluation of Fusion on the MCNC’91 Benchmarks

Machines Replication
State Space

Fusion
State Space

% State
Savings

|Σ| Fusion
Events

% Event
Reduction

dk15,
bbara, mc

25600 19600 23.44 16 10 37.5

lion,
bbtas, mc

9216 8464 8.16 8 7 12.5

lion, tav,
modulo12

36864 9216 75 16 16 0

lion,
bbara, mc

25600 25600 0 16 9 43.75

tav,
beecount,
lion

12544 10816 13.78 16 16 0

mc, bbtas,
shiftreg

36864 26896 27.04 8 7 12.5

tav,
bbara, mc

25600 25600 0 16 16 0

dk15,
modulo12,
mc

36864 28224 23.44 8 8 0

modulo12,
lion, mc

36864 36864 0 8 7 12.5

based solution which is simple to maintain but expensive in terms of space. We

propose an alternate design using a combination of both fusion and replication,

which consumes far less space, while guaranteeing nearly the same levels of

durability and availability.

6.4.1 Existing Dynamo Design

We present a simplified version of Dynamo with a focus on the repli-

cation strategy. Dynamo consists of clusters of primary hosts each containing

a data store like a hash table that stores key-value pairs. The key space is

143

partitioned across these hosts to ensure sufficient load-balancing. For both

fault tolerance and availability, f additional copies of each primary hash table

are maintained. These f + 1 identical copies can correct f crash faults among

the primaries. The system also defines two parameters r and w which denote

the minimum number of copies that must participate in each read request and

write request respectively. These values are each chosen to be less than f . In

Fig. 6.2 (i), we illustrate a simple set up of Dynamo for n = 4 primaries, with

(f, w, r) = (3, 2, 2).

To read and write from the data store, the client can send its request to

any one of the f+1 copies responsible for the key of the request, and designate

it as the coordinator. The coordinator reads/writes the value corresponding to

the key locally and sends the request to the remaining f copies. On receiving

r − 1 or w − 1 responses from the backup copies for read and write requests

respectively, the coordinator responds to the client with the data value (for

reads) or just an acknowledgment (for writes). Since w < f , clearly some of the

copies may not be up to date when the coordinator responds to the client. This

necessitates some form of data versioning, and the coordinator or the client

has to reconcile the different data versions on every read. This is considered

an acceptable cost since Dynamo is mainly concerned with optimizing writes

to the store.

In this setup, when one or more data structures crash, the remaining

copies responsible for the same key space can take over all requests addressed

to the failed data structures. Once the crashed data structure comes back, the

copy that was acting as proxy just transfers back the keys that were meant

for the node. In Fig. 6.2 (i), since there can be at most three crash faults

in the system, there is at least one node copy for each primary remaining for

144

recovery.

X1 X ′
1 X ′′

1 X ′′′
1

F2

X2 X ′
2 X ′′

2 X ′′′
2

X3 X ′
3 X ′′

3 X ′′′
3

X4 X ′
4 X ′′

4 X ′′′
4

X1 and its Replias

(ii) Hybrid Dynamo: 6 Bakups
X2 X ′

2

X3 X ′
3

X4 X ′
4

X1 X ′
1

F1

Fused Bakups for X1 . . . X4

(i) Existing Dynamo: 12 Bakups
Figure 6.2: Design Strategies for Dynamo

6.4.2 Hybrid Fusion-based Design

We propose a hybrid design for Dynamo that uses a combination of

fusion and replication. We focus on the case of (f, w, r) = (3, 2, 2). Instead

of maintaining three additional copies for each primary (f = 3), we maintain

just a single additional copy for each primary and two fused backups for the

entire set of primaries as shown in Fig. 6.2 (ii). The fused backups achieve the

savings in space while the additional copies allow the necessary availability for

reads. The fused backups along with the additional copies can correct three

crash faults among the primaries.

The basic protocol for reads and writes remains the same except for the

fact that the fused backups cannot directly respond to the client requests since

they require the old value associated with the key (section 5.2). On receiving

a write request, the coordinator can send the request to these fused backups

145

which can respond to the request after updating the table. For the case of

w = 2, as long as the coordinator, say Xi obtains a response from one among

the three backups (one copy and two fused backups) the write can succeed.

This is similar to the existing design and hence performance for writes is not

affected significantly. On the other hand, performance for reads does drop

since the fused backups that contain data in the coded form cannot return

the data value corresponding to a key in an efficient manner. Hence, the two

additional copies need to answer all requests to maintain availability. Since

Dynamo is optimized mainly for writes, this may not be a cause for concern.

To alleviate the load on the fused backups, we can partition the set of

primaries into smaller blocks, trading some of the space efficiency for avail-

ability. For the set up shown in Fig. 6.2, we can maintain four fused backups

where F1, F2 are the fused backups for X1 and X2, while F3 and F4 are the

fused backups of X3 and X4.

Similar to the existing design of Dynamo, when data structures crash, if

there are surviving copies responsible for the same keys, then they can take over

operation. However, since we maintain only one additional copy per primary,

it is possible that none of the copies remain. In this case, the fused backup

can mutate into one or more of the failed primaries. It can receive requests

corresponding to the failed primaries, update its local hash table and maintain

data in its normal form (without fusing them). Concurrently, to recover the

failed primaries, it can obtain the data values from the remaining copies and

decode the values. Hence, even though transiently the fault tolerance of the

system is reduced, there is not much reduction in operational performance.

Dynamo has been designed to scale to 100 hosts each containing a

primary. So in a typical cluster with n = 100, f = 3 the original approach

146

requires, n ∗ f = 300 backup data structures. Consider a hybrid solution

that maintains one additional copy for each primary and maintains two fused

backups for every 10 primaries. This approach requires only 100 + 20 = 120

backup data structures. This results in savings in space, as well as power

and other resources required by the processes running these data structures.

Hence, the hybrid solution can be very beneficial for such a real-world system.

In the following section, we experimentally evaluate our design of fused data

structures.

6.5 Fused Data Structure Library

In this section, we describe our fusion-based data structure library [2]

that includes all data structures provided by the Java Collection Framework.

Further we have implemented our fused backups using Cauchy RS codes (re-

ferred to as Cauchy-Fusion) and Vandermonde RS codes (Van-Fusion). We

refer to either of these implementations as the current version of fusion. We

have compared its performance against replication and the older version of fu-

sion (Old-Fusion) [34]. Old-Fusion has a different, simpler design of the fused

backups, similar to the one presented in the design motivation of section 5.2.

We extend it for f -fault tolerance using Vandermonde RS codes. The current

versions of fusion, using either Cauchy or Vandermonde RS, outperform the

older version on all three counts: Backups space, update time at the back-

ups and time taken for recovery. In terms of comparison with replication, we

achieve almost n times savings in space as confirmed by the theoretical results,

while not causing too much update overhead. Recovery is much cheaper in

replication.

147

6.5.1 Experiments and Results

We implemented fused backups and primary wrappers for the data

structures in the Java Collection framework that are broadly divided into list-

based, map-based, set-based and queue-based data structures. We evaluated

the performance of a representative data structure in two of these categories:

linked lists for list-based and tree maps for map-based data structures. Both

Old-Fusion and Van-Fusion use Vandermonde RS codes with field size 216,

while Cauchy-Fusion uses Cauchy RS codes, with field size 25 (refer to section

3.2 for details of coding theory). The RS codes we have used are based on the

C++ library provided by James S. Plank [74, 75]. Currently we just support

the Integer data type for the data elements at the primaries.

We implemented a distributed system of hosts, each running either a

primary or a backup data structure and compared the performance of the

four solutions: Replication, Old-Fusion, Van-Fusion and Cauchy-Fusion. The

algorithms were implemented in Java with TCP sockets for communication and

the experiments were executed on a single Intel quad-core PC with 2.66 GHz

clock frequency and 12 GB RAM. In the future, we wish to evaluate fusion over

physically disparate machines. The three parameters that were varied across

the experiments were the number of primaries n, number of faults f and the

total number of operations performed per primary, ops. The operations were

biased towards inserts (80 %) and the tests were averaged over five runs. In

our experiments, we only assume crash faults. We describe the results for the

three main tests that we performed for linked lists: backup space, update time

at the backup and recovery time (Fig. 6.3). In Fig. 6.4, we present the results

of our experiments for tree maps, which is similar to the results for linked lists.

148

(a) Backup Nodes (b) Recovery Time

(c) Update Time

Figure 6.3: Linked Lists: Experimental evaluation.

149

(a) Backup Nodes (b) Recovery Time

(c) Update Time

Figure 6.4: Maps: Experimental evaluation.

Backup Nodes To measure the space required by the backups, we assume

that the size of data far exceeds the overhead of the index structure and hence,

we just plot the total number of backup nodes required by each solution. We

fix f = 3, ops = 500 and vary n from 1 to 10. Cauchy-Fusion and Van-Fusion,

differ only in the type of RS code used, but use the same design for the backups.

So, they both require the same number of backup nodes. Both Cauchy-Fusion

and Van-Fusion perform much better than both replication (approximately

n times) and Old-Fusion (approximately n/2 times) because the number of

150

nodes per backup never exceeds the maximum among the primaries.

Recovery Time We measure recovery time as the time taken to recover

the state of the crashed data structures after the client obtains the state of

the requisite data structures. The same experiment as that used to measure

backup space was used to compare the four solutions. Cauchy-Fusion and

Van-Fusion perform much better than Old-Fusion (approximately n/2 times)

because recovery in fusion involves iterating through all the nodes of each

fused backup. The current design contains fewer nodes and hence performs

better. The time taken for recovery by replication is negligible as compared

to fusion-based solutions (the curve is almost merged with the x-axis in the

graphs). This is to be expected since recovery in replication requires just

copying the failed data structures after obtaining them. However, note that,

even for n = 10, the time taken for recovery by both Cauchy and Van-Fusion

is under 40 millisecs. This can be a small cost to pay for the considerable

savings that we achieve in space.

Further analysis of the recovery times in both Cauchy-Fusion and Van-

Fusion shows that almost 40 % of the cost of recovery is spent in decoding the

coded data elements. This implies two things. First, using a different code

such as LDPC codes, that offers faster decoding in exchange for less space

efficiency, fusion can achieve faster recovery times. Second, more than 50 % of

recovery time is spent on just iterating through the backup nodes, to retrieve

the data for decoding. Hence, optimizing the recovery algorithm, can reduce

the recovery time. The other observation is that, even though Cauchy RS codes

have much faster decode times than Vandermonde RS codes, the recovery time

for Cauchy-Fusion is only marginally better than Van-Fusion. We believe this

151

is mainly due to the small data size (4 byte integers). For larger data values,

Cauchy-Fusion might perform much better than Van-Fusion. These are future

areas of research that we wish to explore.

Update Time Finally, to measure the update time at the backups, we fixed

n = 3, f = 1 and varied ops from 500 to 5000. Both Cauchy-Fusion and

Van-Fusion have more update overhead as compared to replication (approx-

imately 1.5 times slower) while they perform better than the older version

(approximately 2.5 times faster). Since the current design of fused backups

has fewer backup nodes, it takes less time to iterate through the nodes for an

update. The update time at a backup can be divided into two parts: the time

taken to locate the node to update plus the time taken to update the node’s

code value. The code update time was insignificantly low and almost all the

update time was spent in locating the node. Hence, optimizing the update

algorithm can reduce the total update time considerably. This also explains

why Cauchy-Fusion does not achieve any improvement over Van-Fusion and

at times does slightly worse, because the overhead of dealing with blocks of

data in Cauchy-Fusion exceeds the savings achieved by faster updates. As

mentioned before, we believe that with the larger data sizes, Cauchy-Fusion

may perform as expected.

152

Chapter 7

Conclusion and Future Work

In this dissertation, we present a fusion-based technique for fault tol-

erance in distributed systems, in which we maintain far fewer backups than

the current replication-based solutions. This leads to two major advantages

over replication. First, the total space or memory required for fault tolerance

is reduced. Second, we save on the computational resources such as the power

required to run the backups. To make our techniques generally applicable, we

describe fusion in two separate contexts: (i) distributed systems modeled as

finite state machines and, (ii) distributed systems hosting large data struc-

tures. In the following section, we summarize our fusion-based solutions for

state machines and data structures.

7.1 Fused State Machines

Given a set of n different deterministic finite state machines (referred

to as machines), we correct f crash faults (or bf/2c Byzantine faults) among

them using just f additional fused machines as compared to the nf backups

required by replication. We present a framework for fault tolerance in machines

and provide a polynomial time algorithm to generate fused backup machines.

Our algorithm ensures that the backups are efficient in terms of the number of

states in their state set and the number of events in their event set. Further, we

present algorithms to detect and correct faults that incur very little additional

153

overhead as compared to replication.

We provide a Java design tool to generate fused state machines and our

experimental evaluation shows that, on average, fusion achieves 38% savings

in state space over replication. To illustrate the practicality of our solution,

we present a fusion-based design for grep in the MapReduce framework that

requires 22% fewer worker tasks than a pure replication-based solution.

In our fusion-based solution for state machines, there are two major

disadvantages over replication. First, the time complexity of generating the

fused backups is exponential in n, while in the case of replication it is linear

in n. However, these backups have to be generated only once in the life time

of the system. Second, in the worst case, the event set of the fused backup is

the union of the event sets of all primaries. This could lead to excessive load

on the backups. In the future, we wish to explore techniques to reduce this

load.

7.2 Fused Data Structures

Given a set of n different data structures, we correct f crash faults

among them using just f additional fused data structures as compared to the

nf backups required by replication. We show that our solution achieves O(n)

savings in space over replication while ensuring that the overhead for normal

operation is only as much as the overhead for replication. Further, we present

a solution to correct f Byzantine faults using just nf+f backups as compared

to the 2nf backups required by replication. We present a generic design of

fused backups for most commonly used data structures such as stacks, vectors,

binary search trees, tree maps and hash tables.

154

We provide a Java library of these backups and our experimental re-

sults show that fusion is space efficient as compared to replication (almost n

times), while causing very little overhead for normal operation. To illustrate

the applicability of fused data structures, we present a fusion-based design for

Amazon’s Dynamo key-value store that requires 60% fewer backups than a

pure replication-based solution.

In our solution for fused data structures, we use the Reed Solomon

[79] erasure codes that guarantee space optimality. However, this leads to

two disadvantages over replication. First, the time complexity of recovery is

far more than that for replication. Second, each fused backup has to receive

events corresponding to all the primaries. We wish to explore other erasure

codes that offer different compromises. In the following section, we explore

the future avenues of research in fusion.

7.3 Future Work

Building Fusion-based Distributed Systems In this dissertation, we

present the fusion-based designs of the Dynamo key-value store and the grep

application in the MapReduce framework. We wish to implement these designs

and compare their performance with a replication-based solution for various

system parameters such as the number of calls to main memory, the end-to-

end time for operation, the peak and average loads on each process and the

power consumed by the nodes.

Fusion can be used as a framework for fault tolerance in many real-

world systems such as peer-to-peer networks [87, 97], streaming computations

[8, 84] and distributed file systems [14]. Each of these applications may offer

challenges that are widely different from the other. For example, while peer-

155

to-peer networks need to support huge amounts of node churn, streaming

applications need to satisfy strict deadlines, despite failures. The design and

implementation of fusion-based solutions for these applications is an area of

future research.

In [33], the author has developed fusion-based fault-tolerant versions

of the vector clock algorithm, a causal ordering algorithm and a mutual ex-

clusion algorithm. This may be extended to many other standard distributed

applications such as the total ordering algorithms or arrow protocols.

Backups Outside the Closed Partition Set So far in this dissertation,

we have only considered machines that belong to the closed partition set. In

other words, given a set of primaries P, our search for backup machines was

restricted to those that are less than the RCP of P. It is possible that efficient

backups exist outside these set of machines. An interesting avenue of research

is to understand the theory of such machines and design efficient algorithms

to generate them.

Communicating State Machines for Efficient Backups In our solution

for fused state machines, we assume that the primaries and the backups do

not communicate with each other. On the other end of the spectrum, consider

a solution in which we maintain parity or checksum servers that contain the

erasure code corresponding to the states of the primaries. In this solution each

primary has to communicate with the backup servers after every event/update.

As seen in section 2, such a solution involves considerable overhead for commu-

nication among the machines and recovery. However, unlike our fusion-based

solution, this simple checksum-based approach guarantees space optimality.

156

We wish to explore a solution in which we allow partial communication among

the state machines to generate efficient backups, while ensuring reasonably

less overhead for normal operation and recovery.

Further, in this dissertation, we reduce the RCP of the primaries, to

generate machines that act independently of each other, i.e., a parallel decom-

position of the RCP . In [55], the authors explore the notion of the serial

decomposition of a given state machine. For example, a machine M maybe

decomposed into two machines Ma and Mb such that the input to Mb is depen-

dent on the output of Ma. Given the state of Ma and Mb, if we can uniquely

determine the state of M , then {Ma,Mb} is a serial decomposition of M .

Communicating backups can lead to far more efficient solutions for fusion.

Load-Balancing at the Fused Backups One of the major challenges faced

by fusion is the increased load at the fused-backups. If a single process acts as

backup for n processes, then the load at the backup process may be quite high

for large values of n. There are many ways we propose to deal with additional

load at the backup process. First, the objective of primary processes and

backup processes may be different. Primary processes may be optimized for

fast read-only operations. Backup processes that are used for fault-tolerance

do not execute read-only operations and can be optimized for write operations.

For example, a set data structure may be implemented as a red-black tree for

primary use, whereas, the backup may be organized as a simple linked list.

Second, in many distributed computing examples, the operation at the

fused process can be aggregated, thereby reducing the total number of opera-

tions performed at the backup. The amount of work performed at the fused

process is crucially dependent on the fusion algorithm used. For example, if

157

an update is common to all the primaries, then there is no reason for each

primary to send this update to the fused process. Just one aggregated update

corresponding to this common update can be applied on the fused process.

Finally, fusion can coexist with replication. So instead of one fused process

for n primary processes, we can have a system with m fused processes each

of them acting as backup for n/m primary processes. We will investigate ef-

ficient mechanisms that change the degree of replication to adapt to different

workloads.

Quantifying the Trade-off between Space and Load In recent times,

there has been extensive work on erasure codes for distributed storage [27,

56, 67, 93]. In particular, there has been considerable work on understanding

the trade-off between the amount of data that needs to be stored in each

storage node vs. the amount of bandwidth needed for recovery from faults

(the storage-bandwidth problem). Further, it has been shown that codes exist

for each point on the storage-bandwidth curve. For many systems, where the

nodes are exposed directly to client operations, it is important to understand

the trade-off between the load on each backup node during normal operation

versus the total amount of redundant storage per backup node.

To quantify the load on a backup node/process, we focus on two param-

eters: (i) fusion-count : the number of primaries each process has to service

and, (ii) fusion-bandwidth: the input bandwidth required by each process. Ex-

ploring the trade-offs between the redundant storage per backup node versus

the fusion count and the fusion-bandwidth is an interesting area of research.

Further, codes could be designed, appropriate to system requirements. For ex-

ample, replication (which can be considered a special case of fusion) is clearly

158

at one end of the redundancy versus fusion-count curve, since it requires min-

imum fusion-count but maximum redundancy. Reed-Solomon codes on the

other hand are at the other extreme, requiring maximum fusion-count but

minimum redundancy.

Alternative Methods for Systematic Coding Currently we use the Reed-

Solomon erasure codes for fault tolerance in fused data structures. While these

codes guarantee space efficiency, they are inefficient in terms of recovery time

complexity. We wish to explore other erasure codes such as Regenerative codes

[27, 69], LDPC codes [31, 80, 90] and LT codes [15, 58–60] that offer different

trade-offs between various system parameters.

For example, we can use the code presented in [69], to first partition

the primary data structures, apply Reed-Solomon codes for each block of these

primaries and then apply a simple XOR-based code on these encoded blocks.

Such a simple construction ensures that at least single failures can be corrected

very efficiently using the XOR encodings. Only if more than one failure oc-

curs (which is the rare case), do we need to use the expensive Reed-Solomon

routines for decoding. Hence, overall, at the cost of some space efficiency, we

can achieve much better recovery times.

Complex Fault Models In our current fault model, we are mainly con-

cerned with deterministic worst-case failures. We wish to extend this to more

complex models such as stochastic or correlated failures. In the field of infor-

mation theory, most codes are designed to transmit messages across a noisy

channel in which messages can be dropped or corrupted with a certain prob-

ability. For example, LDPC or Turbo Codes achieve near optimal rates for

159

message transmission given a certain noise level. It is possible that servers

in a distributed system can be modeled as channels with error probabilities.

Designing appropriate codes for such a model is an avenue of future research.

Also, in this dissertation, we have assumed that failures among the servers are

completely independent. In real-world scenarios, failures among the servers

are usually correlated [37, 92]. Given a certain failure pattern, it is possible

that we can design even more optimized codes for fault tolerance.

160

Bibliography

[1] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms

for approximate nearest neighbor in high dimensions. Commun. ACM,

51(1):117–122, 2008.

[2] Bharath Balasubramanian and Vijay K. Garg. Fused data structure

library (implemented in Java 1.6). In Parallel and Distributed Systems

Laboratory, http://maple.ece.utexas.edu, 2010.

[3] Bharath Balasubramanian and Vijay K. Garg. Fused data structures for

handling multiple faults in distributed systems. In International Con-

ference on Distributed Computing Systems, ICDCS 2011, Minneapolis,

Minnesota, USA, June 20-24, 2011, pages 677–688, 2011.

[4] Bharath Balasubramanian and Vijay K. Garg. Fused fsm design tool (im-

plemented in Java 1.6). In Parallel and Distributed Systems Laboratory,

http://maple.ece.utexas.edu, 2011.

[5] Bharath Balasubramanian and Vijay K. Garg. Fused state machines for

fault tolerance in distributed systems. In Principles of Distributed Sys-

tems - 15th International Conference, OPODIS 2011, Toulouse, France,

December 13-16, 2011. Proceedings, volume 7109 of Lecture Notes in

Computer Science, pages 266–282. Springer, 2011.

[6] Bharath Balasubramanian and Vijay K. Garg. Fault tolerance in dis-

tributed systems using fused data structures. IEEE Transactions on

Parallel and Distributed Systems, 2011 (to appear).

161

[7] Bharath Balasubramanian, Vinit Ogale, and Vijay K. Garg. Fault tol-

erance in finite state machines using fusion. In Proceedings of Interna-

tional Conference on Distributed Computing and Networking (ICDCN)

2008, Kolkata, volume 4904 of Lecture Notes in Computer Science, pages

124–134. Springer, 2008.

[8] Magdalena Balazinska, Hari Balakrishnan, Samuel Madden, and Mike

Stonebraker. Fault-Tolerance in the Borealis Distributed Stream Pro-

cessing System. In ACM SIGMOD Conf., Baltimore, MD, June 2005.

[9] E. R. Berlekamp. Algebraic Coding Theory. McGraw-Hill, New York,

1968.

[10] Garrett Birkhoff. Lattice theory. volume 25, pages 420 pp+. American

Mathematical Society, 1967.

[11] Johannes Blömer, Malik Kalfane, Marek Karpinski, Richard Karp, Michael

Luby, and David Zuckerman. An XOR-Based Erasure-Resilient Coding

Scheme. Technical Report TR-95-048, International Computer Science

Institute, August 1995.

[12] T. L. Booth. Sequential machines and automata theory. John Wiley &

Sons, 1967.

[13] Mike Burrows. The Chubby lock service for loosely-coupled distributed

systems. In Proceedings of the 7th symposium on Operating systems

design and implementation, OSDI ’06, pages 335–350, Berkeley, CA, USA,

2006. USENIX Association.

162

[14] John Byers, Jeffrey Considine, and Michael Mitzenmacher. Simple Load

Balancing for Distributed Hash Tables. In Peer-to-Peer Systems II, pages

80–87. Springer, Berlin / Heidelberg, 2003.

[15] John W. Byers, Michael Luby, Michael Mitzenmacher, and Ashutosh

Rege. A digital fountain approach to reliable distribution of bulk data.

SIGCOMM Comput. Commun. Rev., 28(4):56–67, 1998.

[16] Christian Cachin and Stefano Tessaro. Optimal resilience for erasure-

coded Byzantine distributed storage. In International Conference on

Dependable Systems and Networks (DSN), pages 115–124, 2006.

[17] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance.

In Third Symposium on Operating Systems Design and Implementation

(OSDI), New Orleans, Louisiana, February 1999. USENIX Association,

Co-sponsored by IEEE TCOS and ACM SIGOPS.

[18] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz, and

David A. Patterson. RAID: high-performance, reliable secondary storage.

ACM Comput. Surv., 26(2):145–185, 1994.

[19] A. Clement, M. Marchetti, E. Wong, L. Alvisi, and M. Dahlin. Mak-

ing Byzantine fault tolerant systems tolerate Byzantine faults. In 6th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI), April 2009.

[20] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues, and

Liuba Shrira. Hq replication: A hybrid quorum protocol for Byzantine

163

fault tolerance. In Proceedings of the Seventh Symposium on Operat-

ing Systems Design and Implementations (OSDI), Seattle, Washington,

November 2006.

[21] Flavin Cristian. Understanding fault-tolerant distributed systems. Com-

mun. ACM, 34:56–78, February 1991.

[22] Flaviu Cristian. Probabilistic clock synchronization. Distributed Com-

puting, 3(3):146–158, 1989.

[23] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.

Cambridge University Press, Cambridge, UK, 1990.

[24] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data pro-

cessing on large clusters. Commun. ACM, 51:107–113, January 2008.

[25] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan

Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-

manian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s highly

available key-value store. In Proceedings of twenty-first ACM SIGOPS

symposium on Operating systems principles, SOSP ’07, pages 205–220,

New York, NY, USA, 2007. ACM.

[26] Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast

and multicast algorithms: Taxonomy and survey. ACM Comput. Surv.,

36(4):372–421, December 2004.

[27] Alexandros G. Dimakis, Kannan Ramchandran, Yunnan Wu, and Changho

Suh. A survey on network codes for distributed storage. CoRR, abs/1004.4438,

2010.

164

[28] Petros Drineas and Yiorgos Makris. Spare: Selective partial replication

for concurrent fault detection in fsms. In Proceedings of the 16th Interna-

tional Conference on VLSI Design, VLSID ’03, pages 167–, Washington,

DC, USA, 2003. IEEE Computer Society.

[29] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B.

Johnson. A survey of rollback-recovery protocols in message-passing

systems. ACM Comput. Surv., 34:375–408, September 2002.

[30] M. J. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed

consensus with one faulty process. Journal of the ACM, 32(2), April

1985.

[31] R. Gallager. Low-density parity-check codes. IEEE Transactions on

Information Theory, 8(1):21–28, January 1962.

[32] Shuhong Gao. A new algorithm for decoding Reed-Solomon codes.

In in Communications, Information and Network Security, V.Bhargava,

H.V.Poor, V.Tarokh, and S.Yoon, pages 55–68. Kluwer, 2002.

[33] Vijay K. Garg. Implementing fault-tolerant services using state machines:

beyond replication. In Proceedings of the 24th international conference

on Distributed computing, DISC ’10, pages 450–464, Berlin, Heidelberg,

2010. Springer-Verlag.

[34] Vijay K. Garg and Vinit Ogale. Fusible data structures for fault-tolerance.

In Proceedings of the 27th International Conference on Distributed Com-

puting Systems, ICDCS ’07, pages 20–, Washington, DC, USA, 2007.

IEEE Computer Society.

165

[35] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search

in high dimensions via hashing. In VLDB ’99: Proceedings of the 25th

International Conference on Very Large Data Bases, pages 518–529, San

Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[36] Venkatesan Guruswami. List Decoding of Error-Correcting Codes: Win-

ning Thesis of the 2002 ACM Doctoral Dissertation Competition (Lecture

Notes in Computer Science). Springer-Verlag New York, Inc., Secaucus,

NJ, USA, 2005.

[37] Andreas Haeberlen, Alan Mislove, and Peter Druschel. Glacier: Highly

durable, decentralized storage despite massive correlated failures. In IN

PROC. OF NSDI, 2005.

[38] Richard Hamming. Error-detecting and error-correcting codes. In Bell

System Technical Journal, volume 29(2), pages 147–160, 1950.

[39] J. Hartmanis and R. E. Stearns. Algebraic structure theory of sequen-

tial machines (Prentice-Hall international series in applied mathematics).

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1966.

[40] Ahmed Helmy, Deborah Estrin, and Sandeep K. S. Gupta. Systematic

testing of multicast routing protocols: Analysis of forward and backward

search techniques. CoRR, cs.NI/0007005, 2000.

[41] James Hendricks, Gregory R. Ganger, and Michael K. Reiter. Verifying

distributed erasure-coded data. In Proceedings of the 26th ACM Sym-

posium on Principles of Distributed Computing (PODC), pages 163–168.

ACM Press, 2007.

166

[42] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and

Kristofer Pister. System architecture directions for networked sensors. In

Proceedings of the ninth international conference on Architectural support

for programming languages and operating systems, ASPLOS-IX, pages 93–

104, New York, NY, USA, 2000. ACM.

[43] Philip Hingston. Using finite state automata for sequence mining. In

Proceedings of the twenty-fifth Australasian conference on Computer sci-

ence - Volume 4, ACSC ’02, pages 105–110, Darlinghurst, Australia, Aus-

tralia, 2002. Australian Computer Society, Inc.

[44] John E. Hopcroft. An n log n algorithm for minimizing states in a finite

automaton. Technical report, Stanford, CA, USA, 1971.

[45] David A. Huffman. The synthesis of sequential switching circuits. Tech-

nical report, Massachusetts, USA, 1954.

[46] Oliver Kasten and Kay Römer. Beyond event handlers: programming

wireless sensors with attributed state machines. In IPSN ’05: Proceedings

of the 4th international symposium on Information processing in sensor

networks, pages 7+, Piscataway, NJ, USA, 2005. IEEE Press.

[47] Valerie King and Jared Saia. Breaking the O(n2) bit barrier: scal-

able Byzantine agreement with an adaptive adversary. In Proceeding of

the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed

computing, PODC ’10, pages 420–429, New York, NY, USA, 2010. ACM.

[48] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick

Eaton, Dennis Geels, Ramakrishan Gummadi, Sean Rhea, Hakim Weath-

erspoon, Westley Weimer, Chris Wells, and Ben Zhao. Oceanstore: an ar-

167

chitecture for global-scale persistent storage. SIGPLAN Not., 35(11):190–

201, November 2000.

[49] Avinash Lakshman and Prashant Malik. Cassandra: structured storage

system on a p2p network. In Proceedings of the 28th ACM symposium

on Principles of distributed computing, PODC ’09, pages 5–5, New York,

NY, USA, 2009. ACM.

[50] L. Lamport. Time, clocks, and the ordering of events in a distributed

system. Communications of the ACM, 21(7):558–565, July 1978.

[51] Leslie Lamport. The implementation of reliable distributed multiprocess

systems. Computer networks, 2:95–114, 1978.

[52] Leslie Lamport and Michael Fischer. Byzantine generals and transaction

commit protocols. Technical report, 1982.

[53] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The Byzan-

tine generals problem. ACM Trans. Program. Lang. Syst., 4(3):382–401,

1982.

[54] Minh-Hoang Le, Tu-Bao Ho, and Yoshiteru Nakamori. Detecting citation

types using finite-state machines. In Proceedings of the 10th Pacific-

Asia conference on Advances in Knowledge Discovery and Data Mining,

PAKDD’06, pages 265–274, Berlin, Heidelberg, 2006. Springer-Verlag.

[55] David Lee and Mihalis Yannakakis. Closed partition lattice and machine

decomposition. IEEE Trans. Comput., 51(2):216–228, 2002.

[56] Derek Leong, Alexandros G. Dimakis, and Tracey Ho. Distributed stor-

age allocation for high reliability. In ICC, pages 1–6. IEEE, 2010.

168

[57] J. H. Van Lint. Introduction to Coding Theory. Springer-Verlag New

York, Inc., Secaucus, NJ, USA, 1998.

[58] Michael Luby. LT codes. In Proceedings of the 43rd Symposium on

Foundations of Computer Science, FOCS ’02, page 271, Washington, DC,

USA, 2002. IEEE Computer Society.

[59] Michael Luby, Michael Mitzenmacher, Mohammad Amin Shokrollahi, and

Daniel A. Spielman. Efficient erasure correcting codes. IEEE Transac-

tions on Information Theory, 47(2):569–584, 2001.

[60] Michael G. Luby, Michael Mitzenmacher, M. Amin Shokrollahi, Daniel A.

Spielman, and Volker Stemann. Practical loss-resilient codes. In STOC

’97: Proceedings of the twenty-ninth annual ACM symposium on Theory

of computing, pages 150–159, New York, NY, USA, 1997. ACM Press.

[61] David J.C. MacKay and Radford M. Neal. Near shannon limit perfor-

mance of low density parity check codes. Electronics Letters, 32:1645–

1646, 1996.

[62] A. Mahmood and E. J. McCluskey. Concurrent error detection using

watchdog processors-a survey. IEEE Trans. Comput., 37(2):160–174,

February 1988.

[63] P. M. Melliar-Smith, L. E. Moser, and V. Agrawala. Broadcast protocols

for distributed systems. IEEE Trans. Parallel Distrib. Syst., 1(1):17–25,

January 1990.

[64] Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton. Dag-aware

aig rewriting: A fresh look at combinational logic synthesis. In In DAC

169

06: Proceedings of the 43rd annual conference on Design automation,

pages 532–536. ACM Press, 2006.

[65] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York,

NY, USA, 1 edition, 1997.

[66] Vinit Ogale, Bharath Balasubramanian, and Vijay K. Garg. A fusion-

based approach for tolerating faults in finite state machines. In IPDPS

’09: Proceedings of the 2009 IEEE International Symposium on Parallel

& Distributed Processing, pages 1–11, Washington, DC, USA, 2009. IEEE

Computer Society.

[67] Frédérique E. Oggier and Anwitaman Datta. Byzantine fault tolerance

of regenerating codes. CoRR, abs/1106.2275, 2011.

[68] John K. Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis,

Jacob Leverich, David Mazières, Subhasish Mitra, Aravind Narayanan,

Mendel Rosenblum, Stephen M. Rumble, Eric Stratmann, and Ryan

Stutsman. The case for RAMClouds: Scalable high-performance stor-

age entirely in dram. In SIGOPS OSR. Stanford InfoLab, 2009.

[69] Dimitris S. Papailiopoulos, Jianqiang Luo, Alexandros G. Dimakis, Cheng

Huang, and Jin Li. Simple regenerating codes: Network coding for cloud

storage. CoRR, abs/1109.0264, 2011.

[70] Rubin A. Parekhji, G. Venkatesh, and Sunil D. Sherlekar. A methodology

for designing optimal self-checking sequential circuits. In Proceedings of

the IEEE International Test Conference on Test: Faster, Better, Sooner,

pages 283–291, Washington, DC, USA, 1991. IEEE Computer Society.

170

[71] Rubin A. Parekhji, G. Venkatesh, and Sunil D. Sherlekar. Concurrent

error detection using monitoring machines. IEEE Des. Test, 12(3):24–32,

September 1995.

[72] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redun-

dant arrays of inexpensive disks (RAID). In SIGMOD ’88: Proceedings

of the 1988 ACM SIGMOD international conference on Management of

data, pages 109–116, New York, NY, USA, 1988. ACM Press.

[73] Wesley W. Peterson and E. J. Weldon. Error-Correcting Codes - Revised,

2nd Edition. The MIT Press, 2 edition, March 1972.

[74] J. S. Plank. A tutorial on Reed-Solomon coding for fault-tolerance in

RAID-like systems. Software – Practice & Experience, 27(9):995–1012,

September 1997.

[75] J. S. Plank, S. Simmerman, and C. D. Schuman. Jerasure: A library in

C/C++ facilitating erasure coding for storage applications - Version 1.2.

Technical Report CS-08-627, University of Tennessee, August 2008.

[76] James S. Plank and Lihao Xu. Optimizing Cauchy Reed-Solomon codes

for fault-tolerant network storage applications. In Proceedings of the Fifth

IEEE International Symposium on Network Computing and Applications,

pages 173–180, Washington, DC, USA, 2006. IEEE Computer Society.

[77] Michael O. Rabin. Efficient dispersal of information for security, load

balancing, and fault tolerance. J. ACM, 36(2):335–348, 1989.

[78] Parameswaran Ramanathan, Kang G. Shin, and Ricky W. Butler. Fault-

tolerant clock synchronization in distributed systems. Computer, 23(10):33–

42, October 1990.

171

[79] I. S. Reed and G. Solomon. Polynomial Codes Over Certain Finite Fields.

Journal of the Society for Industrial and Applied Mathematics, 8(2):300–

304, 1960.

[80] T. J. Richardson and R. L. Urbanke. Efficient encoding of low-density

parity-check codes. Information Theory, IEEE Transactions on, 47(2):638–

656, August 2002.

[81] Ron Roth. Introduction to Coding Theory. Cambridge University Press,

March 2006.

[82] Fred B. Schneider. Byzantine generals in action: implementing fail-stop

processors. ACM Trans. Comput. Syst., 2:145–154, 1984.

[83] Fred B. Schneider. Implementing fault-tolerant services using the state

machine approach: A tutorial. ACM Computing Surveys, 22(4):299–319,

1990.

[84] Mehul A. Shah, Joseph M. Hellerstein, and Eric Brewer. Highly avail-

able, fault-tolerant, parallel dataflows. In Proceedings of the 2004 ACM

SIGMOD International Conference on Management of Data, SIGMOD

’04, pages 827–838, New York, NY, USA, 2004. ACM.

[85] Claude Elwood Shannon. A mathematical theory of communication.

Bell Systems Technical Journal, 27:379–423,623–656, 1948.

[86] Swaminathan Sivasubramanian, Michal Szymaniak, Guillaume Pierre,

and Maarten van Steen. Replication for web hosting systems. ACM

Comput. Surv., 36(3):291–334, 2004.

172

[87] Ion Stoica, Robert Morris, David Karger, Frans M. Kaashoek, and Hari.

Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications,

2001.

[88] Madhu Sudan. List decoding: Algorithms and applications. SIGACT

News, 31:2000, 2000.

[89] Jeremy B. Sussman and Keith Marzullo. Comparing primary-backup

and state machines for crash failures. In PODC ’96: Proceedings of the

fifteenth annual ACM symposium on Principles of distributed computing,

page 90, New York, NY, USA, 1996. ACM Press.

[90] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. Costello.

LDPC block and convolutional codes based on circulant matrices. Infor-

mation Theory, IEEE Transactions on, 50(12):2966–2984, 2004.

[91] Fathi Tenzakhti, Khaled Day, and M. Ould-Khaoua. Replication algo-

rithms for the world-wide web. J. Syst. Archit., 50(10):591–605, 2004.

[92] Hakim Weatherspoon, Tal Moscovitz, and John Kubiatowicz. Intro-

spective Failure Analysis: Avoiding Correlated Failures in Peer-to-Peer

Systems. Reliable Distributed Systems, IEEE Symposium on, 0:362–367,

2002.

[93] Yunnan Wu and Alexandros G. Dimakis. Reducing repair traffic for

erasure coding-based storage via interference alignment. In Proceedings

of the 2009 IEEE international conference on Symposium on Information

Theory - Volume 4, ISIT’09, pages 2276–2280, Piscataway, NJ, USA,

2009. IEEE Press.

173

[94] Ming-Ming Xiao and Shun-Zheng Yu. Learning automata representa-

tion of network protocol by grammar induction. In Proceedings of the

2010 international conference on Web information systems and mining,

WISM’10, pages 220–227, Berlin, Heidelberg, 2010. Springer-Verlag.

[95] Saeyang Yang. Logic synthesis and optimization benchmarks user guide

version 3.0, 1991.

[96] Hiroshi Youra, Tomoo Inoue, Toshimitsu Masuzawa, and Hideo Fujiwara.

On the synthesis of synchronizable finite state machines with partial scan.

Systems and Computers in Japan, 29(1):53–62, 1998.

[97] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and

J. D. Kubiatowicz. Tapestry: A Resilient Global-Scale Overlay for Ser-

vice Deployment. IEEE Journal on Selected Areas in Communications,

22(1):41–53, January 2004.

174

Index

Abstract, viii

Acknowledgments, v

Byzantine faults, 19

Cauchy RS codes, 47

checkpointing, 28

closed partition, 34

closed partition lattice, 35

closed partition set, 35

code rate, 42

crash faults, 19

data structure, 94

DFSM, 33

DFSM minimization, 30

encoding, 42

fault graph, 52

field, 38

FIFO, 20

finite field, 38

finite field construction, 39

fused data structures, 96

fused state machines, 57

Galois field, 38

generator matrix, 42

homomorphism, 35

linear code, 42

linear subspace, 39

locality sensitive hashing, 83

lower cover, 36

MDS codes, 44

order among machines, 35

parity-check matrix, 43

Reed-Solomon (RS) codes, 45

rollback, 28

syndrome decoding, 44

Vandermonde RS codes, 46

vector space, 38

175

Vita

Bharath Balasubramanian was born in Chennai, India, to B. Sudha

and R. Balasubramanian. He received his Bachelors degree in Engineering,

Electronics, from Mumbai University in 2004. He received his Master of Sci-

ence degree in Computer Engineering, from the University of Texas at Austin

in 2007. His areas of interest include: Concurrent and Distributed Algorithms,

Fault tolerant Distributed Systems, Distributed Storage and Distributed De-

bugging.

Permanent address: B 1002, Jasmine Towers,
Vasanth Vihar, Thane (West)-400 610,
Maharashtra, India.

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

176

