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We propose an algebraic model called concurrent regular expressions for modeling and anal-
ysis of distributed systems. These expressions extend regular expressions with four operators
- interleaving, interleaving closure, synchronous composition and renaming. Their expressive
power is equivalent to those of Petri nets, and therefore they are more general than Path
expressions and COSY expressions.

1 Introduction

As concurrent systems are difficult to design, the simplest of them can have subtle
errors. To avoid these errors, we need to capture essential aspects of a system in a model
and then analyze it for correctness. Models for concurrent systems that can be analyzed
automatically have less expressive power than programming languages. They can be
categorized roughly into two groups: algebra based and transition based models. The
algebra based models consist of operators and a set of primitive behaviors. Expressions
are built hierarchically by applying operators on sub-expressions. Examples of such
models are path expressions [Lauer 75], behavior expressions [Milner 80] and extended
regular expressions. Examples of specification languages and systems based on such
models are Path Pascal [Campbell 79], CCS [Milner 80] and Paisley [Zave 85]. Some
of the commonly asked questions in such formal systems are: “Is s a possible trace of
the concurrent system under analysis?”, and “Is 57, a concurrent system, the same as
another concurrent system 5377

In the transition based models the behavior of a system is generally modeled as a
sequence of configurations of an automaton. Examples of the transition based models
are finite state machines [Hopcroft 79], S/R Model [Aggarwal 87], UCLA graphs [Cerf
72], and Petri nets [Reisig 85]. Examples of modeling and analysis tools based on these
models are Spanner [Aggarwal 87], Affirm [Gerhart 80] and PROTEAN [Billington 88].

Algebraic systems promote hierarchical description and verification, whereas transi-
tion based models have the advantage that they are graphical in nature. For this reason,
it is sometimes easier to use an algebraic description, and othertimes a transition-based
description. We believe that a formal description technique should support both styles
of descriptions. In this paper, we propose an algebraic model called concurrent regular
expressions for modeling of concurrent systems. These expressions can be converted
automatically to Petri nets, and thus all analysis techniques that are applicable to Petri
nets can be used. Conversely, any Petri net can be converted to a concurrent regular
expression providing further insights into its language.

All the existing models can also be classified according to their inherent expressive
power. For example a finite state machine is inherently less expressive than a Petri net.
However, the gain in expressive power comes at the expense of analyzability. A complex
system may consist of many components requiring varying expressive power. We believe



that a formal description technique should support models of different expressive powers
under a common framework. An example of such a description technique for syntax
specification is Chomsky hierarchy of models based on grammar. A similar hierarchy is
required for formal description of distributed systems. The model of concurrent regular
expressions provides such a hierarchy. A regular expression is less expressive than a
unit expression which, in turn, is less expressive than a concurrent regular expression.

As mentioned earlier, there are many existing algebraic models for specification of
concurrent systems. CCS[Milner 80], CSP[Hoare 85] and FRP[Inan 88] These models
do not have any equivalent transition based model. Similarly, they do not support a
hierarchy of models like we do. Path expressions[Lauer 79] were shown to be translat-
able to Petri nets, and thus analyzable for reachability properties [Kosaraju 82, Mayr
84,Karp 69]. Concurrent regular expressions are more general than Path expressions
as they are equivalent to Petri nets [Garg 88].

We have used interleaving semantics rather than true concurrency as advocated
by [Pratt 81] and [Reisig 85]. This assumption is in agreement with CSP[Hoare 85]
and CCS[Milner 81]. In this paper, we have further restricted ourselves to modeling
deterministic systems so that the languages are sufficient for defining behaviors of a
concurrent system. We have purposely restricted ourselves from defining finer seman-
tics, such as failures[Hoare 85], and synchronization trees[Milner 81], as the purpose of
this paper is to introduce a basic model to which these concepts can be added later. In
particular, it is easy to add a non-deterministic or operator and failure semantics[Hoare
85].

Concurrent regular expressions (cre) use operators that arise naturally in modeling
concurrent systems such as interleaving and synchronous composition. The expressive
power of cre’s is increased beyond that of regular expressions by means of an operator
called interleaving closure denoted by «. Based on this operator we introduce the
notion of interleaving-closed (i-closed) sets and study their properties. The concept of
i-closed set is useful because it guarantees that if every customer engages in a legal
sequence of action than a sequence of actions with any number of customers will also
be legal no matter what the interleaving. This is a desirable property of a system as it
tells us that the system can logically handle any number of customers and treat them
independently. We provide a method to construct interleaving-closed sets.

This paper is organized as follows. Section 2 defines concurrent regular expressions.
It also describes the properties of operators used in the definition. Section 3 gives some
examples of use of cre’s for modeling distributed systems and compares the modeling
convenience of concurrent regular expressions with Petri nets. Section 4 presents the
properties of interleaving-closed sets. Section 5 compares the class of languages defined
by concurrent regular expressions with regular, context-free and Petri net recognizable
languages.

2 Concurrent Regular Expressions

We use languages as the means for defining behaviors of a concurrent system. A
language is defined over an alphabet and therefore two languages consisting of the
same strings but defined over different alphabet sets will be considered different. For
example, null languages defined over ¥; and Y, are considered different. We will



generally indicate the set over which the language is defined, but may omit it if clear
from the context.
We next define operators required for definition of concurrent regular expressions.

2.1 Choice, Concatenation, Kleene Closure

These are the usual regular expression operators. Choice denoted by “+7 is defined as
follows. Let Li and Ly be two languages defined over ¥y and ¥, then

A+ B = AU B defined over ¥; U X,.

This operator is useful for modeling the choice that a process or an agent may make.
The Concatenation of two languages (denoted by .) is defined based on usual concate-
nation of two strings as

Ly.Ly = {xqzq|21 € Ly, 29 € Ly}

This operator is useful to capture the notion of a sequence of action followed by another
sequence. The Kleene closure of a set A is defined as

A= Ui;o,l,.. Al

where A' = A.A...1 times

This operator is useful for modeling the situations in which some sequence can be re-
peated any number of times. For details of these operators, the reader is referred to

[Hopcroft 79].

2.2 Interleaving

To define concurrent operations, it is especially useful to be able to specify the interleav-
ing of two sequences. Consider for example the behavior of two independent vending
machines VM1 and VM2. The behavior of VM1 may be defined as (coin.choc)* and
the behavior of VM2 as (coin.cof fee)*. Then the behavior of the entire system would
be an interleaving of VM1 and VM2. With this motivation, we define an operator
called interleaving, denoted by ||. Interleaving is formally defined as follows:
alle=¢lla =a Va € X

a.s||b.t = a.(s]|b.t) Ub.(a.s||t) Va,be X, s,t € 3«

Thus, abllac = {abac, aabe, aach, acab}.

This definition can be extended to interleaving between two sets in a natural way, i.e.

Al|B={w3sc ANt e B,we st}

For example, consider two sets A and B as follows: A = {ab} and B = {ba} then
A || B = {abba, abab, baab, baba}.

Note that similar to A || B, we also get a set A || A = {aabb, abab}. We denote A
|| A by A®). We use parentheses in the exponent to distinguish it from the traditional
use of the exponent i.e. A2 = A.A.

Interleaving satisfies the following properties:

(1) Interleaving is commutative, i.e., A || B= B || A

(2) Interleaving is associative, i.e., A || (B || C)=(A || B) || C

(3) Epsilon is the identity of interleaving, i.e., A ||{e} = A

(4) The null set is the zero of interleaving, i.e., A |[¢ = ¢

(5) Interleaving distributes over choice, i.e., (A4+B) || C = (A || C)+(B || C)



This operator, however, does not increase the modeling power of concurrent regular
expressions as shown by the following Lemma.

Lemma 1: Any expression that uses || can be reduced to a regular expression
without || .
Proof: This follows from the equivalence between finite state machines and regular
expressions and the fact that the interleaving of two finite state machines can also be
simulated by a finite state machine[Hopcroft 79]. A

2.3 Alpha-closure

Consider the behavior of people arriving at a supermarket. We assume that the pop-
ulation of people is infinite. If each person CUST is defined as (enter.buy.leave), then

the behavior of the entire population is defined as interleaving of any number of people.
With this motivation, we define an analogue of a Kleene-Closure for the interleaving
operator, a-closure of a set A, as follows: A% = ;o1 . AW,

Then if # (a,w) mean the number of occurrences of symbol a in the string w, the
interpretation of CUST® is as follows:

CUST® ={wl|¥ prefizes s of w,#(enter,s) > #(buy, s) > #(leave, s), and #(enter, w) =
#(buy,w) = #(leave,w)}

Note the difference between Kleene closure and alpha closure. The language shown
above cannot be accepted by a finite state machine. This can be shown by the use of
the pumping lemma for finite state machines [Hopcroft 79]. We conclude that alpha
closure can not be expressed using ordinary regular expression operators.

Intuitively, the alpha closure lets us model the behavior of an unbounded number
of identical independent sequential agents. Alpha-closure satisfies the following prop-
erties:

1) A% = A” (idempotence)
2) (A%)® = A* (absorption of *)
3) (A+ B)Y = A%||B®

2.4 Synchronous Composition

To provide synchronization between multiple systems, we define a composition operator
denoted by []. Intuitively, this operator ensures that all events that belong to two sets
occur simultaneously. For example consider a vending machine VM described by the
expression (coin.choc)*. If a customer CUST wants a piece of chocolate he must insert
a coin. Thus the event coin is shared between VM and CUST. The complete system is
represented by VM[|JCUST which requires that any shared event must belong to both
VM and CUST. Formally,

A[B ={w|w/X4 € A,w/X¥p € B}

where w/S denotes the restriction of the string w to the symbols in S. For example,
acab/{a,b} = aab and acab/{b,c} = cb. If A = {ab} and B = {ba}, then A[|B = ¢ as
there cannot be any string that satisfies ordering imposed by both A and B. Consider
another set C = {ac}. Then A[JC = {abe, acb}.

Many properties of [] are the same as those of the intersection of two sets. Indeed,
if both operands have the same alphabet then [] is identical to intersection.

(1) A[JA = A (Idempotence)



(2) A[|B = B[JA (Commutativity)

(3) A[J(B[JC) = (A[|B)[]C (Associativity)

(4) ANULL = NULL, NULL = (4,6) (z¢ro of )
(5) Af]

(6) Af]

=
-

X = A, MAX = (34, %47) (identity of [])
(B+C) = (A[]B)+(A[]C) (Distributivity over +)

2.5 Renaming

In many applications, it is useful to be able to rename the event symbols of a process.
The renaming can be useful in the following situations:

e Hiding: We may want some events to be internal to a process. We can do so by
means of renaming these event symbols to e.

e Partial Observation: We may want to model the situation in which two symbols
a and b look identical to the environment. In such cases we may rename both of
these symbols with a common name such as c.

e Similar processes: Many system often have “similar” processes. Instead of defin-
ing each one of them individually, we may define a generic process which is then
transformed to the required process by renaming operator.

Let Ly be a language defined over 3. Let o represent a function from ¥; to ¥y U {¢}.
Then o(Ly) is a language defined over () defined as follows:

o(L1) = {o(x)|x € Li}. A renaming operator labels every symbol « in the string
by o(a). We leave it to readers to derive the properties of this operator except for
noting that it distributes over all previously defined operators except for synchronous
composition.

2.6 Definition of CRE’s

A concurrent regular expression is any expression consisting of symbols from a finite
set ¥ and +, ., *, [, ||, @, o() with certain constraints as summarized by the following
definition.

e Any a that belongs to ¥ is a regular expression (r.e.) defined over {a}. A special
symbol called € is also a regular expression defined over any set ¥. If A and B
are r.e.’s, then so are A.B (concatenation), A+B (or), A* (Kleene closure).

o A regular expression is also a unit expression. If A and B are unit expressions
then so are A||B (Interleaving) and A% (Indefinite Interleaving closure).

e A unit expression is also a concurrent regular expression (cre). If A and B are
cre’s then so are A||B, A[] B (synchronous composition), and A < ¢ >(renaming).

The intuitive idea behind above definition is as follows. We assume that a system
has an infinite number of agents. Fach agent is considered to have a finite number
of states and therefore can be modeled by a regular set. These agents can execute
independently (|| and «) and a unit expression models a group of agents (possibly
infinite) which do not interact with each other. The world is assumed to contain a



finite number of these units which either execute independently (||) or interact by
means of synchronous composition ([]).

3 Modeling of Concurrent Systems

In this section, we give some examples of use of concurrent regular examples in modeling
concurrent systems.

Example 1: Producer Consumer Problem

This problem concerns shared data. The producer produces items which are kept
in a buffer. The consumer takes these items from the buffer and consumes them. The
solution requires that the consumer wait if no item exists in the buffer. The problem
can be specified in concurrent regular expressions as follows:
producer ::(produce putitem)*
consumer :: (getitem consume)*
buffer :: (putitem getitem)®
system :: producer [] buffer [] consumer

The buffer process ensures that the number of getitem is always less than or equal
to the number of putitemn. Note that if alpha is replaced by * in the description of the
buffer, the system will allow at most one outstanding putitem.

Example 2: Mutual Exclusion Problem

The mutual exclusion problem requires that at most one process be executing in
the region called critical. Tt is specified in cre’s as follows:
contender :: (nonerit req crit exit)
constraint :: (req crit exit)*
system :: contender®|[|constraint

Example 3: Ball Room Problem

Consider a dance ball room where both men and women enter, dance and exit.
Their entry and exit need not be synchronized but it takes a pair to dance. Also we
would like to ensure that the number of women in the room is always greater than or
equal to the number of men, since idle men are dangerous! This system can easily be
represented using a concurrent regular expression:

A man’s actions can be represented by the following sequence:

man :: menter dance mezit

A woman’s actions as follows:

woman :: wenter dance wezit

The constraint that the number of women always be greater can be expressed as:

constraint :: (wenter (menter mexit) * wexit)®

Since any number of men and women can enter and exit independently (except for
the constraint) the entire system is modeled as follows:

man® [| woman® [] constraint

Example 4: (abe)® [| a*b*c* accepts language {a"b"c"|n > 0}. Note how the use
of o operator let us keep track of number of a’s that have been seen in the string. This
example shows the strings that can not be recognized even by push down automata
can be represented by cre’s.

Example 5: Machine Shop Problem



Consider the problem of modeling a simple machine shop. The machine shop may
have three machines - My, My and M;. It may have two operators F} and F3. An
order needs two stages of machining. First, it must be machined by M; and then by
either My or M3. F} can operate My and M, while [y can operate My and Mjs. Figure
1 shows the modeling by a Petri net which is not a modular description. Following is
its description in concurrent regular expressions where each process is specified inde-
pendently. This means that it is easier to understand and write specifications in the
cre model. It is also easier to specify a partially developed system.

: b;; represents the beginning of machining by '" operator on j* machine
: ¢;; represents the end of machining by :'* operator on j* machine

order :: arrives phase; phasey leaves
phasey 2 (byy.e11) + (b21.€21)

phases 2 (bra.e19) + (b23.€23)

Fy i (byy.eqr) + (biz-€12)

Fy it (bar.€21) + (bos.€23)

My =2 (byy.en1) + (ba1.€21)

My 2 big.eq

My i bos.eas

system = order [ (Fy || F5)(M; 1M1 M5)



4 Interleaving-closed sets

All the above examples include a component of the system which uses alpha to model an
infinite number of states. Thus, « is the basic operator which increases the complexity
of a system. The application of & on a set makes it interleaving-closed (i-closed). We
next define i-closed sets and study their properties.

Definition: A set A is called closed under repeated interleaving, or simply i-closed,
if for any two strings s; and sy (not necessarily distinct) that belong to A, s{||ss is a
subset of A. By definition € must also belong to an i-closed set.

Examples: {e}, {€,a,a? a®..}, {s|#(a,s) = #(b,s)} are example of i-closed sets.
As Kleene closure of a set A is the smallest set containing A and closed under con-
catenation, alpha closure of a set A is the smallest set containing A and closed under
interleaving. More formally,

Lemma 2: Let A be a set of strings. Let B be the smallest i-closed set containing
A. Then B = A“.

Proof: A% contains A and is also i-closed. Since B is smallest set with this property,
we get B C A~

Since B is i-closed and it contains A, it must also contain A® for all i. This implies
that B contains A%. Combining with our earlier argument we get B = A%, A

The above Lemma tells us that as Kleene closure captures the notion of doing
some action any number of times in series, alpha closure captures the notion of doing
some action any number of times in parallel. Note that if a set A is i-closed, it is also
concatenation closed. This is because if s; and s; belong to A then so does s1]|s,, and
in particular sy.s5.

We leave it to readers to verify that another definition of alpha-closure of a language
A can be given as the least solution of the equation
X = (AlX) + e

Clearly taking interleaving-closure of an already i-closed set does not change it.
This is formalized as follows:

Corollary: A set A is i-closed if and only if A = A“.

Proof: If A is i-closed, it is also the smallest set containing A and i-closed. By
Lemma 2, it follows that A = A°.

Conversely, A = A% and A“ is i-closed therefore A is also i-closed. A

The above corollary tells us that if a set is i-closed, then its alpha closure is the
same as itself. As an application of this corollary, we get A%® = A°.

4.1 Properties of I-closed Sets

As we mentioned earlier, an i-closed system may be desirable because of its logical
ability to handle an infinite number of customers. Assuming that we already have
designed some systems that are i-closed, we would like to combine these systems to
form bigger i-closed systems. This section shows that such systems may be combined
using || and [] operators but not + or . operators. All the unary operators defined
in this paper preserve the property of interleaving closure. These observations are
formalized in Theorems 1 and 2.

Theorem 1: If A and B are i-closed then so are A || B,A* A% A[] B, and o(A).
Proof:



1) A || B:

Let s; and sy belong to A || B. We will show that s1||sy is a subset of A || B.
s1 € p1|lg:1 because s; belongs to A || B, for some p; € A, ¢, € B.

Sy € p2||ga because sy belongs to A || B, for some p, € A, ¢z € B.

therefore 152 € pallail ]l

= p1||p2l|qillgz (]] is associative and commutative)

= pllq where p = pi|[pz and q = @|g2
C A|| B (because p C A and ¢ C B as A and B are i-closed)

2) A*:

As A is i-closed it is also concatenation closed and therefore A* = A.

3) A®: from Corollary of Lemma 2.

4) A[]|B

Let s; and sy belong to A[]B. Then,

$1/X4 € Aand s1/¥p € B.

Similarly, s3/34 € A and s,/Yp € B

We will show that sq]|sy/¥4 € A and sq]|s2/Xp C B.

Left hand side = sq||s2/Y4 = s1/X4||s2/X 4 (Restriction distributes over || )
C A (A is i-closed) and similarly, s1||s2/Xp = s1/XB||s2/X8 C B

Therefore, s1||s; C A[]B.

5) o(A) Let sy and sy belong to o(A). Then there exists {1 and 5 such that o(t1) = s
and o(ty) = s2, and t,t5 € A.
Then, t1]t2 € A (A is i-closed) and o(t4]|t2) € o(A)
This implies that o(t1)||o(t2) € o(A).
A

For example, let C'ust 4 and C'ustp be sets of strings denoting behavior of customers
in supermarket A and B respectively. Both C'ust 4 and C'ustp are i-closed and therefore,
by Theorem 1, Cust 4]||Custp is also i-closed. For another example, consider the set of
strings denoting the behavior of infinite customers at a supermarket. That is, Pop =
{enter.buy.leave}®. Now assume that for buying an item a customer has to interact
with the sales clerk whose behavior can be written as Clerk = {buy}*. From Theorem
1, we conclude that Pop [] Clerk is an i-closed set. However, if buy is not a primitive
action and can be viewed as purchase.pack then the system is no more i-closed. It can
be made i-closed as follows:
Pop :: {enter.purchase.pack.leave}®
Clerkl :: (purchase)*
Clerk2 :: (pack)*
System :: Pop [] Clerkl [] Clerk2

Since each of the component in the system is i-closed, by Theorem 1 the entire
system is i-closed. We now show that + and . do not preserve the property of i-
closure.
Theorem 2: If A and B are i-closed then A4+B and A.B may not be so.
Proof:
1) A+B: Consider A = {ab}*, B={bc}®. Let s; = ab and sy = be. Both s; and sy are



members of A+B but s = abbc € s1]|s3 does not belong to A+B.
2) A.B: Consider A = {ab}*, B = {bc}®. Let s; = abbc and s = abbe Both sy and s3

are members of A.B but s = abbcabbe € s1||sz does not belong to A.B.
A

5 Comparison with Other Classes of Languages

From the definition of concurrent regular expressions, we derive two new classes of
languages - unit languages and concurrent regular languages. A language is called a
unit language if a unit expression can describe it. Concurrent regular languages are
similarly defined. In this section we study both the classes and their relationship with
other classes of languages such as regular, context-free and Petri net languages.

Unit languages strictly contain regular languages and are strictly contained in Petri
net languages. These languages are useful for capturing behavior of independent finite
state agents which may potentially be from an infinite population. An application
of such languages is the description of logical behavior of a queueing network. For
example, Figure 2 shows a queueing network and a unit expression that describes the
language of logical behavior of customers in it. we first show that any unit expression
can be converted to a canonical form called normalized unit expression. Lemma 3:
Let A and B be two regular expressions, then
() A% B = (A+ B
(b) (Al|B)* = 4| B>
Proof:

(a) Let string s € A%||B*

= 5 € arl[al]-|[anl b1 o2l -1

fora;e A,i=1.n,b; € B,5=1.m n,m>0

C (A+ B)™ (because each string belongs to A+B)

Let string s € (A + B)°.
=> s € ¢1||e2||..||¢n, where ¢; € A+ B
If ¢; € A we call it a;, otherwise we call it b;.

On rearranging terms so that all strings that belong to A come before strings that do
not belong to A (and therefore must belong to B), we get s € A%||B°.

(b) (Al[B*)™ = A%|| B~



We first show that s € (A||B*)* => s € A%||B°.
Let s € (A]|B*)®
=> s € s1||s2||s3..8m where m > 0 and each s; C (a;||b; 1]|b;2--]|bi n,)
where b; ; € Bfori=1...mand 57 =1...n;
Since || is commutative and associative all strings from set A can be moved to left and
therefore s also belongs to A“||B*

We now show that s € A%||B* => s € (A||BY)”
Let s € A¥||B*
=> s € aql|az..||an||b1]].-||bn
where m,n > 0 and a;’s and b;’s belong to A and B respectively.
> s € (@[ (@zlle) 1-II(an_lle)|(an 1or 1621115,
=> s € (A||B*)”
A
Theorem 3: Any unit expression U is equivalent to another unit expression which
is the interleaving of a regular expression and (regular expression)®. Expressions of
these forms are called normalized unit expressions.
Proof: To show this Theorem, we use induction on the number of times || or « occurs
in a unit expression. The Lemma is clearly true when the expression does not have
any occurrence of || or a as a regular expression is always normalized. Assume that
the Theorem holds for unit expressions with at most & — 1 occurrences of || or . Let
U be a expression with at most k occurrences of || or a. Then U can be written as
Up||Uz or U where Uy and Uy can be normalized by the induction hypothesis. We will
show that U can also be normalized.
(1) U= U]|Uy
Uy = A1||BY and Uy = Aq||BS
where Ay, Ay, By and B, are regular expressions.
Therefore, Uy ||Us = (A1||BY)||( A2l BS)
= (A1||A2)||(BY]1BS) (]] is associative and commutative)
= (A4l[42)I(By + Ba)* (by Lemma 3(a))
therefore, U can be normalized.
(2) U=Uy
U=ty = (A1)
where A and B are some regular expressions.
U = A%||B* (by Lemma 3(b))
= (A+ B)* (by Lemma 3(a))
= ('* for some regular expression C.
therefore, U can be normalized.

We are now ready to explore the structure of unit languages.
Lemma 4: The unit languages properly contains the regular languages.
Proof: The containment is obvious. To see that the inclusion is proper, consider the
language (a.b)* which cannot be accepted by a finite state machine. A

All unit languages are also concurrent regular languages. We next show that this
containment is also proper.

Definition: A language is called i-open if there does not exist any non-null string
s such that if ¢ belongs to a language then so does s||t.

Example: All finite languages are i-open. a*, (a +b)*, (ab)® are not i-open because
a,aba, and ab are strings respectively such that their interleaving with any string in



the language keeps it in the language. Recall that i-closed languages are set of strings
that are closed under interleaving. All i-closed languages are not i-open and all i-open
languages are not i-closed. However, there are languages that are neither i-open nor
i-closed. An example is a*b*||¢* which is not i-open as any interleaving with ¢ keeps
a string in the language. It is not i-closed because abc|labe does not belong to the
language.

Theorem 4: A unit expression cannot describe a non-regular i-open language.

Proof: Let L. be a non-regular i-open language. Assume if possible that a unit
expression U describes L. By Theorem 3, U can be normalized to the form A||B°.
Since L is non-regular, the unit expression must contain at least one application of
alpha-closure and therefore B is non-empty. The resulting set is not i-open as it is
closed under interleaving with respect to any string in B, a contradiction.

A

For example, consider the language {a™b"¢"|n > 0}. The language is i-open because
there is no non-null string, such that its indefinite interleaving exists in the language.
By Theorem 4, we cannot construct a unit expression to accept this language. This
language is concurrent regular as shown by Example 4.

Now we show that there exists i-closed languages which cannot be recognized by a
single unit.

Theorem 5: There are i-closed concurrent regular languages that cannot be accepted
by a unit.

Proof: Consider the concurrent regular language L = (a1b1)[|(a2alby)®. Assume if
possible that it can be characterized by a unit expression U. By Theorem 3, U can be
written as A||B®. Since L is an i-closed language due to Theorem 1, U is also i-closed.
This implies that the language described by U is the same as that described by U“
(Lemma 2). Using Theorem 3, U can be written as C'* where C is a regular language.
We will show that no such regular set exists.

Note that I contains strings starting with ay only. This implies that C also contains
string starting with ay only. Further any string in L. containing a single a; must belong
to C because such a string cannot be an interleaving of two or more strings in C.
Therefore, C contains all strings of the form agafbbs but not aga?""kb?fbg for any & > 0.
This implies that C is not a regular set, a contradiction. A

5.1 Relationship with Petri nets

Definition: A Petri net N is defined as a five-tuple (P, T, I, O, uq), where:

e P is a finite set of places;

o T is a finite set of transitions such that PNT = ¢

o [T — P is the input function, a mapping from transition to bag of places

o O:T — P* is the output function, a mapping from transition to bag of places

® [ip is the initial net marking, is a function from the set of places to the nonnegative
integers N, po: P — N.

Definition: A transition ¢; € T in a Petri net N = (P, T, I, O, ) is enabled if for all
pi € P, p(pi) > #(pi, 1(t;)) where #(p;, [(t;)) represents multiplicity of the place p; in
the bag I(t;).



Definition: The next-state function § : Z7 x T' — Z7 for a Petri net N = (P, T,
I, O, p) , |P| = n, with transition t; € T' is defined iff ¢; is enabled. The next-state is
equal to ' where:

W (pi) = plpi) — #(pi 1(t5)) + #(pi, O(L;))Vpi € P.

We can extend this function to a sequence of transitions as follows:

dp, tjo) =6(0(u,t;),0),0(p, ) = o where A represents the null sequence.

To define the language of a Petri net, we associate a set of symbols called alphabet ¥
with a Petri net by means of a labeling function, o : T — Y. A sequence of transition
firings can be represented as a string of labels. Let F' C P designate a particular subset
of places as final places and we call a configuration p final if
wpi) =0 VpeP—F
That is, all tokens are in final places in a final configuration. If a sequence of transition
firings takes the Petri Net from its initial configuration to a final configuration, the
string formed by the sequence of labels of these transitions is said to be accepted by
the Petri Net. The set of all strings accepted by a Petri Net is called the language of
the Petri Net.

Definition: The language L of a Petri net N=(P, T, I, O, ) with alphabet X, labeling

function ¢ and the set of final places F, is defined as
L=Ac(p)e X |p €T and pus = 6(po, 8) such that pus(p) =0Vp e P — F}

Now we state the following Theorem. Since this Theorem is proved in [Garg 88] and
its proof is long we provide just its sketch.

Theorem 6: The family of Petri net languages and concurrent regular languages is
the same.

Sketch of the Proof: We first show that every concurrent regular expression can
be converted to a Petri net. FEvery regular expression can be converted to a finite
state machine which can be converted to a Petri net by putting a token in its start
state and considering states as places. To model an infinite number of finite state
agents, we can delete the start place and thus making the transitions that originated
from the start place source of tokens. A Petri net corresponding to a unit expression
would be interleaving of such structures. To derive a Petri net for concurrent regular
expressions it is sufficient to note that Petri net languages are closed under interleaving,
synchronous composition and renaming.

To convert a Petri net into concurrent regular expression, we first convert it to an
ordinary Petri net using Hack’s construction[Hack 75]. We then partition its places
into various units. These units share transitions and have the property that for every
transition, a unit has at most one place incident to it as input and one place as output.
This decomposition is always possible by keeping all places in different units. We now
show that a unit can be converted to a unit expression. The final concurrent regular
expression is just synchronous composition of unit expressions. Since for each transition
there is at most one place as input and at most one place as output, a unit can be
viewed as pure interleaving of agents with their current state represented by placement
of tokens. If tokens can be generated dynamically in a unit, it is modeled using alpha
closure. Since there are finite number of places in a unit each agent can be viewed as
a finite state machine. A finite state machine can be converted to a regular expression
and therefore a unit expression would just be interleaving of regular expressions and



alpha closure of regular expressions.

For the rigorous proof of this Theorem we refer the interested readers to [Garg 88].
Figure 3 shows an example of conversion.

From above discussion, we note that

finite C regular C unit C concurrent reqular = Petri Net languages

6 Conclusions

In this paper, we have defined an extension of regular expressions called concurrent
regular expressions which can shown to be equivalent to Petri nets. The concurrent
regular expression is built of regular expressions and operators - interleaving, alpha
closure, synchronous composition and renaming. We have also shown the relationship
of concurrent regular languages with regular, context-free and Petri net languages. Our
framework supports two two main ideas. First, it provides a common framework for
algebra-based and transition based models. Secondly, it supports a hierarchy of models
with varying expressive power.
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