
Modeling of Distributed Systems byConcurrent Regular ExpressionsVijay K. GargDepartment of Electrical and Computer Engineering,University of Texas, Austin, TX 78712We propose an algebraic model called concurrent regular expressions for modeling and anal-ysis of distributed systems. These expressions extend regular expressions with four operators- interleaving, interleaving closure, synchronous composition and renaming. Their expressivepower is equivalent to those of Petri nets, and therefore they are more general than Pathexpressions and COSY expressions.1 IntroductionAs concurrent systems are di�cult to design, the simplest of them can have subtleerrors. To avoid these errors, we need to capture essential aspects of a system in a modeland then analyze it for correctness. Models for concurrent systems that can be analyzedautomatically have less expressive power than programming languages. They can becategorized roughly into two groups: algebra based and transition based models. Thealgebra based models consist of operators and a set of primitive behaviors. Expressionsare built hierarchically by applying operators on sub-expressions. Examples of suchmodels are path expressions [Lauer 75], behavior expressions [Milner 80] and extendedregular expressions. Examples of speci�cation languages and systems based on suchmodels are Path Pascal [Campbell 79], CCS [Milner 80] and Paisley [Zave 85]. Someof the commonly asked questions in such formal systems are: \Is s a possible trace ofthe concurrent system under analysis?", and \Is S1, a concurrent system, the same asanother concurrent system S2?"In the transition based models the behavior of a system is generally modeled as asequence of con�gurations of an automaton. Examples of the transition based modelsare �nite state machines [Hopcroft 79], S/R Model [Aggarwal 87], UCLA graphs [Cerf72], and Petri nets [Reisig 85]. Examples of modeling and analysis tools based on thesemodels are Spanner [Aggarwal 87], A�rm [Gerhart 80] and PROTEAN [Billington 88].Algebraic systems promote hierarchical description and veri�cation, whereas transi-tion based models have the advantage that they are graphical in nature. For this reason,it is sometimes easier to use an algebraic description, and othertimes a transition-baseddescription. We believe that a formal description technique should support both stylesof descriptions. In this paper, we propose an algebraic model called concurrent regularexpressions for modeling of concurrent systems. These expressions can be convertedautomatically to Petri nets, and thus all analysis techniques that are applicable to Petrinets can be used. Conversely, any Petri net can be converted to a concurrent regularexpression providing further insights into its language.All the existing models can also be classi�ed according to their inherent expressivepower. For example a �nite state machine is inherently less expressive than a Petri net.However, the gain in expressive power comes at the expense of analyzability. A complexsystemmay consist of many components requiring varying expressive power. We believe



that a formal description technique should support models of di�erent expressive powersunder a common framework. An example of such a description technique for syntaxspeci�cation is Chomsky hierarchy of models based on grammar. A similar hierarchy isrequired for formal description of distributed systems. The model of concurrent regularexpressions provides such a hierarchy. A regular expression is less expressive than aunit expression which, in turn, is less expressive than a concurrent regular expression.As mentioned earlier, there are many existing algebraic models for speci�cation ofconcurrent systems. CCS[Milner 80], CSP[Hoare 85] and FRP[Inan 88] These modelsdo not have any equivalent transition based model. Similarly, they do not support ahierarchy of models like we do. Path expressions[Lauer 79] were shown to be translat-able to Petri nets, and thus analyzable for reachability properties [Kosaraju 82, Mayr84,Karp 69]. Concurrent regular expressions are more general than Path expressionsas they are equivalent to Petri nets [Garg 88].We have used interleaving semantics rather than true concurrency as advocatedby [Pratt 81] and [Reisig 85]. This assumption is in agreement with CSP[Hoare 85]and CCS[Milner 81]. In this paper, we have further restricted ourselves to modelingdeterministic systems so that the languages are su�cient for de�ning behaviors of aconcurrent system. We have purposely restricted ourselves from de�ning �ner seman-tics, such as failures[Hoare 85], and synchronization trees[Milner 81], as the purpose ofthis paper is to introduce a basic model to which these concepts can be added later. Inparticular, it is easy to add a non-deterministic or operator and failure semantics[Hoare85].Concurrent regular expressions (cre) use operators that arise naturally in modelingconcurrent systems such as interleaving and synchronous composition. The expressivepower of cre's is increased beyond that of regular expressions by means of an operatorcalled interleaving closure denoted by �. Based on this operator we introduce thenotion of interleaving-closed (i-closed) sets and study their properties. The concept ofi-closed set is useful because it guarantees that if every customer engages in a legalsequence of action than a sequence of actions with any number of customers will alsobe legal no matter what the interleaving. This is a desirable property of a system as ittells us that the system can logically handle any number of customers and treat themindependently. We provide a method to construct interleaving-closed sets.This paper is organized as follows. Section 2 de�nes concurrent regular expressions.It also describes the properties of operators used in the de�nition. Section 3 gives someexamples of use of cre's for modeling distributed systems and compares the modelingconvenience of concurrent regular expressions with Petri nets. Section 4 presents theproperties of interleaving-closed sets. Section 5 compares the class of languages de�nedby concurrent regular expressions with regular, context-free and Petri net recognizablelanguages.2 Concurrent Regular ExpressionsWe use languages as the means for de�ning behaviors of a concurrent system. Alanguage is de�ned over an alphabet and therefore two languages consisting of thesame strings but de�ned over di�erent alphabet sets will be considered di�erent. Forexample, null languages de�ned over �1 and �2 are considered di�erent. We will



generally indicate the set over which the language is de�ned, but may omit it if clearfrom the context.We next de�ne operators required for de�nition of concurrent regular expressions.2.1 Choice, Concatenation, Kleene ClosureThese are the usual regular expression operators. Choice denoted by \+" is de�ned asfollows. Let L1 and L2 be two languages de�ned over �1 and �2 thenA+B = A [ B de�ned over �1 [ �2.This operator is useful for modeling the choice that a process or an agent may make.The Concatenation of two languages (denoted by .) is de�ned based on usual concate-nation of two strings asL1:L2 = fx1x2jx1 2 L1; x2 2 L2gThis operator is useful to capture the notion of a sequence of action followed by anothersequence. The Kleene closure of a set A is de�ned asA� = Si=0;1;::Aiwhere Ai = A:A:::i timesThis operator is useful for modeling the situations in which some sequence can be re-peated any number of times. For details of these operators, the reader is referred to[Hopcroft 79].2.2 InterleavingTo de�ne concurrent operations, it is especially useful to be able to specify the interleav-ing of two sequences. Consider for example the behavior of two independent vendingmachines VM1 and VM2. The behavior of VM1 may be de�ned as (coin:choc)� andthe behavior of VM2 as (coin:coffee)�. Then the behavior of the entire system wouldbe an interleaving of VM1 and VM2. With this motivation, we de�ne an operatorcalled interleaving, denoted by jj. Interleaving is formally de�ned as follows:ajj� = �jja = a 8a 2 �a:sjjb:t = a:(sjjb:t)[ b:(a:sjjt) 8a; b 2 �; s; t 2 ��Thus, abjjac = fabac; aabc; aacb; acabg:This de�nition can be extended to interleaving between two sets in a natural way, i.e.A jj B = fwj9s 2 A ^ t 2 B;w 2 sjjtgFor example, consider two sets A and B as follows: A = fabg and B = fbag thenA jj B = fabba; abab; baab; babag.Note that similar to A jj B, we also get a set A jj A = faabb; ababg. We denote Ajj A by A(2). We use parentheses in the exponent to distinguish it from the traditionaluse of the exponent i.e. A2 = A:A.Interleaving satis�es the following properties:(1) Interleaving is commutative, i.e., A jj B = B jj A(2) Interleaving is associative, i.e., A jj (B jj C) = (A jj B) jj C(3) Epsilon is the identity of interleaving, i.e., A jjf�g = A(4) The null set is the zero of interleaving, i.e., A jj� = �(5) Interleaving distributes over choice, i.e., (A+B) jj C = (A jj C)+(B jj C)



This operator, however, does not increase the modeling power of concurrent regularexpressions as shown by the following Lemma.Lemma 1: Any expression that uses jj can be reduced to a regular expressionwithout jj .Proof: This follows from the equivalence between �nite state machines and regularexpressions and the fact that the interleaving of two �nite state machines can also besimulated by a �nite state machine[Hopcroft 79]. �2.3 Alpha-closureConsider the behavior of people arriving at a supermarket. We assume that the pop-ulation of people is in�nite. If each person CUST is de�ned as (enter:buy:leave), thenthe behavior of the entire population is de�ned as interleaving of any number of people.With this motivation, we de�ne an analogue of a Kleene-Closure for the interleavingoperator, �-closure of a set A, as follows: A� = Si=0;1;::A(i):Then if # (a,w) mean the number of occurrences of symbol a in the string w, theinterpretation of CUST � is as follows:CUST � = fwj8 prefixes s of w;#(enter; s) � #(buy; s) � #(leave; s) , and #(enter; w) =#(buy;w) = #(leave;w)gNote the di�erence between Kleene closure and alpha closure. The language shownabove cannot be accepted by a �nite state machine. This can be shown by the use ofthe pumping lemma for �nite state machines [Hopcroft 79]. We conclude that alphaclosure can not be expressed using ordinary regular expression operators.Intuitively, the alpha closure lets us model the behavior of an unbounded numberof identical independent sequential agents. Alpha-closure satis�es the following prop-erties:1) A�� = A� (idempotence)2) (A�)� = A� (absorption of *)3) (A+B)� = A�jjB�2.4 Synchronous CompositionTo provide synchronization between multiple systems, we de�ne a composition operatordenoted by []. Intuitively, this operator ensures that all events that belong to two setsoccur simultaneously. For example consider a vending machine VM described by theexpression (coin:choc)�. If a customer CUST wants a piece of chocolate he must inserta coin. Thus the event coin is shared between VM and CUST. The complete system isrepresented by VM[]CUST which requires that any shared event must belong to bothVM and CUST. Formally,A[]B =fwjw=�A 2 A;w=�B 2 Bgwhere w=S denotes the restriction of the string w to the symbols in S. For example,acab=fa; bg = aab and acab=fb; cg = cb. If A = fabg and B = fbag, then A[]B = � asthere cannot be any string that satis�es ordering imposed by both A and B. Consideranother set C = facg. Then A[]C = fabc; acbg.Many properties of [] are the same as those of the intersection of two sets. Indeed,if both operands have the same alphabet then [] is identical to intersection.(1) A[]A = A (Idempotence)



(2) A[]B = B[]A (Commutativity)(3) A[](B[]C) = (A[]B)[]C (Associativity)(4) A[]NULL = NULL, NULL = (�A; �) (zero of [])(5) A[]MAX = A, MAX = (�A;�A�) (identity of [])(6) A[](B+C) = (A[]B)+(A[]C) (Distributivity over +)2.5 RenamingIn many applications, it is useful to be able to rename the event symbols of a process.The renaming can be useful in the following situations:� Hiding: We may want some events to be internal to a process. We can do so bymeans of renaming these event symbols to �.� Partial Observation: We may want to model the situation in which two symbolsa and b look identical to the environment. In such cases we may rename both ofthese symbols with a common name such as c.� Similar processes: Many system often have \similar" processes. Instead of de�n-ing each one of them individually, we may de�ne a generic process which is thentransformed to the required process by renaming operator.Let L1 be a language de�ned over �1. Let � represent a function from �1 to �2 [ f�g.Then �(L1) is a language de�ned over �(�1) de�ned as follows:�(L1) = f�(x)jx 2 L1g. A renaming operator labels every symbol a in the stringby �(a). We leave it to readers to derive the properties of this operator except fornoting that it distributes over all previously de�ned operators except for synchronouscomposition.2.6 De�nition of CRE'sA concurrent regular expression is any expression consisting of symbols from a �niteset � and +, ., *, [], jj, �, �() with certain constraints as summarized by the followingde�nition.� Any a that belongs to � is a regular expression (r.e.) de�ned over fag. A specialsymbol called � is also a regular expression de�ned over any set �. If A and Bare r.e.'s, then so are A.B (concatenation), A+B (or), A� (Kleene closure).� A regular expression is also a unit expression. If A and B are unit expressionsthen so are AjjB (Interleaving) and A� (Inde�nite Interleaving closure).� A unit expression is also a concurrent regular expression (cre). If A and B arecre's then so are AjjB,A[]B (synchronous composition), and A < � >(renaming).The intuitive idea behind above de�nition is as follows. We assume that a systemhas an in�nite number of agents. Each agent is considered to have a �nite numberof states and therefore can be modeled by a regular set. These agents can executeindependently (jj and �) and a unit expression models a group of agents (possiblyin�nite) which do not interact with each other. The world is assumed to contain a



�nite number of these units which either execute independently (jj) or interact bymeans of synchronous composition ([]).3 Modeling of Concurrent SystemsIn this section, we give some examples of use of concurrent regular examples in modelingconcurrent systems.Example 1: Producer Consumer ProblemThis problem concerns shared data. The producer produces items which are keptin a bu�er. The consumer takes these items from the bu�er and consumes them. Thesolution requires that the consumer wait if no item exists in the bu�er. The problemcan be speci�ed in concurrent regular expressions as follows:producer ::(produce putitem)�consumer :: (getitem consume)�bu�er :: (putitem getitem)�system :: producer [] bu�er [] consumerThe bu�er process ensures that the number of getitem is always less than or equalto the number of putitem. Note that if alpha is replaced by � in the description of thebu�er, the system will allow at most one outstanding putitem.Example 2: Mutual Exclusion ProblemThe mutual exclusion problem requires that at most one process be executing inthe region called critical. It is speci�ed in cre's as follows:contender :: (noncrit req crit exit)constraint :: (req crit exit)�system :: contender�[]constraintExample 3: Ball Room ProblemConsider a dance ball room where both men and women enter, dance and exit.Their entry and exit need not be synchronized but it takes a pair to dance. Also wewould like to ensure that the number of women in the room is always greater than orequal to the number of men, since idle men are dangerous! This system can easily berepresented using a concurrent regular expression:A man's actions can be represented by the following sequence:man :: menter dance mexitA woman's actions as follows:woman :: wenter dance wexitThe constraint that the number of women always be greater can be expressed as:constraint :: (wenter (menter mexit) � wexit)�Since any number of men and women can enter and exit independently (except forthe constraint) the entire system is modeled as follows:man� [] woman� [] constraintExample 4: (abc)� [] a�b�c� accepts language fanbncnjn � 0g. Note how the useof � operator let us keep track of number of a's that have been seen in the string. Thisexample shows the strings that can not be recognized even by push down automatacan be represented by cre's.Example 5: Machine Shop Problem



Consider the problem of modeling a simple machine shop. The machine shop mayhave three machines - M1, M2 and M3. It may have two operators F1 and F2. Anorder needs two stages of machining. First, it must be machined by M1 and then byeither M2 or M3. F1 can operate M1 and M2 while F2 can operate M1 and M3. Figure1 shows the modeling by a Petri net which is not a modular description. Following isits description in concurrent regular expressions where each process is speci�ed inde-pendently. This means that it is easier to understand and write speci�cations in thecre model. It is also easier to specify a partially developed system.; bij represents the beginning of machining by ith operator on jth machine; eij represents the end of machining by ith operator on jth machineorder :: arrives phase1 phase2 leavesphase1 :: (b11:e11) + (b21:e21)phase2 :: (b12:e12) + (b23:e23)F1 :: (b11:e11) + (b12:e12)F2 :: (b21:e21) + (b23:e23)M1 :: (b11:e11) + (b21:e21)M2 :: b12:e12M3 :: b23:e23system :: order�[](F �1 jjF �2 )[](M�1 jjM�2 jjM�3 )



4 Interleaving-closed setsAll the above examples include a component of the system which uses alpha to model anin�nite number of states. Thus, � is the basic operator which increases the complexityof a system. The application of � on a set makes it interleaving-closed (i-closed). Wenext de�ne i-closed sets and study their properties.De�nition: A set A is called closed under repeated interleaving, or simply i-closed,if for any two strings s1 and s2 (not necessarily distinct) that belong to A, s1jjs2 is asubset of A. By de�nition � must also belong to an i-closed set.Examples: f�g, f�; a; a2; a3::g, fsj#(a; s) = #(b; s)g are example of i-closed sets.As Kleene closure of a set A is the smallest set containing A and closed under con-catenation, alpha closure of a set A is the smallest set containing A and closed underinterleaving. More formally,Lemma 2: Let A be a set of strings. Let B be the smallest i-closed set containingA. Then B = A�.Proof: A� contains A and is also i-closed. Since B is smallest set with this property,we get B � A�.Since B is i-closed and it contains A, it must also contain A(i) for all i. This impliesthat B contains A�. Combining with our earlier argument we get B = A�. �The above Lemma tells us that as Kleene closure captures the notion of doingsome action any number of times in series, alpha closure captures the notion of doingsome action any number of times in parallel. Note that if a set A is i-closed, it is alsoconcatenation closed. This is because if s1 and s2 belong to A then so does s1jjs2, andin particular s1:s2.We leave it to readers to verify that another de�nition of alpha-closure of a languageA can be given as the least solution of the equationX = (AjjX) + �.Clearly taking interleaving-closure of an already i-closed set does not change it.This is formalized as follows:Corollary: A set A is i-closed if and only if A = A�.Proof: If A is i-closed, it is also the smallest set containing A and i-closed. ByLemma 2, it follows that A = A�.Conversely, A = A� and A� is i-closed therefore A is also i-closed. �The above corollary tells us that if a set is i-closed, then its alpha closure is thesame as itself. As an application of this corollary, we get A�� = A�.4.1 Properties of I-closed SetsAs we mentioned earlier, an i-closed system may be desirable because of its logicalability to handle an in�nite number of customers. Assuming that we already havedesigned some systems that are i-closed, we would like to combine these systems toform bigger i-closed systems. This section shows that such systems may be combinedusing jj and [] operators but not + or . operators. All the unary operators de�nedin this paper preserve the property of interleaving closure. These observations areformalized in Theorems 1 and 2.Theorem 1: If A and B are i-closed then so are A jj B,A*,A�, A[] B, and �(A).Proof:



1) A jj B:Let s1 and s2 belong to A jj B. We will show that s1jjs2 is a subset of A jj B.s1 2 p1jjq1 because s1 belongs to A jj B , for some p1 2 A; q1 2 B.s2 2 p2jjq2 because s2 belongs to A jj B , for some p2 2 A; q2 2 B.therefore s1jjs2 � p1jjq1jjp2jjq2= p1jjp2jjq1jjq2 (jj is associative and commutative)= pjjq where p = p1jjp2 and q = q1jjq2� Ajj B (because p � A and q � B as A and B are i-closed)2) A*:As A is i-closed it is also concatenation closed and therefore A* = A.3) A�: from Corollary of Lemma 2.4) A[]BLet s1 and s2 belong to A[]B. Then,s1=�A 2 A and s1=�B 2 B.Similarly, s2=�A 2 A and s2=�B 2 BWe will show that s1jjs2=�A � A and s1jjs2=�B � B.Left hand side = s1jjs2=�A = s1=�Ajjs2=�A (Restriction distributes over jj )� A (A is i-closed) and similarly, s1jjs2=�B = s1=�Bjjs2=�B � BTherefore, s1jjs2 � A[]B.5) �(A) Let s1 and s2 belong to �(A). Then there exists t1 and t2 such that �(t1) = s1and �(t2) = s2, and t1; t2 2 A.Then, t1jjt2 2 A (A is i-closed) and �(t1jjt2) 2 �(A)This implies that �(t1)jj�(t2) 2 �(A).� For example, let CustA and CustB be sets of strings denoting behavior of customersin supermarket A and B respectively. Both CustA and CustB are i-closed and therefore,by Theorem 1, CustAjjCustB is also i-closed. For another example, consider the set ofstrings denoting the behavior of in�nite customers at a supermarket. That is, Pop =fenter:buy:leaveg�. Now assume that for buying an item a customer has to interactwith the sales clerk whose behavior can be written as Clerk = fbuyg�. From Theorem1, we conclude that Pop [] Clerk is an i-closed set. However, if buy is not a primitiveaction and can be viewed as purchase:pack then the system is no more i-closed. It canbe made i-closed as follows:Pop :: fenter:purchase:pack:leaveg�Clerk1 :: (purchase)�Clerk2 :: (pack)�System :: Pop [] Clerk1 [] Clerk2Since each of the component in the system is i-closed, by Theorem 1 the entiresystem is i-closed. We now show that + and . do not preserve the property of i-closure.Theorem 2: If A and B are i-closed then A+B and A.B may not be so.Proof:1) A+B: Consider A = fabg�, B=fbcg�. Let s1 = ab and s2 = bc. Both s1 and s2 are



members of A+B but s = abbc 2 s1jjs2 does not belong to A+B.2) A.B: Consider A = fabg�; B = fbcg�. Let s1 = abbc and s2 = abbc Both s1 and s2are members of A.B but s = abbcabbc 2 s1jjs2 does not belong to A.B.�5 Comparison with Other Classes of LanguagesFrom the de�nition of concurrent regular expressions, we derive two new classes oflanguages - unit languages and concurrent regular languages. A language is called aunit language if a unit expression can describe it. Concurrent regular languages aresimilarly de�ned. In this section we study both the classes and their relationship withother classes of languages such as regular, context-free and Petri net languages.
Unit languages strictly contain regular languages and are strictly contained in Petrinet languages. These languages are useful for capturing behavior of independent �nitestate agents which may potentially be from an in�nite population. An applicationof such languages is the description of logical behavior of a queueing network. Forexample, Figure 2 shows a queueing network and a unit expression that describes thelanguage of logical behavior of customers in it. we �rst show that any unit expressioncan be converted to a canonical form called normalized unit expression. Lemma 3:Let A and B be two regular expressions, then(a) A�jjB� = (A+B)�(b) (AjjB�)� = A�jjB�Proof:(a) Let string s 2 A�jjB�=> s 2 a1jja2jj::jjanjjb1jjb2jj::jjbmfor ai 2 A; i = 1::n; bj 2 B; j = 1::m n;m � 0� (A+B)� (because each string belongs to A+B)Let string s 2 (A+B)�.=> s 2 c1jjc2jj::jjcn, where ci 2 A+BIf ci 2 A we call it ai, otherwise we call it bi.On rearranging terms so that all strings that belong to A come before strings that donot belong to A (and therefore must belong to B), we get s 2 A�jjB�.(b) (AjjB�)� = A�jjB�



We �rst show that s 2 (AjjB�)� => s 2 A�jjB�.Let s 2 (AjjB�)�=> s 2 s1jjs2jjs3::sm where m � 0 and each si � (aijjbi;1jjbi;2::jjbi;ni)where bi;j 2 B for i = 1:::m and j = 1:::niSince jj is commutative and associative all strings from set A can be moved to left andtherefore s also belongs to A�jjB�We now show that s 2 A�jjB� => s 2 (AjjB�)�Let s 2 A�jjB�=> s 2 a1jja2::jjamjjb1jj::jjbnwhere m; n � 0 and ai's and bi's belong to A and B respectively.=> s 2 (a1jj�)jj(a2jj�)jj:::jj(am�1jj�)jj(amjjb1jjb2jj::jjbn)=> s 2 (AjjB�)��Theorem 3: Any unit expression U is equivalent to another unit expression whichis the interleaving of a regular expression and (regular expression)�. Expressions ofthese forms are called normalized unit expressions.Proof: To show this Theorem, we use induction on the number of times jj or � occursin a unit expression. The Lemma is clearly true when the expression does not haveany occurrence of jj or � as a regular expression is always normalized. Assume thatthe Theorem holds for unit expressions with at most k � 1 occurrences of jj or �. LetU be a expression with at most k occurrences of jj or �. Then U can be written asU1jjU2 or U�1 where U1 and U2 can be normalized by the induction hypothesis. We willshow that U can also be normalized.(1) U = U1jjU2U1 = A1jjB�1 and U2 = A2jjB�2where A1; A2; B1 and B2 are regular expressions.Therefore, U1jjU2 = (A1jjB�1 )jj(A2jjB�2 )= (A1jjA2)jj(B�1 jjB�2 ) (jj is associative and commutative)= (A1jjA2)jj(B1 +B2)� (by Lemma 3(a))therefore, U can be normalized.(2) U = U�1U = U�1 = (AjjB�)�where A and B are some regular expressions.U = A�jjB� (by Lemma 3(b))= (A+B)� (by Lemma 3(a))= C� for some regular expression C.therefore, U can be normalized.We are now ready to explore the structure of unit languages.Lemma 4: The unit languages properly contains the regular languages.Proof: The containment is obvious. To see that the inclusion is proper, consider thelanguage (a:b)� which cannot be accepted by a �nite state machine. �All unit languages are also concurrent regular languages. We next show that thiscontainment is also proper.De�nition: A language is called i-open if there does not exist any non-null strings such that if t belongs to a language then so does sjjt.Example: All �nite languages are i-open. a�; (a+ b)�; (ab)� are not i-open becausea; aba, and ab are strings respectively such that their interleaving with any string in



the language keeps it in the language. Recall that i-closed languages are set of stringsthat are closed under interleaving. All i-closed languages are not i-open and all i-openlanguages are not i-closed. However, there are languages that are neither i-open nori-closed. An example is a�b�jjc� which is not i-open as any interleaving with c keepsa string in the language. It is not i-closed because abcjjabc does not belong to thelanguage.Theorem 4: A unit expression cannot describe a non-regular i-open language.Proof: Let L be a non-regular i-open language. Assume if possible that a unitexpression U describes L. By Theorem 3, U can be normalized to the form AjjB�.Since L is non-regular, the unit expression must contain at least one application ofalpha-closure and therefore B is non-empty. The resulting set is not i-open as it isclosed under interleaving with respect to any string in B, a contradiction.� For example, consider the language fanbncnjn � 0g. The language is i-open becausethere is no non-null string, such that its inde�nite interleaving exists in the language.By Theorem 4, we cannot construct a unit expression to accept this language. Thislanguage is concurrent regular as shown by Example 4.Now we show that there exists i-closed languages which cannot be recognized by asingle unit.Theorem 5: There are i-closed concurrent regular languages that cannot be acceptedby a unit.Proof: Consider the concurrent regular language L = (a1b1)�[](a2a�1b2)�. Assume ifpossible that it can be characterized by a unit expression U. By Theorem 3, U can bewritten as AjjB�. Since L is an i-closed language due to Theorem 1, U is also i-closed.This implies that the language described by U is the same as that described by U�(Lemma 2). Using Theorem 3, U can be written as C� where C is a regular language.We will show that no such regular set exists.Note that L contains strings starting with a2 only. This implies that C also containsstring starting with a2 only. Further any string in L containing a single a2 must belongto C because such a string cannot be an interleaving of two or more strings in C.Therefore, C contains all strings of the form a2an1bn1b2 but not a2an+k1 bn1b2 for any k > 0.This implies that C is not a regular set, a contradiction. �5.1 Relationship with Petri netsDe�nition: A Petri net N is de�ned as a �ve-tuple (P, T, I, O, �0), where:� P is a �nite set of places;� T is a �nite set of transitions such that P \ T = �� I:T �! P1 is the input function, a mapping from transition to bag of places� O : T �! P1 is the output function, a mapping from transition to bag of places� �0 is the initial net marking, is a function from the set of places to the nonnegativeintegers N, �0 : P �! N .De�nition: A transition tj 2 T in a Petri net N = (P, T, I, O, �) is enabled if for allpi 2 P , �(pi) � #(pi; I(tj)) where #(pi; I(tj)) represents multiplicity of the place pi inthe bag I(tj).



De�nition: The next-state function � : Zn+ � T �! Zn+ for a Petri net N = (P, T,I, O, �) , jP j = n, with transition tj 2 T is de�ned i� tj is enabled. The next-state isequal to �0 where:�0(pi) = �(pi)�#(pi; I(tj)) + #(pi; O(tj))8pi 2 P:We can extend this function to a sequence of transitions as follows:�(�; tj�) = �(�(�; tj); �); �(�; �) = � where � represents the null sequence.To de�ne the language of a Petri net, we associate a set of symbols called alphabet �with a Petri net by means of a labeling function, � : T �! �. A sequence of transition�rings can be represented as a string of labels. Let F � P designate a particular subsetof places as �nal places and we call a con�guration � �nal if�(pi) = 0 8pi 2 P � FThat is, all tokens are in �nal places in a �nal con�guration. If a sequence of transition�rings takes the Petri Net from its initial con�guration to a �nal con�guration, thestring formed by the sequence of labels of these transitions is said to be accepted bythe Petri Net. The set of all strings accepted by a Petri Net is called the language ofthe Petri Net.De�nition: The language L of a Petri net N=(P, T, I, O, �) with alphabet �, labelingfunction � and the set of �nal places F, is de�ned asL = f�(�) 2 ��j� 2 T � and �f = �(�0; �) such that �f (p) = 0 8p 2 P � FgNow we state the following Theorem. Since this Theorem is proved in [Garg 88] andits proof is long we provide just its sketch.Theorem 6: The family of Petri net languages and concurrent regular languages isthe same.Sketch of the Proof: We �rst show that every concurrent regular expression canbe converted to a Petri net. Every regular expression can be converted to a �nitestate machine which can be converted to a Petri net by putting a token in its startstate and considering states as places. To model an in�nite number of �nite stateagents, we can delete the start place and thus making the transitions that originatedfrom the start place source of tokens. A Petri net corresponding to a unit expressionwould be interleaving of such structures. To derive a Petri net for concurrent regularexpressions it is su�cient to note that Petri net languages are closed under interleaving,synchronous composition and renaming.To convert a Petri net into concurrent regular expression, we �rst convert it to anordinary Petri net using Hack's construction[Hack 75]. We then partition its placesinto various units. These units share transitions and have the property that for everytransition, a unit has at most one place incident to it as input and one place as output.This decomposition is always possible by keeping all places in di�erent units. We nowshow that a unit can be converted to a unit expression. The �nal concurrent regularexpression is just synchronous composition of unit expressions. Since for each transitionthere is at most one place as input and at most one place as output, a unit can beviewed as pure interleaving of agents with their current state represented by placementof tokens. If tokens can be generated dynamically in a unit, it is modeled using alphaclosure. Since there are �nite number of places in a unit each agent can be viewed asa �nite state machine. A �nite state machine can be converted to a regular expressionand therefore a unit expression would just be interleaving of regular expressions and



alpha closure of regular expressions.
For the rigorous proof of this Theorem we refer the interested readers to [Garg 88].Figure 3 shows an example of conversion.From above discussion, we note thatfinite � regular � unit � concurrent regular = Petri Net languages6 ConclusionsIn this paper, we have de�ned an extension of regular expressions called concurrentregular expressions which can shown to be equivalent to Petri nets. The concurrentregular expression is built of regular expressions and operators - interleaving, alphaclosure, synchronous composition and renaming. We have also shown the relationshipof concurrent regular languages with regular, context-free and Petri net languages. Ourframework supports two two main ideas. First, it provides a common framework foralgebra-based and transition based models. Secondly, it supports a hierarchy of modelswith varying expressive power.7 References[Aggarwal 87] S.Aggarwal, D. Barbara, K.Z. Meth, "SPANNER: A Tool for Speci�-cation, Analysis, and Evaluation of Protocols", IEEE Transactions on Software Engi-neering, Vol 13, 12 December 1987, pp 1218-1237.[Ada 83] Reference Manual for the Ada Programming Language, United States DoD,Washington, ANSI/MIL-STD-1815A-1983, 1983.[Billington 88] J.Billington,G.R.Wheeler, M.C.Wilbur-Ham, "PROTEAN: A High-Level Petri Net Tool for the Speci�cation and Veri�cation of Communication Proto-cols", IEEE Transactions on Software Engineering, Vol 14, 3 March 1988, pp 301-316.[Campbell 74] R.H.Campbell, A.N.Habermann, "The Speci�cation of Process Syn-chronization by Path Expressions", Lecture Notes in Computer Science, vol 16, SpringerVerlag, New York 1974, pp 89-102.[Campbell 79] R.H.Campbell, R.B.Kolstad, "Path Expressions in Pascal", Proc. 4th
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