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tWe show that some re
ent results in sli
ing of a distributed 
omputation 
an be applied to de-veloping algorithms to solve problems in 
ombinatori
s. A 
ombinatorial problem usually requiresenumerating, 
ounting or as
ertaining existen
e of stru
tures that satisfy a given property B. We
ast the 
ombinatorial problem as a distributed 
omputation su
h that there is a bije
tion between
ombinatorial stru
tures satisfying B and the global states that satisfy a property equivalent to B.We then apply results in sli
ing a 
omputation with respe
t to a predi
ate to obtain a small represen-tation of only those global states that satisfy B. The sli
ing results are based on a generalization ofBirkho�'s Theorem of representation of �nite distributive latti
es. This gives us an eÆ
ient (poly-nomial time) algorithm to enumerate, 
ount or dete
t stru
tures that satisfy B when the total setof stru
tures is large but the set of stru
tures satisfying B is small. We illustrate our te
hniques byanalyzing problems in integer partitions, set families, and set of permutations.1 Introdu
tionConsider the following 
ombinatorial problems:(Q1) Count the number of subsets of the set [n℄ (the set f1 : : : ng) whi
h have sizem and do not 
ontainany 
onse
utive numbers.(Q2) Enumerate all integer partitions less than (�1; �2; : : : ; �n) in whi
h the �rst part is equal to these
ond part.(Q3) Give the number of permutations of [n℄ in whi
h i less than j implies that the number of inversionsof i is less than the number of inversions of j.Our goal in this paper is to show how su
h problems 
an be solved me
hani
ally and eÆ
iently forany �xed values of the parameters n and m.It is important to note that someone trained in 
ombinatori
s may be able to solve all of theseproblems eÆ
iently (and the reader is en
ouraged to solve these problems before reading further). Ouremphasis is on te
hniques that 
an be applied me
hani
ally. On the other hand, one 
an also notethat for the �xed values of n and m, all the sets above are �nite and therefore all the problems 
anbe solved me
hani
ally. Our emphasis is on eÆ
ien
y. To be more pre
ise, let L be a large set of
ombinatorial stru
tures (for example, all subsets of f1 : : : ng of size m, all permutations of [n℄ et
.)Ea
h 
ombinatorial problem requires enumerating, 
ounting, or sear
hing the subset of stru
tures thatsatisfy a given property B. Call this set LB � L. For example, in the problem (Q1), L is the setof all subsets of [n℄ of size m and LB is the set of all subsets that do not 
ontain any 
onse
utive�supported in part by the NSF Grants ECS-9907213, CCR-9988225, Texas Edu
ation Board Grant ARP-320, anEngineering Foundation Fellowship, and an IBM grant. 1



numbers from [n℄. For any �xed set of parameters m and n, the size of L is large but �nite, enablingone to enumerate all possible stru
tures and then to 
he
k ea
h one of them for the property B. Thisapproa
h results in an algorithm that requires time proportional to the set L whi
h is exponential inn (or m). This paper proposes a te
hnique that provides answers to some 
ombinatorial problems inpolynomial time and for others, su
h as those involving enumeration, in time proportional to the sizeof LB (and not L). Our te
hnique is appli
able whenever B satis�es a property 
alled regularity andwe give several examples of regular B in this paper.To explain our te
hnique, we use the term small to mean polynomial in n and m, and large tomean exponential in n or m. Thus, the set L is large. We �rst build a small stru
ture P su
h thatall elements of P 
an be generated by L. Se
ond, we 
ompute a sli
e of P with respe
t to B, denotedby PB , su
h that PB generates all elements of LB and when B is regular only those elements. PB isa small stru
ture and 
an be eÆ
iently analyzed to answer questions about LB. For regular B, one
ould simply enumerate all elements of LB from PB .Our approa
h is based on some re
ent results on sli
ing a distributed 
omputation with respe
t toa predi
ate B [GM01, MG01℄. Informally, a sli
e of a 
omputation with respe
t to a predi
ate B is asub
omputation with the least number of global states that 
ontains all global states that satisfy B.Sli
ing, in turn, is based on Birkho�'s Theorem of representation of �nite distributive latti
es [DP90℄.The small stru
ture P is a dire
ted graph representing a distributed 
omputation on n pro
esses. Theset of all (
onsistent) global states of the 
omputation is the large stru
ture L. Equivalently, P , whena
y
li
, is a poset and the set L is the set of all order ideals of P . It is well known that L is a �nitedistributive latti
e under the 
ontainment relation of order ideals. Conversely, the poset P 
an bere
overed from L by fo
using on its join-irredu
ible elements. From the algorithmi
 perspe
tive thisresult is very useful be
ause the set L 
an be exponentially bigger than the set P and therefore P 
anbe viewed as a generator of L.Consider any predi
ate B de�ned on L, or equivalently, the a subset LB of L. B is 
alled regularif LB is a sublatti
e of L. From Birkho�'s theorem we know that there exists a poset that generatesLB . We show that every sublatti
e of L 
an be generated by a poset that 
an be obtained by addingedges to the poset P . Note that when edges are added to the graph of a poset 
y
les may form. In this
ase we simply 
onsider the poset of strongly 
onne
ted 
omponents in the graph. We denote the smallstru
ture obtained after adding edges to P as PB . Now PB 
an be used to enumerate elements in LB , orto analyze the number of elements in LB . Many algorithms have been proposed to enumerate ideals ofa poset; for example by Steiner[Ste86℄ and Squire[Squ95℄. In distributed 
omputing, the algorithms toexplore the global state latti
e address the identi
al problem (see [CM91, VD01, JMN95℄). Determiningthe 
ount of the elements in LB given PB is #P-
omplete for general posets [PB83℄ but 
an be doneeÆ
iently for 2-dimensional posets[Ste84℄.When B is not regular, we 
an still use this idea by 
onsidering the stru
ture PB whi
h properlyin
ludes all ideals in LB and as few other ideals as possible. In parti
ular, a property that 
an beexpressed as a 
onjun
tion, disjun
tion or negation of regular predi
ates 
an also be analyzed in thismanner.We apply these ideas to many traditional problems in 
ombinatori
s. It is easily shown that most
ombinatorial stru
tures su
h as the set of permutations, set of all subsets, set of subsets of size k, allinteger partitions less than a given partition, all tuples in produ
t spa
es et
. 
an be generated as theset of order ideals of small posets. We show that many interesting subsets of these stru
tures 
an beeÆ
iently analyzed by generating appropriate sli
es. Due to the la
k of spa
e, all proofs in this paperare in appendix.
2



2 Notation and De�nitionsIn this se
tion we review the notation and the basi
 results in latti
e theory [DP90℄. Let X be any�nite set. A pair (X;P ) is 
alled a partially ordered set or poset if X is a set and P is a re
exive,antisymmetri
, and transitive binary relation on X. We 
all X the ground set while P is a partial orderon X. We simply write P as a poset when X is 
lear from the 
ontext. We write e � f in P when(e; f) 2 P . We say that f 
overs e if e < f and there is no g su
h that e < g < f . Let e; f 2 X withe 6= f . If either e < f or f < e, e and f are 
omparable. On the other hand, if neither e < f norf < e, then e and f are in
omparable. A poset (X;P ) is 
alled 
hain if every distin
t pair of pointsfrom X is 
omparable in P . Similarly, a poset is an anti
hain if every distin
t pair of points from Xis in
omparable in P .(X;P ) and (Y;Q) are isomorphi
, if there exists a 1� 1 and onto map F : X �! Y su
h that 
 � din P if and only if F (
) � F (d) in Q. A poset (X;Q) is an extension of (X;P ) if for all e; f 2 X, e < fin P implies e < f in Q. (X;Q) is a linear extension if it is an extension of (X;P ) and is a 
hain.A latti
e is a poset L su
h that for all x; y 2 L, the least upper bound of x and y exists, 
alled thejoin of x and y (denoted by x t y); and the greatest lower bound of x and y exists, 
alled the meetof x and y (denoted by x u y). A sublatti
e is a subset of L 
losed under join and meet. A sublatti
efor whi
h there exists two elements 
 and d su
h that it in
ludes all x whi
h lie between 
 and d (i.e.
 � x � d) is 
alled an interval latti
e and denoted by [
; d℄. A latti
e L is distributive if for allx; y; z 2 X: x u (y t z) = (x u y) t (x u z).Next we provide the de�nition of order ideals or down-set of a poset P . Let (X;P ) be a poset andlet G � X. G is 
alled an order ideal in (X;P ) if e 2 G whenever f 2 G and e � f in P . Considerthe poset in Figure 1(a). The set fb; dg is an order ideal. The set fa; 
g is not be
ause it in
ludes
 but does not in
lude b whi
h is smaller than 
. We simply use ideal for order ideal in this paper.Let L denote the family of all ideals of P . De�ne a partial order on L by G � H in L if and onlyif G � H. It is well known that the set of ideals forms a distributive latti
e and 
onversely every�nite distributive latti
e 
an be 
onstru
ted in this manner. Figure 1 shows a poset and its latti
e ofideals. Given a �nite distributive latti
e L, one 
an determine the poset that generates L as follows.An element e 2 L is join-irredu
ible if it 
annot be written as joins of two elements di�erent from e.Pi
torially, in a �nite latti
e, an element is join-irredu
ible i� it has exa
tly one lower 
over, that is,there is exa
tly one edge 
oming into the element. Figure 1(b) shows join-irredu
ible elements of thelatti
e. For any e 2 P , we use J(e) to denote the least ideal in L that 
ontains e. It is easy to showthat J(e) is join-irredu
ible. Let J(L) denote the set of all join-irredu
ible elements in L. Birkho�'stheorem states that any �nite distributive latti
e L is isomorphi
 to the set of ideals of the poset J(L)(and dually, any �nite poset P is isomorphi
 to join-irredu
ible elements of the set of ideals of P ).Meet-irredu
ible elements of L 
an be de�ned in an analogous manner. M(f), the greatest ideal thatdoes not 
ontain f , is meet-irredu
ible. The set of all meet-irredu
ible elements of L are denoted byM(L) and Birkho�'s theorem 
an also be stated using M(L).In this paper, P and posets derived from P will serve as the small stru
tures, and L and sublatti
esof L will serve as the large stru
tures. We are usually interested in LB � L, 
ontaining ideals of L thatsatisfy a given predi
ate B. Instead of enumerating L and 
he
king for predi
ate B, we use P and Bto derive a stru
ture PB that generates LB.For 
ounting the number of elements in L and its sublatti
es, we use N(P ) to denote the numberof ideals of the poset P . Sin
e our interest is in eÆ
ient 
al
ulation of N(P ), we will restri
t thedimension of the partial order generating the latti
e. For any poset (X;P ), the dimension of (X;P ),denoted by dim(X;P ), is the least positive integer t for whi
h there exists a family fC1; C2; : : : ; Ctg oflinear extensions of P (total orders 
ompatible with P ) su
h that P = \ti=1Ci. Determining whether aposet P with n points is 2-dimensional and isomorphism testing for 2-dimensional orders 
an be donein O(n2) time [Spi85℄. All the posets used in this paper are 2-dimensional. The reader is referred to3
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(a) (b)Figure 1: (a) a partial order (b) the latti
e of ideals.[Tro92℄ for dimension theory of posets. The following lemma shows that the number of ideals of a poset
an be 
al
ulated eÆ
iently for series-parallel posets (a spe
ial 
ase of 2-dimensional posets) [FLST86℄.For generalization to 
ounting ideals of two dimensional posets see [Ste84℄.Lemma 1 (Counting Lemma)(1) If Q is an extension of P then N(Q) � N(P ).(2) (Parallel) Let P +Q be the disjoint union (or dire
t sum) of posets P and Q (see [DP90℄). Then,N(P +Q) = N(P )N(Q).(3) (Series) Let P � Q be the ordinal sum of posets P and Q[DP90℄. Then, N(P � Q) = N(P ) +N(Q)� 1.(4) Assume that P 
an be de
omposed into the least number of 
hains C1; C2; : : : Cn. ThenN(P ) � nYi=1(jCij+ 1):When ea
h 
hain is at most m in length, we get that N(P ) � (m+ 1)n.For some examples, instead of enumerating all ideals of a poset we may be interested in enumeratingor 
ounting ideals in a 
ertain level set. To de�ne level sets, �rst de�ne a poset to be ranked if forea
h element x 2 P , one 
an assign a non-negative integer, rank(x), su
h that if y 
overs x, thenrank(y) = rank(x) + 1. The set of all elements in P with rank i are 
alled it level set with rank i.Every distributive latti
e is a ranked poset [Sta86℄.3 Our ModelTraditionally the duality is expressed between �nite posets and �nite distributive latti
es. In this paper,we are interested in produ
ing stru
tures that generate subsets of the �nite distributive latti
e. It is4
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(a) (b)Figure 2: (a) A sli
e of Figure 1 (b) the latti
e of its ideals.more 
onvenient to use dire
ted graphs instead of posets for this purpose be
ause, as shown later, we
an get sublatti
es by simply adding edges to the original dire
ted graph.The notion of ideals 
an be extended to graphs in a straightforward manner. A subset of verti
es ofa dire
ted graph is an ideal i� the subset 
ontains a vertex only if it 
ontains all its in
oming neighbors.Observe that an ideal either 
ontains all verti
es in a strongly 
onne
ted 
omponent or none of them.Let I(P ) denote the set of ideals of a dire
ted graph P . Observe that the empty set ; and the setof all verti
es trivially belong to I(P ). We 
all them trivial ideals. The following theorem is a slightgeneralization of the result in latti
e theory that the set of ideals of a partially ordered set forms adistributive latti
e [DP90℄.Theorem 1 [MG01℄ Given a dire
ted graph P , hI(P );�i forms a distributive latti
e.Now assume that we are interested in the set of ideals that satisfy a predi
ate B. We will beinterested in deriving a graph su
h that its ideals 
apture this set. A small diÆ
ulty is that everygraph has at least two trivial ideals and therefore we 
annot 
apture the 
ase when the set of idealssatisfying B is empty. To address this problem, we add to the graph two additional verti
es ? and >su
h that ? is the smallest vertex and > is the largest vertex. This ensures that any nontrivial idealwill 
ontain ? and will not 
ontain >. As a result, every ideal of a 
omputation in the traditionalmodel is a nontrivial ideal of the 
omputation in our model and vi
e versa. We will deal with onlynontrivial ideals from now on.Figure 2 shows the dire
ted graph and its nontrivial ideals. The dire
ted graph in Figure 2(a) isderived from Figure 1(a) by adding an edge from 
 to b and adding two additional verti
es ? and >.The resulting set of nontrivial ideals is a sublatti
e of Figure 1(b). In the �gure, we have not shown? in the ideals be
ause it is impli
itly in
luded in every nontrivial ideal. This example illustrates themain steps in our te
hnique. Figure 1(a) is a small stru
ture that generates the large stru
ture Figure1(b)1. We are interested in enumerating or 
ounting the set of ideals that satisfy the property \theideal 
ontains b whenever it 
ontains 
." To generate su
h ideals it is suÆ
ient to add an edge from 
to b. Figure 2(a) shows the small stru
ture that generates all the ideals of interest to us. Figure 2(a)will be 
alled the sli
e of Figure 1(a) with respe
t to the predi
ate B. The formal de�nition of a sli
eis given in the next se
tion.1In this example, the number of ideals is a
tually not large. However, later we will see several examples where thelatti
e of ideals is exponentially bigger than the graph. 5



4 Sli
es and Regular Predi
atesWe denote the sli
e of a dire
ted graph P with respe
t to a predi
ate B by sli
e(P;B). The sli
e(P;B)is a graph derived from P su
h that all the ideals in I(P ) that satisfy B are in
luded in I(sli
e(P;B)).Note that the sli
e may in
lude some additional ideals whi
h do not satisfy the predi
ate. Formally,De�nition 1 (Sli
e [MG01℄) A sli
e of a graph P with respe
t to a predi
ate B is the dire
ted graphobtained from P by adding edges su
h that (1) it 
ontains all the ideals of P that satisfy B and (2) ofall the graphs that satisfy (1), it has the least number of ideals.It is shown in [MG01℄ that the sli
e exists and is unique for every predi
ate. Computing sli
es forpredi
ates in general is NP-hard but one 
an eÆ
iently 
ompute sli
es for regular predi
ates.De�nition 2 (Regular Predi
ates [GM01℄) A predi
ate is regular if the set of ideals that satisfythe predi
ate forms a sublatti
e of the latti
e of ideals.Equivalently, a predi
ate B is regular with respe
t to P if it is 
losed under t and u, i.e.,8G;H 2 I(P ) : B(G) ^B(H)) B(G tH) ^B(G uH)We now show that regular predi
ates 
an be de
omposed into simpler stru
tures 
alled simplepredi
ates. Our motivation is that 
omputing sli
es for simple predi
ates is easy.De�nition 3 (Simple Predi
ates) A predi
ate B is simple if there exists e; f 2 P su
h that8G 2 I(P ) : B(G) � ((f 2 G)) (e 2 G))Denote this predi
ate by S(e; f). Thus, a simple predi
ate is of the form: G satis�es B i� whenever itin
ludes f it in
ludes e.We �rst show a useful property of simple predi
ates.Lemma 2 A simple predi
ate S(e; f) partitions the latti
e of ideals into two sublatti
es. Moreover,:S(e; f) is equivalent to the interval latti
e [J(f);M(e)℄.In Figure 2(a), our predi
ate is S(
; b). The sublatti
e for S(
; b) is shown in Figure 2(b). Its 
omple-ment, the set of ideals [ fbg; fa; bg; fb; dg; fa; b; dg ℄ is also a sublatti
e.We now show an easy test that indi
ates whether a regular predi
ate B is stronger than S(e; f).Let JB(e) denote the least ideal that in
ludes e and satis�es B. Sin
e the predi
ate B is regular andthe predi
ate \the ideal in
ludes e" is also regular, it follows that JB(e) is well de�ned.Lemma 3 For regular B and any e,fe 2 JB(f) � JB(e) � JB(f) � B ) S(e; f)We now turn our attention to 
hara
terizing the set of ideals that satisfy B.Lemma 4 An ideal G satis�es a regular predi
ate B i� 8f 2 G : JB(f) � G.We now provide a de
omposition theorem for regular predi
ates.Theorem 2 For any regular predi
ate B, let EB = f(e; f)jB ) S(e; f)g. Then,B = ^(e;f)2EB S(e; f)6



From the de
omposition theorem and properties of simple predi
ates we get that B is a regularpredi
ate i� it 
an be expressed as a 
onjun
tion of simple predi
ates. As a 
orollary (by applyingDe Morgan's and using the result about 
omplement of simple predi
ates), we also get the followingRival's theorem [Riv73℄.Corollary 1 A 
omplement of a sublatti
e 
an be expressed as a union of interval latti
es of the form[
; d℄ where 
 is a join-irredu
ible element and d is a meet-irredu
ible element.This also implies thatCorollary 2 There are O(2n2) distributive latti
es on n points.The 
orollary follows be
ause every distributive latti
e is a sublatti
e of the boolean latti
e on nelements and therefore equivalent to a regular predi
ate. By the de
omposition theorem, a regularpredi
ate is a 
onjun
tion of at most O(n2) simple predi
ates. Note that there 
an be as many asO(22n) subsets of the boolean latti
e but only very few of them are sublatti
es.Now obtaining sli
es for a regular predi
ate B is an easy task. We simply add edge (e; f) to thegraph of P for every simple predi
ate S(e; f) su
h that B ) S(e; f). Therefore, we haveTheorem 3 Let P be a dire
ted graph. Let Q be a dire
ted graph obtained by adding edges to P . Then,I(Q) is a sublatti
e of I(P ). Conversely, every sublatti
e of I(P ) is generated by some dire
ted graphQ obtained from P by adding edges.Suppose that the poset P has n 
hains ea
h of size at most m. There are at most O(mn) verti
esand O(m2n2) edges in the poset viewed as a dire
ted graph. Therefore, a regular predi
ate B is a
onjun
tion of at most O(m2n2) simple predi
ates. We 
an redu
e this number by the observation thatif f � g in poset P , then for any e, S(e; f) implies S(e; g). Therefore, for any event e there need to beat most n simple predi
ates (at most one for every 
hain). We 
on
lude that every regular predi
ate
an be expressed as 
onjun
tion of at most n2m simple predi
ates. Note that this result may be derivedwith some e�ort from the algorithm in [MG01℄. We have made it expli
it and given a dire
t proof inthis paper using the notion of simple predi
ates.5 Appli
ation to Combinatori
sIn this se
tion we give several examples of 
ombinatorial stru
tures that 
an be viewed as the set ofideals generated by a sli
e and show that the sli
e 
an be generated me
hani
ally.5.1 Boolean Algebra and Set FamiliesLet X be a ground set on n elements. Assume that we are interested in the sets of subsets of X. Byusing � as the order relation, we 
an view it as a distributive latti
e L. This latti
e has n+1 levels andea
h level set of rank k in the boolean latti
e 
orresponds to �nk� sets of size k. L is generated by thedire
ted graph in Figure 3(a) whi
h 
an also be interpreted as a distributed 
omputation n pro
essesfP1; : : : Png. Ea
h pro
ess Pi exe
utes a single event ei. It is easy to verify that there is a bije
tionbetween every nontrivial global state of the 
omputation and a subset of X.Now 
onsider all subsets of X su
h that if they in
lude ei then they also in
lude ej. To obtain thesli
e with respe
t to this predi
ate we just need to add an edge from ej to ei. Figure 3(b) shows thesli
e with respe
t to the predi
ate that if e3 is in
ludes then so is e2. To ensure the 
ondition that eiis always in
luded, we simply add an edge from ei to ? and to ensure that ei is never in
luded in any7
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(a) (b) (c)Figure 3: Graphs and sli
es for generating subsets of Xsubset, we add an edge from > to ei. Figure 3(
) shows the sli
e whi
h gives all subsets that always
ontain e1, never 
ontain e4 and 
ontain e2 whenever they 
ontain e3.As an appli
ation, we now solve some 
ombinatorial problems. Let n be even. We are required to
al
ulate the total number of subsets of [n℄ whi
h satisfy the property that if they 
ontain any oddinteger i, then they also 
ontain i + 1 (or equivalently, 
ompute the number of ways to sele
t groupsfrom n=2 
ouples su
h that a wife is always a

ompanied by her husband in the group although ahusband may not be a

ompanied by his wife). Although this problem 
an be solved dire
tly by a
ombinatorial argument, we will show how our method 
an be applied. We �rst 
onstru
t the posetwhi
h generates all the subsets of [n℄. It is Figure 3(a) in this 
ase. We now de�ne the subset ofinterest by a predi
ate B. For any subset G of [n℄, we let B(G) to be true if G 
ontain i+ 1 wheneverit 
ontains any odd integer i. From our dis
ussion of regular predi
ates, it is 
lear that B is regularand equivalent to S(e2; e1) ^ S(e4; e3) : : : ^ S(en; en�1)To 
ompute the sli
e, it is suÆ
ient to add an edge from ei+1 to ei for odd i. The sli
e 
onsists of n=2
hains ea
h with exa
tly 2 events (ignoring ? and >). From the 
ounting lemma (Lemma 1), it followsthat the total number of ideals is (2 + 1)n=2 = 3n=2. The reader should note that for any �xed value ofn, the problem 
an be solved by a 
omputer automati
ally and eÆ
iently (be
ause the sli
e results ina series-parallel poset).5.2 Set families of Size kIt is important to note that regularity of B is dependent upon the latti
e stru
ture of L. For example,in many appli
ations of set families, we are interested in sets of a �xed size k. The predi
ate B thatthe ideal is of size k is not regular. However, by 
onsidering alternative posets, this set family 
an stillbe analyzed. Figure 4 shows a 
omputation su
h that all the subsets of X of size k are its ideals. For
larity, we have not drawn > and ? in the �gure.There are k pro
esses in this 
omputation and ea
h pro
ess exe
utes n�k events. By the stru
tureof the 
omputation, if in a global state Pi has exe
uted j events, then Pi+1 must have also exe
utedat least j events. The 
orresponden
e between subsets of X and global states 
an be understood asfollows. If pro
ess Pi has exe
uted t events in the global state, then the element t+ i is in the set Y .Thus pro
ess P1 
hooses a number from 1 : : : n � k + 1 (be
ause there are n � k events); pro
ess P2
hooses the next larger number and so on. It 
an also be easily veri�ed that the poset in Figure 4(a) isa 2-dimensional poset and that there are �nk� ideals of this poset. From symmetry it also follows that�nk� equals � nn�k�. Figure 4 gives an example of the 
omputation for subsets of size 3 of the set [6℄. Theglobal state, or the ideal, shown 
orresponds to the subset f1; 3; 4g.8
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(a)
(b)Figure 4: Graphs for generating subsets of X of size kNow let us apply our theory to the �rst 
ombinatorial problem (Q1) mentioned in the introdu
tion.Assume that we are interested in 
ounting all subsets of n of size k whi
h do not have any 
onse
utivenumbers. In this example, G satis�es B if whenever Pi has t events in G, Pi+1 has at least t + 1events in G. This 
ondition is regular and we 
an use Lemma 3 and Theorem 2 to 
ompute the sli
e.(for every event f , we only need to determine whether e 2 JB(f)). Figure 5 shows the sli
e whi
hin
ludes pre
isely su
h subsets. By 
ollapsing all strongly 
onne
ted 
omponents and by removing thetransitively implied edges we get a graph whi
h is isomorphi
 to the 
ase when there are k pro
essesand ea
h pro
ess exe
utes n� k � (k � 1) events. Therefore, the total number of su
h sets is �n�k+1k �.Again one 
an 
ome up with a 
ombinatorial argument to solve the problem (for example, see Theorem13.1 and Example 13.1 in [vLW92℄), but the sli
ing approa
h is 
ompletely me
hani
al.

P
k

P
k−1

P
1

e
k,n−k

e
1,n−kFigure 5: Sli
e for the predi
ate \does not 
ontain 
onse
utive numbers"The above 
onstru
tion 
an be generalized to multidimensional grids to obtain results on multino-mials instead of binomials.5.3 Integer Partitions and Young's latti
eA k-tuple of positive integers � = (�1; : : : ; �k) is an integer partition of N if �1+ : : :+ �k = N and forall i, �i � �i+1. The number of parts of � is k. An example of partition of 10 into 3 parts is (4; 3; 3).An integer partition 
an be visualized as a Ferrers diagram or an array of squares in de
reasing orderwith �i squares in row i. The Ferrers diagram of the partition (4; 3; 3) of 10 is shown in Figure 6(a).A partition � is 
ontained in another partition Æ if the number of parts of � is at most that of Æ and�i is less than or equal to Æi for any i between 1 and the number of parts of �. For example, (3; 3; 1) is9



less than (4; 3; 3). Fix any partition �. The set of all partitions that are less than or equal to � formthe Young's latti
e denoted by Y�.
P
1

P
3

P
2

(a)
(b)Figure 6: (a) A Ferrer diagram (b) A graph for generating Young's latti
eWe now apply our approa
h to Y�. Let the number of parts and the largest part in the partition� be m and n respe
tively. Then we have a distributed 
omputation of n pro
esses with at most mevents per pro
ess as shown in Figure 6(b). Pi exe
utes as many events as �i. It is 
lear that for anyglobal state, the number of events exe
uted by Pi is at least as many as exe
uted by Pi+1. Clearly,the set of global states of the 
omputation as in Figure 6(b) is isomorphi
 to Young's latti
e for the
orresponding partition.It follows that Young's latti
e is distributive. One 
an see that the latti
e of subsets of size k fromthe set of size n is a spe
ial 
ase of Youngs's latti
e when all �i's are equal. Therefore, the number ofinteger partitions whose Ferrers diagrams �t in a box of size k by n� k is equal to �nk� (providing analternate proof of Theorem 3.2 in [SW86℄). Let q(N; k;m) denote the number of partitions of N whoseFerrer's diagram �t in a box of size k by m. By summing up the sizes of all level sets, it also followsthat �nk� = k(n�k)Xl=0 q(l; k; n� k)Sin
e the poset that generates 
orresponding Young's latti
e is symmetri
 with respe
t to k and m, weget that q(N; k;m) equals q(N;m; k); and sin
e the poset is dual of itself (i.e. we get ba
k the sameposet when all ar
s are reversed) we also get that q(N; k;m) equals q(mk �N; k;m). All these resultsare well known and generally derived using Gaussian polynomials (see [vLW92℄).We now fo
us on subsets of partitions. Assume that we are interested in all those partitions su
hthat their se
ond 
omponent is some �xed value say b. It is easy to verify that partitions Æ 2 Y� su
hthat Æ
 = b form a sublatti
e and therefore the 
ondition Æ
 = b is a regular predi
ate.Figure 7(a) gives the sli
e of partitions in whi
h Æ2 = 2. Sin
e the se
ond part must be 2, we addedges to ensure that P2 exe
utes exa
tly 2 events. On 
ollapsing the strongly 
onne
ted 
omponentsand transitively redu
ing the graph we get Figure 7(b). By applying 
ounting lemma, we get that thereare (2 + 1)(2 + 1) = 9 su
h partitions whi
h 
an all be enumerated automati
ally using Figure 7(b).They are: f220; 221; 222; 320; 321; 322; 420; 421; 422gAs another example assume that we are interested in all partitions less than � whi
h have distin
tparts. Figure 8(a) gives the sli
e and Figure 8(b) gives the graph after simpli�
ation. The graph isequivalent to that of subsets of size 3 from [5℄. Hen
e, there are �53� su
h partitions. These partitions
an also be enumerated from the �gure. They are:f210; 310; 410; 320; 420; 430; 321; 421; 431; 432g:10
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1
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3 4

(a) Figure 7: Sli
e for Æ2 = 2Some other subsets of partitions dis
ussed in the literature are \partitions with odd number of parts",\partitions with distin
t odd parts," \partitions with even number of parts" et
. These are also regularpredi
ates.
(a) (b) Figure 8: Sli
e for \distin
t parts"Now the reader may also see the solution for the se
ond problem (Q2) mentioned in the introdu
tion|enumerating all partitions in the Young's latti
e Y� with �rst part equal to the se
ond part. We simplyde�ne the predi
ate B on a partition Æ to be true when Æ1 equals Æ2. It is 
lear that the predi
ate is
losed under joins and meets and is therefore a regular predi
ate. One 
an draw the sli
e and 
on
ludethat the number of partitions Æ in Y� satisfying Æ1 = Æ2 is equal to the number of partitions in YÆ whereÆ = (�2; �3; : : : ; �k). The sli
e 
an also be used to enumerate all required partitions.Note that the level set of rank N of Y� (where � = (�1; �2 : : : ; �t)) 
orresponds to all partitionsof N with at most t parts and the largest part at most �1. It follows that all partitions of N 
an beenumerated as the elements in level set of rank N of Y(N;N;::N).5.4 PermutationsPermutations play a fundamental role not only in 
ombinatori
s but also in group theory. We �rstshow a small 
omputation that generates all permutations of n symbols. The 
omputation 
onsists ofn � 1 pro
esses. Pro
ess Pi exe
utes i � 1 events. There are multiple ways to interpret the 
hoi
esmade by pro
esses.(1) The simplest way is to view it as a problem of putting n symbols into n pla
es. We require Pi topla
e the symbol i+ 1. We start with pla
ing n and then go ba
kwards to 1. Pro
ess Pn�1 hasn 
hoi
es for pla
es. This we 
an determine from the number of events exe
uted by Pn�1 fromf0::n� 1g. Pn�2 has n� 1 
hoi
es and so on.11



(2) Another method is to use the inversion table[Knu98℄. The number of inversions of i in a per-mutation � is the number of symbols less than i that appear to the right of i in �. The way apermutation is generated from a global state is as follows. We begin the permutation by writing1. P1 de
ides where to insert the symbol 2. There are two 
hoi
es. These 
hoi
es 
orrespondto number of inversions introdu
ed by 2. If we pla
e 2 after 1, then we introdu
e zero inver-sions; otherwise we introdu
e one inversion. Pro
eeding in this manner we get that there isa bije
tion between the set of permutations and the global states. This is similar to Johnson-Trotter method of enumerating all permutations or showing bije
tion between inversion table andpermutations[SW86℄.We will fo
us on the interpretation based on inversions. It is easy to show that the followingpredi
ates are regular. Further by 
omputing the sli
e, we 
an also 
al
ulate the number of permutationssatisfying B.Lemma 5 All the following properties of permutations are regular.(1) The symbol m < n has at most j inversions (for j < m). The total number of su
h permutationsis n!(j+1)m .(2) i � j implies that i has at most as many inversions as j. The total number of su
h permutationsis same as the number of integer partitions less than (n� 1; n� 2; :::; 1).The level set at rank k of the permutation latti
e 
onsists of all permutations with total number ofinversions equal to k and therefore su
h permutations 
an be eÆ
iently enumerated [Knu98, ER02℄.6 Con
lusions and Future WorkIn this paper we have shown that the idea of small generators is quite useful in me
hani
al analysis of
ombinatorial problems. In summary, the paper makes the following 
ontributions.� We introdu
e the notion of a simple predi
ate on the latti
e of ideals. We show that a simplepredi
ate de
omposes the latti
e into two sublatti
es.� We show that every regular predi
ate 
an be obtained as 
onjun
tion of simple predi
ates. Our
onstru
tion also provides an alternative proof of Rival's theorem[Riv73℄. As a 
orollary, weobtain that every sublatti
e of a �nite distributive latti
e L 
an be derived from the poset P thatgenerates L by adding edges to P .� We show that for regular predi
ates we 
an me
hani
ally synthesize a small stru
ture that gener-ates all 
ombinatorial stru
tures satisfying B. The 
omplexity of our algorithm is O(n2m) wherethe poset 
an be de
omposed into n 
hains ea
h of at most m height.� We show the appli
ations of these results to set of subsets, integer partitions, and permutations.This is the main fo
us of the paper. The appendix gives other examples of regular predi
atesdrawn from other areas.Referen
es
12



Appendix: Proofs of TheoremsProof: Lemma 2 We show that both S(e; f) as well as :S(e; f) are regular. Let G and H be twoideals su
h that they satisfy S(e; f). We �rst show that G [ H also satis�es S(e; f). Assume thatG[H in
ludes f . This implies that either G or H in
ludes f . In either 
ase, we get that e is in
ludedin G [H be
ause both G and H satisfy S(e; f). The proof for G \H is similar.We �rst show that :S(e; f) is equivalent to the interval latti
e [J(f);M(e)℄. Sin
e any intervallatti
e is a sublatti
e the result follows. First 
onsider any ideal G in the interval latti
e. It is easyto verify that G in
ludes f but does not in
lude e by the de�nitions of J(f) and M(e). Therefore,it satis�es :S(e; f). Conversely, assume that G satis�es :S(e; f). This means that G in
ludes f anddoes not in
lude e. Sin
e G in
ludes f , it is greater than or equal to J(f), and sin
e it does not 
ontaine it is smaller than or equal to M(e). Therefore, it belongs to [J(f);M(e)℄.Proof: Lemma 3 We �rst show that e 2 JB(f) � JB(e) � JB(f). The fa
t e 2 JB(f) impliesthat JB(f) satis�es B and in
ludes e. Sin
e JB(e) is the least su
h ideal, we get that JB(e) � JB(f).Converse is obvious be
ause e 2 JB(e).We now show that e 2 JB(f) � B ) S(e; f): First assume e 2 JB(f), i.e., the least ideal thatsatis�es B and in
ludes f also in
ludes e. Sin
e all ideals that satisfy B and in
lude f are bigger thanJ(f) it follows that all those ideals in
lude e. Hen
e, any ideal that satis�es B also satis�es S(e; f).Conversely, assume that B ) S(e; f). This implies that any ideal that satis�es B also satis�esS(e; f). Therefore, all ideals that satisfy B and in
lude f also in
lude e. Sin
e B is regular, the meetsof all the ideals that satisfy B and in
lude f also satis�es B and in
ludes f . Hen
e, e 2 JB(f).Proof: Lemma 4 For the forward dire
tion assume that G satis�es B. For any f 2 G we havethat G in
ludes f and satis�es B. JB(f) is the least su
h ideal, therefore, JB(f) � G.For the ba
kward dire
tion, 
onsider the ideal H de�ned asH = [f2G JB(f)Sin
e JB(f) � G, it follows that H � G. However, any f 2 G is also in JB(f). Therefore, G � H.This implies that G = H. Be
ause B is regular, it is 
lear that H satis�es B and therefore G alsosatis�es B.Proof: Theorem 2B(G)� 8f 2 G : JB(f) � G f Lemma 4 g� 8f 2 G : 8e : e 2 JB(f)) e 2 G f de�nition � g� 8e; f : (f 2 G) ^ (e 2 JB(f))) e 2 G f rearranging terms g� 8e; f : (f 2 G) ^ (B ) S(e; f))) e 2 G f Lemma 3 g� 8e; f 2 EB : (f 2 G)) e 2 G f rearranging terms, de�nition EB g� 8e; f 2 EB : S(e; f) f de�nition S(e; f) g
13



Proof: Lemma 5 For the �rst part, note that it is suÆ
ient to add an edge from > to event ej inpro
ess Pm+1. This ensures that symbol m 
annot have more than j inversions. Figure 9(a) shows thesli
e for set of permutations on [5℄ su
h that the symbol 4 has at most 1 inversion.For the se
ond part, we simple add an edge from event ej on Pi+1 to Pi for all j and i. Thus Pi
an exe
ute j events only if Pi+1 has exe
uted j or more events. The 
laim then follows by 
omparingthe poset with that 
orresponding to Young's latti
e.

(a) (b) Figure 9: Sli
e for subsets of permutations7 Other Examples7.1 Bipartite GraphsConsider the set of independent sets in a bipartite graph (X;Y;E). Every independent set S 
an bewritten as union of SX = S \X and SY = S \ Y . Given two independent sets S and T , de�neS � T � SX � TX ^ SY � TY :It is easy to see that the set of all independent sets form a distributive latti
e.Now let us fo
us on subsets of independent sets. We have the following lemma.Lemma 6 The set of independent sets whi
h 
ontain x only if they 
ontain y form a sublatti
e andthe sli
e 
an be 
omputed for enumeration.7.2 Subsets with no divisorsAs another example, let us enumerate the subsets fa1; : : : ; amg of n su
h that for all i and j, ai doesnot divide aj. We have the following result.Lemma 7 Consider the graph Q obtained from Figure 3(a) by adding an edge from i to j wheneveri divides j. Then, Q 
an be used to enumerate all subsets of [n℄ whi
h do not 
ontain any ai and ajsu
h that ai divides aj.Proof: De�ne B(G) as 8i; j : (i 6= j) ^ ai divides aj ^ (aj 2 G) ) (ai 2 G). It is 
lear that B is aregular predi
ate and the resulting sli
e is a
y
li
. Ea
h desired subset is simply the anti
hains of theposet so obtained. There is 1-1 
orresponden
e between anti
hains and ideals [DP90℄.14



7.3 Produ
t Spa
eConsider the set of all n-tuples su
h that ith 
oordinate belongs to [mi℄. This set has m1m2 : : : mnelements and is the ideal latti
e of disjoint union of n 
hains, C1; C2; : : : ; Cn su
h that jCij = mi � 1.This set redu
es to the boolean latti
e when all mi equal 2 and to the set of all permutations whenmi = i. It 
an be easily shown that ea
h of the following predi
ates are regular and therefore thesubsets 
orresponding to them 
an be enumerated eÆ
iently.(1) The set of all tuples (a1; a2; : : : ; an) su
h that 8i; j : i � j ) ai � aj .(2) The set of all tuples (a1; a2; : : : ; an) su
h that ai � 
 (or ai = 
, ai 6= 
 et
.) for some 
onstant 
.(3) The set of all tuples (a1; a2; : : : ; an) su
h that ai = aj for �xed i and j.
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