Observation of Software for Distributed
Systems with RCL *

Alexander I. Tomlinson and Vijay K. Garg

email: {alext,vijay}@pine.ece.utexas.edu
homepage: http://maple.ece.utexas.edu/
Department of Electrical and Computer Engineering
The University of Texas at Austin, Austin, Texas 78712

Abstract. Program observation involves formulating a query about the
behavior of a program and then observing the program as it executes
in order to determine the result of the query. Observation is used in
software development to track down bugs and clarify understanding of
a program’s behavior, and in software testing to ensure that a program
behaves as expected for a given input set. RCL is a recursive logic built
upon conjunctive global predicates. Computational structures of com-
mon paradigms such as butterfly synchronization and distributed con-
sensus can be expressed easily in RCL. A nonintrusive decentralized al-
gorithm for detecting RCL predicates is developed and proven correct.

1 Introduction

Posets have a recursive structure that has not been exploited much in research
on observation predicates. This paper presents a poset predicate logic which
exploits this recursive structure. The result, RCL, is a logic which is simple yet
powerful. Recursive logics are intuitive because there are fewer constructs and
rules to remember. They are powerful because the full power of the logic is
available at each level of recursion. Boolean logic is an example of a recursive
logic: it is simple, elegant and powerful.

RCL is based upon conjunctive global predicates (CGP). A CGP is defined
to be a conjunction of local predicates. For example, let [; be a predicate on the
local state of process ¢. Then we can define a CGP g to be I3 Al; Als. All CGPs,
including g, are evaluated on global states. For example if ¢ is a global state
containing local states o1, 03,03, then g is true in global state ¢ if and only if /;
is true in local state I;, for 1 <37 < 3.

An RCL formula takes a set of CGPs and specifies a pattern in which the
individual CGPs must occur in a computation in order for the formula to be
“¢rue” in that computation. Some patterns which can be specified with RCL
include butterfly synchronization, data collection, and distributed consensus.
These examples are demonstrated in this paper.

* Research supported in part by NSF Grant CCR 9110605, TRW faculty assistantship
award, GM faculty fellowship, a grant from IBM, and an MCD University Fellowship.

We begin with a review of related work, and then continue with a description
of the computation model and notation. Then we define the syntax and semantics
of RCL, and give examples of RCL formulas and how they can be applied in
the observation of distributed programs. We present a distributed algorithm for
online detection of RCL formulas and prove its correctness. The algorithm is
based on existing algorithms for detecting CGPs, which are not considered in
detail in this paper. Due to space constraints, the complexity of the algorithm
is not discussed in detail. See [19] for a complete analysis of the algorithm’s
complexity.

2 Related Work

There has been much work in observing unstable global states of distributed
computations. Babaoglu and Marzullo [1] and Schwartz and Mattern [18] both
survey recent work on detecting consistent global states in a distributed system.
Recently, Chase and Garg [2] have shown that global predicate detection is an
NP-complete problem. In that paper they define the property of linearity and
show that there exists a polynomial detection algorithm for any linear predicate.
CGP (discussed later) is an example of a linear predicate.

Cooper and Marzullo [4] present algorithms for online detection of three types
of global predicates. The first type is “global predicate g was possibly true at
some point in the past”. The second type is “g was definitely true at some point
in the past”, and the third type is “g is currently true”. The third type may
require delaying certain processes of the execution.

Observation of general global predicates is very expensive. As a result, re-
searchers have devised classes of global predicates which can be efficiently ob-
served. One such class is relational global predicates as described by Tomlinson
and Garg [20].

Another such class is conjunctive global predicates (CGP) as described by
Garg and Waldecker [10]. Garg and Waldecker present strong and weak [11, 10,
12] forms of CGP which correspond to possibly and definitely of Cooper and
Marzullo [4]. The weak CGP is true in a computation if there exists a global
state in the computation which satisfies the CGP. The strong CGP is true in
a computation if all runs consistent with the computation must enter a global
state in which the CGP is true.

Some researchers have taken the idea of conjunctive global predicates (CGP)
and extended them to form poset predicates. One can define an ordering relation
on global states and then define a sequence of CGP. There have been several
approaches to this that differ primarily in their definition of the ordering on
global states.

Chiou and Korfage [3] define event normal form predicates which are se-
quences of CGP. In their sequencing relation, global state a precedes global
state b if and only if each local state in a happens-before all local states in b.

Haban and Weigel [13] gave an early attempt to define poset predicates with
recursive structure. They used local events (essentially the same as local predi-

cates) as primitives and build global events from them with a set of binary re-
lations that include alternation, conjunction, happens-before, and concurrency.
All events (global and local) have vector timestamps which are used to determine
if two events are related according to one of the four relations. The new global
event inherits a timestamp from one of the constituent events. For example,
consider alternation: if e; | e3 is a global event which is said to occur whenever
either ey or es occurs. The event e; | ez inherits the vector time of whichever
event actually occurred (i.e., either e; or e3). Even though their definitions lead
to ambiguities (resulting from timestamp inheritance) as demonstrated in [14],
the work was noteworthy in that it was an early attempt to develop a recursive
poset predicate logic.

The above systems are based on global predicates, but many systems have
been designed around the local predicate too. One of the early works in this area
was Miller and Choi’s sequence of local predicates [17]. These are an ordered
list of local predicates pi,...px. This predicate is true in an execution if and
only if there exists a sequence of local states o1, ... (sequenced by Lamport’s
happens-before relation) such that local predicate p; is true in local state o;.

Hurfin, Plouzeau and Raynal [15] extended the sequence of local predicates
to the atomic sequence of local predicates. In this class, occurrences of local
predicates can be forbidden between adjacent predicates in a sequence of local
predicates. The example given above for linked predicates could be expanded
to include: “local predicate r; never occurs in between local predicates p; and
Pi+1”. Each local predicate can belong to a different process in the computation.

Fromentin, Raynal, Garg and Tomlinson [6] developed regular patterns, which
are based upon regular expressions. A regular pattern is specified by a regular
expression of local predicates. For example pg*r is true in a computation if there
exists a sequence of consecutive local states (s1, s2,..., s,) such that p is true
in s1, q is true in ss,...,8,_1, and 7 is true in s,. Note that the states in the
sequence need not belong to the same process — two states are consecutive if they
are adjacent in the same process or one sends a message and the other receives
it. In [9], the same authors extend regular patterns to allow patterns on directed
acyclic graphs instead of just strings.

3 Model and Notation

We use the following notation for quantified expressions:
(op free_var_list : range_of free_vars : expr)

For example, (Vi : 0 < ¢ < 10 : 72 < 100) means that for all ¢ such that
0 < 7 < 10, we know that ¢ < 100. The operator “op” need not be restricted
to universal or existential quantification. It can be any commutative associative
operator (e.g., min, U, +). For example, if S; is a finite set, then (+u:u € S; : 1)
equals the cardinality of §;.

Any distributed computation can be modeled as a decomposed partially or-
dered set (deposet) of process states [5]. A deposet is a partially ordered set
(P,~>) such that:

. P is partitioned into N sets P;, 1 <7< N.

. Each set P; is a total order under some relation ~<;,,.

~;m does not relate two elements which are in different partitions.

. Let — be the transitive closure of <;, U~». Then (P, —) is an irreflexive
partial order.

W N =

An execution that consists of N processes can be modeled by a deposet where
P; is the set of local states at process ¢ which are sequenced by <;,, the ~» relation
represents the ordering induced by messages; and — is Lamport’s happens before
relation[16]. For convenience, we use P; to represent two quantities: the set of
local states at process 7 (as it was defined), and the process ¢ itself. Similarly,
we use P to denote both the set of all local states and the set of all processes.

The concurrency relation on P is defined as uljv = (u A v) A (v A w). <
denotes the reflexive transitive closure of <;,,. For convenience, s.next = ¢t and
t.prev = s whenever s <;,, t.

A global state is a subset ¢ C P such that no two elements of ¢ are ordered
by —. We define P to be the set of all global states in (P, —). We also use the
terms “cut” and “antichain” to refer to an element of P. A “chain” is a set of
states which are totally ordered by —. For example, each set P; is a chain.

All formulas in RCL are evaluated on closed posets. Evaluating a formula
on a poset which is not closed is not a defined operation. A poset P is closed if
and only if every state which is ordered in between two elements of P is also in
P. Another way of saying this is that P is closed if and only if its prefix-closure
intersected with its suffix-closure equals P. Prefix and suffix closure of a poset

— —
A are denoted by A and A.

Z ={z|(Fy:yecd:z>yVz=y)}
—
A 2 {z|By:yeAd:y—aVe=y)}
A - =
closed(A) = A=(AN A4)

We define another closure operation which performs closure between any
two subposets of a poset. For example, [A..B] is the poset which includes posets
A and B and all in between local states. Usually, A and B are cuts, but it
is convenient to use the more general definition that they are subposets. This
allows us to say, for example, that [c..P] is the set of all states in or after cut ¢
but still in poset P. We also define (A..B) to be an open-ended version of [4..B].
2 4nB

— —
ANB—-(AUB)

[A..B]
(A.B) &

The cutset of a poset P and a formula f is the set of all cuts ¢ of P such
that [P..c] satisfies f. The expression W(P, f) refers to this set and is defined as
follows:

U(P,f) £ {c|c€ PA[P.cE f}

Cutsets will be used to prove the correctness of the RCL detection algorithm.
It turns out that cutsets are lattices. The correctness proof shows that, given a
computation P and a formula f, the detection algorithm returns the infimum of
¥ (P, f), which is the unique first cut ¢ of P such that [P..c] satisfies f.

We also define two ordering relations on subposets: weak and strong precedes.
The ordering relations are usually used on cuts, but the more general relation
suffices. Subposet A weakly precedes subposet B if and only if B is entirely
contained within the suffix closure of A and they have no elements in common.

A<B 2 BCAANANB=0

Strong precedes requires not only that B must be contained in the suffix clo-
sure of A, but also that each element in A must happen-before every element in
B. Clearly, this implies that A weakly precedes B as well. Strong precedes cor-
responds to barrier synchronization: there is a barrier synchronization between
A and B if and only if A strongly precedes B. It is defined as follows:

A«<B 2 (Va,b:a€ ANbE B:a—b)

4 Syntax and Semantics

A formula in RCL is evaluated on a poset. One can think of a formula as a
boolean function whose argument is a poset. The rules for constructing well
formed formulas are given by the syntactic definitions shown below:

f=S1 fAf
S=g | 9(H)S | 9{fHS

The basic component of a formula is a conjunctive global predicate (CGP),
which is represented by the terminal symbol g. The symbol § is a sequence of
CGP formulas. The symbol f is a conjunction of these sequences, and the A
operator is similar to boolean AND operator.

When § is fully expanded, it has the form g{f)g(f)g ...9{(f)g9. When such a
sequence is true on a poset, then each g corresponds to an antichain. The regions
in between these antichains are subposets upon which the f’s in the sequence
are evaluated. This is explained in more detail in the section on semantics.

The symbol g’ represents any global state based predicate which meets cer-
tain requirements. Mathematically, g is a set containing exactly those antichains
upon which the predicate (that g represents) is true. One of these requirements
is that this set forms a lattice.

Another requirement is that the antichains in g cannot contain any extra-
neous local states. For example, if g represents a conjunctive global predicate
with components at process 1 and 2, then each antichain in g can only contain

local states from these two processes. No others are needed to evaluate the pred-
icate g. The reason for this requirement is to ensure the proper interpretation of
sequences of g’s — the ordering should be based on the necessary states only.

It is clear from the syntax that ¢ is a valid RCL formula. The truth of such
a formula is determined by the following rule:

P g2 closed(P)ANgNP # 0)

This rule states that ¢ is true in P if and only if P is closed and some antichain
in ¢ is also in P. This is similar to saying that there exists a global state in P
in which the global predicate g is true.

The A operator is essentially the same as the boolean AND operator. We
use A in order to avoid confusion with its boolean counterpart. This is espe-
cially useful in proofs where the two operators frequently appear in the same
expression.

Pl LbRE(PERAPE f)

The last two rules are the heart of RCL. They show how to evaluate a re-
cursive formula. The only difference between them is the ordering between the
cuts.

PEgf)S 2 (Fab:abeP:a<bAalgA(ab)=fAD.PlES)

The strong-precedes counter part to the above formula is:
P E=g{fHs = (3a,b:a,bEP:a<bAal=gA(a.b)|=FfA[.PlES)
Now consider the following formula:

91{f2)92(f3)g3 . . . (fn)9n

This formula holds on a poset P if and only if there exist cuts a; in P such that
a;—1 < a; and a; |= g; and (a;—1..a;) = fi. Figures 1 and 2 show some examples.

° ® ®
(a.b)
° ® ® e ® —~o—o
b [b..P]
oo ® ® o"- ° ° ®

Fig. 1. Example of a poset structure which could satisfy g{f)g. The cuts a and b divide
the poset into regions as indicated by the shading. Notice that each region is closed.

eeeoecoe
.
w

Fig. 2. Example of a structure which might satisfy g1 (f2)gs{fs)gs5. The CGPs, g;, need
not be full width antichains, which is why they are shown in a “free-form” manner.
Each f; is another RCL formula. Two levels of recursion are shown for f2, where f>
has the structure g{f)g{g{f}g)g.

5 Examples

This section gives examples of some useful RCL formulas. The first three ex-
amples show previous debugging logics which are special cases of RCL. In each
example, p; is a predicate on the state of a single process.

Sequence of local predicates: Consider the sequence of local predicates as de-
fined in [17]: (p1, P2, -.-pn). Each local predicate p; is a special case of CGP.
Therefore, this sequence of local predicates is equivalent to the RCL formula
pi{true)ps...{true)p,.

EBvent Normal From (ENF): Chiou and Korfage [3] define event normal form
predicates which are sequences of CGP. In their sequencing relation, global state
a precedes global state b if and only if each local state in a happens-before all
local states in b. This ordering is equivalent to the << ordering on cuts. Thus,
an ENF formula which consists of a sequence of CGP could be represented in
RCL as follows: g1{(true)gz{(true)gs...{truehgn.

Barrier Synchronization: The strong precedes relation is equivalent to barrier
synchronization: a barrier synchronization exists between two cuts if and only
if they are related by <<. Suppose two global states could be characterized by
the predicates g; and g;. The RCL formula g1 {true)gz is true if and only if a
barrier synchronization takes place between two cuts which satisfy g; and g-.

Butterfly Synchronization: Butterfly synchronization is an implementation of
barrier synchronization. Its structure can be defined recursively. Let X denote a
set of process identifiers and let X; and X} be a partition of this set into upper
and lower halves. BF(X) will be defined to be an RCL formula which is true
when there exists a butterfly synchronization between the processes named in

X.

BF(X) is the formula true if the size of X equals 1. Otherwise, BF(X)
equals the formula gx {BF(X;)ABF(X4))gx- Figure 3 shows an example.

P1

P2

P3

v
/
ANV
L XXXX
/XX
N

N\

P6

P7

S

P8

Fig. 3. Butterfly synchronization example. See section 5.

Distributed Consensus: Consider a fixed connection network. A phase consists
of a message exchange on each edge. After phase 2, each node has data from all
nodes within distance z.

Let gg1,27 denote a CGP which is true on all antichains which contain ex-
actly one state from each of process 1 and 2. Consider the example shown in
figure 4. The communication structure of distributed consensus on the edge be-
tween nodes 1 and 2 that network can be captured by the following RCL formula:

g{1,2,3,4,5}<<g{1,2,3} <<g{1,2}<<t7“ue>>g{1}>>g{1}>>g{1}

The innermost form, g1,21((true)gs1y, is true after phase 1. The form that sur-
rounds that becomes true after phase 2. The entire formula becomes true after
phase 3 at which time consensus is complete since number of phases equals
maximum distance between any two nodes.

Data Collection: It is common practice in distributed computing to scatter data
among a set of computers, have each computer perform some operation on the
data, and then collect the results. The collection phase of this operation can char-
acterized with an RCL formula. Using the notation defined above, the formula
is shown below.

9{1,2,3,4,5,6,7,8}{true}g(2 46,83 (true g a8y {truepgs)

phase 1 phase 2 phase 3

Fig. 4. Distributed consensus example. See section 5.

6 Algorithm

The algorithm is implemented by the function fc(). Given a cut a, and a formula
f, the function fc(a, f) finds the first cut b such that [a..5] satisfies f. If there is
no such cut, then fc(a, f) returns T.

The function fe(a, f) calls three subroutines (findCG P, advance, and sup)
as it parses an RCL formula. The pattern of subroutine calls depends on the
syntactic structure of the formula.

Function findCGP: Function findCGP finds the first cut in a poset that sat-
isfies a given conjunctive global predicate (CGP). An efficient, decentralized,
token-based algorithm for detecting CGP appears in [8]. The subroutine findCGP
is assumed to be a procedural interface to this algorithm. Thus, any process can
call findCGP to spawn the distributed token based algorithm described in [8].
The calling process is blocked until the underlying distributed algorithm com-
pletes at which point the result is returned by findCGP. Note that the blocked
process is part of the RCL detection algorithm, not the underlying computation.
In [8], it is shown that findCGP has O(N M) message, time and space complex-
ity, where N is the number of processes, and M is the number of application
messages.

Function sup: Function sup is takes one or more cuts as input and returns the
supremum of those cuts. Cuts are represented as vector clock values, and the sup
function takes the component-wise maximum of the vector clock values. The sup
function can be implemented with computational complexity O(NB), where B
is the number of cuts input to sup, and N is the number of processes.

Function advance(a, b): Function advance(a, b) advances cut b until cut a strongly
precedes it. It then returns the advanced cut. The advance function can be im-
plemented with O(NN?) computational complexity.

The function fc(a, f) takes a cut a and a formula f and returns the first cut
b such that [a..b] satisfies f. If there is no such cut, then fc(a, f) returns T. Four
definitions of ¥(a, f) are shown below, one for each syntactic form of f.

f— . a; = fc a,g ;
aj : fC(aag)’ . as = fc(al, f),
a2 _fc(alaf)a — ad)
= az = advance(a, az);
as = fC(CLQ, S),
a4 = fc(a3a S),
return as;
return as;
e fe(P, /i0f3)
return findCGP(q,g); return sup(fc(P, f1), fc(P, f2));

The algorithm is recursive and it mirrors the syntax structure of RCL. The
recursion always bottoms out in the fc(a, g) function. The poset which is being
searched is a global read only structure and is not shown in the above descrip-
tions. Only the subroutines findCGP and advance need access to the poset
structure.

The correctness proof consists of showing that fc(a, f) = inf ¥(P, f), where
a = inf P. There are several properties of RCL which enable us to prove this. For
example, RCL is monotonic with respect to set inclusion. Using this property
of monotonicity, it can be shown that a cutset is a lattice. The lattice property
allows us to implement fc(a, g{f}S) in a greedy fashion: first finding g, then f
and finally §.

7 RCL Properties and Algorithm Proof

The logic is monotonic with respect to set inclusion over closed posets. If P C R,
R is closed, and P satisfies some formula, then R also satisfies that formula.
This definition of monotonicity is more encompassing than other commonly used
definitions which use the “advancement of time” as the ordering relation instead
of set inclusion. Using set inclusion has the benefit that if a formula is true for
a given subcomputation, then it remains true not only when (local) states are
added to the end of the subcomputation, but also when states are included from
before the computation or even concurrent with it. That is, the poset which
represents the computation can “grow” in any direction (as long as it remains
closed). Lemma 1 proves that RCL is monotonic.

Lemma 1. Monotonicity: P C RAclosed(R)APEf= REf

Proof: Appears in [19]. L]

Given any poset P and formula f, the cutset of (P, f) forms a lattice. Cuts can
be represented with vector clocks, and the infimum of two cuts is the component-
wise minimum of their vector clocks. The supremum is the component-wise max-
imum. The same operators are used in cutset lattices.

Lemma 2. Lattice: a,b€ ¥(P,f) = inf(a,b) € ¥(P, f) A sup(a,b) € ¥(P, f)

Proof: Appears in [19]. L]
The following is a statement that the algorithm is correct:

¢ =inf P = fc(c, f) = inf W (P, f)

This statement is proven by structural induction on f. First we show that it is
correct for g, then we show that if it is correct for f; and f,, then it is correct for
f1Afs, and finally we show that if it is correct for g, f and S, then it is correct

for ¢(f)S and ¢{(f)S.
Lemma 3. fc(c,g) = inf ¥(P,g), where ¢ = inf P

Proof: Proof of a token based algorithm for the case when g is defined to be a
CGP appears in [7].]

Lemma4. fc(c, fiAf2) = inf ¥(P, fiA\f), where ¢ = inf P

Proof:
fe(e, 10 f2)
= { from the algorithm }
Sup{fc(c, fl),fc(c, f2)} o
= { by induction, and since ¢ = inf P 1

sup{inf W(P, f1),inf ¥(P, f2)}
{ the sup of the first cut to satisfy f; and the first cut to }

satisfy f> is equal to the first cut which satisfies both f;

and f>.
jnf{{a|a€?/\[P--a] E fiA[P.a] E f2})
= 1 semantics
inf{a|a € PA[P.a] E fiAf2}
= { defn ¥() b

1nf!l7(P, flAfg)
m
The next lemma is used in the proof of fc(P, g{f)S) several times. Presenting
it here greatly simplifies the presentation of the proof for fc(P, g{f}S). Figure 5
shows the structure of the posets in this lemma.

Lemmab. Z(a1,as,b1,bs, f, P), which is defined as:
al,ag,bl,bz c ? A ay j bl A [blbg] ': f A Qs = 1nf!l7([a1P],f)
=
as j b2 A [al..ag] ': f

Proof:
The following are assumed:
ay, @z, bla b2 € ?
a1 2 by

[bl.b2] | f

bl b2

[al.a2] | f

! !
bl b2

Fig. 5. Structure of posets in lemma 5.

[b1..b2] E f
ay = inf ¥([ay..P), f)

Note that [b1..b2] = f implies that b3 < by, which in turn implies that
[b1..b2] C [aj..bs]. Thus, by monotonicity, [a1..b2] = f. This implies that b5 €

¥([a;1..P], f). And since az = inf ¥([a1..P], f), then az =< b,.
Lemma 6. fc(c,g{f)S) = inf ¥(P, g{f)S), where c = inf P

Proof: From the algorithm, it is clear that fc(c,g{f}S) = as, where:

a; = fc(e, g)
as = fc(al, f)
as = fC(az, S)

By structural induction, we also know that:
a; = inf ¥([c..P],g)
Qaz = inf !T/([al..P], f)
= inf ¥([az2..P], S)

as

We must show that as = inf ¥(P, g{f)S). The proof is divided into two cases:

Case 1: P |=g{f}S
Case 2: P [£g{f}S
Case 1: P |=g{f}S
In order to show as = inf ¥(P, g{f}S), it suffices to show:

Claim 1.1: as € ¥(P,g{f)S), and
Claim 1.2: z € ¥(P,g{f}S) = as < z.

PEgS
Let z be any element in ¥(P, g{f)5).
It exists since P |= g{f}5.

2 € U(P,9(f)S)
{ By definition of cutsets:
z € P A[P.z]l=g{f)s
{ Semantics tell us b; and b, exist such that:

}

}
b1,b2 € [P:IZ] Aby <by Aby |:g A (blbz) |: f A [bz:l}] |: S

}

}

{ The preconditions of Z(L,a1,L,b1,g, P) are satisfied:
a; =inf ¥(P,g) A[L.bi]EgA L= L
{ The consequents are:
a j b1 A [J_..al] |: g
Now we do the same thing with Z(a1, az, b1, b2, f,[a1..P]). }

The preconditions are:

as = 1nf!l7([a1P],f) A (blbz) |: f A ay j b1

{ The consequents are: }
az j b2 /\ (al..ag) |: f
One more time with Z (a2, as, b2, z, S, [az..P]). }
The preconditions are:

az j b2 N as = 1nf!l7([a2P],S) A [bz:l}] |: S

{ The consequents, one of which proves claim 1.2, are: }
as 2z A faz..as] =S

{ We have collected the following true statements: }
ap Raz Aar Eg A (ar.az) = f Alaz.as] E S

{ And by semantics: }
as € P A [P..ag] |: g(f)S

{ Which leads us to claim 1.1: }
as € ¥(P,g(f)5)

Case 2: P = g{f}S

PEg(f)S

{ semantics . 1
—(Jer,e2 ie1,c2 EPAcy <caAer |=gA(erex) = fA[e2. Pl = S)

{ Instantiate c;,c2 with a;, a2 and apply de Morgan’s law: }

an@PVagPVa AaxVa lEgV(a.a) i f Ve PlES

{ Since &zl Qﬁ = a1 £ g) and (a1 £ a2z = (a1..a2) [£ f) and }
(az & P = [az..P] [£ S5), then:

a1 gV (ar..a2) £ fV [a2..P]ES

{ By definition of a;, a» and as: }
al :TVCLQZTVCM}:T

{ By definition of as: }
ag — T

Lemma 7. fc(c,g{f)S) = inf W(P, g{(f)S), where ¢ = inf P

Proof: Similar to the proof for weak sequences: g{f)S

8 Conclusions

An RCL formula is essentially a specification of a pattern of CGPs. If each CGP
occurs in a computation, and they occur in the correct pattern, then the RCL
formula is true in that computation.

RCL is a recursive logic, which means that the patterns can be recursive.
logics are intuitive because there are fewer constructs and rules to remember.
They are also powerful because the full power of the logic is available at each
level of recursion. As a result of these properties of recursive logics, RCL is simple
yet powerful. Computational structures of common paradigms such as butterfly
synchronization and distributed consensus can be expressed easily in RCL.

A high level algorithm for detecting whether or not a computation satisfies
a given RCL formula was presented. The complexity of the algorithm was not
analyzed due to space constraints, but it is shown in [19] to be quite efficient —
about the same as the complexity of detecting a single CGP.

9 Acknowledgments

We are grateful to Don Pazel at IBM for many fruitful discussions on the topic
of breakpoint logic.

References

1. O. Babaoglu and K. Marzullo. Consistent global states of distributed systems:
fundamental concepts and mechanisms, in Distributed Systems, chapter 4. ACM
Press, Frontier Series. (S. J. Mullender Ed.), 1993.

2. C. Chase and V. K. Garg. On techniques and their limitations for the global
predicate detection problem. In Proc. of the Workshop on Distributed Algorithms,
France, September 1995.

3. H. K. Chiou and W. Korfhage. Enf event predicate detection in distributed sys-
tems. In Proc. of the Principles of Distributed Computing, pages 91-100, Los
Angeles, CA, 1994. ACM.

4. R. Cooper and K. Marzullo. Consistent detection of global predicates. In Proc. of
the Workshop on Parallel and Distributed Debugging, pages 163173, Santa Cruz,
CA, May 1991. ACM/ONR.

5. C. J. Fidge. Partial orders for parallel debugging. Proceedings of the ACM SIG-
PLAN/SIGOPS Workshop on Parallel and Distributed Debugging, published in
ACM SIGPLAN Notices, 24(1):183-194, January 1989.

6. E. Fromentin, M. Raynal, V. K. Garg, and A. I. Tomlinson. On the fly testing of
regular patterns in distributed computations. In Proc. of the 28rd Intl. Conf. on
Parallel Processing, St. Charles, IL, August 1994.

7. V. K. Garg and C. Chase. Distributed algorithms for detecting conjunctive pred-
icates. In Proc. of the IEEE International Conference on Distributed Computing
Systems, pages 423-430, Vancouver, Canada, June 1995.

8. V. K. Garg, C. Chase, J. R. Mitchell, and R. Kilgore. Detecting conjunctive chan-

nel predicates in a distributed programming environment. In Proc. of the 28th

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Hawaii International Conference on System Sciences, pages 232-241, Vol II, Jan-
uary 1995.

V. K. Garg, A. I. Tomlinson, E. Fromentin, and M. Raynal. Expressing and de-
tecting general control flow properties of distributed computations. In Proc. of the
7th IEEE Symposium on Parallel and Distributed Processing, San Antonio, TX,
October 1995.

V. K. Garg and B. Waldecker. Detection of unstable predicates in distributed
programs. In Proc. of 12th Conference on the Foundations of Software Technology
& Theoretical Computer Science, pages 253-264. Springer Verlag, December 1992.
Lecture Notes in Computer Science 652.

V. K. Garg and B. Waldecker. Detection of weak unstable predicates in distributed
programs. IEEE Transactions on Parallel and Distributed Systems, 5(3):299-307,
March 1994.

V. K. Garg and B. Waldecker. Detection of strong unstable predicates in dis-
tributed programs. IEEE Transactions on Parallel and Distributed Systems, Sub-
mitted.

D. Haban and W. Weigel. Global events and global breakpoints in distributed sys-
tems. In Proc. of the 21°¢ International Conference on System Sciences, volume 2,
pages 166-175, January 1988.

G. Hoagland. A debugger for distributed programs. Master’s thesis, University
of Texas at Austin, Dept. of Electrical and Computer Engineering, Austin, TX,
August 1991.

M. Hurfin, N. Plouzeau, and M. Raynal. Detecting atomic sequences of predicates
in distributed computations. In Proc. of the Workshop on Parallel and Distributed
Debugging, pages 32-42, San Diego, CA, May 1993. ACM/ONR. (Reprinted in
SIGPLAN Notices, Dec. 1993).

L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558-565, July 1978.

B. P. Miller and J. Choi. Breakpoints and halting in distributed programs. In
Proc. of the 8" International Conference on Distributed Computing Systems, pages
316-323, San Jose, CA, July 1988. IEEE.

R. Schwarz and F. Mattern. Detecting causal relationships in distributed compu-
tations: In search of the holy grail. Distributed Computing, 7(3):149-174, 1994.
A. L. Tomlinson. Observation and Verification of Software for Distributed Systems.
PhD thesis, University of Texas at Austin, Dept. of Electrical and Computer En-
gineering, Austin, TX, August 1995.

A. 1. Tomlinson and V. K. Garg. Detecting relational global predicates in dis-
tributed systems. In Proc. of the Workshop on Parallel and Distributed Debugging,
pages 21-31, San Diego, CA, May 1993. (Reprinted in SIGPLAN Notices, Dec.
1993).

This article was processed using the IATRX macro package with LLNCS style

