Parallel and Distributed Systems Laboratory

Implementable Failure Detectors in Asynchronous
Systems

Vijay K. Garg
J. Roger Mitchell
Parallel and Distributed Systems Laboratory,

Electrical and Computer Engineering Department
University of Texas at Austin,

Austin, TX 78712

http://maple.ece.utexas.edu/"vijay/

(©Vijay K. Garg

Parallel and Distributed Systems Laboratory

Outline of the talk

. Motivation

« Properties of Failure Detectors

. Completeness (Strong and Weak)
« Accuracy (Eventual weak)

« Properties introduced in this paper
o Infinitely Often Accuracy

« Conditional Accuracy
« Global Accuracy
« Implementation of 10 detectors

« Application: Server Maintenance Problem

(©Vijay K. Garg

Parallel and Distributed Systems Laboratory

Failure Detection: Motivation

e [he most basic module for many fault-tolerant systems
e Function: Which entities have failed 7

. Processes, channels, messages

« Focus on process failures
e Converting blocking program to a non-blocking one
. wait for a message from P; becomes
. wait for (a message from P;) or (P; suspected)
e Desirable Properties of Failure Detectors
. Completeness: failed entity is suspected

. Accuracy: unfailed entity is not suspected

(©Vijay K. Garg

Parallel and Distributed Systems Laboratory

Model of a Distributed Computation

® messages:

. asynchronous (no upper bound on message delays)

. reliable, no FIFO assumption
e no shared clock or memory

e Model of a process failure
. crash: ceases all its activities

. does not announce its crash

« no malicious behavior

(©Vijay K. Garg

Parallel and Distributed Systems Laboratory

Model of a run

« One distributed program has multiple runs possible depending on
. external inputs
. Mmessage ordering

. failure patterns of processes
. time taken by messages

« Each run results in a sequence of states at each process

« finite if the process fails
« infinite otherwise

« Notation
- P, P;: processes

. s,t: local states (totally ordered for a single process)

(©Vijay K. Garg

Parallel and Distributed Systems Laboratory 6

Failure Detection: Completeness

Predicates

. suspects(s,i) = P, is suspected in state s
. permsusp(s,t) =Vt :s <t:suspects(t,i)
. failed(i) = P; has failed

Strong Completeness: a failed process is permanently suspected by
all correct processes

. failed(i) N —failed(j) = s € P; : permsusp(s,)

Weak Completeness: a failed process is permanently suspected by
some correct process

. failed(t) = ds : permsusp(s, 1)

Note: all properties implicitly universally quantified for runs.

(©Vijay K. Garg

Parallel and Distributed Systems Laboratory 7

Failure Detection: Accuracy

. Eventual Weak Accuracy
« Eventually some correct process is never suspected by any correct process
« EW Detector: weak completeness + eventual weak accuracy

. Consensus problem can be solved in an asynchronous system given
EW detector [CT 96].

« Consensus problem is impossible to solve in an asynchronous system
[FLP 85] (even when at most one process fails).

« Therefore, there is no failure detector which provides weak complete-
ness and eventual weak accuracy.

(©Vijay K. Garg

Parallel and Distributed Systems Laboratory 8

Implementable Accuracy Property

Infinitely Often Accuracy: No correct process is permanently
suspected.

. —failed(i) = Vs : ~permsusp(s, 1)

. Alternatively, any wrong suspicion is discovered in finite time (even-
tually).

You will make mistakes in an asynchronous system. Just ensure that
you discover your mistakes (eventually).

e |O Detector = Strong Completeness + Infinitely Often Ac-
curacy

(©Vijay K. Garg

Parallel and Distributed Systems Laboratory

Example

" A

AASA) (SAAYS (SAA,

P1
P (SSAA) (SAAYS (SAAS
P3 (AALAA) (SAAA) (SASA)

A = Alive S= Suspected

(©Vijay K. Garg

Parallel and Distributed Systems Laboratory 10

Implementation of failure detectors

e Algorithm that does not satisfy 1O accuracy (similar to watchd
on Unix[HuaKin 96]).

« Every k units broadcast “are you alive”

« wait for timeout period t < k.
« suspect = processes that did not respond
e Another example [Beck91]

. multicast polling messages periodically

« processes are expected to reply with “l am alive” messages immedi-
ately

. If the answer is missing for three times consecutively, it assumes that
this process has crashed.

(©Vijay K. Garg

Parallel and Distributed Systems Laboratory 11

Correct Implementation of 10 failure detectors

e An algorithm that satisfies 1O accuracy
. Broadcast “alive” message every k units

« On receiving “alive” from P,
. unsuspect P,

. reset the timer for P,

« On expiry of the timer for P,

« suspect P,

e Key idea: there should not be any interval of time in which
messages are ignored

(©Vijay K. Garg

Parallel and Distributed Systems Laboratory 12

Conditional Properties

e Motivation: better properties when the computation is well-
behaved

e Partial Synchrony:

« A runis partially synchronous if there exists a state s in a correct
process P; and a bound ¢ such that all messages sent by P; after s
take at most 0 units of time.

« P;, s, 0 may not be known in advance

e Conditional Eventual Weak Accuracy

« A failure detector satisfies conditional eventual weak accuracy if for
all partially synchronous runs it satisfies eventual weak accuracy.

(©Vijay K. Garg

Parallel and Distributed Systems Laboratory

0 detector at P; with the conditional accuracy

13

I10.suspects : set of processes initially (:
timeout: array[1..N] of integer initially t;
watch: timer initially set to timeout;

(A1) send “alive” to all processes after every t units;
(A2) On receiving “alive” from P;;
if © € 10.suspects then
10.suspects := 10.suspects — {i};
timeout[i|++;
Set watchli] timer for timeout|i|;
(A3) on expiry of watchli]
I10.suspects := 10.suspects U {i};

(©Vijay K. Garg

Parallel and Distributed Systems Laboratory 14

Infinitely Often Global Accuracy

« Stronger property than 10 accuracy
Example: Whenever P1 is accurate about P2, it is mistaken about

P3 and vice versa

« GIO accuracy Every process is accurate aboue the entire system
infinitely often

« Algorithm at P;: main idea
timestamp: array[1..N] of integer initially 0;
/* when was the last time P; received a message from P; */
IOG .suspects : set of processes initially ;
timeout: array[l..N] of integer initially ¢;
watch: array[1..N] of timer initially set to timeout;

(©Vijay K. Garg

Parallel and Distributed Systems Laboratory 15

GIO detector

(A1) send “alive” to all processes after every t units;

(A2) On receiving “alive” from F;
timestamp|t| ;= time; // any increasing counter will do
if + € IOG.suspects then
timeout|t]++;
for k € {1,..,n} do
if k € IOG.suspects N timestampli] < timestamplk]
IOG.suspects := 10G.suspects — {k};
Set watch|k] timer for timeout|k|;

(A3) on expiry of watch|i]
IOG.suspects := IOG.suspects U {i};

(©Vijay K. Garg

Parallel and Distributed Systems Laboratory 16

Summary of 10 detectors

e Strong Completeness

. Every failed process is permanently suspected (eventually).

e Infinitely Often Accuracy

« No unfailed process is permanently suspected.

. (global) every process has accurate view of the system infinitely often.
e Conditional Accuracy

 In a partially synchronous run, there exists a correct process which is
eventually never suspected by anybody.

(©Vijay K. Garg

Parallel and Distributed Systems Laboratory 17

Synchronous vs Asynchronous Systems

e Argument: Just use a large value of timeout

. Latency in failure detection high

« trade-off between response time and accuracy of failure detection

e Algorithms must work correctly in spite of inaccurate suspi-
cions

« 10-accuracy implies any inaccurate suspicion will be detected in finite

time

(©Vijay K. Garg

Parallel and Distributed Systems Laboratory

Fault-Tolerant Servers

18

e Need a continuously running service

e For simplicity assume that the service is stateless

. e.g. web server for documents
e Use N servers for N — 1 fault-tolerance

e Requirement:

o (At least) one server responds to the request

« Preferably only one server responds

(©Vijay K. Garg

Parallel and Distributed Systems Laboratory 19

Fault-Tolerant Server: Requirements

e Token: Whoever has the token iIs the current leader
e Availability:

 There is always at least one token (modulo timeout period).
e Efficiency:

. There are never two or more tokens (modulo message arrival period).

e Under partial synchrony:

. Exactly one token under partial synchrony.

(©Vijay K. Garg

Parallel and Distributed Systems Laboratory 20

Algorithm for Availability and Efficiency

e process P; is assumed to have a token if

. all processes with smaller indices than 7 are suspected

« P, is not suspected.

s.token(i) =Vj : j < i:s.suspects|j| A —=s.suspects]i].

e Note
. Efficiency requires Infinitely often accuracy

. Large timeouts not desirable

« Algorithm does not satisfy “exactly one token” under partial syn-
chrony.

(©Vijay K. Garg

Parallel and Distributed Systems Laboratory 21

Solution: Main ideas

e Process P; has a token

. if all processes that are currently not suspected by P, have ticket
times that are greater than that of P;.

o Ticket time of P.: logical time when

. it was suspected by some process P; such that (according to F;)

« P had a token before the suspicion and

« P, has a token after the suspicion.

e If a process with a token is suspected its ticket time will
become greater than all other ticket times.

« Movement of a token from a slow process

(©Vijay K. Garg

Parallel and Distributed Systems Laboratory

Algorithm for F;

22

ticket:array[1..N] of (int,int) initially Vi : ticket|i] = (0, 1)
suspected: array[l..N] of boolean; /* set by 10 detector */

token(k) = (Vj # k : suspected|j| V (ticket|j] > ticket|k]))
A —suspected k]

(R1) Upon suspicion of P;, with token(k)
if token(i) then
ticket|k] := Lamport's_logical_clock;
send “slow"”, k, ticket[k] to all processes

(R2) Upon receiving “slow” k.t
ticket|k| := max(ticket|k],t);

(©Vijay K. Garg

Parallel and Distributed Systems Laboratory

Properties of the Algorithm

23

e Availability

« Under false suspicion
« Under failures
e Efficiency
« Any inaccurate suspicion is detected due to O accuracy

e Exactly one token under partial synchrony

« All slow processes lose tokens

(©Vijay K. Garg

Parallel and Distributed Systems Laboratory

Conclusions

24

e Fault Tolerance crucial in distributed systems
e Be careful about the properties of your failure detector

e |O detectors give best of both the worlds

« asynchronous behavior: mistakes will be discovered.

. (partially) synchronous behavior: agreement, exactly one token etc.

(©Vijay K. Garg

