
Parallel and Distributed Systems Laboratory 1

Implementable Failure Dete
tors in Asyn
hronousSystems
Vijay K. GargJ. Roger Mit
hellParallel and Distributed Systems Laboratory,Ele
tri
al and Computer Engineering DepartmentUniversity of Texas at Austin,Austin, TX 78712http://maple.e
e.utexas.edu/~vijay/

Vijay K. Garg

Parallel and Distributed Systems Laboratory 2

Outline of the talk� Motivation� Properties of Failure Dete
tors� Completeness (Strong and Weak)� A

ura
y (Eventual weak)� Properties introdu
ed in this paper� In�nitely Often A

ura
y� Conditional A

ura
y� Global A

ura
y� Implementation of IO dete
tors� Appli
ation: Server Maintenan
e Problem

Vijay K. Garg

Parallel and Distributed Systems Laboratory 3Failure Dete
tion: Motivation

� The most basi
 module for many fault-tolerant systems� Fun
tion: Whi
h entities have failed ?� Pro
esses,
hannels, messages� Fo
us on pro
ess failures� Converting blo
king program to a non-blo
king one� wait for a message from Pj be
omes� wait for (a message from Pj) or (Pj suspe
ted)� Desirable Properties of Failure Dete
tors� Completeness: failed entity is suspe
ted� A

ura
y: unfailed entity is not suspe
ted

Vijay K. Garg

Parallel and Distributed Systems Laboratory 4Model of a Distributed Computation

� messages:� asyn
hronous (no upper bound on message delays)� reliable, no FIFO assumption� no shared
lo
k or memory� Model of a pro
ess failure�
rash:
eases all its a
tivities� does not announ
e its
rash� no mali
ious behavior

Vijay K. Garg

Parallel and Distributed Systems Laboratory 5

Model of a run� One distributed program has multiple runs possible depending on� external inputs� message ordering� failure patterns of pro
esses� time taken by messages� Ea
h run results in a sequen
e of states at ea
h pro
ess� �nite if the pro
ess fails� in�nite otherwise� Notation� Pi; Pj: pro
esses� s,t: lo
al states (totally ordered for a single pro
ess)

Vijay K. Garg

Parallel and Distributed Systems Laboratory 6Failure Dete
tion: Completeness� Predi
ates� suspe
ts(s; i) � Pi is suspe
ted in state s� permsusp(s; i) � 8t : s � t : suspe
ts(t; i)� failed(i) � Pi has failed� Strong Completeness: a failed pro
ess is permanently suspe
ted byall
orre
t pro
esses� failed(i) ^ :failed(j)) 9s 2 Pj : permsusp(s; i)� Weak Completeness: a failed pro
ess is permanently suspe
ted bysome
orre
t pro
ess� failed(i)) 9s : permsusp(s; i)� Note: all properties impli
itly universally quanti�ed for runs.

Vijay K. Garg

Parallel and Distributed Systems Laboratory 7Failure Dete
tion: A

ura
y� Eventual Weak A

ura
y� Eventually some
orre
t pro
ess is never suspe
ted by any
orre
t pro
ess� EW Dete
tor: weak
ompleteness + eventual weak a

ura
y� Consensus problem
an be solved in an asyn
hronous system givenEW dete
tor [CT 96℄.� Consensus problem is impossible to solve in an asyn
hronous system[FLP 85℄ (even when at most one pro
ess fails).� Therefore, there is no failure dete
tor whi
h provides weak
omplete-ness and eventual weak a

ura
y.

Vijay K. Garg

Parallel and Distributed Systems Laboratory 8Implementable A

ura
y PropertyIn�nitely Often A

ura
y: No
orre
t pro
ess is permanentlysuspe
ted.� :failed(i)) 8s : :permsusp(s; i)� Alternatively, any wrong suspi
ion is dis
overed in �nite time (even-tually).You will make mistakes in an asyn
hronous system. Just ensure thatyou dis
over your mistakes (eventually).� IO Dete
tor = Strong Completeness + In�nitely Often A
-
ura
y

Vijay K. Garg

Parallel and Distributed Systems Laboratory 9Example
P1

P0

P2

(A,A,A,A) (S,A,A,A) (S,A,S,A) (S,A,S,A)P3

A = Alive S = Suspected

(A,A,S,A) (S,A,A,S) (S,A,A,A)

(S,S,A,A) (S,A,A,S) (S,A,A,S)

Vijay K. Garg

Parallel and Distributed Systems Laboratory 10Implementation of failure dete
tors

� Algorithm that does not satisfy IO a

ura
y (similar to wat
hdon Unix[HuaKin 96℄).� Every k units broad
ast \are you alive"� wait for timeout period t < k.� suspe
t = pro
esses that did not respond� Another example [Be
k91℄� multi
ast polling messages periodi
ally� pro
esses are expe
ted to reply with \I am alive" messages immedi-ately� If the answer is missing for three times
onse
utively, it assumes thatthis pro
ess has
rashed.

Vijay K. Garg

Parallel and Distributed Systems Laboratory 11Corre
t Implementation of IO failure dete
tors

� An algorithm that satis�es IO a

ura
y� Broad
ast \alive" message every k units� On re
eiving \alive" from Pi� unsuspe
t Pi� reset the timer for Pi� On expiry of the timer for Pi� suspe
t Pi� Key idea: there should not be any interval of time in whi
hmessages are ignored

Vijay K. Garg

Parallel and Distributed Systems Laboratory 12Conditional Properties

� Motivation: better properties when the
omputation is well-behaved� Partial Syn
hrony:� A run is partially syn
hronous if there exists a state s in a
orre
tpro
ess Pi and a bound Æ su
h that all messages sent by Pi after stake at most Æ units of time.� Pi, s, Æ may not be known in advan
e� Conditional Eventual Weak A

ura
y� A failure dete
tor satis�es
onditional eventual weak a

ura
y if forall partially syn
hronous runs it satis�es eventual weak a

ura
y.

Vijay K. Garg

Parallel and Distributed Systems Laboratory 13IO dete
tor at Pj with the
onditional a

ura
yIO:suspe
ts : set of pro
esses initially ;;timeout: array[1..N℄ of integer initially t;wat
h: timer initially set to timeout;(A1) send \alive" to all pro
esses after every t units;(A2) On re
eiving \alive" from Pi;if i 2 IO:suspe
ts thenIO:suspe
ts := IO:suspe
ts� fig;timeout[i℄++;Set wat
h[i℄ timer for timeout[i℄;(A3) on expiry of wat
h[i℄IO:suspe
ts := IO:suspe
ts [fig;

Vijay K. Garg

Parallel and Distributed Systems Laboratory 14In�nitely Often Global A

ura
y

� Stronger property than IO a

ura
yExample: Whenever P1 is a

urate about P2, it is mistaken aboutP3 and vi
e versa� GIO a

ura
y Every pro
ess is a

urate aboue the entire systemin�nitely often� Algorithm at Pi: main ideatimestamp: array[1..N℄ of integer initially 0;/* when was the last time Pi re
eived a message from Pj */IOG:suspe
ts : set of pro
esses initially ;;timeout: array[1..N℄ of integer initially t;wat
h: array[1..N℄ of timer initially set to timeout;

Vijay K. Garg

Parallel and Distributed Systems Laboratory 15GIO dete
tor(A1) send \alive" to all pro
esses after every t units;(A2) On re
eiving \alive" from Pi;timestamp[i℄ := time; // any in
reasing
ounter will doif i 2 IOG:suspe
ts thentimeout[i℄++;for k 2 f1; ::; ng doif k 2 IOG:suspe
ts ^ timestamp[i℄ � timestamp[k℄IOG:suspe
ts := IOG:suspe
ts� fkg;Set wat
h[k℄ timer for timeout[k℄;(A3) on expiry of wat
h[i℄IOG:suspe
ts := IOG:suspe
ts [fig;

Vijay K. Garg

Parallel and Distributed Systems Laboratory 16Summary of IO dete
tors

� Strong Completeness� Every failed pro
ess is permanently suspe
ted (eventually).� In�nitely Often A

ura
y� No unfailed pro
ess is permanently suspe
ted.� (global) every pro
ess has a

urate view of the system in�nitely often.

� Conditional A

ura
y� In a partially syn
hronous run, there exists a
orre
t pro
ess whi
h iseventually never suspe
ted by anybody.

Vijay K. Garg

Parallel and Distributed Systems Laboratory 17Syn
hronous vs Asyn
hronous Systems

� Argument: Just use a large value of timeout� Laten
y in failure dete
tion high� trade-o� between response time and a

ura
y of failure dete
tion� Algorithms must work
orre
tly in spite of ina

urate suspi-
ions� IO-a

ura
y implies any ina

urate suspi
ion will be dete
ted in �nitetime

Vijay K. Garg

Parallel and Distributed Systems Laboratory 18

Fault-Tolerant Servers

� Need a
ontinuously running servi
e� For simpli
ity assume that the servi
e is stateless� e.g. web server for do
uments� Use N servers for N � 1 fault-toleran
e� Requirement:� (At least) one server responds to the request� Preferably only one server responds

Vijay K. Garg

Parallel and Distributed Systems Laboratory 19Fault-Tolerant Server: Requirements

� Token: Whoever has the token is the
urrent leader� Availability:� There is always at least one token (modulo timeout period).� EÆ
ien
y:� There are never two or more tokens (modulo message arrival period).

� Under partial syn
hrony:� Exa
tly one token under partial syn
hrony.

Vijay K. Garg

Parallel and Distributed Systems Laboratory 20Algorithm for Availability and EÆ
ien
y

� pro
ess Pi is assumed to have a token if� all pro
esses with smaller indi
es than i are suspe
ted� Pi is not suspe
ted.s:token(i) � 8j : j < i : s:suspe
ts[j℄ ^ :s:suspe
ts[i℄:

� Note� EÆ
ien
y requires In�nitely often a

ura
y� Large timeouts not desirable� Algorithm does not satisfy \exa
tly one token" under partial syn-
hrony.

Vijay K. Garg

Parallel and Distributed Systems Laboratory 21

Solution: Main ideas

� Pro
ess Pi has a token� if all pro
esses that are
urrently not suspe
ted by Pi have ti
kettimes that are greater than that of Pi.� Ti
ket time of Pk: logi
al time when� it was suspe
ted by some pro
ess Pi su
h that (a

ording to Pi)� Pk had a token before the suspi
ion and� Pi has a token after the suspi
ion.� If a pro
ess with a token is suspe
ted its ti
ket time willbe
ome greater than all other ti
ket times.� Movement of a token from a slow pro
ess

Vijay K. Garg

Parallel and Distributed Systems Laboratory 22Algorithm for Piti
ket:array[1..N℄ of (int,int) initially 8i : ti
ket[i℄ = (0; i)suspe
ted: array[1..N℄ of boolean; /* set by IO dete
tor */token(k) � (8j 6= k : suspe
ted[j℄ _ (ti
ket[j℄ > ti
ket[k℄))^ :suspe
ted[k℄(R1) Upon suspi
ion of Pk with token(k)if token(i) thenti
ket[k℄ := Lamport0s logi
al
lo
k;send \slow", k, ti
ket[k℄ to all pro
esses(R2) Upon re
eiving \slow",k,tti
ket[k℄ := max(ti
ket[k℄; t);

Vijay K. Garg

Parallel and Distributed Systems Laboratory 23Properties of the Algorithm

� Availability� Under false suspi
ion� Under failures� EÆ
ien
y� Any ina

urate suspi
ion is dete
ted due to IO a

ura
y� Exa
tly one token under partial syn
hrony� All slow pro
esses lose tokens

Vijay K. Garg

Parallel and Distributed Systems Laboratory 24

Con
lusions
� Fault Toleran
e
ru
ial in distributed systems� Be
areful about the properties of your failure dete
tor� IO dete
tors give best of both the worlds� asyn
hronous behavior: mistakes will be dis
overed.� (partially) syn
hronous behavior: agreement, exa
tly one token et
.

Vijay K. Garg

