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Outline of the talk

. Motivation

« Properties of Failure Detectors

. Completeness (Strong and Weak)
« Accuracy (Eventual weak)

« Properties introduced in this paper
o Infinitely Often Accuracy

« Conditional Accuracy
« Global Accuracy
« Implementation of 10 detectors

« Application: Server Maintenance Problem
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Failure Detection: Motivation

e [he most basic module for many fault-tolerant systems
e Function: Which entities have failed 7

. Processes, channels, messages

« Focus on process failures
e Converting blocking program to a non-blocking one
. wait for a message from P; becomes
. wait for (a message from P;) or (P; suspected)
e Desirable Properties of Failure Detectors
. Completeness:  failed entity is suspected

. Accuracy: unfailed entity is not suspected
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Model of a Distributed Computation

® messages:

. asynchronous (no upper bound on message delays)

. reliable, no FIFO assumption
e no shared clock or memory

e Model of a process failure
. crash: ceases all its activities

. does not announce its crash

« no malicious behavior
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Model of a run

« One distributed program has multiple runs possible depending on
. external inputs
. Mmessage ordering

. failure patterns of processes
. time taken by messages

« Each run results in a sequence of states at each process

« finite if the process fails
« infinite otherwise

« Notation
- P, P;: processes

. s,t: local states (totally ordered for a single process)
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Failure Detection: Completeness

Predicates

. suspects(s,i) = P, is suspected in state s
. permsusp(s,t) =Vt :s <t:suspects(t,i)
. failed(i) = P; has failed

Strong Completeness: a failed process is permanently suspected by
all correct processes

. failed(i) N —failed(j) = s € P; : permsusp(s, )

Weak Completeness: a failed process is permanently suspected by
some correct process

. failed(t) = ds : permsusp(s, 1)

Note: all properties implicitly universally quantified for runs.
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Failure Detection: Accuracy

. Eventual Weak Accuracy
« Eventually some correct process is never suspected by any correct process
« EW Detector: weak completeness + eventual weak accuracy

. Consensus problem can be solved in an asynchronous system given
EW detector [CT 96].

« Consensus problem is impossible to solve in an asynchronous system
[FLP 85] (even when at most one process fails).

« Therefore, there is no failure detector which provides weak complete-
ness and eventual weak accuracy.
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Implementable Accuracy Property

Infinitely Often Accuracy: No correct process is permanently
suspected.

. —failed(i) = Vs : ~permsusp(s, 1)

. Alternatively, any wrong suspicion is discovered in finite time (even-
tually).

You will make mistakes in an asynchronous system. Just ensure that
you discover your mistakes (eventually).

e |O Detector = Strong Completeness + Infinitely Often Ac-
curacy
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Example

" A

AASA)  (SAAYS (SAA,

P1
P (SSAA) (SAAYS (SAAS
P3 (AALAA) (SAAA) (SASA)

A = Alive S= Suspected
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Implementation of failure detectors

e Algorithm that does not satisfy 1O accuracy (similar to watchd
on Unix[HuaKin 96]).

« Every k units broadcast “are you alive”

« wait for timeout period t < k.
« suspect = processes that did not respond
e Another example [Beck91]

. multicast polling messages periodically

« processes are expected to reply with “l am alive” messages immedi-
ately

. If the answer is missing for three times consecutively, it assumes that
this process has crashed.
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Correct Implementation of 10 failure detectors

e An algorithm that satisfies 1O accuracy
. Broadcast “alive” message every k units

« On receiving “alive” from P,
. unsuspect P,

. reset the timer for P,

« On expiry of the timer for P,

« suspect P,

e Key idea: there should not be any interval of time in which
messages are ignored
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Conditional Properties

e Motivation: better properties when the computation is well-
behaved

e Partial Synchrony:

« A runis partially synchronous if there exists a state s in a correct
process P; and a bound ¢ such that all messages sent by P; after s
take at most 0 units of time.

« P;, s, 0 may not be known in advance

e Conditional Eventual Weak Accuracy

« A failure detector satisfies conditional eventual weak accuracy if for
all partially synchronous runs it satisfies eventual weak accuracy.
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0 detector at P; with the conditional accuracy
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I10.suspects : set of processes initially (:
timeout: array[1..N] of integer initially t;
watch: timer initially set to timeout;

(A1) send “alive” to all processes after every t units;
(A2) On receiving “alive” from P;;
if © € 10.suspects then
10.suspects := 10.suspects — {i};
timeout[i|++;
Set watchli] timer for timeout|i|;
(A3) on expiry of watchli]
I10.suspects := 10.suspects U {i};
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Infinitely Often Global Accuracy

« Stronger property than 10 accuracy
Example: Whenever P1 is accurate about P2, it is mistaken about

P3 and vice versa

« GIO accuracy Every process is accurate aboue the entire system
infinitely often

« Algorithm at P;: main idea
timestamp: array[1..N] of integer initially 0;
/* when was the last time P; received a message from P; */
IOG .suspects : set of processes initially ;
timeout: array[l..N] of integer initially ¢;
watch: array[1..N] of timer initially set to timeout;
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GIO detector

(A1) send “alive” to all processes after every t units;

(A2) On receiving “alive” from F;
timestamp|t| ;= time; // any increasing counter will do
if + € IOG.suspects then
timeout|t]++;
for k € {1,..,n} do
if k € IOG.suspects N timestampli] < timestamplk]
IOG.suspects := 10G.suspects — {k};
Set watch|k] timer for timeout|k|;

(A3) on expiry of watch|i]
IOG.suspects := IOG.suspects U {i};
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Summary of 10 detectors

e Strong Completeness

. Every failed process is permanently suspected (eventually).

e Infinitely Often Accuracy

« No unfailed process is permanently suspected.

. (global) every process has accurate view of the system infinitely often.
e Conditional Accuracy

 In a partially synchronous run, there exists a correct process which is
eventually never suspected by anybody.
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Synchronous vs Asynchronous Systems

e Argument: Just use a large value of timeout

. Latency in failure detection high

« trade-off between response time and accuracy of failure detection

e Algorithms must work correctly in spite of inaccurate suspi-
cions

« 10-accuracy implies any inaccurate suspicion will be detected in finite

time
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Fault-Tolerant Servers
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e Need a continuously running service

e For simplicity assume that the service is stateless

. e.g. web server for documents
e Use N servers for N — 1 fault-tolerance

e Requirement:

o (At least) one server responds to the request

« Preferably only one server responds
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Fault-Tolerant Server: Requirements

e Token: Whoever has the token iIs the current leader
e Availability:

 There is always at least one token (modulo timeout period).
e Efficiency:

. There are never two or more tokens (modulo message arrival period).

e Under partial synchrony:

. Exactly one token under partial synchrony.
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Algorithm for Availability and Efficiency

e process P; is assumed to have a token if

. all processes with smaller indices than 7 are suspected

« P, is not suspected.

s.token(i) =Vj : j < i:s.suspects|j| A —=s.suspects]i].

e Note
. Efficiency requires Infinitely often accuracy

. Large timeouts not desirable

« Algorithm does not satisfy “exactly one token” under partial syn-
chrony.
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Solution: Main ideas

e Process P; has a token

. if all processes that are currently not suspected by P, have ticket
times that are greater than that of P;.

o Ticket time of P.: logical time when

. it was suspected by some process P; such that (according to F;)

« P had a token before the suspicion and

« P, has a token after the suspicion.

e If a process with a token is suspected its ticket time will
become greater than all other ticket times.

« Movement of a token from a slow process
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Algorithm for F;
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ticket:array[1..N] of (int,int) initially Vi : ticket|i] = (0, 1)
suspected: array[l..N] of boolean; /* set by 10 detector */

token(k) = (Vj # k : suspected|j| V (ticket|j] > ticket|k]))
A —suspected k]

(R1) Upon suspicion of P;, with token(k)
if token(i) then
ticket|k] := Lamport's_logical_clock;
send “slow"”, k, ticket[k] to all processes

(R2) Upon receiving “slow” k.t
ticket|k| := max(ticket|k],t);
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Properties of the Algorithm
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e Availability

« Under false suspicion
« Under failures
e Efficiency
« Any inaccurate suspicion is detected due to O accuracy

e Exactly one token under partial synchrony

« All slow processes lose tokens
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Conclusions
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e Fault Tolerance crucial in distributed systems
e Be careful about the properties of your failure detector

e |O detectors give best of both the worlds

« asynchronous behavior: mistakes will be discovered.

. (partially) synchronous behavior: agreement, exactly one token etc.
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