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ABSTRACT
We present a method to design parallel algorithms for constrained

combinatorial optimization problems. Our method solves and gen-

eralizes many classical combinatorial optimization problems includ-

ing the stable marriage problem, the shortest path problem and the

market clearing price problem. These three problems are solved in

the literature using Gale-Shapley algorithm, Dijkstra’s algorithm,

and Demange, Gale, Sotomayor algorithm. Our method solves all

these problems by casting them as searching for an element that

satisfies an appropriate predicate in a distributive lattice. Moreover,

it solves generalizations of all these problems — namely finding

the optimal solution satisfying additional constraints called lattice-
linear predicates. For stable marriage problems, an example of such

a constraint is that Peter’s regret is less than that of Paul. For short-

est path problems, an example of such a constraint is that cost of

reaching vertex v1 is at least the cost of reaching vertex v2. For the
market clearing price problem, an example of such a constraint is

that item1 is priced at least as much as item2. Our algorithm, called

Lattice-Linear Predicate Detection (LLP) can be implemented in

parallel without any locks or compare-and-set instructions. It just

assumes atomicity of reads and writes.
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1 INTRODUCTION
We present a method called lattice-linear predicate detection that

can solve many combinatorial optimization problems. We use this

method to solve generalizations of three of the most fundamen-

tal problems in combinatorial optimization — the stable marriage

problem [11], the shortest path problem [9], and the assignment
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problem [18]. The classical algorithms to solve these problems are

Gale-Shapley algorithm for the stable marriage problem [11], Di-

jkstra’s algorithm for the shortest path problem [9], and Kuhn’s

Hungarian method to solve the assignment problem [18] (or equiv-

alently, Demange-Gale-Sotomayor auction-based algorithm [7] for

market clearing prices). Could there be a single efficient parallel

algorithm that solves all of these problems?

In this paper, we describe a technique that solves not only these

problems but more general versions of each of the above problems.

We seek the optimal solution for these problems that satisfy addi-

tional constraints modeled using a lattice-linear predicate [4]. When

the set of constraints is empty, we get back the classical problems.

Our technique requires the underlying search space to be viewed

as a distributive lattice [3, 6, 12]. Common to all these seemingly

disparate combinatorial optimization problems is the structure of

the feasible solution space. The set of all stable matchings, the set

of all feasible rooted trees for the shortest path problem, and the set

of all market clearing prices are all closed under the meet operation

of the lattice. If the order is appropriately defined, then finding

the optimal solution (the man-optimal stable marriage, the short-

est path cost vector, the minimum market clearing price vector) is

equivalent to finding the infimum of all feasible solutions in the

lattice.

We note here that it is well-known that the set of stable match-

ing and the set of market clearing price vectors form distributive

lattices. The claim that the set of stable matchings forms a distribu-

tive lattice is given in [16] where this observation is attributed

to Conway. The set of market clearing price vectors forms a dis-

tributive lattice is given in [19]. However, the algorithms to find

the man-optimal stable matching and the minimum market clear-

ing price vectors are not derived from the lattice property. In our

method, once the lattice-linearity of the feasible solution space

is established, the algorithm to find the optimal solution falls out

as a consequence. To the best of our knowledge, this is the first

paper to derive Gale-Shapley’s algorithm, Dijkstra’s algorithm and

Demange-Gale-Sotomayor’s algorithm from a single algorithm by

exploiting a lattice property. In fact, we derive parallel version of

all these algorithms. Our algorithms do not use any synchroniza-

tion (locks, compare-and-sets, or barriers) assuming read-write

atomicity of memory locations.

The lattice-linear predicate detection method to solve the com-

binatorial optimization problem is as follows. The first step is to

define a lattice of vectors L such that each vector is assigned a point
in the search space. For the stable matching problem, the vector

corresponds to the assignment of men to women (or equivalently,

the choice number for each man). The second step in our method

is to define a boolean predicate B that models feasibility of the
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vector. For the stable matching problem, an assignment is feasible

iff it is a matching and there is no blocking pair. The third step is

to show that the feasibility predicate is a lattice-linear predicate

[4]. Lattice-linearity allows one to search for a feasible solution

efficiently. If any point in the search space is not feasible, it allows

one to make progress towards the optimal feasible solution with-

out any need for exploring multiple paths in the lattice. Moreover,

multiple processes can make progress towards the feasible solution

independently. This property of lattice-linearity allows the search

algorithm to be parallel.

In summary, this paper makes the following contributions to the

constrained combinatorial optimization problem. First, we present

a unifying framework and the lattice-linear predicate detection

algorithm (LLP) for such problems. By applying the lattice-linear

predicate detection algorithm to unconstrained problems, we get

parallel versions of Gale-Shapley algorithm for the stable matching

problem, Dijkstra’s algorithm and Bellman-Ford algorithm [1, 10]

for the shortest path problem and Demange, Gale, Sotomayor’s

algorithm for the minimum market clearing price.

Note that our technique does not necessarily lead to the most-

efficient parallel algorithm. Additional techniques may be necessary

to optimize the algorithm further. It does provide a unifying frame-

work for analyzing a large class of algorithms. In a rough sense,

our framework is similar to Linear Programming [2] formulations.

Most problems discussed in the paper can also be formulated as

(integer) linear programs but those formulations may not result in

most efficient algorithms.

Second, we get solutions for the constrained version of each

of these problems, whenever the constraints are lattice-linear. We

solve the Constrained Stable Matching Problem where in addition to

men’s preferences and women’s preferences, there may be a set of

lattice-linear constraints. For example, we may require that Peter’s

regret [14] should be less than that of Paul, where the regret of a man

in a matching is the choice number he is assigned.We note here that

some special cases of the constrained stable marriage problems have

been studied. Dias et al [5, 8] study the stable marriage problem

with restricted pairs. A restricted pair is either a forced pair which
is required to be in the matching, or a forbidden pair which must

not be in the matching. Both of these constraints are lattice-linear
and therefore can be modeled in our system.

Third, by applying a constructive version of Birkhoff’s theorem

on finite distributive lattices [3, 6, 12, 17], we give an algorithm

that outputs a succinct representation of all feasible solutions. In

particular, the join-irreducible elements [6] of the feasible sublat-

tice can be determined efficiently (in polynomial time). For the

constrained stable matching problem, we get a concise represen-

tation of all stable matchings that satisfy given constraints. Thus,

our method yields a more general version of rotation posets [14] to

represent all constrained stable matchings. Analogously, we get a

concise representation of all constrained integral market clearing

price vectors.

The paper is organized as follows. Section 2 gives the definition

of Lattice-Linear predicates and the LLP algorithm for detecting

such predicates. The LLP Algorithm is a parallel algorithm that

can be applied to all the problems mentioned earlier. Section 3

shows lattice-linearity of stability in the stable matching and gives

a parallel algorithm for the constrained stable matching problem.

Gale-Shapley algorithm can be viewed as a special case of this algo-

rithm. Section 4 shows how Bellman-Ford, Dijkstra and Johnson’s

algorithm [15] can be viewed as special cases of LLP algorithm.

Section 6 shows how Gale-Demange-Sotomayor algorithm for the

assignment problem can be viewed as a special case of LLP algo-

rithm. Section 8 compares this work with the related work. Finally,

Section 9 presents conclusions and future work.

2 LATTICE-LINEAR PREDICATES
Let L be the lattice of all n-dimensional vectors of reals greater than

or equal to zero vector and less than or equal to a given vector T
where the order on the vectors is defined by the component-wise

natural ≤. The lattice is used to model the search space of the com-

binatorial optimization problem. The combinatorial optimization

problem is modeled as finding the minimum element in L that sat-

isfies a boolean predicate B, where B models feasible (or acceptable
solutions). We are interested in parallel algorithms to solve the com-

binatorial optimization problem with n processes. We will assume

that the system maintains as its state the current candidate vector

G ∈ L in the search lattice, where G[i] is maintained at process i .
We call G, the global state, and G[i], the state of process i .

Finding an element in a lattice that satisfies the given predicate

B, is called the predicate detection problem. Finding the minimum
element that satisfies B (whenever it exists) is the combinatorial

optimization problem.We now define lattice-linearitywhich enables
efficient computation of this minimum element. Lattice-linearity is

first defined in [4] in the context of detecting global conditions in a

distributed system where it is simply called linearity. We use the

term lattice-linearity to avoid confusion with the standard usage of

linearity.

A key concept in deriving an efficient predicate detection algo-

rithm is that of a forbidden state. Given a predicate B, and a vector

G ∈ L, a state G[i] is forbidden (or equivalently, the index i is for-
bidden) if for any vector H ∈ L , where G ≤ H , if H [i] equals G[i],
then B is false for H . Formally,

Definition 2.1 (Forbidden State [4]). Given any distributive lattice

L of n-dimensional vectors of R≥0, and a predicate B, we define
forbidden(G, i,B) ≡ ∀H ∈ L : G ≤ H : (G[i] = H [i]) ⇒ ¬B(H ).

We define a predicate B to be lattice-linear with respect to a

lattice L if for any global state G, B is false in G implies that G
contains a forbidden state. Formally,

Definition 2.2 (lattice-linear Predicate [4]). A boolean predicate

B is lattice-linear with respect to a lattice L iff ∀G ∈ L : ¬B(G) ⇒
(∃i : forbidden(G, i,B)).

We now give some examples of lattice-linear predicates.

(1) Job SchedulingProblem: Our first example relates to sched-

uling of n jobs. Each job j requires time tj for completion

and has a set of prerequisite jobs, denoted by pre(j), such
that it can be started only after all its prerequisite jobs have

been completed. Our goal is to find the minimum comple-

tion time for each job. We let our lattice L be the set of all

possible completion times. A completion vector G ∈ L is

feasible iff Bjobs (G) holds where Bjobs (G) ≡ ∀j : (G[j] ≥

tj ) ∧ (∀i ∈ pre(j) : G[j] ≥ G[i] + tj ). Bjobs is lattice-linear
because if it is false, then there exists j such that either



G[j] < tj or ∃i ∈ pre(j) : G[j] < G[i] + tj . We claim that

forbidden(G, i,Bjobs ). Indeed, any vector H ≥ G cannot be

feasible withG[j] equal to H [j]. The minimum of all vectors

that satisfy feasibility corresponds to the minimum comple-

tion time.

(2) Shortest Path Problem: We are given a weighted directed

graph and a fixed vertex s . We are required to find the cost

of the shortest path from s to all vertices. Let the input be

specified asw[i, j] as the cost of going from i to j. Here our
objective is to output maximum G[j] subject to constraints

that G[j] is less than or equal to G[i] + w[i, j] for all i ∈

pre(j). One can view G[j] as an upper bound on the cost

of reaching j. We assume that there are no negative cycles

and thus G[s] equals zero. For this problem, the order on

the underlying lattice is inverted. The lattice is defined on

the value of G[j] for all vertices except the source vertex.

The minimum element is the vector with all components as

∞. It is easy to check that the predicate G[j] ≤ min{G[i] +
w[i, j] | i ∈ pre(j)} is lattice-linear. IfG[j] > G[i]+w[i, j] for
some (i, j) then it will continue to hold until G is advanced

on j , i.e., the value ofG[j] is reduced at least toG[i] +w[i, j].
(3) Continuous Optimization Problem: We are required to

find minimum nonnegative x and y such that B ≡ (x ≥

2y2 + 5) ∧ (y ≥ x − 4). We view this problem as finding

minimum (x ,y) pair such that B holds. It is easy to verify

that B is lattice-linear. If the first conjunct is false, then x is

forbidden. Unless x is increased the predicate cannot become

true, even if other variables (y for this example) increase. If

the second conjunct is false, then y is forbidden.

(4) A Non Lattice-Linear Predicate As an example of a pred-

icate that is not lattice-linear, consider the predicate B ≡∑
j G[j] ≥ 1 defined on the space of two dimensional vectors.

Consider the vector G equal to (0, 0). The vector G does not

satisfy B. For B to be lattice-linear either the first index or

the second index should be forbidden. However, none of the

indices are forbidden in (0, 0). The index 0 is not forbidden

because the vector H = (0, 1) is greater than G, has H [0]

equal to G[0] but it still satisfies B. The index 1 is also not

forbidden because H = (1, 0) is greater than G, has H [1]

equal to G[1] but it satisfies B.

The following Lemma is useful in proving lattice-linearity of

predicates.

Lemma 2.3. Let B be any boolean predicate defined on a lattice L
of vectors.
(a) Let f : L → R≥0 be any monotone function defined on the lattice
L of vectors of R≥0. Consider the predicate B ≡ G[i] ≥ f (G) for some
fixed i . Then, B is lattice-linear.
(b) Let LB be the subset of the lattice L of the elements that satisfy B.
Then, B is lattice-linear iff LB is closed under meets.
(c) If B1 and B2 are lattice-linear then B1 ∧ B2 is also lattice-linear.

Proof. (a) SupposeB is false forG . This implies thatG[i] < f (G).
Consider any vector H ≥ G such that H [i] is equal to G[i]. Since
G[i] < f (G), we get that H [i] < f (G). The monotonicity of f
implies that H [i] < f (H ) which shows that ¬B(H ).

(b) This is shown in [4]. Assume that B is not lattice-linear. This

implies that there exists a global state G such that ¬B(G), and
∀i : ∃Hi ≥ G : (G[i] = Hi [i]) and B(Hi ). Consider Y = ∪i {Hi }. All

elements of Y ∈ LB . However, in f Y which is equal to G is not an

element of LB . This implies that LB is not closed under the meet

operation. Conversely, let Y = {H1,H2, . . . ,Hk } be any subset of

LB such that its meet G does not belong to LB . Since G is the meet

of Y , for any i , there exists j ∈ {1 . . .k} such that G[i] = Hj [i].
Since B(Hj ) is true for all j , it follows that there exists aG for which

lattice-linearity does not hold.

(c) Follows from the equivalence of meet-closed predicates with

lattice-linearity and that meet-closed predicates are closed under

conjunction. For a more direct proof, suppose that ¬(B1 ∧ B2). This
implies that one of the conjuncts is false and therefore from the

lattice-linearity of that conjunct, a forbidden state exists. □

For the job scheduling example, we can define Bj as G[j] ≥

max(tj ,max{G[i]+tj | i ∈ pre(j)}). Since fj (G) =max(tj ,max{G[i]+
tj | i ∈ pre(j)}) is a monotone function, it follows from Lemma 2.3(a)

that Bj is lattice-linear. The predicate Bjobs ≡ ∀j : Bj is lattice-
linear due to Lemma 2.3(c). Also note that the problem of finding the

minimum vector that satisfies Bjobs is well-defined due to Lemma

2.3(b).

We now discuss detection of lattice-linear predicates which re-

quires an additional assumption called the efficient advancement
property [4] — there exists an efficient (polynomial time) algorithm

to determine the forbidden state. This property holds for all the

problems considered in this paper. Once we determine j such that

f orbidden(G, j,B), we also need to determine how to advance along

index j . To that end, we extend the definition of forbidden as follows.

Definition 2.4 (α-forbidden). Let B be any boolean predicate on

the lattice L of all assignment vectors. For any G, j and a positive

real α > G[j], we define forbidden(G, j,B,α) iff ∀H ∈ L : H ≥ G :

(H [j] < α) ⇒ ¬B(H ).

Given any lattice-linear predicate B, suppose ¬B(G). This means

thatG must be advanced on all indices j such that forbidden(G, j,B).
We use a function α(G, j,B) such that forbidden(G, j,B,α(G, j,B))
holdswhenever forbidden(G, j,B) is true.With the notion ofα(G, j,B),
we have the algorithm LLP shown in Fig. 1. The algorithm LLP has

two inputs — the predicate B and the top element of the lattice T .
It returns the least vector G which is less than or equal to T and

satisfies B (if it exists). Whenever B is not true in the current vector

G, the algorithm advances on all forbidden indices j in parallel.

This simple parallel algorithm can be used to solve a large variety

of combinatorial optimization problems by instantiating different

forbidden(G, j,B) and α(G, j,B).
We note here that LLP algorithm has a single variableG . Suppose

that we maintain G[j] on a separate thread for all j. Then, all these
threads can evaluate f orbidden(G, j,B) in parallel and also advance

G[j] to α(G, j,B) in parallel. Since only thread j can update G[j],
there cannot be any write-write conflict. Moreover, assuming that

we have linearizable reads and writes, if one thread j is updating
G[j] and thread i reads the value of G[j] and gets the old value of

G[j], the algorithm continues to behave correctly. In other words,

LLP algorithm does not require any locks. We do assume that any

update toG is eventually visible to all threads and that the algorithm

terminates only when G does not have any forbidden component.



vector function getLeastFeasible(T : vector, B: predicate)
var G : vector of reals initially ∀i : G[i] = 0;

while ∃j : forbidden(G, j, B) do
for all j such that forbidden(G, j, B) in parallel:

if (α (G, j, B) > T [j]) then return null;

else G[j] := α (G, j, B);
endwhile;
return G ; // the optimal solution

Figure 1: Parallel Algorithm LLP to find theminimumvector
less than or equal to T that satisfies B

Theorem 2.5. Suppose there exists a fixed constant δ > 0 such that
α(G, j,B) −G[j] ≥ δ whenever forbidden(G, j,B). Then, the parallel
algorithm LLP finds the least vector G ≤ T that satisfies B, if one
exists.

Proof. Since G[j] increases by at least δ for at least one forbid-

den j in every iteration of the while loop, the algorithm terminates

in at most

∑
i ⌈T [i]/δ⌉ number of steps.

We show that the algorithm maintains the invariant (I1) that for
all indices j, any vector V such that V [j] is less than G[j] cannot
satisfy B. Formally, the invariant (I1) is

∀j : (∀V ∈ L : (V [j] < G[j]) ⇒ ¬B(V )).

Initially, the invariant holds trivially because G is initialized to 0.

Suppose forbidden(G, j,B). Then, we increaseG[j] to α(G, j,B). We

need to show that this change maintains the invariant. Pick any V
such that V [j] < α(G, j,B). We now do a case analysis. If V ≥ G,
then ¬B(V ) holds from the definition of α(G, j,B). Otherwise, there
exists some k such that V [k] < G[k]. In this case ¬B(V ) holds due

to (I1).
We now show Theorem 2.5 using the invariant. First, suppose

that the algorithm LLP terminates because α(G, j,B) > T [j]. In this

case, there is no feasible vector in L due to the invariant (because

the predicate B is false for all values of G[j]). Now suppose that

the algorithm terminates because there does not exist any j such
that forbidden(G, j,B). This implies thatG satisfies B due to lattice-

linearity of B. It is also the least vector that satisfies B due to the

invariant (I1). □

2.1 Simple Examples
We now derive parallel algorithms for some simple examples.

(1) Job Scheduling: For the job scheduling example, we get a

parallel algorithm to find the minimum completion time by

using forbidden(G, j,Bjobs ) ≡ (G[j] < tj ) ∨ (∃i ∈ pre(j) :
G[j] < G[i] + tj ), and α(G, j,Bjobs ) = max{tj ,max{G[i] +
tj |i ∈ pre(j)}}.
The resulting algorithm is shown in Fig. 2. Instead of initializ-

ingG[j] with 0, we initialize it with tj to simplify the forbid-

den predicate. The program returns the leastG that satisfies

the predicate Bjobs . Any j that does satisfies f orbidden(j)
triggers the advance section. Each thread can evaluatewhether
it is forbidden (possibly using stale values of other compo-

nents) in parallel and then advance itself. Computation of

the forbidden predicate at node j takes time proportional to

Pj : Code for thread j
// common declaration for all the programs below
shared var G : array[1..n] of 0..maxint ;
job-scheduling:

input: t [j] : int , pre(j): list of 1..n;
init: G[j] := t [j];
forbidden: G[j] < max{G[i] + t [j] | i ∈ pre(j)};
advance: G[j] := max{G[i] + t [j] | i ∈ pre(j)};

shortest path from node s : Parallel Bellman-Ford
input: pre(j): list of 1..n; w [i, j]: int for all i ∈ pre(j)
init: if (j = s) then G[j] := 0 else G[j] := maxint;
forbidden: G[j] > min{G[i] +w [i, j] | i ∈ pre(j)}
advance: G[j] := min{G[i] +w [i, j] | i ∈ pre(j)}

Figure 2: LLP Parallel Program for the job scheduling and
the shortest path problems

the size ofpre(j). If all threads evaluate f orbidden in parallel,

the number of iterations required equals the length of the

critical path in the prerequisite graph.

(2) Shortest Path Problem: Parallel Bellman-Ford: For this prob-
lem our goal is to maximize G[j] subject to constraints that

G[j] is less than or equal to G[i] + w[i, j] for all i ∈ pre(j).
The variable G[i] is initialized to ∞ for all indices except for

the source vertex which is initialized to 0. Since the predicate

G[j] ≤ min{G[i] + w[i, j] | i ∈ pre(j)} is lattice-linear, the
program returns the optimal cost vector. Each thread evalu-

ates whether it is forbidden in G in parallel and advances in

a manner similar to the job scheduling problem.

In this example, G[j] corresponds to an upper-bound on the

cost of the shortest path from the source to node j. This
is the standard method of edge-relaxation algorithms for

shortest paths. In section 4, we discuss LLP algorithms based

on maintaining lower bounds instead of the upper bounds.

We now show, on account of Lemma 2.3(c), that if we have a

parallel algorithm for a problem, then we also have one for the

constrained version of that problem.

Lemma 2.6. Let LLP be the parallel algorithm to find the least
vector G that satisfies B1 if one exists. Then, LLP can be adapted to
find the least vector G that satisfies B1 ∧ B2 for any lattice-linear
predicate B2.

Proof. The algorithmLLP can be usedwith the following changes:

forbidden(G, j,B1 ∧B2) ≡ forbidden(G, j,B1) ∨ forbidden(G, j,B2),
and α(G, j,B1 ∧ B2) = max{α(G, j,B1),α(G, j,B2)}.

□

For example, suppose that we want the minimum completion

time of jobswith the additional lattice-linear constraint thatB2(G) ≡
(G[1] = G[2]).B2 is lattice-linearwith forbidden(G, 1,B2) ≡ (G[1] <
G[2]) and forbidden(G, 2,B2) ≡ (G[2] < G[1]). By applying, Lemma

2.6, we get a parallel algorithm for the constrained version.



3 CONSTRAINED STABLE MATCHING
PROBLEM

In this problem, we are given as input n men and n women. We are

also given a list of men preferences asmpre f wherempre f [i][k]

denotes kth top choice of man i . The women preferences are more

convenient to express as a rank array where rank[i][j] is the rank
of man j by woman i . A matching betweenman and woman is stable

if there is no blocking pair, i.e., a pair of woman and man such that

they are not matched and prefer each other to their spouses.

The underlying lattice for this example is the set of all n dimen-

sional vectors of 1..n. We let G[i] be the choice number that man i
has proposed to. Initially, G[i] is 1 for all men. For convenience, let

ρ(G, i) denote the womanmpre f [i][G[i]].

Definition 3.1. An assignmentG is feasible for the stablemarriage

problem if (1) it corresponds to a perfect matching (all men are

paired with different women) and (2) it has no blocking pairs.

We show that the predicate “G is a stable marriage” is a lattice-

linear predicate.

Lemma 3.2. The predicate that a vector G corresponds to a stable
marriage is lattice-linear.

Proof. Let z be ρ(G, j), the woman that corresponds to choice

G[j] for man j . We define j to be forbidden inG if there exists a man

i such that z prefers man i to man j and either man i has also been

assigned z in G or he prefers z to his current choice, i.e., man i and
woman z would form a blocking pair inG . Formally, f orbidden(G, j)
is defined as (∃i : ∃k ≤ G[i] : (z = mpre f [i][k]) ∧ (rank[z][i] <
rank[z][j])).

It is easy to see thatG is not a stablemarriage iff∃j : f orbidden(G, j).
IfG is not a perfect matching then there must be at least one woman

who is assigned to two men. In that case, the less preferred man

is forbidden. If G is a perfect matching but has a blocking pair,

then the partner of the woman in the blocking pair is forbidden.

Conversely, f orbidden(G, j) implies that either G is not a perfect

matching or has a blocking pair.

We only need to show that if f orbidden(G, j) holds, then there

is no proposal vector H such that (H ≥ G) and (G[j] = H [j]) and
H is a stable marriage.

Consider any H such that (H ≥ G) and (G[j] = H [j]). We show

that H is not a stable marriage. SinceG[j] is equal to H [j], ρ(G, j) is
equal to ρ(H , j). Let i be such that ∃k ≤ G[i] : (z =mpre f [i][k]) ∧
(rank[z][i] < rank[z][j])). Since G ≤ H , G[i] ≤ H [i], we get that
∃k ≤ H [i] : (z =mpre f [i][k]) ∧ (rank[z][i] < rank[z][j])). Hence,
f orbidden(H , i) also holds.

□

The parallel LLP algorithm is shown in Fig. 3. The always section
defines variables which are derived from G. These variables can
be viewed as macros. For example, in the stable marriage problem,

for any thread z =mpre f [j][G[j]]. This means that whenever G[j]
changes, so does z (just like a formula in a spreadsheet).

If man j is forbidden, it is clear that any vector in which man j is
matched with z and man i is matched with his current or a worse

choice can never be a stable marriage. Thus, it is safe for man j to
advance to the next choice.

Pj : Code for thread j
Man-optimal stable marriage

input:mpref [i, k ]: int for all i, k ; rank [k ][i]: int for all k, i ;
init: G[j] := 1;
always: z =mpref [j][G[j]];

forbidden: (∃i : ∃k ≤ G[i] : (z =mpref [i][k ])
∧(rank [z][i] < rank [z][j]))

advance: G[j] := G[j] + 1;

Figure 3: A Parallel LLP Algorithm for Stable Matching

The LLP algorithm has a single variable G. Any thread j (sim-

ulating code for man j), can only change its own component G[j]
although it can read G[i] for any i . When thread i is updating its

own component, and thread j reads that component, we assume

that it either gets the old value of G[i] or the new value of G[i].
Assuming such read-write atomicity for a single entry of the array

G, there is no lock required in the algorithm shown in Fig. 3. Thus,

we have

Theorem 3.3. Assuming read-write atomicity, there exists a par-
allel algorithm to solve the stable matching problem with n threads
that does not use any synchronization.

Observe that with n cores, the function f orbidden(G, j) can be

computed in O(1) time. Since each component can be advanced at

most O(n) times, LLP algorithm may take O(n2) time in the worst

case (when exactly one man can advance in every time step). Our

goal is not to come up with the most efficient parallel algorithm

but a unifying framework for designing parallel algorithms.

Another subtle issue is the trigger for evaluation of forbidden

predicates. If f orbidden(G, j) holds for some G, then unless G[j]
is advanced, it will continue to hold. However, if f orbidden(G, j)
is false, it can become true when G advances on other compo-

nents. One possibility is for thread j to signal all threads i to evalu-

ate f orbidden(G, i) whenever G[j] is advanced and ρ(G, j) equals
ρ(G, i).

One can easily derive an efficient sequential LLP algorithm from

the parallel LLP algorithm in Fig. 3. We can maintain the list of men

that are forbidden at the current value of G. At each iteration, we

remove a man from this list and advance him to his next choice. If

advancing this man makes some other man forbidden, then he is

added to the list. Doing this efficiently, requires us to maintain cur-

rent partners for all women. The algorithm derived in this manner

is identical to Gale-Shapley deferred acceptance algorithm.

3.1 Properties of the LLP Algorithm
We note here some useful properties of the LLP algorithm. These

properties are applicable to all the problems in this paper.

(1) Nondeterminism inEvaluation of ForbiddenPredicate:
Given a global state G, there may be multiple indices j for
which G[j] is forbidden. The LLP algorithm is correct irre-

spective of the order in which these indices are updated. The

efficiency of the algorithms may differ depending upon the

order in which these indices are updated, but the correctness

is independent of the order. In the stable marriage problem,



the final answer returned is independent of the order in

which men propose.

(2) Parallel Evaluation of ForbiddenPredicatewithout locks:
Suppose that G is shared among different threads such that

thread j is responsible for evaluating f orbidden(G, j). While

this thread is evaluating this predicate other threads may

have advanced on other indices, i.e., thread j may have old

information of G[i] for i , j. However, this would still keep

the algorithm correct. In the stable marriage problem, men

can propose to women in parallel. In the shortest path al-

gorithm, multiple vertices can update the estimate G[i] in
parallel.

(3) No Lookahead Required for evaluation of Forbidden
Predicate: The LLP algorithm determines whether an index

j is forbidden depending upon only the current global state

G (and the history). This means that these algorithms are ap-

plicable in online settings where the future part of the lattice

is revealed only when a forbidden index needs to advance.

In the stable marriage problem, when we are computing the

man-optimal stable marriage, a man may not reveal his pref-

erence list. Only when he is rejected (his state is forbidden),

he needs to advance on his choices and therefore reveal the

next woman on his list.

3.2 Additional Constraints on Stable Matchings
We now present an algorithm to find stable marriages that satisfy

additional constraints. Due to Lemma 2.6, we can use LLP algorithm

to find the least stable marriage satisfying these constraints. The

following lemma proves lattice-linearity of many such constraints.

Lemma 3.4. The following constraints are lattice-linear.
(1) The regret of man i is at most that of the regret of man j.
(2) Man i cannot be married to woman j.
(3) The regret of man i is equal to that of man j.

Proof. Let B be the predicate that G is a stable marriage and it

satisfies the corresponding additional constraint.

(1) Suppose that G is a stable marriage but it does not satisfy B.
This means that regret of man i is more than the regret of

man j . In this case, we have f orbidden(G, j), because unless
G[j] is advanced, the predicate cannot become true.

(2) If ρ(G, i) = j, then f orbidden(G, i) holds.
(3) This condition is a conjunction of two lattice-linear condi-

tions of type in part (1).

□

4 CONSTRAINED SINGLE SOURCE
SHORTEST PATH ALGORITHM

Consider a weighted directed graph with n vertices numbered 0 to

n − 1. We assume that all edge weights are strictly positive. We are

required to find the minimum cost of a path from a distinguished

source vertex v0 to all other vertices where the cost of a path is

defined as the sum of edge weights along that path. For any vertex

v , let pre(v) be the set of vertices u such that (u,v) is an edge in

the graph. To avoid trivialities, assume that every vertex v (except

possibly the source vertex v0) has nonempty pre(v) and that all

nodes in the graph are reachable from the source vertex.

As the first step of the predicate detection algorithm, we define

the lattice for the search space. We assign to each vertex vi , G[i] ∈
R≥0 with the interpretation that G[i] is the cost of reaching vertex

vi . We call G, the assignment vector. The invariant maintained by

our algorithm is: for all i , the cost of any path from v0 to vi is
greater than or equal to G[i]. The vector G only gives the lower

bound on the cost of a path and there may not be any path to vertex

vi with cost G[i]. To capture that an assignment is feasible, we

define feasibility which requires the notion of a parent. We say that

vi is a parent of vj inG (denoted by the predicate parent(j, i,G)) iff
there is a direct edge fromvi tovj andG[j] is at least (G[i]+w[i, j]),
i.e., (i ∈ pre(j)) ∧ (G[j] ≥ G[i] +w[i, j]). A node may have multiple

parents.
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Figure 4: (a) A Weighted Directed Graph (b) The parent
structure for G = (0, 2, 3, 5, 8) (c) The parent structure for
G = (0, 10, 3, 14, 8). Since every non-source node has at least
one parent, G is feasible.

In Fig. 4, let G be the vector (0, 2, 3, 5, 8). Then, v0 is a parent of
v2 because G[2] is greater than G[0] plus w[0, 2](i .e ., 3 ≥ 0 + 2).

Similarly, v1 is a parent of v4 becauseG[4] ≥ G[1]+ 2. A node may

have multiple parents. The node v2 is also a parent of v4 because
G[4] ≥ G[2] + 5.

Sincew[i, j] are strictly positive, there cannot be a cycle in the

parent relation. Now, feasibility can be defined as follows.

Definition 4.1 (Feasible for paths). An assignmentG is feasible for
paths iff every node except the source node has a parent. Formally,

Bpath (G) ≡ ∀j , 0 : (∃i : parent(j, i,G)).
Hence, an assignment G is feasible iff one can go from any non-

source node to the source node by following any of the parent

edges. We now show that feasibility satisfies lattice-linearity.

Lemma 4.2. For any assignment vector G that is not feasible, ∃j :
forbidden(G, j,Bpath (G)).

Proof. Suppose G is not feasible. Then, there exists j , 0 such

thatvj does not have a parent, i.e., ∀i ∈ pre(j) : G[j] < G[i]+w[i, j].
We show that forbidden(G, j,Bpath (G)) holds. Pick anyH such that

H ≥ G. Since for any i ∈ pre(j), H [i] ≥ G[i], G[j] < G[i] +w[i, j]
implies thatG[j] < H [i]+w[i, j]. Therefore, whenever H [j] = G[j],
vj does not have a parent. □



Since Bpath is a lattice-linear predicate, it follows from Lemma

2.3(c), that the set of feasible assignment vectors are closed under

meets (the component-wise min operation). Hence, we can use LLP

algorithm with α(G, j,Bpath ) = min{G[i] +w[i, j] | i ∈ pre(j)}.
For an unweighted graph (i.e., each edge has weight equal to 1),

the above parallel algorithm requires time equal to the distance of

the farthest node from the root. The LLP algorithm derived from

Bpath , however, may take time that depends on the weights because

the advancement along a forbidden process may be small.

We now give an alternative feasible predicate that results in an

algorithm that takes bigger steps. We first define a node j to be fixed
in G if either it is the source node or it has a parent that is a fixed

node, i.e., f ixed(j,G) ≡ (j = 0)∨ (∃i : parent(j, i,G)∧ f ixed(i,G)).
Observe that node v0 is always fixed. Any node vj such that one

can reach from vj to v0 using parent relation is also fixed. We now

define another feasible predicate called Brooted , as Brooted (G) ≡
∀j : f ixed(j,G).

Even though it may first seem that the predicate Brooted is

strictly stronger than Bpath , the following Lemma shows otherwise.

Lemma 4.3. Bpath (G) iff Brooted (G).

Proof. If G satisfies Brooted , then every node other than v0
has at least one parent by definition of f ixed , hence Bpath (G).
Conversely, suppose that every node except v0 has a parent. Since
parent edges cannot form a cycle, by following the parent edges,

we can go from any node to v0. □

It follows that the predicate Brooted is also lattice-linear. Then,

the following threshold β(G) is well-defined whenever the set of

edges from the fixed vertices to non-fixed vertices is nonempty.

β(G) = min

(i, j):i ∈pre(j)
{G[i] +w[i, j] | f ixed(i,G),¬f ixed(j,G)}.

If the set of such edges is empty then no non-fixed vertex is reach-

able from the source. We call these set of edges Heap (because we
would need the minimum of this set for advancement).

We now have the following result in advancement of G.

Lemma 4.4. Suppose ¬Brooted (G).
Then, ¬f ixed(j,G) ⇒ forbidden(G, j,Brooted , β(G)).

Proof. Consider any assignment vector H such that H ≥ G and

H [j] < β(G). We show thatH is not Brooted . In particular, we show

that j is not fixed in H . Suppose j is fixed in H . This implies that

there is a pathW from v0 to vj such that all nodes in that path

are fixed. Let the path be the sequence of verticesw0,w1, . . .wm−1,

where w0 = v0 and wm−1 = vj . Let wl = vk be the first node in

the path that is not fixed inG. Such a node exists becausewm−1 is

not fixed in G. Sincew0 is fixed, we know that 1 ≤ l ≤ m − 1. The

predecessor ofwl in that path,wl−1 is well-defined because l ≥ 1.

Letwl−1 = vi .
We show that H [k] ≥ β(G) which contradicts H [j] < β(G)

because H [k] ≤ H [j] as the cost can only increase going from k
to j along the pathW . We have H [k] ≥ H [i] + w[i,k] because i
is a parent of k in H . Therefore, H [k] ≥ G[i] + w[i,k] because
H [i] ≥ G[i]. Since i is fixed in G and k is not fixed in G, from
the definition of β(G), we get that β(G) ≤ G[i] + w[i,k]. Hence,
H [k] ≥ β(G). □

By using the advancement Lemma 4.4, we get the algorithm

ShortestPath shown in Fig. 5. In this algorithm, in every itera-

tion we find all nodes that are forbidden (not fixed) and advance

them. All nodes are advanced to α(G, j) that combines β(G) with
min{G[i]+w[i, j] | i ∈ pre(j)}. Note that if a node is fixed, its parent
is fixed and therefore any algorithm that advances G[j] only for

non-fixed nodes j maintains that once a node becomes fixed it stays

fixed.

Theorem 4.5. Assuming read-write atomicity, there exists a par-
allel algorithm to solve the shortest path problem with one thread per
node of the graph which does not use any synchronization.

We remark here that the parallel algorithm assumes that the

variables in always section are maintained using G and therefore

is not work efficient.

By removing certain steps, we get Dijkstra’s algorithm from the

algorithm ShortestPath. It is clear that the algorithm stays correct if

α(G, j) uses just β(G) instead of max{β(G),min{G[i] +w[i, j] | i ∈
pre(j)}}. Secondly, the algorithm stays correct if we advance G
only on the node j such that (i, j) are in Heap edges and the node

j minimizes G[i] + w[i, j]. Finally, to determine such a node and

β(G), it is sufficient to maintain a min-heap of all non-fixed nodes j ,
along with the label that equals mini ∈pre(j),f ixed (i,G)G[i]+w[i, j].
On making all these changes to ShortestPath, we get Dijkstra’s

algorithm (modified to run with a heap).

It is illustrative to compare the algorithm ShortestPath with Di-

jkstra’s algorithm. In Dijkstra’s algorithm, the nodes become fixed

in the order of the cost of the shortest path to them. In the proposed

algorithm, a node may become fixed even when nodes with shorter

cost have not been discovered. In Fig. 4, node v1 becomes fixed

earlier than nodes v3 and v4. This feature is especially useful when

we are interested in finding the shortest path to a single destination

and that destination becomes fixed sooner than it would have been

in Dijkstra’s algorithm.

Dijkstra’s algorithm maintains a distance vector dist such that

it is always feasible, i.e., for any vertex v there exists a path from

source to v with cost less than or equal to dist[v]. We maintain the

invariant that the cost of the shortest path from source to v is guar-

anteed to be at leastG[v]. Therefore, in Dijkstra’s algorithm,dist[v]
is initialized to∞ whereas we initializeG to 0. Dijkstra’s algorithm

and indeed many algorithms for combinatorial optimization, such

as simplex, start with a feasible solution and march towards the op-

timal solution, our algorithm starts with an extremal point in search

space (even if it is infeasible) and marches towards feasibility. Also

note that in Dijkstra’s algorithm, dist[v] can only decrease during

execution. In our algorithm, G can only increase with execution.

The ShortestPath algorithm and indeed all the algorithms in this

paper have a single variable G. All other predicates and functions

are defined using this variable. This is because the goal of the

paper is to show effectiveness of using lattice-linear predicates and

deriving work efficient algorithms is out of the scope of the paper.

4.1 Closure under Meets and Joins
We get the following structural result on the assignment vectors

that are feasible.



Shortest path from node s: LLP algorithm
input: pre(j): list of 1..n; w [i, j]: positive int for all i ∈ pre(j)
init: G[j] := 0;

always: parent [j, i] = (i ∈ pre(j)) ∧ (G[j] ≥ G[i] +w [i, j]);
f ixed [j] = (j = s) ∨ (∃i : parent [j, i] ∧ f ixed [i])
Heap = {(G[i] +w [i, k ]) |(i ∈ pre(k )) ∧ f ixed (i) ∧ ¬f ixed (k )};

forbidden: ¬f ixed [j]
advance: (G[j] := max{minHeap, min{G[i] +w [i, j] | i ∈ pre(j)})

Shortest path from node s: a variant of Dijkstra’s algorithm
same as above except

advance: G[j] := minHeap

Figure 5: Algorithm ShortestPath andDijkstra’s Algorithm to
find theminimum cost assignment vector less than or equal
to T .

Lemma 4.6. LetG and H be two assignment vectors such that they
satisfy Brooted , thenmin(G,H ) also satisfies Brooted .

Proof. Follows directly from Lemma 2.3, because Brooted is a

lattice-linear predicate. □

The set of feasible assignment vectors is not closed under the join

operation. In Fig. 4, the vectors (0, 10, 3, 14, 8) and (0, 9, 10, 12, 11)

are feasible, but their join (0, 10, 10, 14, 11) is not feasible.

4.2 Constrained Shortest Path Algorithm
We now consider the generalization of the shortest path algorithm

with constraints. We assume that all constraints specified are lattice-

linear. For example, consider the constraint that the cost of vertex i
is at most cost of vertex j. The predicate B ≡ G[j] ≥ G[i] is easily
seen to be lattice-linear. If any cost vector G violates B, then the

component j is forbidden (with α(G, j) equal toG[i]). The predicate
(G[i] = G[j]) is also lattice-linear because it can be written as

a conjunction of two lattice-linear predicates (G[i] ≥ G[j]) and
(G[j] ≥ G[i]). The predicate B ≡ (G[i] ≥ k) ⇒ (G[j] ≥ m) is also

lattice-linear. If any cost vector violates B, then we have (G[i] ≥
k) ∧ (G[j] < m). In this case, the component j is forbidden with

α(G, j) equal tom. Again, from Lemma 2.6, the algorithm LLP can be

used to solve the constrained shortest path algorithm by combining

forbidden and α for constraints with Brooted . An application of the

constrained shortest path problem is as follows. Suppose that there

are n dispatch trucks that start from the source vertex at time 0. Let

w[i, j] denote the time it takes for a truck to go from node i to node
j. An assignment vector G is feasible if it is possible to design a

tree rooted at the source vertex such that the path from the source

vertex to vertex i takes G[i] units of time and G satisfies specified

constraints. In Fig. 4, the vector (0, 9, 2, 8, 7) is feasible, but does not

satisfy the constraint that G[1] equals G[2]. The least vector that
satisfies this additional constraint is (0, 9, 9, 12, 11). LLP algorithm

can be used to find this vector.When the set of additional constraints

is empty, we get back the standard shortest path problem.

An example of a predicate that is not lattice-linear is B ≡ G[i] +
G[j] ≥ k . If the predicate is false forG , then we haveG[i]+G[j] < k .
However, neither i nor j may be forbidden. The component i is not

forbidden because ifG[i] is fixed butG[j] is increased, the predicate
B can become true. Similarly, j is also not forbidden.

5 GRAPHS WITH NEGATIVE WEIGHTS:
JOHNSON’S ALGORITHM

We now consider directed graphs which have zero or negative

weight edges. We assume that even though there are edges with

negative costs, there are no negative cost cycles. We show how a

parallel version of Johnson’s algorithm can be derived using lattice-

linear predicates. Our strategy for finding the shortest path in such

a graph X is to convert it into another graph Y on the same set of

vertices such that Y has all strictly positive edges and it preserves

all shortest paths, i.e., a path is shortest in X iff it is also a shortest

path in Y . The graph Y has the same set of vertices and edges as X .

The weight of any edge (i, j) is updated as follows:

w ′[i, j] = w[i, j] +G[j] −G[i] (1)

where G is a price vector associated with vertices. A price vector G
is a non-negative vector such that when we compute new costs of

edges, called reduced costs, we get that the new cost of every edge

is at least 0. The advantage of updating weights using Equation 1

is that it preserves shortest paths.

Lemma 5.1. Let s and t be any two vertices in the graphs. The
weight of any path in the graph Y equals the weight in the graph X
plus (G[t] −G[s]).

Since the cost of all paths between s and t are changed by the

same amount, it follows that any shortest path in X is a shortest

path in Y and vice-versa. Now our task is reduced to finding a

price vector such that w ′[i, j] is at least 0 for all edges. We use

LLP algorithm to find such a vector. Our feasibility predicate B for

pricing vector is

∀(i, j) ∈ E : w[i, j] +G[j] −G[i] ≥ 0

Furthermore, we requireG[i] ≥ 0 for all i . We first show that B is

lattice linear.

Lemma 5.2. LetX be any graph such that the edge (i, j) has weight
w[i, j] and every vertex i has price G[i]. Consider the lattice of all
non-negative price vectors. Then, the predicate

B ≡ ∀(i, j) ∈ E : w[i, j] +G[j] −G[i] ≥ 0

is lattice linear.

Proof. Since lattice linearity is closed under conjunction, it is

sufficient to show that Be ≡ w[i, j] + G[j] − G[i] ≥ 0 is lattice

linear for arbitrary edge e = (i, j). Be can be rewritten as G[j] ≥
G[i] −w[i, j]. The right hand side of this inequality is a monotone

function on G and hence from the Lemma 2.3 of lattice-linearity,

we get that Be is lattice linear. □

By applying LLP algorithm, we get the parallel algorithm in Fig.

6 to find the price vector.

The algorithm obtained is same as the parallel version of John-

son’s algorithm.



Graph Transformation: Johnson’s algorithm
input: pre(j): list of 1..n; w [i, j]: int for all i ∈ pre(j)
init: G[j] := 0;

forbidden: G[j] < max{G[i] −w [i, j] | i ∈ pre(j)}
advance: G[j] := max{G[i] −w [i, j] | i ∈ pre(j)}

Figure 6: Algorithm Priceb to find theminimum price vector.

6 CONSTRAINED MARKET CLEARING PRICE
In this section, we apply our technique to the problem of finding a

market clearing price with constraints. This problem is equivalent

to the heavily studied problem of weighted bipartite matching. Let

I be a set of n indivisible items, and U , a set of n bidders. Every

item i ∈ I is given a valuation vb,i by each bidder b ∈ U . The

valuation of any item i is a number between 0 and T [i]. Each item

i is given a price G[i] which is also a number between 0 and T [i].
We are assuming integral costs for simplicity — the algorithm is

easily extensible to real costs.

Given a price vectorG , we define the bipartite graph (I ,U ,E(G))
as

(j,b) ∈ E(G) ≡ ∀i : (vb, j −G[j]) ≥ (vb,i −G[i]).

Informally, an edge exists between item i and bidder b if the payoff

for the bidder (the bid minus the price) is maximized with that

item. Given any setU ′ ⊆ U , let N (U ′,G) denote all the items that

are adjacent to the vertices in U ′
in the graph (I ,U ,E(G)). A price

vector G is a market clearing price, denoted by Bclear inдPr ice (G)
if the bipartite graph (I ,U ,E(G)) has a perfect matching. We now

generalize the problem of finding a market clearing price to that

of finding a constrained market clearing price. For example, the

constraint G[i] ≥ G[j] is lattice-linear. Given any set of valuations,

and a boolean predicate B that is a conjunction of lattice-linear

constraints, a price vectorG is a constrained market clearing price,
denoted by constrainedClearinд(G) iff clearinд(G) ∧ B(G). From
Lemma 2.6, it is sufficient to give an algorithm for clearinд(G).

We now claim that

Lemma 6.1. The predicate Bclear inдPr ice (G) is a lattice-linear
predicate on the lattice of price vectors.

Proof. Let J be a minimal over-demanded set in G. If J is a

singleton, then it is clear that unless price on j is advanced it will

stay over-demanded. Now suppose that J is not singleton. We show

that each of the elements in J is forbidden. Let j ∈ J . We set I0 = {j}.
Consider any H that is greater than G such that G[j] = H [j]. Let
bidders(G, j) be the set of bidders for item j at the price vector

G. If bidders(G, j) is a singleton, then J cannot be the minimal

overDemanded set becausewe can remove j from J and the resulting
set is also over-demanded as exactly one bidder is eliminated. Since

bidders(G, j) have items assigned in H , and at most one of them

could be assigned item j, the remaining items must be assigned

to bidders from J . Since these bidders preferred item j in G and

the price of j has not changed, we get that these assigned items

must be most preferred inG as well. The price of these items could

not have increased in H ; otherwise, these bidders will not prefer

these items to j. Hence, all items that bidders(G, j) are assigned in

Pj : Code for thread j
shared var G: array[1..n] of 0..maxint ;
Market Clearing Prices: Demange Gale Sotomayor algorithm
input: v[b, i]: int for all b, i
init: G[j] := 0;
always:
E = {(k,b) | ∀i : (v[b,k] −G[k]) ≥ (v[b, i] −G[i]);
demand(U ′) = {k | ∃b ∈ U ′

: (k,b) ∈ E};
overDemanded(J ) ≡ ∃U ′ ⊆ U : (demand(U ′) = J ) ∧ (|J | < |U ′ |)

forbidden: (∃minimal J : OverDemanded(J ) ∧ (j ∈ J )
advance: G[j] := G[j] + 1;

Figure 7: Algorithm ConstrainedMarketClearingPrice to
find the minimum cost assignment vector

H cannot have their price changed. Let us call this set of items, I1.
We now repeat this procedure armed with the knowledge that price

of I1 is same in G and H . We consider bidders(G, I1). If this set has
the same size as I1 then by removing I1 from J we get a smaller

over-demanded set than J . Otherwise, we get I2 ⊆ J such that I2
has same price in G and H and I2 is bigger than I1. By repeating

this procedure, we must either find a smaller over-demanded set

than J or find that none of the items in J has any price change in

H . In the former case we get a contradiction to minimality of J and
in the latter case we get a contradiction to H being a clearing price

because the size of bidders(H , J ) is greater than J . □

It follows that the set of constrained market clearing price vec-

tors is closed under meets. By applying the lattice-linear predicate

detection, we get an algorithm to compute the least constrained

market clearing price shown in Fig. 7. In conjunction with Lemma

2.6, we get a generalization of Demange, Gale and Sotomayor’s ex-

act auction mechanism [7] to incorporate lattice-linear constraints

on the market clearing price. In Fig. 7, we have used α(G, j) as
simply one unit of price. For any item j that is part of a minimal

over-demanded set of items, we can increase its price by the mini-

mum amount to ensure that some bidder b can switch to her second

most preferred item.

7 DUAL OF LATTICE-LINEARITY
Just as a lattice-linear predicate allows us to start with the bottom

element of the lattice and advance in the forward direction, its dual

allows us to start with the top element and advance in the backward

direction.

Given any distributive lattice L of n-dimensional vectors, and

any predicate B, we say reverse-forbidden(G, i,B) ≡ ∀H ∈ L : H ≤

G : (G[i] = H [i]) ⇒ ¬B(H ). We define a predicate B to be dual-
lattice-linear if for anyG ∈ L, B is false inG implies thatG contains

a reverse-forbidden component.

It can be shown that Bmarr iaдe is not only lattice-linear but also

dual-lattice-linear.

This property allows us to find theman-pessimal stable matching.

We start withG such thatG[i] equals the last choice proposal for Pi .
IfG is a stable matching, we are done. Otherwise, we can find i such
that unlessG[i] goes backward, there cannot be any stable matching.



These i can be found in parallel. By repeating this procedure, we

get the man-pessimal stable matching.

Since stable matching is a dual-lattice-linear predicate, from

the dual of Lemma 2.3(b) it follows that the feasible set, the set

of assignments satisfying Bmarr iaдe , is also closed under joins.

Therefore, the feasible set forms a sublattice of the lattice of all

assignments. A similar result holds for Bclear inдPr ice (but not for

Bpath ).
Since a sublattice of a distributive lattice is also distributive, the

set of assignments that satisfy (constrained) stable marriage forms a

finite distributive lattice. From Birkhoff’s theorem [6] we know that

a finite distributive lattice can be equivalently represented using

the poset of its join-irreducible elements.

The set of all elements of L satisfying B can be generated as the

ideals of the poset ({J (B, e)|e ∈ E}, ⊆) where J (B, e) is the least

ideal of (E,→) that satisfies B and contains e . It can be verified that

J (B, e) is a join-irreducible element and that every join-irreducible

element is of this form.

To determine J (B, e) it is sufficient to use the algorithm for de-

tecting a lattice-linear predicate by using the following predicate

for every e: Be (G) ≡ B(G) ∧ (e ∈ G). Since Be is a conjunction

of two lattice-linear predicates, it is also lattice-linear. Therefore,

by using the LLP algorithm, we also get an algorithm to compute

the poset that generates all ideals that satisfy B. For stable mar-

riage, this would be equivalent to rotation poset [14]. However, we

can now also generate posets for constrained stable marriages or

constrained price vectors.

8 RELATEDWORK
In this section, we compare LLP Algorithm to other related tech-

niques. We note here that a preliminary version of this work ap-

peared in [13].

8.1 Linear Programming
Linear programming can also be viewed as a search for an optimal

feasible solution. However, there are many important differences.

First, the underlying space in linear programming is the set of real

valued vectors whereas the underlying space in the lattice-linear

predicate detection method is a distributive lattice. In the domain of

distributive lattices, we do not have addition or the scalar multipli-

cation as in vector spaces. All of lattice-linear predicate algorithms

use the following two operations: meet of the underlying lattice and

the “advance” operation. The advance operation maps an element of

the lattice to a bigger element in the lattice. In linear programming,

the feasible space is characterized by a polyhedron (or the set of

vectors x such that Ax ≤ 0 for some matrix A). There is no lattice

structure required on the feasible space. It is not guaranteed that

if two vectors are feasible, then their component-wise minimum

vector is also feasible. Lattice-linear predicate detection requires

the feasible space to be closed under meets. Finally, even though

many problems studied in this paper can also be solved via linear

programming, the algorithms derived in that manner are not as

efficient or parallel as the LLP algorithm.

8.2 Relationship with Knaster-Tarski’s
Theorem

The algorithm in Fig. 1 can also be viewed as repeated iteration of

a monotone function on the bottom element of a lattice similar to a

constructive version of Knaster-Tarski’s theorem [20]. Our work

differs from such earlier work in many respects. First, B may not

have the form ∀i : Gi ≥ fi (G); instead we only require B to be

closed under meets. Second, Knaster-Tarski’s fixed point theorem

(and many variants) requires the function to be from the lattice L
to itself. In that case, the solution to the equation x ≥ f (x) always
exists for a complete lattice because ⊤ ≥ f (⊤). We do not assume

that the range of the function is the lattice itself. Therefore, there

is no guarantee of the existence of the fixed point. Indeed, for

the job scheduling example, if the prerequisites have a cycle and

weights are positive, then there is no solution and the algorithm LLP
returns null. Third, the goal of this paper is to develop techniques

to reach the fixed point with an efficient parallel algorithm and to

show that many standard and non-standard parallel algorithms for

combinatorial optimization can be derived in this framework.

8.3 Relationship with Predicate Detection in
Distributed Systems

Although the notion of forbidden and detection of lattice-linear

predicates is from [4], there are many important differences from

their work. The focus of their work in [4] is for detecting a global

condition is a distributed system. Our work is focused on develop-

ing parallel algorithms for the optimization problems. The pred-

icates used in [4] are simple conjunction of local predicates in a

distributed system (or monotonic channel predicates). The predi-

cates discussed in this paper are more general and motivated by

optimization problems.

9 CONCLUSIONS AND FUTUREWORK
We have shown that many discrete optimization problems can be

cast as searching for an element satisfying a lattice-linear predicate

in a distributive lattice. The algorithms that can be derived using this

framework include Gale-Shapley algorithm, Dijkstra’s algorithm,

Gale-Demange-Sotomayor algorithm, Bellman-Ford algorithm, and

Johnson’s algorithm. All of these algorithms have a single vector

as the variable of the program and assuming read-write atomicity,

the proposed algorithm uses different threads to update different

components of the vector without use of any lock.

All of our examples include problems in class P. Are there tech-

niques to find approximation algorithms for problems that are not

in P based on lattice-linearity? We have exploited lattice linearity

of the predicate in LLP algorithm. What if the problem requires

searching an element that satisfies a condition which is not lattice-

linear?

ACKNOWLEDGEMENTS.
I would like to thank David Alves, Rohan Garg, Changyong Hu,

Calvin Ly, and Xiong Zheng for discussions on this topic and anony-

mous reviewers for useful comments. This work was supported

in parts by the National Science Foundation Grants CNS-1812349,

CNS-1563544, and the Cullen Trust Endowed Professorship.



REFERENCES
[1] Richard Bellman. 1958. On a routing problem. Quarterly of applied mathematics

16, 1 (1958), 87–90.

[2] Dimitris Bertsimas and John N Tsitsiklis. 1997. Introduction to linear optimization.
Vol. 6. Athena Scientific Belmont, MA.

[3] G. Birkhoff. 1967. Lattice Theory. Providence, R.I. third edition.

[4] Craig M Chase and Vijay K Garg. 1998. Detection of global predicates: Techniques

and their limitations. Distributed Computing 11, 4 (1998), 191–201.

[5] Agnes Cseh and David F. Manlove. 2016. Stable Marriage and Roommates prob-

lemswith restricted edges: Complexity and approximability. Discrete Optimization
20 (2016), 62 – 89.

[6] B. A. Davey andH. A. Priestley. 1990. Introduction to Lattices andOrder. Cambridge

University Press, Cambridge, UK.

[7] Gabrielle Demange, David Gale, and Marilda Sotomayor. 1986. Multi-item auc-

tions. Journal of Political Economy 94, 4 (1986), 863–872.

[8] VâniaM.F. Dias, GuilhermeD. da Fonseca, CelinaM.H. de Figueiredo, and Jayme L.

Szwarcfiter. 2003. The stable marriage problem with restricted pairs. Theoretical
Computer Science 306, 1 (2003), 391 – 405.

[9] E. W. Dijkstra. 1959. A note on two problems in connexion with graphs. Numer.
Math. 1, 1 (01 Dec 1959), 269–271. https://doi.org/10.1007/BF01386390

[10] L. A. Ford. 1956. Network Flow Theory. Technical Report.

[11] David Gale and Lloyd S Shapley. 1962. College admissions and the stability of

marriage. The American Mathematical Monthly 69, 1 (1962), 9–15.

[12] Vijay K Garg. 2015. Lattice Theory with Computer Science Applications. Wiley,

New York, NY.

[13] Vijay K. Garg. 2018. Applying Predicate Detection to the Constrained Op-

timization Problems. CoRR abs/1812.10431 (2018). arXiv:1812.10431 http:

//arxiv.org/abs/1812.10431

[14] Dan Gusfield and Robert W Irving. 1989. The stable marriage problem: structure
and algorithms. MIT press.

[15] Donald B Johnson. 1977. Efficient algorithms for shortest paths in sparse networks.

Journal of the ACM (JACM) 24, 1 (1977), 1–13.
[16] Donald Ervin Knuth. 1997. Stable marriage and its relation to other combinatorial

problems: An introduction to the mathematical analysis of algorithms. Vol. 10.
American Mathematical Soc.

[17] Neeraj Mittal and Vijay K Garg. 2001. Computation slicing: Techniques and

theory. In International Symposium on Distributed Computing. Springer, 78–92.
[18] James Munkres. 1957. Algorithms for the assignment and transportation prob-

lems. Journal of the society for industrial and applied mathematics 5, 1 (1957),
32–38.

[19] Lloyd S Shapley and Martin Shubik. 1971. The assignment game I: The core.

International Journal of game theory 1, 1 (1971), 111–130.

[20] Alfred Tarski. 1955. A Lattice-Theoretic Fixed Point Theorem and its Applications.

Pacific J Math 5 (1955), 285–309.

https://doi.org/10.1007/BF01386390
http://arxiv.org/abs/1812.10431
http://arxiv.org/abs/1812.10431
http://arxiv.org/abs/1812.10431

	Abstract
	1 Introduction
	2 Lattice-Linear Predicates
	2.1 Simple Examples

	3 Constrained Stable Matching Problem
	3.1 Properties of the LLP Algorithm
	3.2 Additional Constraints on Stable Matchings

	4 Constrained Single Source Shortest Path Algorithm
	4.1 Closure under Meets and Joins
	4.2 Constrained Shortest Path Algorithm

	5 Graphs with Negative Weights: Johnson's Algorithm
	6 Constrained Market Clearing Price
	7 Dual of Lattice-Linearity
	8 Related Work
	8.1 Linear Programming
	8.2 Relationship with Knaster-Tarski's Theorem
	8.3 Relationship with Predicate Detection in Distributed Systems

	9 Conclusions and Future Work
	References

