
Modeling, Analyzing and Slicing Periodic Distributed
ComputationsI

Vijay K. Garg∗, Anurag Agarwal1, Vinit Ogale2

The University of Texas at Austin
Austin, TX 78712-1084, USA

Abstract

The earlier work on predicate detection has assumed that the given computation is
finite. Detecting violation of a liveness predicate requires that the predicate be eval-
uated on an infinite computation. In this work, we develop the theory and associated
algorithms for predicate detection in infinite runs. In practice, an infinite run can be
determined in finite time if it consists of a recurrent behavior with some finite prefix.
Therefore, our study is restricted to such runs. We introduce the concept of d-diagram,
which is a finite representation of infinite directed graphs. Given a d-diagram that rep-
resents an infinite distributed computation, we solve the problem of determining if a
global predicate ever became true in the computation. The crucial aspect of this prob-
lem is the stopping rule that tells us when to conclude that the predicate can never
become true in future. We also provide an algorithm to provide vector timestamps to
events in the computation for determining the dependency relationship between any
two events in the infinite run. Finally, we give an algorithm to compute a slice of a
d-diagram which concisely captures all the consistent global states of the computation
satisfying the given predicate.

Keywords: predicate detection, liveness violation, d-diagram, recurrent computation

1. Introduction

Correctness properties of distributed programs can be classified either as safety
properties or liveness properties. Informally, a safety property states that the program
never enters a bad (or an unsafe) state, and a liveness property states that the pro-
gram eventually enters into a good state. For example, in the classical dining philoso-
pher problem a safety property is that “two neighboring philosophers never eat con-

Ipart of the work was performed at the University of Texas at Austin supported in part by the NSF Grants
CNS-0718990, CNS-1115808, Texas Education Board Grant 781, SRC Grant 2006-TJ-1426, and Cullen
Trust for Higher Education Endowed Professorship.

∗Corresponding author
Email address: garg@ece.utexas.edu ( Vijay K. Garg)

1currently at Google
2currently at Microsoft

Preprint submitted to Elsevier December 12, 2013



currently” and a liveness property is that “every hungry philosopher eventually eats.”
Assume that a programmer is interested in monitoring for violation of a correctness
property in her distributed program. It is clear how a runtime monitoring system would
check for violation of a safety property. If it detects that there exists a consistent global
state [1] in which two neighboring philosophers are eating then the safety property is
violated. The literature in the area of global predicate detection deals with the complex-
ity and algorithms for such tasks [2, 3]. However, the problem of detecting violation of
the liveness property is harder. At first it appears that detecting violation of a liveness
property may even be impossible. After all, a liveness property requires something
to be true eventually and therefore no finite observation can detect the violation. We
show in this paper a technique that can be used to infer violation of a liveness prop-
erty in spite of finite observations. Such a technique would be a basic requirement for
detecting a temporal logic formula [4] on a computation for runtime verification.

There are three important components in our technique. First, we use the notion
of a recurrent global state. Informally, a global state is recurrent in a computation γ if
it occurs more than once in it. Existence of a recurrent global state implies that there
exists an infinite computation δ in which the set of events between two occurrences of
can be repeated ad infinitum. Note that γ may not even be a prefix of δ. The actual
behavior of the program may not follow the execution of δ due to nondeterminism.
However, we know that δ is a legal behavior of the program and therefore violation
of the liveness property in δ shows a bug in the program. We note here that in this
paper we are only interested in algorithms that do not use randomization to ensure
liveness properties. For a randomized algorithm, existence of δ may be okay because
the algorithm may guarantee liveness only with probability one.

hungryhungry eating
P1

P2

P3

e

f

g

e

f

g

identical global states

P1 does not eat

Figure 1: A finite distributed computation C of dining philosophers

For example, in figure 1, a global state repeats where the same philosopher P1

is hungry and has not eaten in between these occurrences. P1 does get to eat after
the second occurrence of the recurrent global state; and, therefore a check that “every
hungry philosopher gets to eat” does not reveal the bug. It is simple to construct an
infinite computation δ from the observed finite computation γ in which P1 never eats.
We simply repeat the execution between the first and the second instance of the recur-
rent global state. This example shows that the approach of capturing a periodic part
of a computation can result in detection of bugs that may have gone undetected if the

2



g

f

ea

b

c

d e1d1 d2 e2 d3 e3

f 3f 2

g2 g3g1c1

b1

a1

f 1

(b)(a)

Figure 2: (a) A d-diagram and (b) its corresponding infinite poset

periodic behavior is not considered.
The second component of our technique is to develop a finite representation of

the infinite behavior γ. Mathematically, we need a finite representation of the infinite
but periodic poset γ. In this paper, we propose the notion of d-diagram to capture
infinite periodic posets. Just as finite directed acyclic graphs (dag’s) have been used
to represent and analyze finite computations, d-diagrams may be used for representing
periodic infinite distributed computations for monitoring or logging purposes. The
logging may be useful for replay or offline analysis of the computation. Figure 2 shows
a d-diagram and the corresponding infinite computation. The formal semantics of a d-
diagram is given in Section 4. Intuitively, the infinite poset corresponds to the infinite
unrolling of the recurrent part of the d-diagram.

The third component of our technique is to develop efficient algorithms for analyz-
ing the infinite poset given as a d-diagram. Three kinds of computation analysis have
been used in past for finite computations. The first analysis is based on vector clocks
which allows one to answer if two events are dependent or concurrent, for example,
works by Fidge [5] and Mattern [6]. We extend the algorithm for timestamping events
of a finite poset to that for the infinite poset. Of course, since the set of events is infi-
nite, we do not give explicit timestamp for all events, but only an implicit method that
allows efficient calculation of dependency information between any two events when
desired. The second analysis we use is to detect a global predicate B on the infinite
poset given as a d-diagram. In other words, we are interested in determining if there
exists a consistent global state which satisfies B. Since the computation is infinite, we
cannot employ the traditional algorithms [2, 3] for predicate detection. Because the
behavior is periodic it is natural that a finite prefix of the infinite poset may be suffi-
cient to analyze. The crucial problem is to determine the number of times the recurrent
part of the d-diagram must be unrolled so that we can guarantee that B is true in the
finite prefix iff it is true in the infinite computation. We show in this paper that it is
sufficient to unroll the d-diagram N times where N is the number of processes in the
system. The third analysis is based on the notion of slicing a computation introduced in
[7, 8]. Informally, a computation slice (or simply a slice) is a concise representation of
all those consistent cuts of the computation that satisfy the predicate. Slicing is crucial
in detecting nested temporal logic predicates of a distributed computation in the partial
order model. Sen and Garg use slicing in [23] to detect a subset of CTL called Regular
CTL. Ogale and Garg use it to detect another temporal logic called BTL. All the earlier
work on computing slices was based on finite computation and we extend that work

3



for infinite computations in this paper. For example, the interpretation of “a hungry
philosopher never gets to eat” was modified by earlier work to “a hungry philosopher
does not eat by the end of the computation.” This interpretation, although useful in
some cases, is not accurate and may give false positives when employed by the pro-
grammer to detect bugs. This paper is the first one to explicitly analyze the periodic
behavior to ensure that the interpretation of formulas is on the infinite computation.

In summary, this paper makes the following contributions:

• We introduce the notion of recurrent global states in a distributed computation
and propose a method to detect them.

• We introduce and study a finite representation of infinite directed computations
called d-diagrams.

• We provide a method of timestamping nodes of a d-diagram so that the happened-
before relation can be efficiently determined between any two events in the given
infinite computation.

• We define the notion of core of a d-diagram that allows us to use any predicate
detection algorithm for finite computations on infinite computations as well.

• We present an algorithm to compute slice of the periodic computation repre-
sented using a d-diagram.

2. A Motivating Example: A Mutual Exclusion Algorithm

In this section we give a motivating example for the theory proposed in the paper.
Consider the distributed algorithm (shown in Fig. 3) proposed by a programmer to
coordinate access to the critical section by processes P1...PN in a distributed system.
In this algorithm, a process can enter the critical section only if it has the token. If a
process is hungry and it does not have the token, it sends a request to all processes.
Every process Pk maintains an array reqF lag which keeps track of all processes that
have outstanding requests for the token. When a process with the token is done with its
critical section, it sends the token to any process that has an outstanding request. It also
sends a release message to all other processes so that they can reset the corresponding
reqF lag.

Now suppose that the programmer is interested in testing this algorithm. When
she runs the algorithm, suppose that the following execution α takes place. All three
philosophers get hungry. P1 eats first and then sends token to P2 who eats next. P1

gets hungry again and gets the token from P2. Once P1 has finished eating, it sends the
token to P3 who eats last.

The distributed computation, α can be described in more detail by the following
sequences of events at each process.

P1: reqCS, recvReq from P3, eats, recvReq from P2, relCS sending token to P2, re-
qCS, recvToken from P2, eats, relCS sending token to P3.

4



Pk::
var

state: {thinking, hungry, eating} initially thinking;
haveToken: boolean initially false except for P1;
reqF lag: array[1..N ] of boolean initially ∀j : reqF lag[j] = false;

reqCS: On becoming hungry (enabled if (state = thinking)
state := hungry;
if (!haveToken) ;

reqF lag[k] := true;
send (request) to others;

recvToken: Upon receive(token) from Pj :
haveToken := true;
reqF lag[j] := false;

eat: (enabled if haveToken ∧ (state = hungry) )
state := eating;
eat;
state := thinking;
reqF lag[k] := false;

relCS: To release critical section: (enabled if (state = thinking) and ∃i : reqF lag[i])
send token to Pi;
send release to all others except Pi;
haveToken := false;

recvReq: Upon receive(request) from Pj :
reqF lag[j] := true;

recvRel: Upon receive(release) from Pj :
reqF lag[j] := false;

Figure 3: A (faulty) distributed mutual exclusion algorithm with FIFO channels

5



P2: recvReq from P3, reqCS, recvToken from P1, recvReq from P1, relCS sending
token to P1, recvRel from P1

P3: reqCS, recvReq from P2, recvRel from P1, recvReq from P1, recvRel from P2,
recvToken from P1, eat

P1 reqCS recvReq eat recvReq relCS reqCS

recvToken

recvRel

recvToken

recvReq

recvReq

eat relCS

recvRel

recvToken

recvReqP2 reqCS

recvReq

eat relCS

recvRelreqCSP3 eat

Figure 4: A finite distributed computation α for the mutex algorithm

The distributed computation α shown in Fig. 4 satisfies the standard safety and
liveness properties: two processes do not eat at the same time and every hungry process
eventually eats. However, with the techniques proposed in the paper we would be able
to construct an infinite computation α′ that is a valid execution and violates the liveness
property.

Consider the following prefix β of computation α:

P1: reqCS, recvReq from P3, eats
P2: recvReq from P3.
P3: reqCS.

The global state after β is:
State of P1: haveToken = true; reqFlag = (false, false, true); state=thinking
State of P2: haveToken = false; reqFlag = (false, false, true); state=thinking
State of P3: haveToken = false; reqFlag = (false, false, true); state=thinking

Note that the same global state occurs in α after P1 has eaten twice in the the fol-
lowing prefix: (β followed by γ)

P1: reqCS, recvReq from P3, eats, recvReq from P2, relCS sending token to P2, re-
qCS, recvToken from P2, eats

P2: recvReq from P3, reqCS, recvToken from P1, recvReq from P1, relCS sending
token to P1

P3: reqCS, recvReq from P2, recvRel from P1, recvReq from P1, recvRel from P2

6



Since the global state is identical after executing β and β followed by γ, there exists a
valid execution α′ in which β is followed by γ an infinite number of times. The exe-
cution α′ violates the liveness property because P3 stays hungry forever. The infinite
execution derived from α is shown as a p-diagram in Fig. 5.

P1 reqCS

P2

recvReq eat recvReq relCS reqCS

recvToken

recvRel

recvToken

recvReq

recvReq

eat

recvReq reqCS

recvReq

eat
relCS

recvRelreqCSP3

Figure 5: A p-diagram derived from α that shows violation of a liveness property

Remark: The algorithm can be fixed by making two changes. First, we should
maintain a queue of requests at all processes rather than a set of requests as imple-
mented in Fig. 3 by the boolean array reqF lag. Second, a process with the token that
has eaten last must release the token if the queue of requesting processes is nonempty.

3. Model of a Distributed Computation

We first describe our model of a distributed computation. We assume a message
passing asynchronous system without any shared memory or a global clock. A dis-
tributed program consists ofN sequential processes denoted byP = {P1, P2, . . . , PN}
communicating via asynchronous messages. A local computation of a process is a se-
quence of events. An event is either an internal event, a send event or a receive event.
When an event is executed, it changes the state of the process (and possibly the state
of incoming or outgoing channels). The predecessor and successor events of e on the
process on which e occurs are denoted by pred(e) and succ(e).

Generally a distributed computation is modeled as a partial order of a set of events,
called the happened-before relation [9]. In this paper, we instead use directed graphs to
model distributed computations as done in [8]. When the graph is acyclic, it represents
a distributed computation. When the distributed computation is infinite, the directed
graph that models the computation is also infinite. An infinite distributed computation
is periodic if it consists of a subcomputation that is repeated forever. Directed graphs
allow us to represent both the computation and its slice with respect to a predicate in
a uniform fashion. However, as opposed to the earlier work, our computations can
be infinite and as a result, the directed graphs used to model the computation can be
infinite.

7



Given a directed graph G = 〈E,→〉, we define a consistent cut as a set of vertices
such that if the subset contains a vertex then it contains all its incoming neighbors. For
example, the set C = {a1, b1, c1, d1, e1, f1, g1} is a consistent cut for the graph shown
in figure 8(b). The set {a1, b1, c1, d1, e1, g1} is not consistent because it includes g1,
but does not include its incoming neighbor f1. The set of finite consistent cuts for
graph G is denoted by C(G).

In this work we focus only on finite consistent cuts (or finite order ideals [10]) as
they are the ones of interest for distributed computing.

A frontier of a consistent cut is the set of those events of the cut whose successors,
if they exist, are not contained in the cut. Formally,

frontier(C) = {x ∈ C|succ(x) exists ⇒ succ(x) 6∈ C}

For the cut C in figure 8(b), frontier(C) = {e1, f1, g1}. A consistent cut is uniquely
characterized by its frontier and in this paper we always identify a consistent cut by its
frontier.

Two events are said to be consistent iff they are contained in the frontier of some
consistent cut, otherwise they are inconsistent. It can be verified that events e and f are
consistent iff there is no path in the computation from succ(e) to f and from succ(f)
to e.

4. Infinite Directed Graphs

From distributed computing perspective, our intention is to provide a model for
an infinite computation of a distributed system which eventually becomes periodic.
Although a distributed computation in the happened-before model [9] is always rep-
resented using a poset, it is useful to have a model of infinite directed graphs for the
purpose of slicing [7, 8]. The directed graph does not capture the order between events
in the computation but it is used to capture the set of possible consistent cuts or global
states of the system. To this end, we introduce the notion of d-diagram (directed graph
diagram).

Definition 1 (d-diagram). A d-diagram Q is a tuple (V, F,R,B) where V is a set of
vertices or nodes, F (forward edges) is a subset of V × V , R (recurrent vertices) is a
subset of V , and B (shift edges) is a subset of R × R. A d-diagram must satisfy the
following constraint: If u is a recurrent vertex and (u, v) ∈ F or (u, v) ∈ B, then v is
also recurrent.

Figure 2(a) is an example of a d-diagram. The recurrent vertices and non-recurrent
vertices in the d-diagram are represented by hollow circles and filled circles respec-
tively. The forward edges are represented by solid arrows and the shift-edges by dashed
arrows. The recurrent vertices model the computation that is periodic. Intuitively,
a forward edge models dependency between the same instance of recurrent vertices,
whereas a shift-edge (u, v) models dependency of instance (i + 1) of v on instance i
of recurrent vertex u.

Each d-diagram generates an infinite directed graph defined as follows:

8



Definition 2 (directed graph for a d-diagram). The directed graph G = 〈E,→〉 for
a d-diagram Q is defined as follows:

• E = {u1|u ∈ V } ∪ {ui|i ≥ 2 ∧ u ∈ R}

• The relation→ is the set of edges in E given by:
(1) if (u, v) ∈ F and u ∈ R, then ∀i : ui → vi, and (2) if (u, v) ∈ F and u 6∈ R,
then u1 → v1, and (3) if (v, u) ∈ B, then ∀i : vi → ui+1.

Furthermore, let P(G) be the set of pairs of vertices (u, v) such that there is a path
from u to v in G.

The set E contains infinite instances of all recurrent vertices and single instances
of non-recurrent vertices. For a vertex ui, we define its index as i.

It can be easily shown that if the relation F is acyclic, then the resulting directed
graph for the d-diagram is a poset. Figure 2 shows a d-diagram along with a part of the
infinite directed graph generated by it. Two vertices in a directed graph are said to be
concurrent if there is no path from one to other.

Note that acyclic d-diagrams cannot represent all infinite posets. For example, any
poset P defined by an acyclic d-diagram is well-founded. Moreover, there exists a
constant k such that every element in P has the size of the set of its upper covers
and lower covers[10] bounded by k. Although acyclic d-diagrams cannot represent
all infinite posets, they are sufficient for the purpose of modeling periodic distributed
computations. Let the width of a directed graph be defined as the maximum size of
a set of pairwise concurrent vertices. A distributed computation generated by a finite
number of processes has finite width and hence we are interested in only those d-
diagrams which generate finite width directed graphs. The following property of the
posets generated by acyclic d-diagrams is easy to show.

Lemma 1. A poset P defined by an acyclic d-diagram has finite width iff for every
recurrent vertex there exists a cycle in the graph (R,F ∪ B) which includes a shift-
edge.

Proof: Let k > 0 be the number of shift-edges in the shortest cycle involving u ∈ R.
By transitivity we know that there is a path from vertex ui to ui+k in R. Therefore, at
most k− 1 instances of a vertex u ∈ R are concurrent. Since R is finite, the largest set
of concurrent vertices is also finite.

Conversely, if there exists any recurrent vertex v that is not in a cycle involving a
shift-edge, then vi is concurrent with vj for all i, j. Then, the set

{vi|i ≥ 1}

contains an infinite number of concurrent vertices. Thus, G has infinite width.

We assume that the process relation maps all the instances of a vertex in d-diagram
to the same process i.e. ∀e ∈ V : proc(ei) = proc(ej). As a result, we denote
the process for an element ei ∈ E simply as proc(e). Figure 2 shows a d-diagram

9



g

f

e

b

c

(a)

e1 e3

f 3f 2

g2 g3g1c1

f 1

(b)

⊥ ⊥

a d a1 d1 d2 e2 d3

b1

0 1 2

P2, y = 0

P3, z = 0

P1, x = 0

1 1

1 0

P1, x = 0

P2, y = 0

P3, z = 0

0 1 1 12 2 2

1 1 1 1

1 0 0 0

Figure 6: (a) A d-diagram with process and label information (b) The computation
corresponding to the d-diagram
v

and the corresponding computation. Note that for any two events x, y on a process,
either there is a path from x to y or from y to x, i.e., two events on the same process
are always ordered. To guarantee this condition, it can be easily shown that all the
recurrent vertices in the d-diagram with the same process should form a cycle with
exactly one shift-edge. We refer to these shift-edges as process shift-edges. We further
assume that the d-diagram given to us has a non-empty recurrent part; otherwise the
algorithms for the case of finite computations can be used. We augment the d-diagram
with the presence of a fictitious global initial event denoted by ⊥. The global initial
event occurs before any other event on the processes and initializes the state of the
processes. Note that for infinite computations we do not have the notion of a global
final event.

4.1. Index Independence Assumption

Given a consistent cut, a predicate is evaluated with respect to the values of the
variables resulting after executing all the events in the cut. If a predicate p evaluates
to true for a consistent cut C, we say that C satisfies p. We further assume that a
predicate depends only on the labels of the events in the computation. This rules out
predicates based on global state such as channel predicates [11]. We define L : G→ L
to be an onto mapping from the set of vertices in d-diagram to a set of labels L with
the constraint that ∀e ∈ V : L(ei) = L(ej). In other words, the label of an element
in the directed graph is independent of its index. This is in line with modeling the
recurrent events as repetition of the same state. We refer to this assumption as the
index-independence assumption.

Figure 6 shows a computation represented as a d-diagram. Figure 6(a) shows the
d-diagram along with the process information. Along with each process, the local
variables x, y, z on processes P1, P2 and P3 are also listed. For each event the value of
the local variable is listed. The values of local variables can be considered to be labels
in this case.

4.2. Unrolling of a d-diagram

We now discuss another aspect of d-diagrams; a directed graph does not have a
unique representation in terms of d-diagram. In fact, we show that there are countably

10



infinite representations of a directed graph as a d-diagram. We define the notion of
unrolling of a d-diagramQwith respect to a consistent cutC. Intuitively, this operation
increases the non-recurrent part of the d-diagram to include the cut C and rearranges
the forward and shift-edges.

Definition 3 (unrolling a d-diagram). Let Q = (V,R, F,B) be a d-diagram and
C be a consistent cut in the corresponding directed graph 〈E,→〉 such that ∀ei ∈
frontier(C) : e ∈ R. Then U (Q,C) = (V ′, R′, F ′, B′) is the d-diagram:

• V ′ = {ek|e ∈ V ∧ ek ∈ C}

• R′ = {ek|e ∈ R ∧ k − 1 = max{i|ei ∈ C}}

• F ′ = {(ei, fj)|ei, fj ∈ V ′ ∧ ei → f j}

• B′ = {(ei, fj)|ei, fj ∈ R′ ∧ ei → f j+1}

It can be easily shown that the unrolled d-diagram generates a directed graph iso-
morphic to the original d-diagram. Let 〈E,→〉 be the directed graph generated by the
d-diagram Q and 〈E′, 〉 be the directed graph generated by U (Q,C). Then we de-
note the isomorphism function from elements in E to elements in E′ by IC . If the
isomorphism function maps a node in the original directed graph to a node with the
same label, then the two directed graphs are equivalent from the perspective of predi-
cate detection. For this purpose, we assume that L(ei) = L(IC(ei)).

b

c

⊥

a d1

0 1

P2, y = 0

P3, z = 0

P1, x = 0

1

1

d2

2

1

0

d

g

f

e

g1

f1

e1

Figure 7: The d-diagram in Figure 6(a) unrolled with respect to C = {d2, f1, g1}

As an example, Figure 7 shows the unrolling of the d-diagram in Figure 6(a) with
respect to a cut C = {d2, f1, g1}.

4.3. Shift of a Cut
The notion of shift of a cut is useful for analysis of periodic infinite computations.

Intuitively, the shift of a frontier C produces a new cut by moving the cut C forward
or backward by a certain number of iterations along a set X of recurrent events in C.
Formally,

Definition 4 (d-shift of a cut). Given a frontier C, a set of recurrent events X ⊆ R
and an integer d, a d-shift cut of C with respect to X , is represented by the frontier
Sd(C,X)

{ei|ei ∈ C ∧ e 6∈ X} ∪ {em|ei ∈ C ∧ e ∈ X ∧m = max(1, i+ d)}

We denote Sd(C,R) simply by Sd(C).

11



g

f

e

b

c

d

(a) (b)

a
e1d1 d3 e3

f 3f 2

g2 g3c1

f 1

g1

C

d2
a1

b1⊥ ⊥

S1(C, {f, g})

e2

Figure 8: (a) A d-diagram (b) The computation for the d-diagram showing a cut and
the shift of a cut

c2

d4b1

a2

b2d1

c1 a3 c3

d3b3d2 b4

c4a4a1

[1,0] [2,0] [3,0] [4,2] [5,2] [6,4] [7,4] [8,6]

[2,3][2,2][0,1] [4,4] [4,5] [6,6] [8,8][6,7]

(a)

b

a

(b)

c

d

Figure 9: (a) A d-diagram (b) The corresponding computation with vector timestamps

Hence Sd(C,X) contains all events ei that are not in X , and the shifted events for
all elements of X . Note that in the above definition d can be negative. Also, for a
consistent cut C, Sd(C,X) is not guaranteed to be consistent for every X .

As an example, consider the infinite directed graph for the d-diagram in figure 8.
Let C be a cut given by the frontier {e1, f1, g1} and X = {f, g}. Then S1(C,X) is
the cut given by {e1, f2, g2}. Figure 8 shows the cut C and S1(C,X). Similarly for C
given by {a1, f1, g1}, S1(C) = {a1, f2, g2}. Note that in this case, a1 remains in the
frontier of S1(C) and the cut S1(C) is not consistent.

5. Vector Clock Timestamps

In this section, we present algorithms to assign vector timestamps to nodes in the
infinite computation given as a d-diagram. The objective is to determine dependency
between any two events, say ei and f j , based on the vector clocks assigned to these
events rather than exploring the d-diagram. Since there are infinite instances of re-
current events, it is clear that we can only provide an implicit vector timestamp (or a
function to compute vector timestamp) for the events. The explicit vector clock can be
computed for any specific instance of i and j.

Timestamping events of the computation has many applications in debugging dis-
tributed programs [5]. Given the timestamps of recurrent events e and f , our algorithm
enables answering queries of the form:

1. Are there any instances of e and f which are concurrent, i.e., are there indices i
and j such that ei is concurrent with f j? For example, when e and f correspond

12



to entering in the critical section, this query represents violation of the critical
section.

2. What is the maximum value of i such that ei happened before a given event such
as f256?

3. Is it true that for all i, ei happened before f i?

We show in this section, that there exists an efficient algorithm to timestamp events
in the d-diagram. As expected, the vectors corresponding to any recurrent event ei

eventually become periodic. The difficult part is to determine the threshold after which
the vector clock becomes periodic and to determine the period.

We first introduce the concept of shift-diameter of a d-diagram. The shift-diameter
provides us with the threshold after which the dependency of any event becomes peri-
odic.

Definition 5 (shortest path in a d-diagram). For a d-diagram Q, the shortest path
between any two vertices is a path with the minimum number of shift-edges.

Definition 6 (shift-diameter of a d-diagram). For a d-diagram Q, the shift-diameter
η(Q) is the maximum of the number of shift-edges in the shortest path between any two
vertices in the d-diagram.

When Q is clear from the context, we simply use η to denote η(Q). For the d-
diagram in Figure 8, η = 1. In figure 9, we can see that η = 2. We first give a bound
on η.

Lemma 2. For a d-diagram Q corresponding to a computation with N processes,
η(Q) ≤ 2N .

Proof: Consider the shortest path between two vertices e, f ∈ V . Clearly this path does
not have a cycle; otherwise, a shorter path which excludes the cycle exists. Moreover,
all the elements from a process occur consecutively in this path. As a result, the shift-
edges that are between events on the same process are traversed at most once in the
path. Moving from one process to another can have at most one shift-edge. Hence,
η(Q) ≤ 2N .

For an event x ∈ E, we denote by J(x), the least consistent cut which includes
x. The least consistent cut for J(ei) will give us the vector clock for event ei. We
first show that the cuts J(ei) stabilize after some iterations i.e. the cut J(ej) can be
obtained from J(ei) by a simple shift for j > i. This allows us to predict the structure
of J(ei) after certain iterations.

The next lemma shows that the cut J(f j) does not contain recurrent events with
iterations very far from j.

Lemma 3. If ei ∈ frontier(J(f j)), e ∈ R, then 0 ≤ j − i ≤ η.

Proof: If ei ∈ frontier(J(f j)), then there exists a path from ei to f j and ∀k > i there
is no path from ek to f j . Therefore the path from ei to f j corresponds to the shortest
path between e and f in the d-diagram. Therefore, by the definition of η, j − i ≤ η.

13



The following theorem proves the result regarding the stabilization of the cut J(ei).
Intuitively, after a first few iterations the relationship between elements of the compu-
tation depends only on the difference between their iterations.

Theorem 4. For a recurrent vertex e ∈ R, J(eβ+1) = S1(J(e
β)) for all β ≥ η + 1.

Proof: We first show that S1(J(e
β)) ⊆ J(eβ+1). Consider f j ∈ S1(J(e

β)). If
f ∈ V \ R (i.e., f is not a recurrent vertex), then f j ∈ J(eβ), because the shift
operator affects only the recurrent vertices. This implies that there is a path from f j

to eβ , which in turn implies the path from f j to eβ+1. Hence, f j ∈ J(eβ+1). If f is
recurrent, then f j ∈ S1(J(e

β)) implies f j−1 ∈ J(eβ). This implies that there is a path
from f j−1 to eβ , which in turn implies the path from f j to eβ+1, from the property of
d-diagrams. Therefore, S1(J(e

β)) ⊆ J(eβ+1).
Now we show that J(eβ+1) ⊆ S1(J(e

β)). Consider f j ∈ J(eβ+1). If j > 1, then
given a path from f j to eβ+1, there is a path from f j−1 to eβ . Hence f j ∈ S1(J(e

β)).
Now, consider the case when j equals 1. f1 ∈ J(eβ+1) implies that there is a path from
f1 to eβ+1. We claim that for β > η, there is also a path from f1 to eβ . Otherwise, the
shortest path from f to e has more than η shift-edges, a contradiction.

When d-diagram generates a poset, Theorem 4 can be used to assign timestamps to
vertices in the d-diagram in a way similar to vector clocks. The difference here is that
a timestamp for a recurrent vertex is a concise way of representing the timestamps of
infinite instances of that vertex.

Each recurrent event, e, has a special p-timestamp (PV (e)) associated with it,
which lets us compute the time stamp for any arbitrary iteration of that event. There-
fore, this result gives us an algorithm for assigning p-timestamp to a recurrent event.
The p-timestamp for a recurrent event e, PV (e) would be a list of the form

(V (e1), . . . , V (eβ); I(e))

where I(e) = V (eβ+1) − V (eβ) and V (ej) is the timestamp assigned by the normal
vector clock algorithm to event ej . Now for any event ej , j > β, V (ej) = V (eβ) +
(j − β) ∗ I(e).

In figure 9, η = 2, β = 3. V (a3) = [5, 2] and V (a4) = [7, 4]. I(a) = [2, 2].
Hence PV (a) = ([1, 0], [3, 0], [5, 2]; [2, 2]). Now, calculating V (aj) for an arbitrary j
is trivial. For example, if j = 6, then V (a6) = [5, 2] + (6− 3) ∗ [2, 2] = [11, 8].

This algorithm requires O(ηn) space for every recurrent vertex. Once the times-
tamps have been assigned to the vertices, any two instances of recurrent vertices can
be compared in O(n) time.

The notion of vector clock also allows us to keep only the relevant events[12] of the
d-diagram. Any dependency related question on the relevant events can be answered
by simply examining the vector timestamps instead of the entire d-diagram.

14



6. Detecting Global Predicates

We now consider the problem of detecting predicates in d-diagrams. A predicate is
a property defined on the states of the processes. An example of a predicate is “more
than one philosopher is waiting.” Given a consistent cut, a predicate is evaluated with
respect to the values of the variables resulting after executing all the events in the cut.
If a predicate p evaluates to true for a consistent cut C, we say that C satisfies p. We
further assume that the truthness of a predicate on a consistent cut is governed only
by the labels of the events in the frontier of the cut. This assumption implies that the
predicates do not involve shared state such as the channel state. We define L : G→ L
to be an onto mapping from the set of vertices in d-diagram to a set of labels L with
the constraint that ∀e ∈ V : L(ei) = L(ej). This is in agreement with modeling the
recurrent events as repetition of the same event.

It is easy to see that it does not suffice to detect the predicate on the d-diagram
without unrolling it. As a simple example, consider figure 9, where though {a1, d1} is
not a consistent cut, but {a2, d1} is consistent.

In this section, we define a finite extension of our d-diagram which enables us
to detect any property that could be true in the infinite poset corresponding to the d-
diagram. We show that it is sufficient to perform predicate detection on that finite part.

We mainly focus on the recurrent part of the d-diagram as that is the piece which
distinguishes this problem from the case of finite directed graph. We identify certain
properties of the recurrent part which allows us to apply the techniques developed for
finite directed graphs to d-diagrams.

Predicate detection algorithms explore the lattice of global states in BFS order as
in Cooper-Marzullo [2] algorithm, or a particular order of events as in Garg-Waldecker
[13] algorithm. For finite directed graphs, once the exploration reaches the final global
state it signals that the predicate could never become true. In the case of infinite di-
rected graphs, there is no final global state. So, the key problem is to determine the
stopping rule that guarantees that if the predicate ever becomes true then it would be
discovered before the stopping point. For this purpose, we show that for every cut in
the computation, a subgraph of the computation called the core contains a cut with the
same label. The main result of this section is that the core of the periodic infinite com-
putation is simply the set of events in the computation with iteration less than or equal
to N , the number of processes.

Definition 7 (core of a computation). For a d-diagram Q corresponding to a compu-
tation with N processes, we define U(Q), the core of Q, as the directed graph given by
the set of events E′ = {ej |e ∈ R ∧ 2 ≤ j ≤ N} ∪ {e1|e ∈ V } and the edges are the
restriction of→ to set E′.

The rest of the section is devoted to proving the completeness of the core of a
computation. The intuition behind the completeness of the core is as follows: For any
frontier C, we can perform a series of shift operations such that the resulting frontier
is consistent and lies in the core. We refer to this operation as a compression operation
and the resulting cut is denoted by the frontier C (C). Figure 10 shows the cut C =
{e5, f3, g1} and the compressed cut C (C) = {e3, f2, g1}.

15



e1d1

f 2

c1

b1

a1

f 1

g1

e2d2

g2

d3 e3

f 3

d4 e4

f 4

g4

d5 e5

f 5

g5

C

g3

⊥

C (C)

Figure 10: Compression operation being applied on a cut

For proving the completeness of the core, we define the notion of a compression
operation. Intuitively, compressing a consistent cut applies the shift operation multiple
times such that the final cut obtained lies in the core of the computation and has the
same labeling.

Definition 8 (Compression). Given a frontier C and index i , define C (C, i) as shift-
ing of all events with index greater than i by sufficient iterations such that in the shifted
frontier the event with next higher index than i is i + 1. The cut obtained after all
possible compressions is denoted as C (C).

In Figure 10, consider the cut C = {e5, f3, g1}. When we apply C (C, 1), we shift
events e5 and f3 back by 1. This results in the cut {e4, f2, g1}. The next higher index
in the cut now is 2 in f2. We now apply another compression at index 2, by shifting
event e4, and the compressed cut C (C) = {e3, f2, g1}. As another example, consider
a cut C = {e7, f4, g4}. We first apply C (C, 0) to get the cut {e4, f1, g1}. Applying
the compression at index 1, we finally get {e2, f1, g1}.

Note that the cut resulting from the compression of a cut C has the same labeling
as the cut C. The following lemma shows that it is safe to apply compression operation
on a consistent cut i.e. compressing the gaps in a consistent cut results in another
consistent cut. This is the crucial argument in proving completeness of the core.

Lemma 5. If C is the frontier of a consistent cut, then C (C, l) corresponds to a con-
sistent cut for any index l.

Proof: Let C ′ = C (C, l) for convenience. Consider any two events ei, f j ∈ C. If
i ≤ l, j ≤ l or i > l, j > l, then the events corresponding to ei and f j in C ′ are also
consistent. When i > l and j > l, events corresponding to ei and f j in C ′ get shifted
by the same number of iterations.

Now assume i ≤ l and j > l. Then ei remains unchanged in C ′ and f j is mapped
to fa such that a ≤ j. Since i < a, there is no path from succ(fa) to ei. If there is a
path from succ(ei) to fa, then there is also a path from succ(ei) to f j as there is a path
from fa to f j . This contradicts the fact that ei and f j are consistent. Hence, every pair
of vertices in the cut C ′ is consistent.

Now we can use the compression operation to compress any consistent cut to a con-
sistent cut in the core. Since the resulting cut has the same labeling as the original cut,

16



it must satisfy any non-temporal predicate that the original cut satisfies. The following
theorem establishes this result.

Theorem 6. If there is a cut C ∈ C(〈E,→〉), then there exists a cut C ′ ∈ C(U(Q))
such that L(C) = L(C ′).

Proof: Let C ′ = C (C). By repeated application of the lemma 5, we get that C ′ is a
consistent cut and L(C) = L(C ′). Moreover, by repeated compression, no event in C ′

has index greater than N . Therefore, C ′ ∈ U(Q).

The completeness of the core implies that the algorithms for predicate detection on
finite directed graphs can be used for d-diagrams as well after unrolling the recurrent
events N times. This result holds for any global predicate that is non-temporal (i.e.,
defined on a single global state). Suppose that the global predicate B never becomes
true in the core of the computation, then we can assert that there exists an infinite
computation in which B never becomes true (i.e., the program does not satisfy that
eventually B becomes true). Similarly, if a global predicate B is true in the recurrent
part of the computation, it verifies truthness of the temporal predicate that B becomes
true infinitely often.

7. Recurrent Global State Detection Algorithm

We now briefly discuss a method to obtain a d-diagram from a finite distributed
computation. The local state of a process is the value of all the variables of the pro-
cess including the program counter. The channel state between two processes is the
sequence of messages that have been sent on the channel but not received. A global
state of a computation is defined to be the cross product of local states of all processes
and all the channel states at any cut. Any consistent cut of the computation determines
a unique consistent global state. A global state is recurrent in a computation, if there
exist consistent cuts Y and Z such that the global states for Y and Z are identical and
Y is a proper subset of Z. Informally, a global state is recurrent if there are at least two
distinct instances of that global state in the computation.

We now give an algorithm to detect recurrent global states of a computation. We
assume that the system logs the message order and nondeterministic events so that
the distributed computation can be exactly replayed. We also assume that the system
supports a vector clock mechanism.

The first step of our recurrent global state detection (RGSD) algorithm consists of
computing the global state of a distributed system. Assuming FIFO, we could use the
classical Chandy and Lamport’s algorithm[1] for this purpose. Otherwise, we can use
any of the algorithms, such as [14, 15, 16]. Let the computed global snapshot be G.
Let Z be the vector clock for the global state G.

The second step consists of replaying the distributed computation while monitoring
the computation to determine the least consistent cut that matches G. We are guaran-
teed to hit such a global state because there exists at least one such global state (at
vector time Z) in the computation. Suppose that the vector clock of the detected global

17



state is Y . We now have two vector clocks Y and Z corresponding to the global state
G. If Y equals Z, we continue with our computation. Otherwise, we have succeeded
in finding a recurrent global state G.

Note that replaying a distributed computation requires that all nondeterministic
events (including the message order) be recorded during the initial execution [17].
Monitoring the computation to determine the least consistent cut that matches G can
be done using algorithms for conjunctive predicate detection [3, 11].

When the second step fails to find a recurrent global state, the first step of the algo-
rithm is invoked again after certain time interval. We make the following observation
about the recurrent global state detection algorithm.

Theorem 7. If the distributed computation is periodic then the algorithm will detect a
recurrent global state. Conversely, if the algorithm returns a recurrent global state G,
then there exists an infinite computation in which G appears infinitely often.

Proof: The RGSD algorithm is invoked periodically and therefore it will be invoked at
least once in repetitive part of the computation. This invocation will compute a global
state G. Since the computation is now in repetitive mode, the global state G must have
occurred earlier and the RGSD algorithm will declare G as a recurrent global state.

We prove the converse by constructing the infinite computation explicitly. Let Y
and Z be the vector clocks corresponding to the recurrent global state G. Our infinite
computation will first execute all events till Y . After that it will execute the compu-
tation that corresponds to events executed between Y and Z. Since Y and Z have
identical global state, the computation after Y is also a legal computation after Z. By
repeatedly executing this computation, we get an infinite legal computation in which
G appears infinitely often.

The proof of Theorem 7 also shows how we can construct a p-diagram given the
recurrent global state G. Let Y and Z be the vector clocks corresponding to the global
state G. All the events between Y and Z are modeled as recurrent vertices. For every
process, we add shift-edges from the last event in Z to the first event after Y on that
process. In addition, for every message that is in channel at the global state in Z, we
add a shift edge from the send event on the sending process to the receive event. An
example of this construction is Fig. 5. The global state after β and β followed by γ are
recurrent. The computation in Fig: 9(a) shows an example in which the shift edge in
p-diagram is from one process to the other.

It is important to note that our algorithm does not guarantee that if there exists any
recurrent global state, it will be detected by the algorithm. It only guarantees that if the
computation is periodic, then it will be detected.

We note here that RGSD algorithm is also useful in debugging applications in
which the distributed program is supposed to be terminating and presence of a recurrent
global state itself indicates a bug.

18



8. Computing Slice of a Computation

In this section we present an algorithm to compute slice of a periodic computation.
We first provide a brief introduction to slicing, then we generalize the notion of d-
diagrams by introducing k-shift-edges because the slice is more conveniently expressed
using generalized d-diagram. Then, we give an algorithm to compute the slice.

8.1. Background on Slicing
In the earlier work [7, 8], the notion of slicing was used for finite directed graphs

and was based on the Birkhoff’s Representation Theorem for Finite Distributive Lat-
tices [18]. Informally, a computation slice (or simply a slice) is a concise representation
of all those consistent cuts of the computation that satisfy the predicate.

In this work, we extend the notion of slicing for infinite directed graphs by focusing
only on finite order ideals [18]. As mentioned earlier as well, we deal only with finite
consistent cuts and refer to them simply as consistent cuts. Similar to the the Birkhoff’s
representation theorem [18], the following theorem is known for the case of finite order
ideals of an infinite poset:

Theorem 8. [ [19], Proposition 3.4.3] Let P be a poset such that every principal order
ideal is finite. Then the poset Jf (P ) of finite order ideals of P , ordered by inclusion,
is a finitary distributive lattice. Conversely, if L is a finitary distributive lattice and P
is its subposet of join-irreducibles, then every principal order ideal of P is finite and
L = Jf (P ).

We can use the above theorem instead of the Birkhoff’s theorem and generalize the
notion of slice for consistent cuts to the following definition.

Definition 9 (slice). The slice of a directed graph G with respect to a predicate p is
the directed graph whose consistent cuts form the smallest sublattice that contains all
the consistent cuts satisfying the predicate p.

This definition is equivalent to the definition of slice in the earlier work for finite
directed graphs. It can be easily shown that the slice for a predicate always exists and
is unique. Since the slice of an infinite directed graph can again be an infinite directed
graph, we use d-diagram to represent the slice of a computation as well. We later show
that if the original computation was representable using d-diagram, then the slice of the
computation is also representable by d-diagram.

We denote the slice of the computation 〈E,→〉 with respect to a predicate p by
slice(〈E,→〉, p). Note that 〈E,→〉 = slice(〈E,→〉, true). Every slice derived from
the computation 〈E,→〉 has the trivial consistent cut ∅ among its set of consistent cuts.
A slice is empty if it has no non-trivial consistent cuts [8]. In the rest of the paper,
unless otherwise stated, a consistent cut refers to a non-trivial consistent cut.

In general, a slice contains consistent cuts that do not satisfy the predicate (besides
trivial consistent cut ∅). In case a slice does not contain any such cut, it is called lean.
The slice for the class of predicates called regular predicates is always lean. Given a
computation, the set of consistent cuts satisfying a regular predicate forms a sublattice
of the set of consistent cuts of the computation [7]. Equivalently,

19



g

f

ea

b

c

d

(a)

e1 d2 e2 d3 e3

g2 g3g1c

b

(b)

f1 f2 f32

a d13

h h1 h2 h3

Figure 11: (a) A generalized d-diagram and (b) its equivalent d-diagram

Definition 10 (regular predicate [7]). A predicate is regular if given two consistent
cuts that satisfy the predicate, the consistent cuts obtained by their set union and set
intersection also satisfy the predicate. Formally, given a regular predicate p,
(C satisfies p) ∧ (D satisfies p) =⇒ (C ∩D satisfies p) ∧ (C ∪D satisfies p)

Some examples of regular predicates are conjunction of local predicates such as
“Pi and Pj are in critical section”, and relational predicates such as x1 − x2 ≤ 5,
where xi is a monotonically non-decreasing integer variable on process Pi. From the
definition of a regular predicate we deduce that a regular predicate has a least satisfying
cut as the lattice of order ideals has a bottom element. Furthermore, the class of regular
predicates is closed under conjunction [7].

For a regular predicate p and an element x ∈ G, we define Jp(x) as the least
consistent cut which satisfies p and includes x. If there is no cut that satisfies p and in-
cludes x, Jp(x) is defined to be NULL; otherwise Jp(x) is well-defined as the regular
predicates are closed under intersection.

8.2. Generalized d-diagram
For computing slice of a d-diagram it is covenient to first generalize the d-diagrams

by having k-shift-edges which increase the iteration of a vertex by k for any arbitrary k
instead of a simple shift-edge. We call such a d-diagram as the generalized d-diagram.

Definition 11 (generalized d-diagram). A generalized d-diagram is a set (V,R, F,B1, B2, . . . , Bm)
where m is the maximum k such that a k-shift-edges is present in the d-diagram and
Bk ⊆ (V ×R) is the relation of k-shift-edges with the property:
If (e, f) ∈ Bk, then ei → f i+k.

Note that in the above definition, we allow the shift edges to be present between
non-recurrent and recurrent vertices as well. Clearly d-diagrams are a special case of
the generalized d-diagrams where m = 1 and B1 ⊆ R × R. The following theorem
further shows that the generalized d-diagram are not any more expressive than the d-
diagrams.

Theorem 9. Let (V,R, F,B1, B2, . . . , Bm) be a generalized d-diagram and 〈E,→〉
be the infinite graph generated by it. Then there exists a d-diagram (V ′, R′, F ′, B′)

20



e1d1

f 2

c1

b1

a1

f 1

g1

e2d2

g2

d3 e3

f 3

d4 e4

f 4

g4

d5 e5

f 5

g5g3

C E (C, 1, 1)

⊥

Figure 12: Expansion operation being applied on a cut

such that the graph 〈E′, 〉 generated by the d-diagram is isomorphic to the graph
〈E,→〉.

Proof: We construct the d-diagram corresponding to the generalized d-diagram as fol-
lows.

1. V ′ = {e1|e ∈ V } ∪ {ei|e ∈ R and 2 ≤ i ≤ m+ 1}
2. R′ = {ei|e ∈ R and 1 ≤ i ≤ m+ 1}
3. F ′ = {(e1, f1)|(e, f) ∈ F}
∪{(ei, fi+k)|(e, f) ∈ Bk and 1 ≤ i ≤ m+ 1− k}

4. B′ = {(ei, fj)|(e, f) ∈ Bk and m+1−k < i ≤ m+1 and j = (i+k) mod m+
1)}

Now we show that the graph 〈E′, 〉 generated by (V ′, R′, F ′, B′) is isomorphic
to the graph 〈E,→〉. Let µ : E → E′ be the isomorphism function between the
elements in E and E′ defined as follows:

1. µ(e1) = e11 if e ∈ V \R.
2. µ(ei) = elk if e ∈ R. Here k = 1+(i−1) mod m+1 and l = 1+(i−1)/(m+1).

With this isomorphism function, it is easy to show that (ei, f j) ∈ P(〈E′, 〉) iff
(µ(ei), µ(f j)) ∈ P(〈E,→〉).

Figure 11 shows an example of this conversion. The dotted edges labeled with a
number k denote the k-shift-edges and the unlabeled dotted edges denote the simple
shift edges. We have essentially created multiple copies of the recurrent vertices and
redrawn the k-shift-edges in terms of simple shift-edges.

8.3. Computing Join-Irreducibles of the Lattice Satisying p
We first define an expansion function analogous to the compression operation. The

expansion function allows expansion of a cut while maintaining the labeling.

Definition 12 (expansion of a cut). Given a cutG and i ∈ indices(G) , define E (G, i, j) =
Sj(G,Gi). In other words, the operation E shifts all the events in G with iteration
greater than i forward by j iterations.

21



As opposed to the compression operation, expansion cannot be applied to any event
in the frontier of a cut while maintaining its consistency. We define the notion of an
expansion point in a cut which gives a safe way of expanding a cut.

Definition 13 (expansion point). We define ρ ∈ indices(G) to be an expansion point
for a consistent cut G if ∀ei, f j ∈ G with i ≤ ρ and j > ρ, (ei, fk) 6∈ P(〈E,→〉) for
any k ≥ j.

As an example, let C = {e3, f1, g1} as shown in Figure 8. Then ρ = 1 is an
expansion point as f1 ‖ e3 and g1 ‖ e3. The expansion operation E (G, ρ, 1) results
in the frontier {e4, f1, g1} which is also consistent. The next lemma shows that this is
true in general;a cut always allows expansion around the expansion point.

Lemma 10. Let G be a consistent cut such that it has an expansion point ρ. Then the
cut G′ = E (G, ρ, l) is a consistent cut for any l ≥ 0.

Proof: We show that events in the frontier of the cut G′ are consistent. Any two
events ei, f j ∈ G with i ≤ ρ, j ≤ ρ or i > ρ, j > ρ are still consistent in G′ as the
relationship between these events remains the same as in G. When i ≤ ρ and j > ρ, ei

is mapped to ei and f j is mapped to f j+l in G′. By definition of an expansion point,
(ei, f j+l) 6∈ P(〈E,→〉). Hence, all the pairs of events in frontier of G′ are consistent.

The above result provides a way to expand a cut while maintaining the consistency
of the cut. Using the expansion and compression operations, we can move back and
forth in the computation while maintaining the labeling of the cut.

While the compression and expansion operations are general operations which are
applicable to any cut in the poset, we now examine the structure of the cuts Jp(ei). For
this purpose, we define the notion of helper processes for an event ei. Intuitively, there
is an event f j , f ∈ R, in every helper process such that there is a path from the event
f j to ei. Therefore, as a cut advances along proc(e), it must advance along the helper
processes as well.

Definition 14 (helper processes). For an event ei, we define the helper processes for
ei as H(ei) = {Pk|∃f ∈ R ∧ f j ∈ J(ei) ∧ proc(f) = Pk}.

For our example d-diagram in Figure 8, H(f2) = {P1, P2}. Some properties of
helper processes are easy to show.

Lemma 11. The following properties relating to helper processes hold:

• For all i, j > η, H(ei) = H(ej). For i > η, H(ei) is denoted simply by H(e).

• For event ei, f i with i > η and proc(e) = proc(f), H(e) = H(f).

• Let f j be an event such that proc(f) 6∈ H(e) and gl be an event such that
proc(g) ∈ H(e) with j < l and l > 1. Then (f j , gl) 6∈ P(〈E,→〉).

22



b1

c1

a1 d1
0 1

1

1

d2

0

d3e2e1 e3

0 0

1

212 2

Jp(f
2) Jp(f

3)

f 1

g3g2g1

f 2
f 3

1 1

1

P3, z = 0

⊥
P2, y = 0

P1, x = 0

Figure 13: The cuts Jp(f2) and Jp(f3) where p is (x = 1) ∧ (y = 1) ∧ (z = 1)

The first property says that the set of helper processes becomes fixed for different
instances of an event after a certain number of iterations. This follows from the fact
that the cut J(ei) stabilizes after some iterations. The second property says that after
certain number of iterations, the set of helper processes becomes the same for every
event on a process. This follows from the first property and the fact that there is a path
between every two events in a process. The third property establishes the transitivity
of the relation of helper processes.

Now we can give a characterization of the cut Jp(ei) in terms of the helper pro-
cesses. In all the following results, we assume that Jp(ei) exists for the event ei under
consideration. We deal with the case when Jp(ei) does not exist later. The follow-
ing lemma shows that after certain iterations only the events from helper processes in
frontier(Jp(e

i)) have iterations “close” to i and other events always have iterations
less than N − |H(e)|. This follows our intuition that helper processes advance along
with the event ei.

Lemma 12. For i > N − |H(e)| + η, frontier(Jp(ei)) can be written as C ∪ D,
where

1. f j ∈ C ⇒ (proc(f) 6∈ H(e)) ∧ (j ≤ N − |H(e)|)
2. f j ∈ D ⇒ (proc(f) ∈ H(e)) ∧ (j > N − |H(e)|)

Proof Sketch: Let C ′ be the projection of frontier(Jp(ei)) on the set of processes
P \H(e). Then let C = C (C ′) and D be the projection of frontier(Jp(ei)) on the
processes H(e). Since J(ei) ⊆ Jp(e

i), for an event f j ∈ D, i − j ≤ η. Therefore, if
f j ∈ D, j > N − |H(e)|. On the other hand, C must belong to the core U(Q) and
therefore, if f j ∈ C, then j ≤ N−|H(e)|. This further implies that for all f j ∈ C and
gl ∈ D, j < l. By Lemma 11, this implies that f j and gl are consistent. Therefore,
every pair of vertices in the set C ∪ D is consistent and so it forms the frontier of a
consistent cut. Let the cut given by C ∪ D be C ′′. Then, L(Jp(ei)) = L(C ′′) and
so C ′′ also satisfies the predicate p. It includes ei as ei ∈ D. Therefore, C ′′ is a
consistent cut which includes ei and satisfies p. By definition of Jp(ei), Jp(ei) ⊆ C ′′.
However, C ′′ ⊆ Jp(ei) asC ′′ was obtained by applying compression on the cut Jp(ei).
Therefore, Jp(ei) = C ′′.

23



Figure 13 shows the cuts Jp(f2) and Jp(f3) where p is (x = 1)∧(y = 1)∧(z = 1).
Here H(f3) = {P1, P2} and so we can decompose Jp(f3) into subsets C and D of
Lemma 12 as C = {c1} and D = {d3, f3}.

The above result can also be interpreted in terms of the presence of an expansion
point in the cut Jp(ei) as the events in Jp(ei) from the helper processes lie after iter-
ation N and are disconnected from the rest of the vertices in Jp(ei). Henceforth, we
relax the condition on i in Lemma 12 to i > N +η. This makes the bound independent
of e and allows us to deal with all vertices uniformly.

Corollary 13. If i > N + η, then Jp(ei) contains an expansion point ρ ≤ N .

The next theorem shows that the presence of an expansion point in the cut Jp(ei)
is a sufficient condition for Jp(ei) to acquire a repeating structure.

Theorem 14. Let i be the smallest iteration such that Jp(ei) has an expansion point
ρ. Then for all j ≥ i, Jp(ej+1) = E (Jp(e

j), ρ, 1).

Proof: Consider C = E (Jp(e
i), ρ, 1). By Lemma 10, C is consistent. Since C in-

cludes ei+1 and satisfies B, Jp(ei+1) ⊆ C. Moreover, Jp(ei) ⊆ Jp(ei+1). As a result,
f j ∈ frontier(Jp(ei+1)) can be characterized as follows:

1. If j ≤ ρ, then f j ∈ frontier(Jp(ei))
2. If j > ρ, then ∃gk ∈ frontier(Jp(e

i)) : gk ≤ f j ≤ gk+1 and proc(g) =
proc(f). This also implies that j = k or j = k + 1.

Now considerD = C (Jp(e
i+1, ρ, 1). D is a consistent cut, includes ei and satisfies

B. Therefore, Jp(ei) ⊆ D. Based on the operation C , an event f j ∈ frontier(D),
satisfies the following:

1. If j ≤ ρ, then f j ∈ frontier(Jp(ei+1))
2. If j > ρ, then f j+1 ∈ frontier(Jp(ei+1))

From the characterization of Jp(ei+1), it is clear that for j ≤ ρ, f j ∈ frontier(Jp(ei)).
For j > ρ, we have gk ≤ f j ≤ f j+1 ≤ gk+1 for some gk ∈ frontier(Jp(ei)). This
implies that f j = gk and so f j ∈ frontier(Jp(ei)). Therefore, D = Jp(e

i) and also,
C = Jp(e

i+1). Inductively using the above argument for j > i, we get that for all
j ≥ i, Jp(ej+1) = E (Jp(e

j), ρ, 1).

For the computation in Figure 13, it can be seen that Jp(f2) has an expansion point
at ρ = 1. Therefore, we can write Jp(f3) = E (Jp(f

2), 1, 1).
The above result essentially establishes the correspondence between the cuts Jp(ei)

and Jp(ei+1) for some large enough i. It says that the cuts have the same iteration
of some elements and for the others, the iterations differ by exactly one. Hence the
structure of Jp(ei) becomes repetitive once Jp(ei) has an expansion point. Corollary 13
gives an upper bound (N + η) on the expansion point for Jp(ei). Also, note that this
upper bound is independent of the predicate p and just depends on the d-diagram. For a
d-diagram, let γ be the maximum over the expansion points of all the recurrent events.
Again, γ is bounded by N + η.

24



Lemma 15. Let Jp(ei) ⊆ Jp(f j) with i, j > γ. Then Jp(ei+1) ⊆ Jp(f j+1).

Proof: By Lemma 12, Jp(ei) can be written as C1 ∪ D1 such that gk ∈ C1 ⇒
(proc(g) 6∈ H(e)) ∧ (k ≤ N − |H(e)|) and gk ∈ D1 ⇒ (proc(g) ∈ H(e)) ∧ (k >
N − |H(e)|). Similarly, Jp(f j) can be written as C2 ∪ D2 with similar constraints.
Since Jp(ei) ⊆ Jp(f j), the above constraints imply that C1 ⊆ C2 and D1 ⊆ D2. Fur-
thermore, Jp(ei+1) and Jp(f j+1) can be decomposed as C3∪D3 and C4∪D4 respec-
tively. By theorem 14, C1 = C3 and C2 = C4. Moreover, if gk ∈ D1 ⇒ gk+1 ∈ D3

and similarly, gk ∈ D2 ⇒ gk+1 ∈ D4. Therfore, D1 ⊆ D2 ⇒ D3 ⊆ D4. Therefore,
Jp(e

i+1) ⊆ Jp(f j+1).

8.4. A Slicing Algorithm

A slice of a computation can have multiple representations. The skeletal repre-
sentation [8] of the slice has the advantage of having at most N edges per event in
the graph and provides us a compact representation. Let Fp(ei, k) denote the earliest
event fk on Pj such that Jp(ei) ⊆ Jp(f

j). If no such event exists, then Fp(ei, k) is
considered to be NULL. Then the skeletal representation of slice(〈E,→〉, p) can be
obtained by constructing a graph 〈E′, 〉 as follows: (1) E′ = E \D where D is the
set of events ei for which Jp(ei) does not exist (2) For an event ei ∈ E′, edges are
added are from ei to succ(ei) and to Fp(ei, k) for every process Pk. Again we want
to represent slice(〈E,→〉, p) in terms of a d-diagram as slice(〈E,→〉, p) may be an
infinite graph.

We now show the procedure to obtain the slice of the computation 〈E,→〉 with
respect to the predicate p. For this purpose, we define the notion of reset cut.

Definition 15 (reset cut). Let T ⊆ R be the set of recurrent vertices e for which
Jp(e

γ) exists. Then the reset cut, R(p), for a predicate p is the consistent cut given by
{
⋃
e∈T Jp(e

γ)} ∪ {
⋃
e∈R\T J(e

γ)}.

Note that in the definition of the reset cut we use J(eγ) if Jp(eγ) does not exist
for some eγ . This is done to ensure that the frontier of the reset cut always contains
elements corresponding to recurrent vertices. The reset cut is a consistent cut as it is
a union of consistent cuts. For our example computation, it can be shown that γ = 3.
The following cuts can also be computed easily:

• Jp(d3) = {d3, b1, c1}

• Jp(e3) = {d4, b1, c1}

• Jp(f3) = {d3, f3, c1}

• Jp(g3) = ∅, J(g3) = {e2, f3, g3}

• Jp(a1) = {d1, b1, c1}

25



d2

g1

e1

f1b

c

⊥

a d1

0 1

P2, y = 0

P3, z = 0

P1, x = 0

1

1

d3

g2

e2

f2

d4

g3

e3

f3

2

1

0

d

g

f

e

1 1 1 1222

1 1 1

000

Figure 14: The unrolled d-diagram U (Q,R(p))

• Jp(b1) = {d1, b1, c1}

• Jp(c1) = {d1, b1, c1}

Then the reset cutR(p) is given by {d4, f3, g3}.
The d-diagram obtained by unrolling Q about R(p), U (Q,R(p)), has a crucial

property:

Lemma 16. Let 〈E′, 〉 be the directed graph generated by U (Q,R(p)). Let ei ∈
〈E′, 〉. Then Jp(f j) 6⊆ Jp(ei) for all f j ∈ 〈E′, 〉 with j > i.

Proof: Let the d-diagram U (Q,R(p)) be (V ′, R′, F ′, B′). Consider gk, hl ∈ 〈E,→〉
such that Jp(gk) ⊆ Jp(h

l). If hl ∈ R(p), then by definition of R(p), gk ∈ R(p) and
hence IR(p)(h

l) = a1 and IR(p)(g
k) = b1 for some a, b ∈ V ′. Now consider the

case when hl 6∈ R(p). Let m = max{i|hi ∈ R(p)} and n = max{i|gi ∈ R(p)}.
First assume that l −m < k − n. Then Jp(gr) ⊆ Jp(h

m) where r = k − (l −m).
However, in this case hm ∈ R(p) and gr 6∈ R(p) which violates the definition ofR(p).
Therefore, l −m ≥ k − n. For this case, if IR(p)(h

l) = ai and IR(p)(g
k) = bj , then

i = l −m and j = k − n. Therefore, ∀ei, f j ∈ 〈E′, 〉, Jp(f j) ⊆ Jp(ei)⇒ j ≤ i.

This property is similar to the property of the d-diagram where it is required that
there should not be any edge from an element with higher iteration to an element with
lower iteration. Figure 14 shows the unrolled d-diagram U (Q,R(p)). Note that the
process shift-edge on the process P1 is now going from d to e instead of from e to d.
This change has essentially renumbered the indices of elements corresponding to d and
e such that in the new d-diagram, Jp(e1) = {d1, b1, c1}.

We can now construct the slice of the original d-diagram Q using the unrolled
d-diagram U (Q,R(p)) as both of them generate the same computation. We slice
the computation U (Q,R(p)) by introducing additional edges in the computation and
removing vertices for which Jp(ei) does not exist. Intuitively, the additional edges
make the cuts which do not satisfy the predicate, inconsistent in the new computation
and removing the elements ei for which Jp(ei) does not exist is equivalent to removing

26



b

c

⊥

a d1

0 1

P2, y = 0

P3, z = 0

P1, x = 0

1

1

d3e2

f2

d4e3

f3

2

1
d

f

e

1 1 1 1222

1 1 1
d2e1

f1

Figure 15: The slice of the d-diagram in Figure 6 with respect to (x = 1) ∧ (y =
1) ∧ (z = 1)

any consistent cut which includes the element ei. Note that if an element ei is removed
from the slice, then any element f j which has a path from ei must be removed as well.

Using these results, we can construct a generalized d-diagram for the slice of
U (Q,R(p)) as follows. The set of vertices V ′ in the d-diagram for slice(〈E,→〉, p)
is the set V \ D where V is the set of vertices for U (Q,R(p)) and D is the set of
vertices for which J(e1) does not exist. The set R′ is also constructed similarly using
the set of recurrent vertices in U (Q,R(p)). Note that if e was a recurrent vertex, then
by removing e we are not only removing the element e1 from the computation but all
ei, i ≥ 1. However, if Jp(e1) does not exist then Jp(ei) does not exist as ei is reach-
able from e1. On the other hand, if Jp(e1) exists, then Jp(ei) exists for all ei as the cut
Jp(e

1) has stabilized in U (Q,R(p)).
Edges are added between the vertices in V ′ based on the skeletal representation of

slice(〈E,→〉, p) as follows:
(1) If there is an edge from Jp(e

1) to Jp(f1), then add a forward edge from e to f .
(2) If there is an edge from Jp(e

1) to Jp(f j), then add a j − 1 shift edge from e to f .
Intuitively, it is safe to add these edges in the recurrent part of the d-diagram as the

cuts Jp(ei) have stabilized and so the relationships between the cuts acquires a repeat-
ing structure. Note that we would not need to add an edge from a recurrent element to
⊥ as the cuts Jp(ei) have stabilized and therefore for any ei, i ≥ 2, ei−1 can serve as
the lower cover. The following result is a direct consequence of the construction.

Theorem 17. The generalized d-diagram as constructed above represents slice(〈E,→
〉, p)

Proof: Follows from the construction and Lemma 15.

Figure 15 shows the slice of the original d-diagram with respect to the predicate
p = (x = 1)∧ (y = 1)∧ (z = 1). Note that in the slice, we have removed the recurrent
vertex g and added some edges according to the above rules.

27



b2 b3 b4d1 d2 d3b1

c1 c2 c3 a4a3a2a1

Figure 16: A poset which cannot be captured using MSC graphs or HMSC

The above construction can be done in time polynomial in the size of the d-diagram
as it requires unrolling the d-diagram for a polynomial number of iterations and then
computing the Jp(ei) for a polynomial set of elements. Furthermore, if the slice of the
computation becomes finite during the processing of a predicate, then we can simply
use the algorithms for the finite directed graphs directly on the new poset. This is safe
to do as slicing with respect to a regular predicate only adds edges to the slice.

9. Related Work

A lot of work has been done in identifying the classes of predicates which can be
efficiently detected [20, 8]. However, most of the previous work in this area is mainly
restricted to finite traces.

Some examples of the predicates for which the predicate detection can be solved
efficiently are: conjunctive [20, 21], disjunctive [20], observer-independent [22, 20],
linear [20], non-temporal regular [7, 8] predicates and temporal [23, 24, 25].

Some representations used in verification explicitly model concurrency in the sys-
tem using a partial order semantics. Two such prominent models are message sequence
charts (MSCs) [26] and petri nets [27]. MSCs and related formalisms such as time se-
quence diagrams, message flow diagrams, and object interaction diagrams are often
used to specify design requirements for concurrent systems. An MSC represents one
(finite) execution scenario of a protocol; multiple MSCs can be composed to depict
more complex scenarios in representations such as MSC graphs and high-level MSCs
(HMSC). These representations capture multiple posets but they cannot be used to
model all the posets (and directed graphs) that can be represented by d-diagrams. In
particular, a message sent in a MSC node must be received in the same node in MSC
graph or HMSC. Therefore, some infinite posets which can be represented through d-
diagrams cannot be represented through MSCs. Therefore, an infinite poset such as the
one shown in figure 16 is not possible to represent through MSCs.

Petri nets [27] are also used to model concurrent systems. Partial order semantics
in petri nets are captured through net unfoldings [28]. Unfortunately, unfoldings are
usually infinite sets and cannot be stored directly. Instead, a finite initial part of the
unfolding, called the finite complete prefix [29] is generally used to represent the un-
folding. McMillan showed that reachability can be checked using the finite prefix itself.
Later Esparza [30] extended this work to use unfoldings to efficiently detect predicates
from a logic involving the EF and AG operators. Petri nets are more suitable to model
the behavior of a complete system whereas d-diagrams are more suitable for modeling
distributing computations in which the set of events executed by a process forms a total

28



order. They are a simple extension of process-time diagrams[9] which have been used
extensively in distributed computing literature.

10. Conclusions

In this paper, we introduce a method for detecting violation of liveness properties in
spite of observing a finite behavior of the system. Our method is based on (1) determin-
ing recurrent global states, (2) representing the infinite computation by a d-diagram, (3)
computing vector timestamps for determining dependency and (4) computing the core
of the computation for predicate detection. We note here that intermediate steps are
of independent interest. Determining recurrent global states can be used to detect if a
terminating system has an infinite trace. Representing an infinite poset with d-diagram
is useful in storing and replaying an infinite computation.

Our method requires that the recurrent events be unrolled N times. For certain
computations, it may not be necessary to unroll recurrent event N times. It would be
interesting to develop a method which unrolls each recurrent event just the minimum
number of times required for that prefix of the computation to be core.

11. Acknowledgments

We are grateful to the reviewers of this paper for many helpful comments and sug-
gestions.

References

[1] Chandy, K.M., Lamport, L.: Distributed snapshots: Determining global states of
distributed systems. ACM Transactions on Computer Systems 3(1) (1985) 63–75

[2] Cooper, R., Marzullo, K.: Consistent detection of global predicates. In:
Proc. of the Workshop on Parallel and Distributed Debugging, Santa Cruz, CA,
ACM/ONR (1991) 163–173

[3] Garg, V.K., Waldecker, B.: Detection of weak unstable predicates in distributed
programs. IEEE Trans. on Parallel and Distributed Systems 5(3) (1994) 299–307

[4] Pnueli, A.: The temporal logic of programs. In: Proc. 18th Annual IEEE-ACM
Symposium on Foundations of Computer Science. (1977) 46–57

[5] Fidge, C.J.: Partial orders for parallel debugging. Proceedings of the ACM
SIGPLAN/SIGOPS Workshop on Parallel and Distributed Debugging, published
in ACM SIGPLAN Notices 24(1) (1989) 183–194

[6] Mattern, F.: Virtual Time and Global States of Distributed Systems. In: Proc. of
the Int’l Workshop on Parallel and Distributed Algorithms. (1989)

[7] Garg, V.K., Mittal, N.: On Slicing a Distributed Computation. In: Proc. of the
15th Int’l. Conference on Distributed Computing Systems (ICDCS). (2001)

29



[8] Mittal, N., Garg, V.K.: Computation Slicing: Techniques and Theory. In: In
Proc. of the 15th Int’l. Symposium on Distributed Computing (DISC). (2001)

[9] Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM 21(7) (1978) 558–565

[10] Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge
University Press, Cambridge, UK (1990)

[11] Garg, V.K., Chase, C.M., Kilgore, R.B., Mitchell, J.R.: Efficient detection of
channel predicates in distributed systems. J. Parallel Distrib. Comput. 45(2)
(1997) 134–147

[12] Agarwal, A., Garg, V.K.: Efficient dependency tracking for relevant events in
shared-memory systems. In Aguilera, M.K., Aspnes, J., eds.: PODC, ACM
(2005) 19–28

[13] Garg, V.K., Waldecker, B.: Detection of unstable predicates. In: Proc. of the
Workshop on Parallel and Distributed Debugging, Santa Cruz, CA, ACM/ONR
(1991)

[14] Mattern, F.: Efficient algorithms for distributed snapshots and global virtual time
approximation. Journal of Parallel and Distributed Computing (1993) 423–434

[15] Garg, R., Garg, V.K., Sabharwal, Y.: Scalable algorithms for global snapshots in
distributed systems. In: Proceedings of the ACM Conference on Supercomputing,
2006, ACM (2006)

[16] Kshemkalyani, A.D.: A symmetric o(n log n) message distributed snapshot algo-
rithm for large-scale systems. In: CLUSTER, IEEE (2009) 1–4

[17] LeBlanc, Mellor-Crummey: Debugging parallel programs with instant replay.
IEEETC: IEEE Transactions on Computers 36 (1987)

[18] Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge
University Press, Cambridge, UK (1990)

[19] Stanley, R.: Enumerative Combinatorics. Wadsworth and Brookes/Cole (1986)

[20] Garg, V.K.: Elements of Distributed Computing. John Wiley & Sons (2002)

[21] Hurfin, M., Mizuno, M., Raynal, M., Singhal, M.: Efficient detection of con-
junctions of local predicates. IEEE Transactions on Software Engineering 24(8)
(1998) 664–677

[22] Charron-Bost, B., Delporte-Gallet, C., Fauconnier, H.: Local and temporal predi-
cates in distributed systems. ACM Transactions on Programming Languages and
Systems 17(1) (1995) 157–179

[23] Sen, A., Garg, V.K.: Detecting temporal logic predicates in distributed programs
using computation slicing. In: 7th International Conference on Principles of Dis-
tributed Systems, La Martinique, France (2003)

30



[24] Sen, A., Garg, V.K.: Detecting temporal logic predicates in the happened be-
fore model. In: International Parallel and Distributed Processing Symposium
(IPDPS), Florida (2002)

[25] Ogale, V.A., Garg, V.K.: Detecting temporal logic predicates on distributed com-
putations. In Pelc, A., ed.: DISC. Volume 4731 of Lecture Notes in Computer
Science., Springer (2007) 420–434

[26] : Z.120. ITU-TS recommendation Z.120: Message Sequence Chart (MSC).
(1996)

[27] Petri, C.A.: Kommunikation mit Auto-maten. PhD thesis, Bonn: Institut fuer
Instru- mentelle Mathematik (1962)

[28] M. Nielsen, G.P., Winskel, G.: Petri nets, event structures and domains. Theoret-
ical Computer Science 13(1) (1980) 85–108

[29] McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers
(1993)

[30] Esparza, J.: Model checking using net unfoldings. Science of Computer Pro-
gramming 23(2) (1994) 151–195

31


