
Detecting Conjunctive Channel Predicates in a Distributed

�Programming Environment

Vijay. K. Garg Craig. Chase J. Roger Mitchell Richard Kilgore

TR ECE-PDS-94-02 June 1994

Parallel & Distributed Systems group
Department of Electrical & Computer Engineering

University of Texas at Austin

Austin, Texas 78712

T
H
E
U
N
IV

ER
SITY

O
F
T
E
X
A
S

A
T
AUSTI

N

D
IS
C
I
P
L
I
N
A

P
R
AE
SIDIUM

C
I
V
I
T
A
T
I
S

Detecting Conjunctive Channel Predicates in a DistributedProgramming EnvironmentVijay K. Garg� Craig Chasey J. Roger Mitchellz Richard KilgoreParallel and Distributed Systems Laboratoryemail: pdslab@ece.utexas.eduElectrical and Computer Engineering DepartmentThe University of Texas at Austin,Austin, TX 78712AbstractThis paper discusses e�cient detection of global predicates in a distributed program. Pre-vious work in e�cient detection of global predicates was restricted to predicates that could bespeci�ed as a boolean formula of local predicates. Many properties in distributed systems, how-ever, use the state of channels. In this paper, we introduce the concept of a channel predicateand provide an e�cient algorithm to detect any boolean formula of local and channel predi-cates. We de�ne a property called monotonicity for channel predicates. Monotonicity is crucialfor e�cient detection of global predicates. We show that many problems studied earlier such asdetection of termination and computation of global virtual time are special cases of the problemconsidered in this paper. The message complexity of our algorithm is bounded by the number ofmessages used by the program. The main application of our results are in debugging and testingof distributed programs. Our algorithms have been incorporated in a distributed programmingenvironment which runs on a network of IBM RS/6000 Workstations under AIX with the PVMenvironment.1 IntroductionA distributed program is one that runs on multiple processors connected by a communicationnetwork. The state of such a program is distributed across the network and no process has accessto the global state at any instant. Detection of a global predicate, that is, a condition that dependson the state of the entire system, is a fundamental problem in distributed computing. This problemarises in many contexts such as designing, testing and debugging of distributed programs.Previous work has described algorithms for detecting stable and unstable global predicates[2, 3, 6, 8, 9, 11, 13, 14, 15, 16, 20]. See [1, 18] for surveys of stable and unstable predicatedetection. Stable predicates are those that never become false once they are true. The oftencited examples of stable predicates are deadlock and termination. For example, a system that hasterminated remains in this state. Chandy and Lamport's method [2] for detecting a global predicateinvolves periodically taking a global snapshot of the state of the system.�supported in part by the NSF Grant CCR-9110605, a TRW faculty assistantship award, a General MotorsFellowship, and an IBM grantysupported in part by the Texas Instruments/Jack Kilby Faculty Fellowshipzsupported in part by an MCD fellowship 1

Unlike stable predicates, unstable predicates may alternate between true and false values.Cooper and Marzullo [3] presented a method for detecting general predicates which included un-stable predicates. Their approach, though, requires O(kn) time where k is the maximum numberof events a monitored process has executed and n is the number of processes. In particular, theiralgorithm checks all possible global states, whereas ours does not.Manabe and Imase [15] presented a method for detecting predicates, including channel pred-icates, using a replay approach. This approach requires two identical runs and restricts channelpredicates to those detectable by a process. Our approach requires only a single run. Further-more, our channel predicates are more general because they also include predicates that cannot bedetected by a single process.Garg and Waldecker [8] presented a method for detecting weak unstable conjunctive predicateswhere local processes check for their own predicate and send a message to a global predicate checkerwhenever the predicate becomes true between application messages.Our detection of global predicates extends the algorithms used in the detection of weak unstablepredicates [8] to include the state of communication channels. A channel is a uni-directional con-nection between any two processes through which messages can be passed. A general mechanismfor the detection of channel predicates as part of global predicates is an important characteristicfor distributed debuggers. Furthermore, many classical problems, such as distributed termination,and bounding of global virtual time can be detected by our algorithm.The key to making our algorithm e�cient is to restrict the channel predicates to a class whichwe call monotonic. The basis of this class are send-monotonic predicates and receive-monotonicpredicates. A send-monotonic predicate cannot be made true by sending more messages along thesame channel. For example, consider the condition \The channel is empty." If this condition is false,that is, more messages have been sent than received, it cannot be made true by sending still moremessages. A receive-monotonic predicate is analogous. When a receive-monotonic predicate is false,it can not be made true by only receiving more messages. The generalization of these two classesof predicates we call dynamically monotonic predicates. A dynamically monotonic predicate canbehave in some states as a send-monotonic predicate and in others as a receive-monotonic predicate.For example, consider the predicate, \The channel contains exactly 5 messages". When the channelcontains less than 5 messages, this predicate is receive monotonic. Receiving more messages willnot make the predicate true. If there are more than 5 messages in the channel, then the predicateis send-monotonic, and sending more messages can not make the predicate true.We show that dynamic monotonicity is an important key to e�cient detection of channel pred-icates. In any global state in which the predicate is false, we can be certain of at least one processwhich must make further progress before the channel predicate can become true. Monotonicityallows us to guarantee that progress by the other processes can not make the predicate true. Fur-thermore, we also show that the �rst global state satisfying a GCP can only be well de�ned whenmonotonic channel predicates are used.For distributed debugging, it is important to identify situations that may not have occurred inthe current execution, but because of di�erent clock speeds, could occur in subsequent executions.Our algorithm can detect these types of situations by testing for the occurrence of a global predicateamong all potentially concurrent states.In spite of the generality of our technique, the algorithms are e�cient enough to be includedin a distributed debugger. The time complexity is O(m2n + mn2) while the space complexity isO(mn2) where m is the maximum number of application messages generated by a process and nis the number of processes. We have implemented our algorithm for global predicate detection ina distributed programming environment. Our initial implementation runs on the Parallel VirtualMachine (PVM) infrastructure on a network of IBM RS/6000 workstations.2

The next section will present the notation, de�nitions of predicates, and the model, which arenecessary in understanding the method of detecting conjunctive channel predicates. Sections 3and 4 discuss the checker and non-checker processes of our model and their operation. Section 5demonstrates correctness of the algorithm and Section 6 presents our experimental results.2 Our ModelThis section presents the concepts and notation of distributed runs, and global, local and channelpredicates.2.1 Distributed RunWe assume a loosely-coupled message-passing system without any shared memory or a global clock.A distributed program consists of n processes denoted by fP1,P2,...,Png communicating solely viaasynchronous messages. In this paper, we will be concerned with a single run r of a distributedprogram. Each process Pi in that run generates a single execution trace r[i] which is a �nitesequence of states, with implied actions between these states. That is, the process Pi generates thetrace r[i] = �i;0�i;1 : : :�i;k, where �i's are the local states, and where k is the maximum numberof distinct states in a single process. There are three kinds of events that can occur between thesestates | an internal event, sending of a message and reception of a message. Finally, the state ofa process is de�ned by the value of all its variables including its program counter.We assume that no messages are lost, altered or spuriously introduced. We do not make anyassumptions about a FIFO nature of the channels. We also de�ne a happened-before relation, `!,'between states similar to that of Lamport's happened-before relation between events [13]. Thehappened-before relation can be formally stated as:�! � i�:1. � � � where � means occurred before in the same process, or2. � ; � where ; means that the action following � is a send of a message and the actionpreceding � is a receive of that message, or3. 9
 : �!
 ^
 ! �.The intuition behind the happened-before relation is that there is a message path between twostates for which this relation holds.2.2 Global SequenceA run de�nes a partial order using happened-before on the set of actions and states. In general,there are many total orders, or linearizations, that are consistent with this partial order. A globalsequence corresponds to a view of the run which could be obtained given the existence of a globalclock. A global sequence, g, is a �nite sequence denoted as g = g0g1 : : :gk, where gi is a global statefor 0 � i � k. Each gi consists of a vector of process and channel states. This de�nition is thesame as that of Chandy and Lamport[2]. In addition to global states, we use local snapshots at aprocess to mean the local state and the history of activity of all channels incident to that process.3

2.3 Global predicatesThe concept of concurrency is required in the detection of global predicates. Two states for whichthe happened-before relation does not hold in either direction are said to be concurrent. That is,there exists a run with local clocks running at particular speeds where two concurrent states canbe made to occur at the same physical time. The symbol, k, is used to represent concurrency. Therelationship can be formally stated as:� k � , (� 6! � ^ � 6! �)Given a set of n states, if this condition holds for all pairwise combinations of the states, thenthis set forms a consistent cut. The desire is to detect conditions at processes and within channelsdistributed across a system that could potentially occur at the same time. The method of doingthis is by detecting concurrency of the process and channel states for which all the local conditions,or predicates, are true. The idea of local and channel predicates are now given in more detail.2.3.1 Local PredicatesA local predicate is de�ned as any boolean formula on a local process. For any process, representedby Pi, a local predicate is written as li. li(�) is used to represent the predicate being true in aparticular state, �, of Pi. A process can obviously detect a local predicate on its own.2.3.2 Channel PredicatesA channel predicate is any boolean function of the state of the channel. The channel state is de�nedas the set di�erence of the send events and the receive events on that channel. Since a channelis de�ned as the uni-directional connection between two processes, one process performs all sendevents and the other all receive events. We therefore de�ne a channel predicate in terms of all sendevents from one process and all receive events at another. The notation for the accumulation ofsend and receive events is de�ned �rst:�; �: states at di�erent processes, Pi and Pj , or � 2 r[i] and � 2 r[j].�:Sent[j]: sequence of all messages sent at or before state � from i to j.�:Rcvd[i]: sequence of all messages received at or before state � from i to j.A channel predicate can then be written as:c(�:Sent[j]� �:Rcvd[i])or in short notation as: c(�; �) � c(�:Sent[j]� �:Rcvd[i])In this paper, we will use the symbol S to represent an arbitrary sequence of sends events from aprocess and the symbol R to represent an arbitrary sequence of receive events. It should be notedthat channels have no memory. Hence, any channel state that can be constructed by a combinationof both send events and receive events can also be produced by some other sequence of just sendevents.For e�ciency reasons the channel predicates must be at least dynamically monotonic. Therequirement for dynamic monotonicity can be stated formally as:4

De�nition 2.1 A channel predicate, c(S), is said to be dynamically monotonic i�:8S :: :c(S)) (8S 0 :: :c(S [S 0))_ (8R :: :c(S �R))That is, given any channel state, S , in which the predicate is false, then either sending moremessages is guaranteed to leave the predicate false, or receiving more messages is guaranteed toleave the predicate false. We assume that when the channel predicate is evaluated in some state S ,it is also known which of these two cases applies. To model this assumption, we de�ne monotonicpredicates to be 3-valued functions. The predicate can evaluate to:1. T | The channel predicate is true for the current channel state.2. Fs | The channel predicate is false for the current channel state. Furthermore, the predicatewill remain false in the presence of an arbitrary set of additional messages sent on the channelin the absence of receives.3. Fr | The channel predicate is false for the current channel state. Furthermore, the predicatewill remain false in the presence of an arbitrary set of messages received from the channel inthe absence of sends.Example 1. Detection of empty channels: c(S) � (S = ;): It is obvious that if this predicate is notcurrently true, sending more messages will not make it become true. This send-monotonicpredicate can be used in termination detection, as demonstrated in Section 6.Example 2. Detection of at least k messages in a channel: c(S) � (number of messages in S � k):This is similar to the detection of empty channels. This receive-monotonic predicate can beused in bu�er over
ow detection.Example 3. Detection of exactly k messages in a channel: c(S) � (length of S = k): In any statewhere there are more than k messages in the channel, the predicate cannot be made true bysending more messages. In any state when there are less than k messages in a channel, thepredicate can not be made true by receiving more messages. The only other possible state iswhen the channel has exactly k messages in it, and in this state the predicate is true.2.3.3 Generalized conjunctive predicateWe call a predicate detected by our algorithm a generalized conjunctive predicate (GCP). A GCPis true for a given run if and only if there exists a global sequence for that run in which all conjunctsare true in some global state. We de�ne the GCP to be conjunctive because the capability to detectany conjunctive predicate is su�cient to support the detection of any global predicate.GCP = (l1 ^ l2 ^ :::ln ^ c1 ^ c2 ^ :::ce)Lemma 2.2 Let p be any global predicate constructed from local and channel predicates usingboolean connectives. Then, p can be detected using an algorithm that can detect q where q is aGCP.Proof: We �rst write p in disjunctive normal form. Thus, p = (q1_ : : :_qk) where each qi is a pureconjunction of local predicates. Next, we observe that since p is a disjunction, the detection of anyqi in a global state will make p true. Finally, since each predicate qi is a conjunctive predicate, thedetection of p can be broken down into the detection of any one of k conjunctive predicates. 25

The following theorem is useful in detecting a GCP.Theorem 2.3 (l1 ^ l2 ^ :::ln ^ c1 ^ c2 ^ :::ce) true in a run r ,9�1; �2; :::�n : 8i; j (�i k�j ^ li(�i) ^ c(�i:Sent[j]� �j :Rcvd[i]))Proof: Follows directly from the de�nition of a conjunctive predicate (concurrency) and the de�-nition of channel predicates. 2The next theorem describes the structure of cuts satisfying a GCP. Let C be the set of all globalcuts that satisfy a GCP with monotone channel predicates. For two cuts C;D 2 C, we say thatC � D i� 8i : C[i] � D[i] where C[i] is the state from Pi in C and � means � or =. We showthat the concept of �rst cut that satis�es a GCP is well-de�ned. In other words, if two global cutssatisfy a GCP, then their greatest lower bound also satis�es that GCP.Theorem 2.4 Let a GCP be such that all of its channel predicates are monotone. Let (C;�) bethe set of all global cuts in which the GCP is true. If C;D 2 C, then their greatest lower bound isalso in C.Proof: Let E be de�ned as E[i] = min(C[i]; D[i]) and chanp(E[i]; E[j]) denote the value of thechannel predicate between processes Pi and Pj at states E[i] and E[j]. We show that E 2 C, thatis, E also satis�es the GCP. There are three properties that E must satisfy: all local predicatesmust be true, all states in E must be concurrent, and all channel predicates must be true.1. Since E[i] is either C[i] or D[i], and both li(C[i]) and li(D[i]) hold, it follows that8i : li(E[i]).2. Let I = fijE[i] = C[i]g and : J = fijE[i] = D[i]g:It is clear that 8i; j 2 I : E[i]jjE[j] and that 8i; j 2 J : E[i]jjE[j]. We now show that8i 2 I; j 2 J : E[i]jjE[j]. Since E[i] = C[i], C[i]jjC[j] and D[j] � C[j], it follows thatE[j] 6! E[i]. Similarly, E[j] = D[j], D[i]jjD[j] and C[i] � D[i] implies that E[i] 6! E[j].Therefore, we have shown that E is a consistent cut.3. We now show that E also satis�es channel predicates. By symmetry, it is su�cient to showthat 8i 2 I; j 2 J : chanp(E[i]; E[j]). Assume for contradiction, that chanp(E[i]; E[j]) isfalse. By monotonicity of channel predicates, there are two cases:Case 1 chanp(E[i]; E[j]) = Fs | Since E[i] � D[i] and process i can only send on thischannel, this would imply that chanp(D[i]; E[j]) is false, hence chanp(D[i]; D[j]) is false,a contradiction.Case 2 chanp(E[i]; E[j]) = Fr. | Since E[j] � C[j], this would imply that chanp(C[i]; C[j])is false, a contradiction.Therefore, all channel predicates must also be true in E.Therefore, the GCP is satis�ed by the cut E . 2The above theorem does not hold for arbitrary channel predicates as shown by the next example.6

Example 1 Consider the distributed computation shown in Figure 1. Consider the channel pred-icate | \There are an odd number of messages in the channel." Note that this channel predicateis not dynamically monotonic. Assume that the local predicates are true only at points C[1] andD[1] for P1, and C[2] and D[2] for P2. It is easily veri�ed that the GCP is true in the cut C andD but not in their greatest lower bound.
C[1]

C[2]

D[1]

D[2]

P1

P2

time

S
S’

RFigure 1: An example to show that the set of cuts satisfying a GCP is not a lattice.We now show that the �rst cut satisfying a GCP is always well de�ned only if channel predicatesare restricted to be monotonic. We restrict our consideration to those GCPs which can possibly betrue for at least one run of some program.Theorem 2.5 The �rst cut that satis�es GCP is always well de�ned only if all channel predicatesin the GCP are restricted to dynamically monotonic channel predicates.Proof: The proof is by contrary example. Given any GCP that includes at least one non-monotonicchannel predicate, we can construct a program for which there is no unique �rst cut satisfying thatGCP.Figure 1 illustrates the situation we wish to construct. Without loss of generality, let P1 andP2 be two processes from the GCP such that a non-monotonic channel predicate is used for thechannel from P1 to P2. All other processes interact so as to make the remaining channel predicatestrue and then these processes become idle in a consistent cut with local predicates true. Up to thispoint, there has been no activity on the channel from P1 to P2.Since the channel predicate from P1 to P2 is non-monotonic, there exists a channel state forwhich the channel predicate is false, but can be made true both by sending and by receivingmessages. Let S be a set of message sends so that the channel enters this state. The program isconstructed such that P1 performs S on the channel prior to state C[1] . In Example 1, the sequenceS consists of two arbitrary messages. The local predicate on P1 then becomes true for the �rsttime in state C[1] . The local predicate on P2 becomes true for the �rst time in state D[2] . SinceP2 has not received any messages from P1 by state D[2], the channel predicate is not true alongthe cut de�ned by C[1] and D[2] .Let S 0 be the set of additional messages that can be sent so that the predicate becomes true.The process P1 sends these messages between states C[1] and D[1] . In addition, let R be the setof messages that can be received so that the predicate can be made true. The process P2 receivesR between states D[2] and C[2] . Note that both cuts C and D are consistent cuts. Furthermore,all local and channel predicates are true on these cuts.It is clear that C 6� D and D 6� C. Since the local predicates on P1 and P2 were not true atany earlier point in this program, there is no cut which is a lower bound of both C and D and that7

Non-checker
Process 1

Non-checker Non-checker
Process 2 Process N

queue 1
queue N

Process

Checker

CheckerFigure 2: The checker/non-checker GCP detector.satis�es the GCP.Therefore, the �rst cut to satisfy this GCP is not well de�ned for this program. 23 GCP Algorithm: The Non-Checker ProcessesThe method of detection of the GCP is divided among checker and non-checker processes. Thenon-checker processes are used in the computation and have local predicates and channels withpredicates. The checker process is the process that determines if these predicates are true in thesame global state. Figure 2 shows the general idea with checker process queues to collect detec-tion messages from the non-checker processes. As Theorem 1 suggests, detection of a generalizedconjunctive predicate can be achieved by detecting whether or not local states and states of chan-nels in which predicates are true are all concurrent. To do this requires that processes provideinformation as to when local predicates are true. If the local processes also provide the send andreceive sequences for all channels, then channel predicates can be checked. If all predicates are trueconcurrently, then the GCP is true.To perform this concurrency detection, our algorithm makes use of lcmvectors [7]. An lcmvector,or last causal message vector, operates similar to Mattern's[14] and Fidge's[5] vector clocks exceptthat the vector is only incremented when a process sends a program message. The lcmvectorprovides the property:�! � i� �:u < �:v, where � and � are states in processes Pi and Pj (i 6= j) and u andv are the respective lcmvectors at these statesThe lcmvector contains one component for each process that is involved in the GCP. Thelcmvector is attached to all program messages sent by each process. Program messages are part ofthe underlying computation and are not part of the detection algorithm.The non-checker processes monitor local predicates. These processes also maintain informationabout the send and receive channel history for all channels incident to them, that is, connections8

to all processes for which they can send or receive messages. The non-checker processes send amessage to the checker process whenever the local predicate becomes true for the �rst time sincethe last program message was sent or received. This message is called a local snapshot and is ofthe form: (lcmvector; incsend; increcv)where lcmvector is the current lcmvector while incsend and increcv are the list of messages sentto and received from other non-checker processes since the last message for predicate detection wassent. An algorithm for this process is given in Figure 3.varincsend, increcv: array of messages;lcmvector: array [1..n] of integer;initially 8j : j 6= i :lcmvector[j] = 0;lcmvector[i] = 1;�rs
ag = true;incsend = increcv = ;;for sending m dosend (lcmvector, m);lcmvector[i]++ ;�rst
ag:=true;incsend:= incsend � m; /* concatenate */upon receive (msg lcmvector, m) dofor (all j) lcmvector[j]:=max(lcmvector[j], msg lcmvector[j]);�rst
ag:=true;increcv:= increcv � m; /* concatenate */upon (local pred = true ^ �rst
ag) do�rst
ag := false;send (lcmvector, incsend, increcv) to the checker process;incsend:=increcv:=;;Figure 3: Non-checker process algorithm for Pi4 GCP Algorithm: The Checker ProcessThe checker process is responsible for searching for a consistent cut that satis�es the GCP. Itspursuit of this cut can be most easily described as considering a sequence of candidate cuts. If thecandidate cut either is not a consistent cut, or does not satisfy some term of the GCP, the checkercan e�ciently eliminate one of the states along the cut. The eliminated state can never be partof a consistent cut that satis�es the GCP. The checker can then advance the cut by consideringthe successor to one of the eliminated states on the cut. If the checker �nds a cut for which nostate can be eliminated, then that cut satis�es the GCP and the detection algorithm halts. Thealgorithm for the checker process is shown in Figure 4.4.1 Data StructuresThe checker receives local snapshots from the other processes in the system. These messages areused by the checker to create and maintain data structures that describe the global state of thesystem for the current cut. The data structures are divided into three categories: queues of incoming9

S[1..n,1..n], R[1..n,1..n] : sequence of message;cp[1..n,1..n] : fX, F, Tg;cut : array[1..n] of struct fv : vector of integer;color : fred, greeng;incsend, increcv : sequence of messages ginitiallycut[i].v = 0; cut[i].color = red; S[i,j] = ;; R[i,j] = ;;repeat/* advance the cut */while (9 i : (cut[i].color = red) ^ (q[i] 6= ;))cut[i] := receive(q[i]);paint-state(i);update-channels(i);endwhile/* evaluate a channel predicate */if (9 i,j : cp[i,j] = X ^ cut[i].color = green ^ cut[j].color = green) thencp[i,j] := chanp(S[i,j]);if (cp[i,j] = Fs) cut[j].color := red;else if (cp[i,j] = Fr) cut[i].color := red;endifuntil (8 i : cut[i].color = green) ^ (8 i,j : cp[i,j] = T)detect := true;Figure 4: GCP Detection Algorithm, Checker Processmessages, those data structures that describe the state of the processes, and those data structuresthat include information describing the state of the channels.4.1.1 Incoming Message QueuesThe checker relies on being able to selectively receive a message from a speci�c process. For example,at some phase in the algorithm the checker may ask to receive a message sent speci�cally by processi. Furthermore, we require that messages from an individual process be received in FIFO order.These capabilities are provided by most modern message passing systems, such as PVM [10] andMPI [21]. If the message passing system did not provide this support, it can be easily constructedusing a set of FIFO queues.We abstract the message passing system as a set of n FIFO queues, one for each process. Weuse the notation q[1..n] to label these queues in our algorithm. We abstract non-blocking messagereception as the ability to compare a queue to the empty set.4.1.2 Per-Process DataThe checker maintains information describing one state from each process Pi. The collection of thisinformation is organized into a vector:cut : array[1..n] of struct process dataThe process data structure consists of a local snapshot (see Section 3) plus the following item:10

� color : fred, greeng | The color of a state is either red or green and indicates whether thestate has been eliminated in the current cut. A state is green only if it is concurrent with allother green states. A state is red only if it cannot be part of a consistent cut that satis�esthe GCP.4.1.3 Per-Channel DataThe checker maintains three data structures for each channel:� S[1..n, 1..n] : sequence of messages | The pending-send list (or \S" list). This list is anordered list of messages. The list contains all those messages that have been sent on thechannel, but not yet received according to the current cut.� R[1..n, 1..n] : sequence of messages | The pending-receive list (or \R" list). The listcontains each message that has been received from the channel, but not yet sent according tothe current cut. Since the current cut is not necessarily consistent, states along the cut maybe causally related, and hence it is possible for one state on the cut to be after a message hasbeen received, and yet have another state on the cut from before that message was sent. Ifall states are part of a consistent cut, then every R list is empty.� cp[1..n, 1..n] : fX,Fs,Fr,Tg| The CP-state
ag. When a channel predicate is evaluated, itsvalue is written into the CP-state
ag. The value of a channel predicate cannot change unlessthere is activity along the channel. Hence, the checker can avoid unnecessarily recomputingchannel predicates by recording which predicates have remained true or false since the lasttime the predicate was evaluated. If the CP-state
ag has any value other than X , then thatvalue must be the value of the channel predicate for the current cut. The CP-state
ag cantake the value X at any time. The value X indicates the current value of the channel predicateis unknown.4.2 Checker AlgorithmThere are two main activities for the checker inside the repeat loop shown in Figure 4. The �rstactivity advances the current cut. The second activity evaluates channel predicates for channelsbetween two concurrent states in the cut. Advancing the current cut is given a higher priority thanevaluating channel predicates. Channel predicates are only evaluated either when the current cutis a consistent cut satisfying all local predicates, or when the checker cannot advance the currentcut because su�cient messages have not yet arrived from the processes. The checker continuesexecuting the two activities until the GCP is detected. As an obvious extension, if some processhas terminated and none of the states received from that process satisfy the GCP, the checker canabort the detection algorithm.4.2.1 Advancing the CutThe aim of this activity is to �nd a new candidate cut. However, we can advance the cut only if wehave eliminated at least one state along the current cut and if a message can be received from thecorresponding process. The data structures for the processes and channels are updated to re
ectthe new cut. This is done by the procedures paint-state and update-channels respectively.We �rst consider the procedure paint-state. This procedure is shown in Figure 5. The parameteri is the index of the process from which a local snapshot was most recently received. The color ofcut[i] is temporarily set to green. It may be necessary to change some green states to red in order11

to preserve the property that all green states are mutually concurrent. Hence, we must comparethe vector clock of cut[i] to each of the other green states. Whenever the states are comparable, thesmaller of the two is painted red. Observe that once we paint cut[i] red, we can stop attempting topaint other states red. If this state is smaller than any green state, then by transitivity it cannotbe larger than any of the other green states which are known to be mutually concurrent.paint-state(i)cut[i].color := green;for (j : cut[j].color = green) doif (cut[i].v < cut[j].v) thencut[i].color := red;returnelse if (cut[j].v < cut[i].v) cut[j].color := red;endifendfor Figure 5: Procedure paint-stateWe now consider the procedure update-channels . This procedure is shown in Figure 6. Aswith paint-state, the parameter i is the index of the process from which a local snapshot was mostrecently received. The checker updates the value of the CP-state
ags according to the activity incut[i].incsend and cut[i].increcv . In the worst case, each message sent or received causes the CP-state
ag to be reset to X. The checker will never change the CP-state
ag to any value other thanX while advancing the cut. As an optimization, the checker can take advantage of monotonicitywhen updating the channel-state vector. If a channel predicate is false along the current cut, andthat predicate is currently send-monotonic, then it will remain false when more messages are sent.There will be no need to evaluate the predicate until at least one message receive occurs on thechannel. There is a similar optimization for states when the predicate is receive-monotonic.The incremental send and receive histories from the snapshot are used to update the datastructures S[...] and R[...] as follows. Let Pj be the destination for some message in the incrementalsend history. If this message appears in R[i,j] , then delete it from R[i,j] . Since this message hasalready been received, it is not in the channel according to the current cut. If the message doesnot appear in R[i,j], then the message is appended to S[i,j]. An analogous procedure is followedfor each message in cut[i].increcv.4.2.2 Evaluating Channel PredicatesThe second major activity of the checker is to evaluate unknown channel predicates. In Figure 4 thefunction chanp(S[i,j]) is used for this purpose. A channel predicate is only evaluated for channelsbetween two green states. Since those states are known to be concurrent, it is clear that the R listfor the channel will be empty. All messages that have been received by Pj must have already beensent by Pi. Hence, the S list contains a sequence which exactly represents the state of the channel.It should be noted that for many important channel predicates, the time to evaluate the channelpredicate is constant. For example, the predicates, \The channel is empty", \The channel has k ormore messages" and \The minimum time stamp of messages in the channel is at least k" can allbe evaluated in constant time if appropriate data structures are used to represent the messages inthe S list. 12

update-channels(i)/* for all messages sent by Pi to Pj */for (j : cut[i].incsend[j] 6= ;) doS0 := S[i,j];R0 := R[i,j];S[i,j] := S0 � (cut[i].incsend[j] - R0); /* concatenate */R[i,j] := R0 � cut[i].incsend[j];if (cp[i,j] = T _ cp[i,j] = Fr) cp[i,j] := X;endfor/* for messages received by Pi from Pj */for (j : cut[i].increcv[j] 6= ;) doS0 := S[j,i];R0 := R[j,i];R[j,i] := R0 � (cut[i].increcv[j] - S0); /* concatenate */S[j,i] := S0 � cut[i].increcv[j];if (cp[j,i] = T _ cp[j,i] = Fs) cp[j,i] := X;endfor Figure 6: Procedure update-channels5 Correctness of the AlgorithmNow that the algorithm for detection of a GCP has been given, the correctness of this algorithmwill be shown. First, some properties of the program are given that will be used in demonstratingsoundness and completeness.Lemma 5.1 The following is an invariant of the program assuming that the function paint-stateis atomic. 8i; j :: (cut[i]:color= green) ^ (cut[j]:color = green)) cut[i]kcut[j]Proof: Initially, the invariant is true because cut[i]:color = red for all i. The color of cut[i] is setto green only in the paint-state function. In that function, cut[i] is compared with all cut[j] whosecolor are green. If cut[i] is not concurrent with cut[j], then one of them is painted red preservingthe invariant assertion after the paint-state function. 2The following lemma is crucial in making the detection algorithm e�cient. It enables thealgorithm to discard any red colored state.Lemma 5.2 For all i if cut[i]:color is red, then there does not exist any global cut satisfying theGCP that includes cut[i].Proof: The proof is by induction on the number of states which have been painted red. Thestatement is true initially because cut[i] is initialized to a �ctitious state and there cannot exista global cut that includes this state. Assume that the lemma is true for all states painted red sofar. The variable cut[i] is painted red either in function paint-state or after evaluation of a channelpredicate. We consider both of these cases:Case 1 cut[i] is painted red in paint-state function. | This implies that there exists j such thatcut[i] < cut[j]. We show that there is no state in process Pj which is a part of a global cut13

with cut[i] satisfying the GCP. From the program, a cut is advanced to the next state onlyif the current state is red. This implies that any predecessor of cut[j] is red, and therefore,by our induction hypothesis, ineligible for a global cut satisfying the GCP. States cut[j] andcut[i] cannot be part of any global state since cut[i] < cut[j]. Further, by our assumptionof FIFO between non-checker processes and the checker process, all states later than cut[j]in the queue for Pj are greater than cut[j] and so also greater than cut[i]. This implies thatno other candidate states from Pj can be concurrent with cut[i]. Therefore, cut[i] can beeliminated.Case 2 cut[i] is painted red during evaluation of channel predicates. | This implies that eithercp[j; i] is false and the predicate can not be made true by process j sending more messages(cp[j; i] = Fs), or that cp[i; j] is false and can not be made true by process j receiving moremessages (cp[i; j] = Fr). We show that there is no state in process Pj which is part of aglobal cut with cut[i] satisfying the GCP. As in Case 1, any predecessor of cut[j] is red, andtherefore, ineligible for a global cut satisfying the GCP. States cut[j] and cut[i] cannot bepart of any global state satisfying the GCP since the channel predicate is false along a cutincluding these states. This implies that the channel predicate is also false for cut[i] and anysuccessor of cut[j]. Therefore, cut[i] can be eliminated.2The following lemma describes the role of S[i; j] and R[i; j]. We use auxiliary variables cut[i]:Sent[j]and cut[i]:Rcvd[j]. These variables are used only for the proof and not in the actual program. Thevariable cut[i]:Sent[j] is the sequence of all messages sent by the process i to process j until cut[i].Similarly, cut[i]:Rcvd[j] is the set of all messages received by process Pi from process Pj until cut[i].Note that these are complete histories, unlike incsend and increcv used in the program.Lemma 5.3 The following is an invariant of the program outside the body of while loop in Figure 4.S[i; j] = cut[i]:Sent[j]� cut[j]:Rcvd[i]R[i; j] = cut[j]:Rcvd[i]� cut[i]:Sent[j]Proof: We prove the claim for S[i; j]. The proof forR[i; j] is analogous. The invariant of Lemma 5.3is initially true because all channels are empty and S[i; j] is initialized to empty. Assume that it istrue for all previous cuts. We show that on advancing the cut, the invariant stays true. Using theinduction hypothesis we state:S0[i; j] = cut0[i]:Sent[j]� cut0[j]:Rcvd[i] and: R0[i; j] = cut0[j]:Rcvd[i]� cut0[i]:Sent[j]by letting Pi be the process along which the cut is advanced. Further, let cut0[i] be the previousstate which has red color and cut[i] be the new state. From the program text, cut[i]:incsend[j]contains all messages sent from Pi to Pj between cut0[i] and cut[i]. Therefore,cut[i]:Sent[j] = cut0[i]:Sent[j][cut[i]:incsend[j]:Also, cut[j]:Rcvd[i] has not changed. For proof purposes we use [rather than �, concatenation.Since the latter is stricter, the invariant holds for the algorithm. We now compute:cut[i]:Sent[j]� cut[j]:Rcvd[i]= (cut0[i]:Sent[j][cut[i]:incsend[j])� cut[j]:Rcvd[i]= (cut0[i]:Sent[j]� cut[j]:Rcvd[i])[(cut[i]:incsend[j]� cut[j]:Rcvd[i])14

The last equality is derived by distributing the set subtraction over append. Therefore, from theinduction hypothesis on S0[i; j], it follows thatcut[i]:Sent[j]� cut[j]:Rcvd[i] = S 0[i; j][(cut[i]:incsend[j]� cut[j]:Rcvd[i]): (1)We now note that by the induction hypothesis on R0[i; j],R0[i; j] = cut[j]:Rcvd[i]� cut0[i]:Sent[j]:Therefore, by property of set subtraction:R0[i; j] = cut[j]:Rcvd[i]� (cut0[i]:Sent[j]\ cut[j]:Rcvd[i]):That is, cut[j]:Rcvd[i] = R0[i; j][(cut0[i]:Sent[j]\ cut[j]:Rcvd[i]):We substitute this into Equation 1 to obtain:cut[i]:Sent[j]� cut[j]:Rcvd[i]= S 0[i; j][(cut[i]:incsend[j]� (R0[i; j][(cut0[i]:Sent[j]\ cut[j]:Rcvd[i])))= S 0[i; j][(cut[i]:incsend[j]�R0[i; j])The last equality follows from the fact that cut[i]:incsend[j] and cut0[i]:Sent[j] are disjoint. Notethat update-channels performs an equivalent operation. 2The next Lemma shows that if cp[i; j] has a value other than X , then it has the correct valueof chanp(cut[i]:Sent[j]� cut[j]:Rcvd[i]).Lemma 5.4 For all i; j, if cut[i] and cut[j] are green, then(cp[i; j] 6= X)) cp[i; j] = chanp(cut[i]:Sent[j]� cut[j]:Rcvd[i])Proof: Our proof is again based on induction on the cut. The assertion is true in the initial cutbecause cp[i; j] = X .The assertion can turn false only when either the cut is advanced, or the value of cp[i; j] is setto T , Fs, or Fr for the current cut. We do a case analysis.Case 1 If the cut is advanced, a channel predicate can be a�ected only if some messages have beensent or received since the last evaluation. If the channel state has not changed due to sends,that is, cut[i]:incsend[j] = ; then cp[i; j] has not changed. Also, if cut[j]:increcv[i] = ; thencp[i; j] has not changed. Thus, the assertion is maintained. Now assume that a message hasindeed been sent. If the previous value was T , then the new state is unknown and thereforecp[i; j] is set to X . If the previous value was X , it is not changed and the assertion still holds.If the previous value was Fs, then the additional sends performed by process i can not makethe predicate true. Hence it should stay Fs. Finally, if the previous value was Fr, cp[i; j] isset to X . Thus, if a message is sent, the invariant is preserved. An analogous argument showsthat the invariant is preserved when messages are received.Case 2 The value of cp[i; j] is set to a value other than X only if it is currently X and if both cut[i]and cut[j] are green. Furthermore the value is set by the expression: cp[i; j] := chanp(S[i; j]).From Lemma 5.3, this is equivalent tocp[i; j] := chanp(cut[i]:Sent[j]� cut[j]:Rcvd[i]):15

Thus, the invariant holds. 2We are now ready to prove that our algorithm is sound and complete. The next theorem saysthat our algorithm never makes a false detection. If the detect
ag is true, then the current cutindeed satis�es the GCP.Theorem 5.5 (Soundness) If detect
ag is true then there exists a cut in which the GCP is true.Moreover, the cut produced by the algorithm is the �rst cut for which the GCP is true.Proof: The detect condition evaluating to true is equivalent to (8i :: cut[i]:color = green)^(8i; j ::cp[i; j] = T). By the algorithm of the non-checker process, li(cut[i]) holds. From Lemma 5.1 for alli; j :: cut[i]jjcut[j]. It remains to be shown that all channel predicates are true. From the detectcondition 8i; j :: cp[i; j] = T . This implies that all channel predicates are true from Lemma 5.4.Thus, the cut satis�es the GCP.We now show that this is the �rst such cut. Observe that the cut is advanced only when cut[i]is red. From Lemma 5.2, cut[i] cannot be part of any cut that makes the GCP true. Since all cutsprevious to the current cut have at least one state red, it follows that the detected cut is the �rstcut in which the GCP is true. 2Theorem 5.6 (Completeness) Let C be the �rst cut that satis�es the GCP. Then the GCP algo-rithm sets detect
ag to be true with C as the cut.Proof: Since C is the �rst cut that satis�es the GCP, all the earlier states cannot make the GCPtrue. We show that all earlier states are painted red. The proof is by induction on the number oftotal states that are before this cut. If there are no states, then the claim is true. Assume thatk states have been painted red. Consider the last state painted red. There is at least one morestate ahead of it. This makes the while condition true and the cut is advanced to the next state. Ifthis next cut is not equal to the cut C, then there exists at least one violation of the concurrencyrelation or channel predicate in the current cut. Therefore, for all cuts preceding C, at least, onestate is painted red, and because of this, the cut will be advanced. Eventually, the checker willadvance the cut to C. By Lemma 5.2, all states must be green. By Lemma 5.4, no CP-state
agscan be set to F. Eventually, all CP-state
ags will be set to T, since the checker can not enter thewhile loop. At this point, the checker will exit the repeat loop, and the detect
ag will be set totrue. 25.1 Overhead analysisWe do overhead analysis only for the checker process. We use the following parameters:N : Total number of processes in the systemn: processes involved in the GCP (n � N)m: maximum number of messages sent/received by any processTime complexity: There are three components to the computation of the checker process.The �rst two components are the functions paint-state and update-channels which are called whenthe cut is advanced. The third component is the evaluation of channel predicates. We describe thetime complexity of each of these components.Note that it takes only two comparisons to check whether two vectors are concurrent [14].Hence, each invocation of paint-state requires O(n) time steps. This function is called at most oncefor each state and there are at most mn states. Therefore, O(mn2) time is spent in the paint-statefunction. 16

The function update-channels performs two operations: subtracting and appending of messagesequences. If the sequences are ordered, both of these operations require linear time in the sizeof the sequences. Since each process sends and receives at most m messages, the sum of the sizesof these sequences is O(m). Therefore, the time spent in a single invocation of update-channels isO(m). Since there are mn states, the total time spent in this function is O(m2n).The value of a channel predicate can change only when a message is sent or received on thechannel. Thus, there are at most two evaluations of the predicate per message. There are at mostmn messages. If each predicate evaluation takes time proportional to the size of the channel, theneach predicate evaluation is O(m). Therefore, the total amount of time required to evaluate channelpredicates is O(m2n).Based on this evaluation, the time complexity of the checker process is O(n2m+m2n). However,it should be observed that, in practice, the time complexity is much closer to O(n2m). First, thetime required for update-channels is typically much smaller thanO(m2n). In fact for FIFO channels,the total computation for update-channels is O(mn). Second, evaluating a channel predicate is oftena constant time operation as discussed in Section 4.2.2. In these cases, the total time spent by thechecker process evaluating channel predicates is also O(mn).Space complexity: The main space requirement of the checker process is the bu�er for thelocal snapshots. Each local snapshot consists of an lcmvector and incremental send and receivehistories. The lcmvector requires O(n) space. Note that strictly speaking, each lcmvector mayrequire O(n logm) bits, but we assume that storage and manipulation of each component is aconstant time/space overhead. This is true in practice because one word containing 32 bits wouldbe su�cient to capture a computation with 232 messages. Since there are at most O(mn) localsnapshots, O(n2m) total space is required to hold the component of local snapshots devoted tovector clocks.Typically, evaluating a channel predicate does not require the entire contents of the messages.We assume that the relevant information from each message can be encoded in a constant numberof bits. Hence the total space required for all incremental send and receive histories is O(mn).Therefore, the total amount of space required by the checker process is O(mn2).Message Complexity: Every process sends O(m) local snapshots to the checker process.Using the same assumptions as made for space complexity, it follows that O(mn) bits are sent byeach process.6 Implementation and ExperimentationWe have implemented our GCP detection algorithm using the Parallel Virtual Machine (PVM)message passing infrastructure [10]. PVM provides asynchronous sending/receiving of messages,mechanisms for spawning jobs on remote machines, and a distributed \signal" mechanism thatallows Unix process signals to be delivered to remote processes. PVM is widely used for both paralleland distributed applications. Ports of PVM are available for most Massively Parallel Processors(MPPs) and networked workstations. We augment the standard PVM routines with vector clocks,and with the capacity to communicate with a central checker process. The interaction with thechecker process is transparent to the programmer. The implementation is in the C++ programminglanguage, and uses PVM version 3.1. We have tested our implementation on a homogeneous networkof ten IBM RS/6000 model 350 workstations. 17

6.1 Distributed Termination DetectionWe demonstrate the GCP detection algorithm with the distributed termination problem. Theapplication consists of a set of interacting processes. Each process performs a random amount ofwork, and then, with probability p, sends a message to another (randomly selected) processor. Theprocess then becomes idle and waits to receive an incoming message. The problem that must besolved is to determine when the computation has terminated. The condition for termination canbe elegantly described as a GCP:1. All processes are in the idle state | this condition is a conjunction of local predicates.2. All channels are empty | this condition is a conjunction of a send monotonic channel predi-cate on each channel.This problem has been well studied, and several solutions have been proposed. In this sectionwe compare the GCP solution to two well known solutions, Dijkstra's algorithm [4] and Misra'salgorithm [17]. Both of these approaches utilize a token that is continually passed along a prede-termined cycle of the processes. In Dijkstra's algorithm, a simple ring is used. The token will visiteach process every trip around the ring, but will not traverse every channel. Dijkstra's algorithmrequires that message delivery be instantaneous.1 In Misra's algorithm, the cycle includes everychannel in the system. Hence, processes are visited by the token multiple times in a single cycle.Misra's algorithm is more expensive, but requires merely that individual channels are FIFO.The application exhibits behavior that is linear in the number of messages sent by each process(the value of m). The execution time for the application is theoretically constant as the number ofprocesses is increased. However since we are limited to only 10 physical processors, the executiontime does increase as more processes are added to the system.The overhead of Dijkstra's algorithm and Misra's algorithm is linear in the number of messagessent. With more messages sent, the token must take more cycles. However, since the processesare typically idle when they receive the token, the e�ective overhead increases only slightly as thenumber of messages is increased.Since evaluating whether a channel is empty can be done in constant time, the GCP implemen-tation has overhead that is linear in the number of messages for this application. This overhead isprincipally observed in the execution time of the checker process.Dijkstra's algorithm is linear in the number of processes, since each process is visited at mostonce during each cycle of the token. However both Misra's algorithm and the GCP technique arequadratic in the number of processes.26.2 Experimental ResultsWe implemented all three algorithms and executed them on our 10-processor IBM RS/6000 cluster.The 10 machines share a dedicated ethernet subnetwork (10 Mbps). The data was collected whilethe machines were running in multi-user mode, but during periods when the machines were not inuse for other purposes. The programs were compiled with the GNU C and C++ compilers (gccversion 2.5.8) using the -O optimization
ag. PVM version 3.1 was used as the underlying messagepassing medium.1The PVM 3.1 implementation uses UDP messages for interprocessor communication. However, when all processesare mapped to machines the same physical subnet, the aggregate behavior is that message delivery is instantaneous.2Misra's algorithm is actually linear in the number of channels. However, on a fully connected system, there areO(n2) channels. 18

The test application is implemented as follows. The probability of a process sending a messageis held �xed for the duration of the program. Messages are indistinguishable from each other.Processes do not discern from which process a message originated and do not examine the contentsof messages. The behavior of a process is determined solely by the number of messages it receivesand by the behavior of the random number generator. Our implementation is designed so that thedistributed program is pseudo-random, but deterministic. Hence, by controlling the seed used forthe random number generator we can faithfully reproduce the exact application behavior.The amount of work performed between messages is set to zero in this implementation toemphasize the overhead generated by the distributed termination detection algorithm. In realcode, the relative cost of this overhead would depend on the grain size of the computation, andwould presumably be signi�cantly lower.Ten runs were performed with di�erent random number seeds for each data point in �gures 7and 8. The data point is the average time from these ten runs. The same seeds were used for eachof the three con�gurations; the GCP version, Misra's algorithm and Dijkstra's algorithm.
0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
on

ds
)

Number of Processes (n)

GCP
Misra

Djikstra

Figure 7: Time to Detect Distributed Termination as a Function of ProcessesFigure 7 shows the performance of the three algorithms as the number of processes is increased.The data points with more than 10 processes were collected by spawning multiple processes oneach processor. The probability of sending a message was set to 90% for each run. This valuecauses each process, on average, to send 9 messages before terminating. Since the computation ispseudo-random, the actual number of messages sent varies from run to run and from process toprocess. The GCP detection algorithm demonstrates comparable performance to Misra's algorithmover a large range of system sizes.Figure 8 shows the performance of the three algorithms as the number of messages increases.We held the number of processes �xed at 10, one on each physical machine.3 The X-axis in Figure 83For the GCP implementation, an additional process (the checker) is required. For this version, 11 processes are19

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
on

ds
)

Number of Messages (m)

GCP
Misra

Djikstra

Figure 8: Time to Detect Distributed Termination as a Function of Messagesindicates the expected value of the number of messages sent by each process. Again, due to thepseudo-random nature of the application, the actual number of messages sent varies. The datapoints represent the average from 10 runs with di�erent random number seeds. All three versionsdemonstrate time complexity that is linear in the number of messages sent. However, the costper message for the GCP algorithm is signi�cantly larger than that for either Dijkstra's or Misra'salgorithm. In part, this larger cost is attributable to the quality of our implementation. A morehighly optimized version should reduce this cost appreciably. However, even as it stands, we canargue that the performance of our implementation is reasonable for coarse grained computations.The slope of the line in Figure 8 is approximately 0.08 seconds per message.4 Hence, if the amountof computation performed by an application signi�cantly exceeds 80 milliseconds for each messagesent, then the relative cost of the GCP detection algorithm will be negligible.7 ConclusionsThe ability to detect an arbitrary conjunction of local and channel predicates is su�cient to detectany global predicate that can be expressed using boolean connectives. We have presented a de�ni-tion for Generalized Conjunctive Predicates and an algorithm for detecting an important class ofthese predicates, those with monotonic channel predicates.The concept of monotonicity for channel predicates is useful for two important reasons. First,monotonicity is both a necessary and su�cient condition for the set of consistent cuts satisfyingglobal properties to contain an in�mum under the usual ordering. That is, the notion of theused, and one machine hosts two processes.4Recall, this �gure is based on 10 processes. With more processes, the value would be higher.20

�rst consistent cut satisfying a GCP is always well de�ned if and only if channel predicates aremonotonic. Second, monotonicity allows an e�cient algorithm to detect GCPs.We have also presented an e�cient algorithm to detect the �rst consistent cut in which a GCPis true. Our algorithm requires O(n2m + m2n) time in the worst case and O(n2m) for manyinteresting problems. This algorithm has been implemented in a programming environment usingPVM and demonstrated on a network of IBM RS/6000 workstations.References[1] �O Babao�glu, and K. Marzullo, \Consistent Global States of Distributed Systems: FundamentalConcepts and Mechanisms," Distributed Systems , 2nd Edition, editor Sape Mullender, AddisonWesley, New York, NY. 1994, pp. 55-96.[2] K. Chandy, and L. Lamport, \Distributed Snapshots: Determining global states of distributedsystems," ACM Transactions on Computer Systems, no. 1, pp. 63-75, February 1985.[3] R. Cooper and K. Marzullo, \Consistent Detection of Global Predicates," Proc. of theACM/ONR Workshop on Parallel and Distributed Debugging, Santa Cruz, California, pp.163 { 173, May 1991.[4] E. W. Dijkstra, W. H. J. Feijen, and A. J. M. VanGasteren, \Derivation of a TerminationDetection Algorithm for Distributed Computation," Inf. Proc. Letters,, Vol. 16, June 1983,pp. 217-219.[5] C. J. Fidge, \Partial Orders for Parallel Debugging," Proceedings of the ACM SIG-PLAN/SIGOPS Workshop on Parallel and Distributed Debugging, also SIGPLAN Notices ,Vol. 24. No. 1. January, 1989. pp. 183-194.[6] E. Fromentin, M. Raynal, V. K. Garg, and A. Tomlinson, \On the Fly Testing of RegularPatterns in Distributed Computations," Proceedings of the 23rd Int. Conference on ParallelProcessing, Pennsylvania State University, August 1994.[7] V. K. Garg, and A. Tomlinson, \Using Induction to Prove Properties of Distributed Programs,"Proceedings of the Symposium on Parallel and Distributed Processing, Dallas, Texas, December,1993, pp.478-485.[8] V. K. Garg, and B. Waldecker, \Detection of Weak Unstable Predicates in Distributed Pro-grams," IEEE Transactions on Parallel and Distributed Systems, Vol. 5, No. 3, March 1994,pp. 299-307.[9] V. K. Garg and B. Waldecker, \Detection of Unstable Predicates in Distributed Programs,"Proc. 12th Conference on the Foundations of Software Technology & Theoretical ComputerScience, New Delhi, India, Lecture Notes in Computer Science 652, Springer-Verlag, Dec.1992, pp. 253{264.[10] A. Geist, et. al., PVM 3 Users' Guide and Reference Manual, Oak Ridge National Laboratory,May, 1993.[11] D. Haban and W. Weigel, \Global events and global breakpoints in distributed systems," Proc.of the 21st Intl. Conf. on System Sciences, Vol. 2, Jan 1988, pp 166 { 175. 1990, pp. 134 { 141.21

[12] M. Hur�n, N. Plouzeau and M. Raynal, \Detecting Atomic Sequences of Predicates in Dis-tributed Computations," Proceedings of the ACM/ONR Workshop on Parallel and DistributedDebugging, San Diego, California, May, 1993.[13] L. Lamport, \Time, Clocks, and the Ordering of Events in a Distributed System," Communi-cations of the ACM, vol. 21, no. 7, pp. 558-565, July 1978.[14] F. Mattern, \Virtual time and global states of distributed systems," Parallel and DistributedAlgorithms: Proceedings of the International Workshop on Parallel and Distributed Algorithms,Elsevier Science Publishers B. V., 1989, pp. 215{226.[15] Y. Manabe, and M. Imase, \Global Conditions in Debugging Distributed Programs," Journalof Parallel and Distributed Computing, Vol. 15, pp. 62-69, 1992.[16] B. P. Miller and J. Choi, \Breakpoints and Halting in Distributed Programs," Proceedingsof the 8th International Conference on Distributed Computing Systems, San Jose, California,June 1988, pp. 316{323.[17] J. Misra, \Detecting Termination of Distributed Computation Using Markers," Proc. of the2nd annual ACM Symposium on Principles of DC , Aug, 1983, pp. 290-294.[18] R. Schwartz and F. Mattern, \Detecting Causal Relationships in Distributed Computations:In Search of the Holy Grail," SFB124-15/92, Department of Computer Science, University ofKaiserslautern, Germany, December 1992.[19] M. Spezialetti and P. Kearns, \E�cient Distributed Snapshots," Proceedings of the 6th Inter-national Conference on Distributed Computing Systems,, 1986, pp. 382-388.[20] A.I. Tomlinson and V. K. Garg, \Detecting Relational Global Predicates in Distributed Sys-tems," Proc. 3rd ACM/ONR Workshop on Parallel and Distributed Debugging, San Diego,California, May 1993, pp. 21{31.[21] MPI: A Message-Passing Interface Standard, Message Passing Interface Forum, May, 1994.
22

