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Abstract

This paper discusses efficient detection of global predicates in a distributed program. Pre-
vious work in efficient detection of global predicates was restricted to predicates that could be
specified as a boolean formula of local predicates. Many properties in distributed systems, how-
ever, use the state of channels. In this paper, we introduce the concept of a channel predicate
and provide an efficient algorithm to detect any boolean formula of local and channel predi-
cates. We define a property called monotonicity for channel predicates. Monotonicity is crucial
for efficient detection of global predicates. We show that many problems studied earlier such as
detection of termination and computation of global virtual time are special cases of the problem
considered in this paper. The message complexity of our algorithm is bounded by the number of
messages used by the program. The main application of our results are in debugging and testing
of distributed programs. Our algorithms have been incorporated in a distributed programming
environment which runs on a network of IBM RS/6000 Workstations under AIX with the PVM
environment.

1 Introduction

A distributed program is one that runs on multiple processors connected by a communication
network. The state of such a program is distributed across the network and no process has access
to the global state at any instant. Detection of a global predicate, that is, a condition that depends
on the state of the entire system, is a fundamental problem in distributed computing. This problem
arises in many contexts such as designing, testing and debugging of distributed programs.

Previous work has described algorithms for detecting stable and unstable global predicates
[2, 3, 6, 8, 9, 11, 13, 14, 15, 16, 20]. See [1, 18] for surveys of stable and unstable predicate
detection. Stable predicates are those that never become false once they are true. The often
cited examples of stable predicates are deadlock and termination. For example, a system that has
terminated remains in this state. Chandy and Lamport’s method [2] for detecting a global predicate
involves periodically taking a global snapshot of the state of the system.
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Unlike stable predicates, unstable predicates may alternate between true and false values.
Cooper and Marzullo [3] presented a method for detecting general predicates which included un-
stable predicates. Their approach, though, requires O(k™) time where k is the maximum number
of events a monitored process has executed and n is the number of processes. In particular, their
algorithm checks all possible global states, whereas ours does not.

Manabe and Imase [15] presented a method for detecting predicates, including channel pred-
icates, using a replay approach. This approach requires two identical runs and restricts channel
predicates to those detectable by a process. Our approach requires only a single run. Further-
more, our channel predicates are more general because they also include predicates that cannot be
detected by a single process.

Garg and Waldecker [8] presented a method for detecting weak unstable conjunctive predicates
where local processes check for their own predicate and send a message to a global predicate checker
whenever the predicate becomes true between application messages.

Our detection of global predicates extends the algorithms used in the detection of weak unstable
predicates [8] to include the state of communication channels. A channel is a uni-directional con-
nection between any two processes through which messages can be passed. A general mechanism
for the detection of channel predicates as part of global predicates is an important characteristic
for distributed debuggers. Furthermore, many classical problems, such as distributed termination,
and bounding of global virtual time can be detected by our algorithm.

The key to making our algorithm efficient is to restrict the channel predicates to a class which
we call monotonic. The basis of this class are send-monotonic predicates and receive-monotonic
predicates. A send-monotonic predicate cannot be made true by sending more messages along the
same channel. For example, consider the condition “The channel is empty.” If this condition is false,
that is, more messages have been sent than received, it cannot be made true by sending still more
messages. A receive-monotonic predicate is analogous. When a receive-monotonic predicate is false,
it can not be made true by only receiving more messages. The generalization of these two classes
of predicates we call dynamically monotonic predicates. A dynamically monotonic predicate can
behave in some states as a send-monotonic predicate and in others as a receive-monotonic predicate.
For example, consider the predicate, “The channel contains exactly 5 messages”. When the channel
contains less than 5 messages, this predicate is receive monotonic. Receiving more messages will
not make the predicate true. If there are more than 5 messages in the channel, then the predicate
is send-monotonic, and sending more messages can not make the predicate true.

We show that dynamic monotonicity is an important key to efficient detection of channel pred-
icates. In any global state in which the predicate is false, we can be certain of at least one process
which must make further progress before the channel predicate can become true. Monotonicity
allows us to guarantee that progress by the other processes can not make the predicate true. Fur-
thermore, we also show that the first global state satisfying a GCP can only be well defined when
monotonic channel predicates are used.

For distributed debugging, it is important to identify situations that may not have occurred in
the current execution, but because of different clock speeds, could occur in subsequent executions.
Our algorithm can detect these types of situations by testing for the occurrence of a global predicate
among all potentially concurrent states.

In spite of the generality of our technique, the algorithms are efficient enough to be included
in a distributed debugger. The time complexity is O(m*n + mn?) while the space complexity is
O(mn?) where m is the maximum number of application messages generated by a process and n
is the number of processes. We have implemented our algorithm for global predicate detection in
a distributed programming environment. Our initial implementation runs on the Parallel Virtual
Machine (PVM) infrastructure on a network of IBM RS/6000 workstations.



The next section will present the notation, definitions of predicates, and the model, which are
necessary in understanding the method of detecting conjunctive channel predicates. Sections 3
and 4 discuss the checker and non-checker processes of our model and their operation. Section 5
demonstrates correctness of the algorithm and Section 6 presents our experimental results.

2 Owur Model

This section presents the concepts and notation of distributed runs, and global, local and channel
predicates.

2.1 Distributed Run

We assume a loosely-coupled message-passing system without any shared memory or a global clock.
A distributed program consists of n processes denoted by {Py,P,...,P,} communicating solely via
asynchronous messages. In this paper, we will be concerned with a single run r of a distributed
program. FEach process P; in that run generates a single execution trace r[i¢] which is a finite
sequence of states, with implied actions between these states. That is, the process P, generates the
trace r[i] = a; 0051 ...k, where a;’s are the local states, and where k is the maximum number
of distinct states in a single process. There are three kinds of events that can occur between these
states — an internal event, sending of a message and reception of a message. Finally, the state of
a process is defined by the value of all its variables including its program counter.

We assume that no messages are lost, altered or spuriously introduced. We do not make any
assumptions about a FIFO nature of the channels. We also define a happened-before relation, ‘—,’
between states similar to that of Lamport’s happened-before relation between events [13]. The
happened-before relation can be formally stated as:

a— il
1. a < 3 where < means occurred before in the same process, or

2. o ~ 3 where ~+ means that the action following « is a send of a message and the action
preceding 3 is a receive of that message, or

3. Iv:ia—=yAy = 8.

The intuition behind the happened-before relation is that there is a message path between two
states for which this relation holds.

2.2 Global Sequence

A run defines a partial order using happened-before on the set of actions and states. In general,
there are many total orders, or linearizations, that are consistent with this partial order. A global
sequence corresponds to a view of the run which could be obtained given the existence of a global
clock. A global sequence, g, is a finite sequence denoted as g = gog; . . . gr, Where g; is a global state
for 0 < ¢ < k. Each ¢; consists of a vector of process and channel states. This definition is the
same as that of Chandy and Lamport[2]. In addition to global states, we use local snapshots at a
process to mean the local state and the history of activity of all channels incident to that process.



2.3 Global predicates

The concept of concurrency is required in the detection of global predicates. Two states for which
the happened-before relation does not hold in either direction are said to be concurrent. That is,
there exists a run with local clocks running at particular speeds where two concurrent states can
be made to occur at the same physical time. The symbol, ||, is used to represent concurrency. The
relationship can be formally stated as:

al|fe(arr N G+4aq)

Given a set of n states, if this condition holds for all pairwise combinations of the states, then
this set forms a consistent cut. The desire is to detect conditions at processes and within channels
distributed across a system that could potentially occur at the same time. The method of doing
this is by detecting concurrency of the process and channel states for which all the local conditions,
or predicates, are true. The idea of local and channel predicates are now given in more detail.

2.3.1 Local Predicates

A local predicate is defined as any boolean formula on a local process. For any process, represented
by P;, a local predicate is written as /;. [;(«) is used to represent the predicate being true in a
particular state, «, of P;. A process can obviously detect a local predicate on its own.

2.3.2 Channel Predicates

A channel predicate is any boolean function of the state of the channel. The channel state is defined
as the set difference of the send events and the receive events on that channel. Since a channel
is defined as the uni-directional connection between two processes, one process performs all send
events and the other all receive events. We therefore define a channel predicate in terms of all send
events from one process and all receive events at another. The notation for the accumulation of
send and receive events is defined first:

a, 3: states at different processes, P; and P;, or o € r[i] and 3 € r[j].
a.Sent[j]: sequence of all messages sent at or before state a from 7 to j.
B.Rcvd[i]:  sequence of all messages received at or before state 3 from i to j.

A channel predicate can then be written as:
c(a.Sent[j] — f.Revd[i])

or in short notation as:

cla, B) = c(a.Sent[j] — B.Revd]i])

In this paper, we will use the symbol S to represent an arbitrary sequence of sends events from a
process and the symbol R to represent an arbitrary sequence of receive events. It should be noted
that channels have no memory. Hence, any channel state that can be constructed by a combination
of both send events and receive events can also be produced by some other sequence of just send
events.

For efficiency reasons the channel predicates must be at least dynamically monotonic. The
requirement for dynamic monotonicity can be stated formally as:



Definition 2.1 A channel predicate, ¢(S), is said to be dynamically monotonic iff:

VS i =e(S) = (VS it —e(SUS)) V (VR it —=e(S — R))

That is, given any channel state, S, in which the predicate is false, then either sending more
messages is guaranteed to leave the predicate false, or receiving more messages is guaranteed to
leave the predicate false. We assume that when the channel predicate is evaluated in some state .5,
it is also known which of these two cases applies. To model this assumption, we define monotonic
predicates to be 3-valued functions. The predicate can evaluate to:

1. T'— The channel predicate is true for the current channel state.

2. F; — The channel predicate is false for the current channel state. Furthermore, the predicate
will remain false in the presence of an arbitrary set of additional messages sent on the channel
in the absence of receives.

3. F, — The channel predicate is false for the current channel state. Furthermore, the predicate
will remain false in the presence of an arbitrary set of messages received from the channel in
the absence of sends.

Example 1. Detection of empty channels: ¢(S) = (S = 0): Tt is obvious that if this predicate is not
currently true, sending more messages will not make it become true. This send-monotonic
predicate can be used in termination detection, as demonstrated in Section 6.

Example 2. Detection of at least k messages in a channel: ¢(S) = (number of messages in S > k):
This is similar to the detection of empty channels. This receive-monotonic predicate can be
used in buffer overflow detection.

Example 3. Detection of exactly k messages in a channel: ¢(S) = (length of S = k): In any state
where there are more than k& messages in the channel, the predicate cannot be made true by
sending more messages. In any state when there are less than & messages in a channel, the
predicate can not be made true by receiving more messages. The only other possible state is
when the channel has exactly £ messages in it, and in this state the predicate is true.

2.3.3 Generalized conjunctive predicate

We call a predicate detected by our algorithm a generalized conjunctive predicate (GCP). A GCP
is true for a given run if and only if there exists a global sequence for that run in which all conjuncts
are true in some global state. We define the GCP to be conjunctive because the capability to detect
any conjunctive predicate is sufficient to support the detection of any global predicate.

GCP =L NlgN. Ay Nep Aeg A ee)

Lemma 2.2 Let p be any global predicate constructed from local and channel predicates using
boolean connectives. Then, p can be detected using an algorithm that can detect ¢ where q is a
GCP.

Proof: We first write p in disjunctive normal form. Thus, p = (¢1 V...V ¢x) where each ¢; is a pure
conjunction of local predicates. Next, we observe that since p is a disjunction, the detection of any
¢; in a global state will make p true. Finally, since each predicate ¢; is a conjunctive predicate, the
detection of p can be broken down into the detection of any one of k conjunctive predicates. O



The following theorem is useful in detecting a GCP.

Theorem 2.3 ([; ANlg Ay Aer Acg A.e.) true in a run r <

do, g, 0, 1V G (|| o A Li(ag) A elog.Sentlj] — aj.Revd[i]))

Proof: Follows directly from the definition of a conjunctive predicate (concurrency) and the defi-
nition of channel predicates. O

The next theorem describes the structure of cuts satisfying a GCP. Let C be the set of all global
cuts that satisfy a GCP with monotone channel predicates. For two cuts C', D € C, we say that
C < Diff Vi : C[i] = D[i] where C[7] is the state from P; in C' and < means < or =. We show
that the concept of first cut that satisfies a GCP is well-defined. In other words, if two global cuts
satisfy a GCP, then their greatest lower bound also satisfies that GCP.

Theorem 2.4 Let a GCP be such that all of its channel predicates are monotone. Let (C,<) be
the set of all global cuts in which the GCP is true. If C, D € C, then their greatest lower bound is

also in C.

Proof: Let E be defined as F[i] = min(C[i], D[i]) and chanp(E[i], E[j]) denote the value of the
channel predicate between processes P; and P; at states E[i] and E[j]. We show that IV € C, that
is, I also satisfies the GCP. There are three properties that F must satisfy: all local predicates
must be true, all states in £ must be concurrent, and all channel predicates must be true.

1. Since ETi] is either CTi] or D[i], and both [;(C[:]) and [;(D[¢]) hold, it follows that
Vi l;(E[]).
2. Let
I ={i|E[{]=C[i]} and : J = {i|E[:] = D[i]}.
It is clear that Vi,j € I : E[i]||F[j] and that Vi,5 € J : E[i]||E[j]. We now show that
Vi € I,j € J : E[i)||E[j]. Since E[i] = C[i], C[i]||C[j] and D[j] < C[j], it follows that
E[j] 4 FE[i]. Similarly, E[j] = D[j], D[{]||D[j] and C[i] < DIi] implies that E[i] /& F[j].

Therefore, we have shown that F is a consistent cut.

3. We now show that F also satisfies channel predicates. By symmetry, it is sufficient to show
that Vi € 1,5 € J : chanp(F[i], E[j]). Assume for contradiction, that chanp(E[i], E[j]) is
false. By monotonicity of channel predicates, there are two cases:

Case 1 chanp(E[i], E[j]) = Fs — Since E[i] < D[i] and process ¢ can only send on this
channel, this would imply that chanp(D[i], E[j]) is false, hence chanp(DJi], D[j]) is false,
a contradiction.

Case 2 chanp(E[i], E[j]) = F.. — Since F[j] < C[j], this would imply that chanp(CTi], C[j])
is false, a contradiction.

Therefore, all channel predicates must also be true in F.

Therefore, the GCP is satisfied by the cut £. O

The above theorem does not hold for arbitrary channel predicates as shown by the next example.



Example 1 Consider the distributed computation shown in Figure 1. Consider the channel pred-
icate — “There are an odd number of messages in the channel.” Note that this channel predicate
is not dynamically monotonic. Assume that the local predicates are true only at points C[1] and
D[1] for Py, and C[2] and D[2] for P. It is easily verified that the GCP is true in the cut C" and
D but not in their greatest lower bound.

Sy s D

P1

P2 o @
D[2] R C2]

time

Figure 1: An example to show that the set of cuts satisfying a GCP is not a lattice.

We now show that the first cut satisfying a GCP is always well defined only if channel predicates
are restricted to be monotonic. We restrict our consideration to those GCPs which can possibly be
true for at least one run of some program.

Theorem 2.5 The first cut that satisfies GCP is always well defined only if all channel predicates
in the GCP are restricted to dynamically monotonic channel predicates.

Proof: The proofis by contrary example. Given any GCP that includes at least one non-monotonic
channel predicate, we can construct a program for which there is no unique first cut satisfying that
GCP.

Figure 1 illustrates the situation we wish to construct. Without loss of generality, let P, and
P be two processes from the GCP such that a non-monotonic channel predicate is used for the
channel from P to 5. All other processes interact so as to make the remaining channel predicates
true and then these processes become idle in a consistent cut with local predicates true. Up to this
point, there has been no activity on the channel from P; to P.

Since the channel predicate from P to P is non-monotonic, there exists a channel state for
which the channel predicate is false, but can be made true both by sending and by receiving
messages. Let S be a set of message sends so that the channel enters this state. The program is
constructed such that Py performs S on the channel prior to state C[1]. In Example 1, the sequence
S consists of two arbitrary messages. The local predicate on P; then becomes true for the first
time in state C[1]. The local predicate on P becomes true for the first time in state D/2]. Since
P, has not received any messages from P, by state D[2], the channel predicate is not true along
the cut defined by C[1] and D/2].

Let S’ be the set of additional messages that can be sent so that the predicate becomes true.
The process P sends these messages between states C[1] and D[1]. In addition, let R be the set
of messages that can be received so that the predicate can be made true. The process P, receives
R between states Df2] and C/[2]. Note that both cuts C' and D are consistent cuts. Furthermore,
all local and channel predicates are true on these cuts.

It is clear that C' £ D and D £ C'. Since the local predicates on P, and P, were not true at
any earlier point in this program, there is no cut which is a lower bound of both €' and D and that
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Figure 2: The checker/non-checker GCP detector.

satisfies the GCP.
Therefore, the first cut to satisfy this GCP is not well defined for this program. O

3 GCP Algorithm: The Non-Checker Processes

The method of detection of the GCP is divided among checker and non-checker processes. The
non-checker processes are used in the computation and have local predicates and channels with
predicates. The checker process is the process that determines if these predicates are true in the
same global state. Figure 2 shows the general idea with checker process queues to collect detec-
tion messages from the non-checker processes. As Theorem 1 suggests, detection of a generalized
conjunctive predicate can be achieved by detecting whether or not local states and states of chan-
nels in which predicates are true are all concurrent. To do this requires that processes provide
information as to when local predicates are true. If the local processes also provide the send and
receive sequences for all channels, then channel predicates can be checked. If all predicates are true
concurrently, then the GCP is true.

To perform this concurrency detection, our algorithm makes use of lemwvectors [7]. An lemvector,
or last causal message vector, operates similar to Mattern’s[14] and Fidge’s[5] vector clocks except
that the vector is only incremented when a process sends a program message. The lemvector
provides the property:

a — piff cu < B.v, where o and 3 are states in processes P; and P; (i # j) and v and
v are the respective lemvectors at these states

The lemvector contains one component for each process that is involved in the GCP. The
lemvector is attached to all program messages sent by each process. Program messages are part of
the underlying computation and are not part of the detection algorithm.

The non-checker processes monitor local predicates. These processes also maintain information
about the send and receive channel history for all channels incident to them, that is, connections



to all processes for which they can send or receive messages. The non-checker processes send a
message to the checker process whenever the local predicate becomes true for the first time since
the last program message was sent or received. This message is called a local snapshot and is of
the form:

(lemvector, incsend, increcv)

where [emuvector is the current lemvector while tncsend and inerecv are the list of messages sent
to and received from other non-checker processes since the last message for predicate detection was
sent. An algorithm for this process is given in Figure 3.

var
incsend, increcv: array of messages;
lemvector: array [1..n] of integer;

initially Vj : j # i :lemvector[j] = 0;
lemvector[i] = 1;
firsflag = true;
incsend = increcv = {J;

for sending m do
send (lemvector, m);
lemvector[i]++ ;
firstflag:=true;
incsend:= incsend ® m; /¥ concatenate */

upon receive (msg_lcmvector, m) do
for (all j) lemvector[jl:=max(lcmvector[j], msg_lcmvector[j]);
firstflag:=true;
increcv:= increcv @ m; /* concatenate */

upon (local_pred = true A firstflag) do
firstflag := false;
send (lemvector, incsend, increcv) to the checker process;
incsend:=increcv:=();

Figure 3: Non-checker process algorithm for F;

4 GCP Algorithm: The Checker Process

The checker process is responsible for searching for a consistent cut that satisfies the GCP. Its
pursuit of this cut can be most easily described as considering a sequence of candidate cuts. If the
candidate cut either is not a consistent cut, or does not satisfy some term of the GCP, the checker
can efficiently eliminate one of the states along the cut. The eliminated state can never be part
of a consistent cut that satisfies the GCP. The checker can then advance the cut by considering
the successor to one of the eliminated states on the cut. If the checker finds a cut for which no
state can be eliminated, then that cut satisfies the GCP and the detection algorithm halts. The
algorithm for the checker process is shown in Figure 4.

4.1 Data Structures

The checker receives local snapshots from the other processes in the system. These messages are
used by the checker to create and maintain data structures that describe the global state of the
system for the current cut. The data structures are divided into three categories: queues of incoming



S[1..n,1..n], R[1..n,1..n] : sequence of message;
cp[l..n,l.n] : {X, F, T};
cut : array[l..n] of struct {
v : vector of integer;
color : {red, green};
incsend, increcv : sequence of messages }
initially
cutfi].v = 0; cut[i].color = red; S[i,j] = 0; R[i,j] = 0;

repeat
/* advance the cut */
while (3 i : (cut[i].color = red) A (q[i] # 0))
cut[i] := receive(q[i]);
paint-state(i);
update-channels(i);
endwhile

/* evaluate a channel predicate */
if (31,j: cp[i,j] = X A cut[i].color = green A cut[j].color = green) then
cpli,j] := chanp(S[i,j]);

if (cpl[i,j] = Fs) cut]j].color := red;
else if (cp[i,j] = F) cut[i].color := red;
endif
until (Vi : cutfi].color = green) A (Vi,j: cp[i,j] = T)
detect := true;

Figure 4: GCP Detection Algorithm, Checker Process

messages, those data structures that describe the state of the processes, and those data structures
that include information describing the state of the channels.

4.1.1 Incoming Message Queues

The checker relies on being able to selectively receive a message from a specific process. For example,
at some phase in the algorithm the checker may ask to receive a message sent specifically by process
t. Furthermore, we require that messages from an individual process be received in FIFO order.
These capabilities are provided by most modern message passing systems, such as PVM [10] and
MPTI [21]. If the message passing system did not provide this support, it can be easily constructed
using a set of FIFO queues.

We abstract the message passing system as a set of n FIFO queues, one for each process. We
use the notation ¢fI..n/ to label these queues in our algorithm. We abstract non-blocking message
reception as the ability to compare a queue to the empty set.

4.1.2 Per-Process Data

The checker maintains information describing one state from each process P;. The collection of this
information is organized into a vector:

cut : array[1..n] of struct process_data

The process_data structure consists of a local snapshot (see Section 3) plus the following item:

10



e color : {red, green} — The color of a state is either red or green and indicates whether the
state has been eliminated in the current cut. A state is green only if it is concurrent with all
other green states. A state is red only if it cannot be part of a consistent cut that satisfies

the GCP.

4.1.3 Per-Channel Data

The checker maintains three data structures for each channel:

e S/1..n, 1..n] : sequence of messages — The pending-send list (or “S” list). This list is an
ordered list of messages. The list contains all those messages that have been sent on the
channel, but not yet received according to the current cut.

e R[1..n, 1..n] : sequence of messages — The pending-receive list (or “R” list). The list
contains each message that has been received from the channel, but not yet sent according to
the current cut. Since the current cut is not necessarily consistent, states along the cut may
be causally related, and hence it is possible for one state on the cut to be after a message has
been received, and yet have another state on the cut from before that message was sent. If
all states are part of a consistent cut, then every R list is empty.

e cp[l.n, 1..n] : {X F,F., T} — The CP-state flag. When a channel predicate is evaluated, its
value is written into the CP-state flag. The value of a channel predicate cannot change unless
there is activity along the channel. Hence, the checker can avoid unnecessarily recomputing
channel predicates by recording which predicates have remained true or false since the last
time the predicate was evaluated. If the CP-state flag has any value other than X, then that
value must be the value of the channel predicate for the current cut. The CP-state flag can
take the value X at any time. The value X indicates the current value of the channel predicate
is unknown.

4.2 Checker Algorithm

There are two main activities for the checker inside the repeat loop shown in Figure 4. The first
activity advances the current cut. The second activity evaluates channel predicates for channels
between two concurrent states in the cut. Advancing the current cut is given a higher priority than
evaluating channel predicates. Channel predicates are only evaluated either when the current cut
is a consistent cut satisfying all local predicates, or when the checker cannot advance the current
cut because sufficient messages have not yet arrived from the processes. The checker continues
executing the two activities until the GCP is detected. As an obvious extension, if some process
has terminated and none of the states received from that process satisfy the GCP, the checker can
abort the detection algorithm.

4.2.1 Advancing the Cut

The aim of this activity is to find a new candidate cut. However, we can advance the cut only if we
have eliminated at least one state along the current cut and if a message can be received from the
corresponding process. The data structures for the processes and channels are updated to reflect
the new cut. This is done by the procedures paint-state and update-channels respectively.

We first consider the procedure paint-state. This procedure is shown in Figure 5. The parameter
¢ is the index of the process from which a local snapshot was most recently received. The color of
cutfi] is temporarily set to green. It may be necessary to change some green states to red in order

11



to preserve the property that all green states are mutually concurrent. Hence, we must compare
the vector clock of cutfi] to each of the other green states. Whenever the states are comparable, the
smaller of the two is painted red. Observe that once we paint cutfi]/ red, we can stop attempting to
paint other states red. If this state is smaller than any green state, then by transitivity it cannot
be larger than any of the other green states which are known to be mutually concurrent.

paint-state(i)

cut[i].color := green;
for (j : cut[j].color = green) do
if (cut[i].v < cut[j].v) then
cut[i].color := red;
return
else if (cut[j].v < cut[i].v) cut[j].color := red;
endif

endfor

Figure 5: Procedure paint-state

We now consider the procedure update-channels. This procedure is shown in Figure 6. As
with paint-state, the parameter ¢ is the index of the process from which a local snapshot was most
recently received. The checker updates the value of the CP-state flags according to the activity in
cutfi].incsend and cutfi].increcv. In the worst case, each message sent or received causes the CP-
state flag to be reset to X. The checker will never change the CP-state flag to any value other than
X while advancing the cut. As an optimization, the checker can take advantage of monotonicity
when updating the channel-state vector. If a channel predicate is false along the current cut, and
that predicate is currently send-monotonic, then it will remain false when more messages are sent.
There will be no need to evaluate the predicate until at least one message receive occurs on the
channel. There is a similar optimization for states when the predicate is receive-monotonic.

The incremental send and receive histories from the snapshot are used to update the data
structures S/...] and R/...] asfollows. Let P; be the destination for some message in the incremental
send history. If this message appears in R[i,j/, then delete it from R[i,j/. Since this message has
already been received, it is not in the channel according to the current cut. If the message does
not appear in R[i,j/, then the message is appended to S/i,jl. An analogous procedure is followed
for each message in cutfi].increcv.

4.2.2 Evaluating Channel Predicates

The second major activity of the checker is to evaluate unknown channel predicates. In Figure 4 the
function chanp(S/[i,j]) is used for this purpose. A channel predicate is only evaluated for channels
between two green states. Since those states are known to be concurrent, it is clear that the R list
for the channel will be empty. All messages that have been received by P; must have already been
sent by P;. Hence, the S list contains a sequence which exactly represents the state of the channel.

It should be noted that for many important channel predicates, the time to evaluate the channel
predicate is constant. For example, the predicates, “The channel is empty”, “The channel has k or
more messages” and “The minimum time stamp of messages in the channel is at least &7 can all
be evaluated in constant time if appropriate data structures are used to represent the messages in

the S list.
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update-channels(i)

/* for all messages sent by Pi to Pj */
for (j: cut[i].incsend[j] # 0) do
S’ = S[i,jl;
R' 2= R[ijl;
S[i,j] := S’ & (cut]i].incsend[j] - R'); /* concatenate */
R[i,j] := R’ — cut][i]. 1ncsend[J]
if (cpfij] = TV cplij] = £) cplij] == X;
endfor

/* for messages received by Pi from Pj */

for (j: cut[i].increcv[j] # @) do

S’ = S[il;

R = R[j,iJ;

R[j,i] := R @ (cut[i].increcv[j] - §'); /* concatenate */
S[j,i] :== S’ — cutli].increcv]j];

if (cplj,i] = T V cplji] = Fy) eplisi] = X;
endfor

Figure 6: Procedure update-channels

5 Correctness of the Algorithm

Now that the algorithm for detection of a GCP has been given, the correctness of this algorithm
will be shown. First, some properties of the program are given that will be used in demonstrating
soundness and completeness.

Lemma 5.1 The following is an invariant of the program assuming that the function paint-state
s atomic.

Vi, 7 it (cut[i].color = green) A (cut[j].color = green) = cut[i]||cut[j]

Proof: Initially, the invariant is true because cut[i].color = red for all i. The color of cut[i] is set
to green only in the paint-state function. In that function, cut[i] is compared with all cut[j] whose
color are green. If cut[i] is not concurrent with cut[j], then one of them is painted red preserving
the invariant assertion after the paint-state function. O

The following lemma is crucial in making the detection algorithm efficient. It enables the
algorithm to discard any red colored state.

Lemma 5.2 For all i if cut[i].color is red, then there does not exist any global cut satisfying the
GCP that includes cut[i].

Proof: The proof is by induction on the number of states which have been painted red. The
statement is true initially because cut[¢] is initialized to a fictitious state and there cannot exist
a global cut that includes this state. Assume that the lemma is true for all states painted red so
far. The variable cut[i] is painted red either in function paint-state or after evaluation of a channel
predicate. We consider both of these cases:

Case 1 cut[i] is painted red in paint-state function. — This implies that there exists j such that
cut[t] < cut[j]. We show that there is no state in process P; which is a part of a global cut
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with cut[i] satisfying the GCP. From the program, a cut is advanced to the next state only
if the current state is red. This implies that any predecessor of cut[j] is red, and therefore,
by our induction hypothesis, ineligible for a global cut satisfying the GCP. States cut[j] and
cut[i] cannot be part of any global state since cut[i:] < cut[j]. Further, by our assumption
of FIFO between non-checker processes and the checker process, all states later than cut[j]
in the queue for P; are greater than cut[j] and so also greater than cut[:]. This implies that
no other candidate states from P; can be concurrent with cut[i]. Therefore, cut[i] can be
eliminated.

Case 2 cut[i] is painted red during evaluation of channel predicates. — This implies that either
cplj, ] is false and the predicate can not be made true by process j sending more messages
(eplj,i] = Fy), or that cp[i, j] is false and can not be made true by process j receiving more
messages (cp[i, j] = F,). We show that there is no state in process P; which is part of a
global cut with cut[i] satisfying the GCP. As in Case 1, any predecessor of cut[j] is red, and
therefore, ineligible for a global cut satisfying the GCP. States cut[j] and cut[i] cannot be
part of any global state satisfying the GCP since the channel predicate is false along a cut
including these states. This implies that the channel predicate is also false for cut[i] and any
successor of cut[j]. Therefore, cut[i] can be eliminated.

The following lemma describes the role of S[¢, j]and R[7, j]. We use auxiliary variables cut[i].Sent[j]
and cut[i]. Revd[j]. These variables are used only for the proof and not in the actual program. The
variable cut[i].Sent[j] is the sequence of all messages sent by the process ¢ to process j until cut[i].
Similarly, cut[¢]. Rcvd[j]is the set of all messages received by process P; from process P; until cut[q].
Note that these are complete histories, unlike incsend and increcv used in the program.

Lemma 5.3 The following is an invariant of the program outside the body of while loop in Figure 4.

Sli,j] = cut[i].Sent[j] — cut[j]. Revd][i]
Rli,j] = cut[j].Revd[i] — cut[i].Sent[]]

Proof: We prove the claim for S[i, j]. The proof for R[, j]is analogous. The invariant of Lemma 5.3
is initially true because all channels are empty and S[¢, j] is initialized to empty. Assume that it is
true for all previous cuts. We show that on advancing the cut, the invariant stays true. Using the
induction hypothesis we state:

Sty j] = cut’[i].Sent[j] — cut'[j]. Revd[i] and: R'[i, j] = cut’[j].Revd[i] — cut'[i].Sent[]]

by letting P; be the process along which the cut is advanced. Further, let cut’[{] be the previous
state which has red color and cut[i] be the new state. From the program text, cut[i].incsend[j]
contains all messages sent from P; to P; between cut'[i] and cut[¢]. Therefore,

cut[i].Sent[j] = cut'[¢].Sent[j] U cut[i].incsend[]].

Also, cut[j].Rcvd[i] has not changed. For proof purposes we use U rather than &), concatenation.
Since the latter is stricter, the invariant holds for the algorithm. We now compute:

cut[i].Sent[j] — cut[j].Revd[{]
= (cut'[i].Sent[j]U cut[i].incsend[5]) — cut[j]. Revd]]
= (cut'[i].Sent[j] — cut[j]. Revd[i]) U (cut[z].incsend[j] — cut[j]. Revd][i])
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The last equality is derived by distributing the set subtraction over append. Therefore, from the
induction hypothesis on S[i, 7], it follows that

cut[i].Sent[j] — cutlj].Revd[i] = S'[4, j]U (cut[i].incsend[j] — cut[j]. Revd]d]). (1)
We now note that by the induction hypothesis on R[4, j],
R'[i, 7] = cut[j].Revd[i] — cut'[1].Sent[]].

Therefore, by property of set subtraction:

R'[7, j] = cut[j].Revd[i] — (cut'[1].Sent[5] N cut[j]. Revd[7]).
That is,

cut[j].Revd[i] = R'[¢, j]U (cut'[¢].Sent[j] N cut[j]. Revd]i]).
We substitute this into Equation 1 to obtain:

cut[i].Sent[j] — cut[j]. Revd]i]
= S'[¢, j]U (cut[i].incsend[j] — (R'[i, 7] U (cut'[i].Sent[5] N cut[j]. Revd[i])))
= S'[¢, j]U (cut[i].incsend[j] — R[4, j])

The last equality follows from the fact that cut[i].incsend[j] and cut'[{].Sent[j] are disjoint. Note
that update-channels performs an equivalent operation. O

The next Lemma shows that if ¢p[i, j] has a value other than X, then it has the correct value
of chanp(cut[i].Sent[j] — cut[j]. Revd[i]).

Lemma 5.4 For all i,j, if cutli] and cut[j] are green, then

(epli, 7] # X) = cpli, j] = chanp(cut[i].Sent[j] — cut[j]. Revd[])

Proof: Our proof is again based on induction on the cut. The assertion is true in the initial cut
because cpli, j] = X.

The assertion can turn false only when either the cut is advanced, or the value of ¢p[i, j] is set
to T, F, or F, for the current cut. We do a case analysis.

Case 1 If the cut is advanced, a channel predicate can be affected only if some messages have been
sent or received since the last evaluation. If the channel state has not changed due to sends,
that is, cut[i].incsend[j] = 0 then ¢p[i, j] has not changed. Also, if cut[j].increcv]i] = () then
cpli, j] has not changed. Thus, the assertion is maintained. Now assume that a message has
indeed been sent. If the previous value was T, then the new state is unknown and therefore
cpli, 7] is set to X. If the previous value was X, it is not changed and the assertion still holds.
If the previous value was Fj, then the additional sends performed by process ¢ can not make
the predicate true. Hence it should stay F;. Finally, if the previous value was F., ¢pli, j] is
set to X. Thus, if a message is sent, the invariant is preserved. An analogous argument shows
that the invariant is preserved when messages are received.

Case 2 The value of ¢p[i, j] is set to a value other than X only if it is currently X and if both cut[i]
and cut[j] are green. Furthermore the value is set by the expression: ¢p[i, j] := chanp(S[i, j]).
From Lemma 5.3, this is equivalent to

epli, jl := chanp(cut[i].Sent[j] — cut[j].Revd[i]).
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Thus, the invariant holds. O

We are now ready to prove that our algorithm is sound and complete. The next theorem says
that our algorithm never makes a false detection. If the detect flag is true, then the current cut

indeed satisfies the GCP.

Theorem 5.5 (Soundness) If detect flag is true then there exists a cut in which the GCP is true.
Moreover, the cut produced by the algorithm is the first cut for which the GCP is true.

Proof: The detect condition evaluating to true is equivalent to (Vi :: cut[t].color = green) A (Vi,j =
epli, j]=T). By the algorithm of the non-checker process, [;(cut[i]) holds. From Lemma 5.1 for all
i, i cutf[i]||cut[j]. Tt remains to be shown that all channel predicates are true. From the detect
condition Vi, j :: epli, j] = T. This implies that all channel predicates are true from Lemma 5.4.
Thus, the cut satisfies the GCP.

We now show that this is the first such cut. Observe that the cut is advanced only when cut[7]
is red. From Lemma 5.2, cut[i] cannot be part of any cut that makes the GCP true. Since all cuts
previous to the current cut have at least one state red, it follows that the detected cut is the first
cut in which the GCP is true. O

Theorem 5.6 (Completeness) Let C be the first cut that satisfies the GCP. Then the GCP algo-
rithm sets detect flag to be true with C as the cut.

Proof: Since C is the first cut that satisfies the GCP, all the earlier states cannot make the GCP
true. We show that all earlier states are painted red. The proof is by induction on the number of
total states that are before this cut. If there are no states, then the claim is true. Assume that
k states have been painted red. Consider the last state painted red. There is at least one more
state ahead of it. This makes the while condition true and the cut is advanced to the next state. If
this next cut is not equal to the cut C, then there exists at least one violation of the concurrency
relation or channel predicate in the current cut. Therefore, for all cuts preceding C', at least, one
state is painted red, and because of this, the cut will be advanced. Eventually, the checker will
advance the cut to €. By Lemma 5.2, all states must be green. By Lemma 5.4, no CP-state flags
can be set to F. Eventually, all CP-state flags will be set to T, since the checker can not enter the
while loop. At this point, the checker will exit the repeat loop, and the detect flag will be set to
true. O

5.1 Overhead analysis

We do overhead analysis only for the checker process. We use the following parameters:
N: Total number of processes in the system

n: processes involved in the GCP (n < N)

m: maximum number of messages sent/received by any process

Time complexity: There are three components to the computation of the checker process.
The first two components are the functions paint-state and update-channels which are called when
the cut is advanced. The third component is the evaluation of channel predicates. We describe the
time complexity of each of these components.

Note that it takes only two comparisons to check whether two vectors are concurrent [14].
Hence, each invocation of paint-state requires O(n) time steps. This function is called at most once
for each state and there are at most mn states. Therefore, O(mn?) time is spent in the paint-state
function.
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The function update-channels performs two operations: subtracting and appending of message
sequences. If the sequences are ordered, both of these operations require linear time in the size
of the sequences. Since each process sends and receives at most m messages, the sum of the sizes
of these sequences is O(m). Therefore, the time spent in a single invocation of update-channels is
O(m). Since there are mn states, the total time spent in this function is O(m?n).

The value of a channel predicate can change only when a message is sent or received on the
channel. Thus, there are at most two evaluations of the predicate per message. There are at most
mn messages. If each predicate evaluation takes time proportional to the size of the channel, then
each predicate evaluation is O(m). Therefore, the total amount of time required to evaluate channel
predicates is O(m?n).

Based on this evaluation, the time complexity of the checker process is O(n*m-+m?n). However,
it should be observed that, in practice, the time complexity is much closer to O(n?*m). First, the
time required for update-channels is typically much smaller than O(m?n). In fact for FIFO channels,
the total computation for update-channels is O(mn). Second, evaluating a channel predicate is often
a constant time operation as discussed in Section 4.2.2. In these cases, the total time spent by the
checker process evaluating channel predicates is also O(mn).

Space complexity: The main space requirement of the checker process is the buffer for the
local snapshots. Each local snapshot consists of an lemvector and incremental send and receive
histories. The lcmuvector requires O(n) space. Note that strictly speaking, each lemvector may
require O(nlogm) bits, but we assume that storage and manipulation of each component is a
constant time/space overhead. This is true in practice because one word containing 32 bits would
be sufficient to capture a computation with 2°? messages. Since there are at most O(mn) local
snapshots, O(n?m) total space is required to hold the component of local snapshots devoted to
vector clocks.

Typically, evaluating a channel predicate does not require the entire contents of the messages.
We assume that the relevant information from each message can be encoded in a constant number
of bits. Hence the total space required for all incremental send and receive histories is O(mn).

Therefore, the total amount of space required by the checker process is O(mn?).

Message Complexity: Every process sends O(m) local snapshots to the checker process.
Using the same assumptions as made for space complexity, it follows that O(mn) bits are sent by
each process.

6 Implementation and Experimentation

We have implemented our GCP detection algorithm using the Parallel Virtual Machine (PVM)
message passing infrastructure [10]. PVM provides asynchronous sending/receiving of messages,
mechanisms for spawning jobs on remote machines, and a distributed “signal” mechanism that
allows Unix process signals to be delivered to remote processes. PVM is widely used for both parallel
and distributed applications. Ports of PVM are available for most Massively Parallel Processors
(MPPs) and networked workstations. We augment the standard PVM routines with vector clocks,
and with the capacity to communicate with a central checker process. The interaction with the
checker process is transparent to the programmer. The implementation is in the C+4 programming
language, and uses PVM version 3.1. We have tested our implementation on a homogeneous network
of ten IBM RS/6000 model 350 workstations.
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6.1 Distributed Termination Detection

We demonstrate the GCP detection algorithm with the distributed termination problem. The
application consists of a set of interacting processes. Each process performs a random amount of
work, and then, with probability p, sends a message to another (randomly selected) processor. The
process then becomes idle and waits to receive an incoming message. The problem that must be
solved is to determine when the computation has terminated. The condition for termination can
be elegantly described as a GCP:

1. All processes are in the idle state — this condition is a conjunction of local predicates.

2. All channels are empty — this condition is a conjunction of a send monotonic channel predi-
cate on each channel.

This problem has been well studied, and several solutions have been proposed. In this section
we compare the GCP solution to two well known solutions, Dijkstra’s algorithm [4] and Misra’s
algorithm [17]. Both of these approaches utilize a token that is continually passed along a prede-
termined cycle of the processes. In Dijkstra’s algorithm, a simple ring is used. The token will visit
each process every trip around the ring, but will not traverse every channel. Dijkstra’s algorithm
requires that message delivery be instantaneous.! In Misra’s algorithm, the cycle includes every
channel in the system. Hence, processes are visited by the token multiple times in a single cycle.
Misra’s algorithm is more expensive, but requires merely that individual channels are FIFO.

The application exhibits behavior that is linear in the number of messages sent by each process
(the value of m). The execution time for the application is theoretically constant as the number of
processes is increased. However since we are limited to only 10 physical processors, the execution
time does increase as more processes are added to the system.

The overhead of Dijkstra’s algorithm and Misra’s algorithm is linear in the number of messages
sent. With more messages sent, the token must take more cycles. However, since the processes
are typically idle when they receive the token, the effective overhead increases only slightly as the
number of messages is increased.

Since evaluating whether a channel is empty can be done in constant time, the GCP implemen-
tation has overhead that is linear in the number of messages for this application. This overhead is
principally observed in the execution time of the checker process.

Dijkstra’s algorithm is linear in the number of processes, since each process is visited at most
once during each cycle of the token. However both Misra’s algorithm and the GCP technique are

quadratic in the number of processes.?

6.2 Experimental Results

We implemented all three algorithms and executed them on our 10-processor IBM RS/6000 cluster.
The 10 machines share a dedicated ethernet subnetwork (10 Mbps). The data was collected while
the machines were running in multi-user mode, but during periods when the machines were not in
use for other purposes. The programs were compiled with the GNU C and C++ compilers (gcc
version 2.5.8) using the -O optimization flag. PVM version 3.1 was used as the underlying message
passing medium.

'The PVM 3.1 implementation uses UDP messages for interprocessor communication. However, when all processes
are mapped to machines the same physical subnet, the aggregate behavior is that message delivery is instantaneous.
?Misra’s algorithm is actually linear in the number of channels. However, on a fully connected system, there are

O( n? ) channels.
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The test application is implemented as follows. The probability of a process sending a message
is held fixed for the duration of the program. Messages are indistinguishable from each other.
Processes do not discern from which process a message originated and do not examine the contents
of messages. The behavior of a process is determined solely by the number of messages it receives
and by the behavior of the random number generator. Our implementation is designed so that the
distributed program is pseudo-random, but deterministic. Hence, by controlling the seed used for
the random number generator we can faithfully reproduce the exact application behavior.

The amount of work performed between messages is set to zero in this implementation to
emphasize the overhead generated by the distributed termination detection algorithm. In real
code, the relative cost of this overhead would depend on the grain size of the computation, and
would presumably be significantly lower.

Ten runs were performed with different random number seeds for each data point in figures 7
and 8. The data point is the average time from these ten runs. The same seeds were used for each
of the three configurations; the GCP version, Misra’s algorithm and Dijkstra’s algorithm.
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Figure 7: Time to Detect Distributed Termination as a Function of Processes

Figure 7 shows the performance of the three algorithms as the number of processes is increased.
The data points with more than 10 processes were collected by spawning multiple processes on
each processor. The probability of sending a message was set to 90% for each run. This value
causes each process, on average, to send 9 messages before terminating. Since the computation is
pseudo-random, the actual number of messages sent varies from run to run and from process to
process. The GCP detection algorithm demonstrates comparable performance to Misra’s algorithm
over a large range of system sizes.

Figure 8 shows the performance of the three algorithms as the number of messages increases.
We held the number of processes fixed at 10, one on each physical machine.® The X-axis in Figure 8

*For the GCP implementation, an additional process (the checker) is required. For this version, 11 processes are
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Figure 8: Time to Detect Distributed Termination as a Function of Messages

indicates the expected value of the number of messages sent by each process. Again, due to the
pseudo-random nature of the application, the actual number of messages sent varies. The data
points represent the average from 10 runs with different random number seeds. All three versions
demonstrate time complexity that is linear in the number of messages sent. However, the cost
per message for the GCP algorithm is significantly larger than that for either Dijkstra’s or Misra’s
algorithm. In part, this larger cost is attributable to the quality of our implementation. A more
highly optimized version should reduce this cost appreciably. However, even as it stands, we can
argue that the performance of our implementation is reasonable for coarse grained computations.
The slope of the line in Figure 8 is approximately 0.08 seconds per message.? Hence, if the amount
of computation performed by an application significantly exceeds 80 milliseconds for each message
sent, then the relative cost of the GCP detection algorithm will be negligible.

7 Conclusions

The ability to detect an arbitrary conjunction of local and channel predicates is sufficient to detect
any global predicate that can be expressed using boolean connectives. We have presented a defini-
tion for Generalized Conjunctive Predicates and an algorithm for detecting an important class of
these predicates, those with monotonic channel predicates.

The concept of monotonicity for channel predicates is useful for two important reasons. First,
monotonicity is both a necessary and sufficient condition for the set of consistent cuts satisfying
global properties to contain an infimum under the usual ordering. That is, the notion of the

used, and one machine hosts two processes.
*Recall, this figure is based on 10 processes. With more processes, the value would be higher.
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first consistent cut satisfying a GCP is always well defined if and only if channel predicates are

monotonic. Second, monotonicity allows an efficient algorithm to detect GCPs.

We have also presented an efficient algorithm to detect the first consistent cut in which a GCP

is true. Our algorithm requires O(n*m + m?*n) time in the worst case and O(n*m) for many
interesting problems. This algorithm has been implemented in a programming environment using
PVM and demonstrated on a network of IBM RS/6000 workstations.
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