
Copyright

by

Himanshu Chauhan

2017

The Dissertation Committee for Himanshu Chauhan
certifies that this is the approved version of the following dissertation:

Algorithms for Analyzing Parallel Computations

Committee:

Vijay Garg, Supervisor

Christine Julien

Neeraj Mittal

Evdokia Nikolova

Keshav Pingali

Vijay Reddi

Algorithms for Analyzing Parallel Computations

by

Himanshu Chauhan, B.Tech., M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2017

Dedicated to my parents Beena and Devendra.

Acknowledgments

I am indebted to my advisor Vijay Garg for making my PhD an en-

joyable, fulfilling, and humbling experience. His infectious curiosity, and his

relentless passion for research have left an indelible mark on me. Having him

as an advisor has improved my knowledge tremendously, and at the same time

has made me acutely aware of how little I know. Over these past six years,

I have often found myself marveling at his ability to remain unflappable in

instances — so many that I stopped keeping track — in which I made pre-

posterous conjectures, or wrote proofs riddled with careless mistakes. How

he manages to do so consistently with everyone eludes me to this day, but I

will always aspire to achieve this quality. In multiple ways, he has made me a

better person and for that I owe him enormous gratitude.

I thank the members of my dissertation committee for their influence

on my research as well as on me. I want to thank Keshav for being a re-

markable teacher who distills deep theoretical and practical knowledge in his

lectures, and inspires ambition in every student. As I write this dissertation,

I am filled with relief and gratitude towards him for disabusing me of my mis-

placed goal of improving both theory and practice of the field in one thesis. I

thank Christine for asking questions whose answers revealed the importance of

contributing to research that makes something better for someone somewhere

v

on this planet. I thank Eddie for allowing me an opportunity to assist her

in teaching. Interacting with her significantly improved my understanding of

algorithmic theory, and made me a better teacher. Writing papers with Neeraj

was an education in combining thoroughness with elegance. I also learnt many

aspects of lock-free concurrency from him and from his papers, and for all of

these learnings I am thankful to him. I thank Vijay (Reddi) for insisting that

I take a course to learn lower level aspects of computer architecture, which in

turn influenced me to design algorithms while keeping their practical imple-

mentations in mind.

I am grateful to Greg Plaxton for his phenomenal teachings in algo-

rithms and game theory. In addition to teaching me the fundamental concepts

of these fields, he also left a lasting impression on me by his meticulous at-

tention to detail and emphasis on clarity of expression. Among all the critical

remarks and wisdom I have ever received, he gave probably the best one in:

“Nobody in the history of humankind has ever published a paper in which

Figure 3 comes before Figure 2.”

Having Yen-Jung Chang and Wei-Lun Hung as colleagues in the lab,

and working with them, was a fantastic experience and I thank them for it.

I thank RoseAnna Goewey, Cayetana Garcia, and Melanie Gulick for their

patient help and support in numerous administrative tasks.

I feel extremely fortunate that in life I met and befriended: Abhi-

nav Parate, Anuj Madaria, Ashwin Kulkarni, Bharath Balasubramanian, En-

gin Hassamanci, Gurpreet Singh, Hannah Bronsnick, Natalia Arzeno, Natalie

vi

Hansen, Nivedita Singh, Raghavendra Singh, Sangeetha Iyer, Stephanie Tay-

lor, Susannah Volpe, and Vinit Ogale. At one juncture or the other during my

PhD, with admonitions or encouragements, with presence silent or loud, with

conversations long or short, with gestures big or small, they have enhanced

the joys of life and made its travails less difficult. I am grateful to every single

one of them for being the person they are, and I will forever cherish their

friendship.

My parents, along with my aunts Meena and Nisha, gave up a lot in

their own lives to provide me with the luxury of following my dreams. I cannot

find words to do justice to the magnitude of their sacrifices. This dissertation

would not be possible without them, and wherever I reach in life I will owe it

to them.

vii

Algorithms for Analyzing Parallel Computations

Publication No.

Himanshu Chauhan, Ph.D.

The University of Texas at Austin, 2017

Supervisor: Vijay Garg

Predicate detection is a powerful technique to verify parallel programs.

Verifying correctness of programs using this technique involves two steps: first

we create a partial order based model, called a computation, of an execution of

a parallel program, and then we check all possible global states of this model

against a predicate that encodes a faulty behavior. A partial order encodes

many total orders, and thus even with one execution of the program we can

reason over multiple possible alternate execution scenarios. This dissertation

makes algorithmic contributions to predicate detection in three directions.

Enumerating all consistent global states of a computation is a funda-

mental problem requirement in predicate detection. Multiple algorithms have

been proposed to perform this enumeration. Among these, the breadth-first

search (BFS) enumeration algorithm is especially useful as it finds an erro-

neous consistent global state with the least number of events possible. The

traditional algorithm for BFS enumeration of consistent global states was given

viii

more than two decades ago and is still widely used. This algorithm, however,

requires space that in the worst case may be exponential in the number of

processes in the computation. We give the first algorithm that performs BFS

based enumeration of consistent global states of a computation in space that

is polynomial in the number of processes.

Detecting a predicate on a computation is a hard problem in general.

Thus, in order to devise efficient detection and analysis algorithms it becomes

necessary to use the knowledge about the properties of the predicate. We

present algorithms that exploit the properties of two classes of predicates,

called stable and counting predicates, and provide significant reduction — ex-

ponential in many cases — in time and space required to detect them.

The technique of computation slicing creates a compact representation,

called slice, of all global states that satisfy a class of predicates called regular

predicate. We present the first distributed and online algorithm to create a

slice of a computation with respect a regular predicate. In addition, we give

efficient algorithms to create slices of two important temporal logic formulas

even when their underlying predicate is not regular but either the predicate

or its negation is efficiently detectable.

ix

Table of Contents

Acknowledgments v

Abstract viii

List of Tables xiii

List of Figures xiv

Chapter 1. Introduction 1

1.1 Predicate Detection . 4

1.2 Space Efficient Breadth First Traversal of Consistent Global States 7

1.3 Detecting Stable and Count Predicates 10

1.4 Slicing Algorithms . 12

1.4.1 Distributed Slicing Algorithm for Regular Predicates . . 14

1.4.2 Slicing Algorithms for EF and AG Temporal Operators on
Non-Regular Predicates 15

1.5 Applications of Developed Algorithms to Other Fields 16

1.6 Overview of the Dissertation 18

Chapter 2. Background 19

2.1 Computation as Partially Ordered Set of Events 21

2.1.1 Chains and Antichains 22

2.2 Vector Clocks . 23

2.3 Consistent Cuts . 25

2.3.1 Vector Clock Notation of Consistent Cuts 26

2.3.2 Lattice of Consistent Cuts 26

2.4 Uniflow Chain Partition . 30

2.5 Uniflow Chain Partitioning: Online Algorithm 32

2.5.1 Proof of Correctness . 35

x

2.5.2 Complexity Analysis . 36

2.6 Consistent Cuts in Uniflow Chain Partitions 37

2.7 Global Predicates . 39

2.7.1 Stable, Linear, and Regular Predicates 40

2.7.2 Temporal Logic Predicates 42

2.8 Computation Slicing . 43

Chapter 3. Polynomial Space Breadth-First Traversal of Con-
sistent Cuts 49

3.1 Traditional BFS Traversal Algorithm 51

3.2 BFS Traversal Algorithm using Uniflow Partition 52

3.2.1 Proof of Correctness . 58

3.2.2 Complexity Analysis . 60

3.2.3 GetSuccessor in O(n2
u) Time 60

3.2.4 Re-mapping Consistent Cuts to Original Chain Partition 63

3.3 Implementation without Regeneration of Vector Clocks 65

3.3.1 Retaining Original Vector Clocks in Uniflow Partition . 66

3.3.2 GetMinCut . 67

3.3.3 ComputeProjections 69

3.4 Comparison with Other Traversal Algorithms 71

3.4.1 Traversing Consistent Cuts of Specific Rank(s) 71

3.5 Experimental Evaluation . 73

3.5.1 Results with Regenerated Vector Clocks 75

3.5.2 Results without Regenerated Vector Clocks 77

Chapter 4. Detecting Stable and Counting Predicates 81

4.1 Enumerating Consistent Cuts Satisfying Stable Predicates . . . 82

4.1.1 Proof of Correctness . 90

4.2 Enumerating Consistent Cuts satisfying Counting Predicates . 95

4.2.1 Proof of Correctness . 103

4.3 Optimized Implementation . 106

4.3.1 GetBiggerBaseCut 107

4.3.2 BackwardPass . 109

xi

4.3.3 GetSuccessor . 110

4.4 Complexity Analysis . 110

Chapter 5. Distributed Online Algorithm for Slicing 114

5.1 Example of Algorithm Execution 124

5.2 Proof of Correctness . 125

5.3 Complexity Analysis . 130

Chapter 6. Slicing for Non-Regular Predicates 133

6.1 Slicing Algorithm for AG(B) 134

6.1.1 Proof of Correctness . 136

6.1.2 Complexity Analysis . 137

6.2 Slicing Algorithm for EF(B) 137

6.2.1 Proof of Correctness . 139

6.2.2 Complexity Analysis . 141

Chapter 7. Conclusion and Future Work 142

Bibliography 146

Vita 157

xii

List of Tables

3.1 Space complexities of algorithms for traversing lattice of consis-

tent cuts; here m = |E|
n

. * denotes algorithms in this dissertation. 72

3.2 Space and Time complexities for traversing level r of the lattice
of consistent cuts. * algorithm denotes in this dissertation. . 73

3.3 Benchmark details . 74

3.4 Heap-space consumed (in MB) and runtimes (in seconds) for
two BFS implementations to traverse the full lattice of consis-
tent cuts. Tpart = time (seconds) to find uniflow partition; × =
out-of-memory error. 76

3.5 Runtimes (in seconds) for tbfs: Traditional BFS, lex: Lexical,
and uni: Uniflow BFS implementations to traverse cuts of given
ranks; × = out-of-memory error. 76

3.6 Runtimes (in seconds) for tbfs: Traditional BFS, lex: Lexical,
and uni: Uniflow BFS implementations to traverse cuts of ranks
upto 32. 77

3.7 Heap Memory Consumed (in MB) for tbfs: Traditional BFS,
lex: Lexical, and uni: Uniflow BFS implementations to traverse
cuts of ranks up to 32. ×= out-of-memory error 78

3.8 Heap-space consumed (in MB) and runtimes (in seconds) for
traversing the full lattice of consistent cuts using traditional
BFS, UniR: uniflow BFS that regenerates vector clocks, and
UniNR: uniflow BFS that does not regenerate vector clocks. . 79

3.9 Runtimes (in seconds) to traverse cuts of given ranks with UniR
and UniNR implementations 79

4.1 Space complexities of algorithms for detecting a stable or count-

ing predicate in the lattice of consistent cuts; here m = |E|
n

. *
denotes algorithm in this dissertation. 112

4.2 Time complexities for enumerating all consistent cuts of C(E)
that satisfy a stable predicate B. * denotes algorithm in this
dissertation. 112

5.1 Comparison of Centralized and Distributed Online Slicing Al-
gorithms . 131

xiii

List of Figures

1.1 A computation on two processes with six events 5

1.2 A Computation, and its slice with respect to predicate (x1 ≥
1) ∧ (x2 ≤ 3) . 13

2.1 Illustration: Two different computations that will lead to iden-
tical posets as their models . 21

2.2 A computation on two processes 23

2.3 A computation with vector clocks of events 24

2.4 A computation and its lattice of consistent cuts 28

2.5 Lattice of Consistent Cuts for Figure 2.4a in Vector Clock notation 29

2.6 Posets in Uniflow Partitions 30

2.7 Posets in (a) and (c) are not in uniflow partition: but (b) and
(d) respectively are their equivalent uniflow partitions 31

2.8 Illustration: Finding uniflow chain partition of a computation 34

2.9 Illustration: Regenerated vector clocks for uniflow chain partition 36

2.10 Illustration: Computation with local variables 40

2.11 Computation of Figure 2.10 as a directed graph under the slicing
model . 47

2.12 Slice of Figure 2.11 as a directed graph with respect to B =
(x1 ≥ 1) ∧ (x3 ≤ 3) . 47

3.1 Illustration: Level by Level (BFS) Traversal of Lattice of Con-
sistent Cuts . 50

3.2 Vector clocks of a computation in its original form, and in its
uniflow partition . 53

3.3 Illustration for GetSuccessor: Computation in uniflow par-
tition on three processes . 56

3.4 Illustration: Projections of a cut on chains 61

3.5 Illustration: Maintaining indicator vector Gu for a cut G . . . 66

3.6 Illustration: Computing J vector for optimizing GetMinCut 67

xiv

3.7 Illustration: Projections of cuts on uniflow chains without re-
generation of vector clocks . 70

4.1 A computation and its lattice of consistent cuts. Cuts with
gray background satisfy predicate B = at least 4 events have
been executed. 83

4.2 Illustration: Visual representation for some stable predicate B:
the cuts in the blue region of the lattice satisfy a stable predi-
cate, and cuts in the white region do not. 84

4.3 A computation on two processes in: (a) its original non-uniflow
partition, (b) equivalent uniflow partition 86

4.4 A computation in uniflow partition 97

4.5 A computation in uniflow partition 102

4.6 Illustration: Maintaining indicator vector Gu for a cut G . . . 107

4.7 Illustration: Computing J vector for optimizing GetBigger-
BaseCut . 108

5.1 A Computation, and its slice with respect to predicate B =“all
channels are empty” . 115

5.2 Illustration: Join-irreducible elements of the lattice of consistent
cuts for Figure 5.1 with respect to predicate B = “all channels
are empty”. 116

xv

Chapter 1

Introduction

Parallel programming has become integral to modern computing. Whether

it is through multiple cores on a single machine, or through harvesting the

power of many machines in a distributed system, employing parallelism is now

essential to create scalable software systems that solve practical problems of

computing. Parallel programs, however, are not only difficult to design and

implement, but once implemented are also difficult to debug and verify. This

difficulty arises from the state space explosion: the combination of independent

local states of the involved processes causes a multiplicative effect that leads

to exponentially many possible system states that need to be verified. Thus,

verifying correctness of parallel programs using the traditional approaches can

be a hard problem. Let us first discuss the two traditional approaches that

are primarily used to verify software systems: formal methods and runtime

verification/testing.

In the methodology of formal methods, we model a system and its

properties with mathematical constructs and then analyze the resulting model

for correctness. Formal methods have two key branches: model checking and

theorem proving. Model checking [20, 21] models the system as a finite state

1

machine whose specifications are encoded using the language of temporal logic

[18, 19]. Theorem proving [22, 27] admits a wider variety of logic languages

for specifying the system, and proves the validity of the system as theorems

under its specifications. Despite the exhaustive nature of both of these ap-

proaches, they suffer from drawbacks that limit their practical applicability.

Model checking is prone to the state space explosion, and does not scale well

with the size of the components involved in the problem. Theorem proving, on

the other hand, requires intensive manual effort, and is difficult to automate.

In addition, and somewhat counter-intuitively, formally verified implementa-

tions remain prone to errors and bugs. In performing formal verification of

programs, we generally make certain assumptions about the context, as well

as parameters of programs. When these programs are deployed the interac-

tion involved with other components of the system or users may invalidate

those assumptions. For example, multiple formally verified implementations

of distributed systems have been shown to invalidate verification guarantees

and exhibit bugs due to incorrect assumptions [29].

Runtime verification, or testing, involves monitoring the system ex-

ecution, and extracting information from this execution to detect violation

of critical properties. We verify the system for correctness by comparing the

observed states of the system against those that are expected as per its specifi-

cation. The verification is called online when system is monitored and verified

during its execution itself, and offline if we only collect the information during

the execution and perform the analysis later. This methodology is simple, and

2

is performed on the actual system implementation — thus we directly verify

the correctness of the program that gets executed and not its abstract model.

Testing parallel programs, however, is not straight-forward: a single run of

the program may not exhibit a concurrency related bug, and multiple runs of

the same program may lead to different observations. The primary cause of

this problem is the inherent non-determinism of parallel executions. On shared

memory based parallel programs this non-determinism is introduced by thread

scheduling; whereas in distributed systems is is caused by the asynchrony be-

tween process clocks and instruction cycles. A possible solution is to execute

the program repeatedly, with the hope that multiple separate executions will

produce at least a few different observations. On shared memory machines,

we can control these executions by using a controllable thread scheduler to

ensure that each new run of the program explores some new thread interleav-

ings [53, 67, 46]. We can further prune away already explored states by using

techniques such as partial order reduction [53, 67]. Even then, we are forced

to execute the program repeatedly to increase the coverage of the test cases.

Let us now discuss a third technique that combines the benefits of model

checking and runtime verification. This technique is called predicate detection

[36, 23]. It allows inference based analysis to check many possible system

states based on a single execution of the program. In this way, it combines the

simplicity and effectiveness of runtime verification with the aspects of model

checking — not only the observed execution but other possible executions are

also verified. Verifying parallel programs that use paradigms such as lock-free

3

data structures [39] or delegated critical sections [8, 56, 25, 41, 42] is even

more difficult in comparison to verifying traditional lock-based parallel pro-

grams. This is because absence of lock-based critical sections generally leads to

increased concurrency. Hence, even if the algorithms and data structures using

these paradigms are proven to be correct, their actual implementations may

exhibit bugs due to the weak consistency guarantees of lower level hardware

instructions used in them. Thus, detecting bugs in the actual implementa-

tions of parallel programs becomes even more crucial. Given that predicate

detection does not make assumptions about the implementations, and per-

forms predictive analysis on observed as well as inferred executions, it can be

extremely beneficial for these verification tasks. We now expand upon the

details involved in the technique.

1.1 Predicate Detection

A global predicate, often just called predicate, is a boolean formula on

a global state of the system. Hence, for any state of the system during the

program execution, the evaluation of the predicate will either be false or true.

In the technique of predicate detection, we require as input the predicate(s)

that specifies the constraint(s) or invariant(s) using the system properties. We

then use a single run, often called a trace, of a parallel program, and from it

construct all possible valid states of the system. For each state we check if the

predicate could possibly become true. If yes, then we output that state as a

counter-example.

4

We observe a trace of a parallel program as the events executed by the

processes. On these events, we impose a partial order based on Lamport’s

happened-before, [44] relation which is denoted by →. This relation captures

causal dependencies between the events. On the set of events of a computation,

it is the smallest relation that satisfies the following three conditions: (1) If a

and b are events in the same process and a is executed before b, then a → b.

(2) For a distributed system, if a is the sending of a message and b is the

receipt of the same message, then a→ b. For a shared memory system, if a is

the release of a lock by some thread and b is the subsequent acquisition of that

lock by any thread then a→ b. (3) If a→ b and b→ c then a→ c. We call the

partially ordered set of events, ordered using the → relation, a computation.

Note that one partial order can encode exponentially many total orders. We

now check all the possible — and not just the observed — global states of this

computation, and if any of them violates a safety constraint, we can infer that

the program is not correct.

e f g

a b c

P2

P1

Figure 1.1: A computation on two processes with six events

Let us illustrate this with an example. Consider the computation shown

in Figure 1.1 in which two processes P1 and P2 execute three events each. Sup-

pose this computation was obtained by executing a distributed computation in

which the two processes communicate by message passing. The arrows denote

5

the happened-before relation. P1 executes three events, and given that they

are executed on the same process, we observe their order as: a → b → c. P2

also executes three events in the order: e → f → g. The event f is receipt

of a message (on process P2) that was sent at event b (on process P1). Let

<t denote the observed before in real-time relation between two events, and

suppose from the point of view of an outside observer the events were observed

in the following order: a <t e <t b <t f <t c <t g. Consider a hypotheti-

cal safety constraint defined as: the third event on P1 must happen before the

third event on P2. In the observed order this constraint is satisfied as, c, the

third event on P1 happens before g the third event on P2. But observing care-

fully, we can verify that there exists a possible ordering of the events that is

consistent with the computation, and violates this constraint. This order is:

a <t e <t b <t f <t g <t c. Given that there is no happened-before rela-

tion between events c and g, it is possible that in a different execution g gets

executed before c.

To summarize, the technique of predicate detection involves three main

steps: (1) modeling an execution of a parallel as partial order based compu-

tation (2) generating global states of the system that are consistent with the

partial order, and (3) evaluating if a predicate — encoding the constraint vi-

olation or system invariant — becomes true in any or some of these states.

Observe that depending on the application, we may be interested in all the

states that satisfy a predicate.

A large body of work uses this approach to verify distributed applica-

6

tions, as well as to detect data-races and other concurrency related bugs in

shared memory parallel programs [17, 28, 40, 47]. Finding consistent global

states of an execution also has critical applications in snapshotting of modern

distributed file systems [1, 63].

We now discuss our contributions to the technique of predicate detec-

tion in three directions.

1.2 Space Efficient Breadth First Traversal of Consis-
tent Global States

Given a computation, a consistent global state, or consistent cut, of the

computation is a possible global state of the system that is consistent with the

happened-before partial order. Informally, a consistent cut of a computation

is a subset of its events such that all causal dependencies of each event in this

subset are satisfied. We present a formal definition in the next chapter. The

empty global state ({}) is the one in which no event has been executed, and

is trivially consistent. For example, consider the computation in Figure 1.1.

This computation has eleven non-empty consistent global states. They are:

{a}, {e}, {a, b}, {a, e}, {a, b, c}, {a, b, e}, {a, b, c, e}, {a, b, e, f}, {a, b, c, e, f},

{a, b, e, f, g}, {a, b, c, e, f, g}. Note that any subset of events that includes event

f but does not include its causal dependencies {a, b} is not a consistent cut.

A fundamental requirement for predicate detection is the traversal of

all possible consistent cuts of the system. The set of all consistent cuts of

a computation can be represented as a directed acyclic graph in which each

7

vertex represents a consistent cut, and the edges mark the transition from one

global state to another by executing one event. Moreover, this graph has a spe-

cial structure: it is a distributive lattice [48]. For example, Figure 1.2b shows

the distributive lattice of consistent cuts of the computation in Figure 1.2a.

Multiple algorithms have been proposed to traverse the lattice of consistent

cuts of a parallel execution. Cooper and Marzullo’s algorithm[23] starts from

the source — a consistent cut in which no operation has been executed by any

process — and performs a breadth-first-search (BFS) visiting the lattice level

by level. Alagar and Venkatesan’s algorithm[2] performs a depth-first-search

(DFS) traversal of the lattice, and Ganter’s algorithm [31] enumerates global

states in lexical order.

e f g

a b c

P2

P1

(a) Computation

{}

{a} {e}

{a, b} {a, e}

{a, b, c} {a, b, e}

{a, b, c, e} {a, b, e, f}

{a, b, c, e, f} {a, b, e, f, g}

{a, b, c, e, f, g}

(b) Lattice of Consistent Cuts

8

The BFS traversal of the lattice is particularly useful in solving two

key problems. First, suppose a programmer is debugging a parallel program

to find a concurrency related bug. The global state in which this bug occurs is

a counter-example to the programmer’s understanding of a correct execution,

and we want to halt the execution of the program on reaching the first state

where the bug occurs. Naturally, finding a small counter example is quite

useful in such cases. The second problem is to check all consistent cuts of given

rank(s). For example, a programmer may observe that her program crashes

only after k events have been executed, or while debugging an implementation

of Paxos [45] algorithm, she might only be interested in analyzing the system

when all processes have sent their promises to the leader. Among the existing

traversal algorithms, the BFS algorithm provides a straightforward solution to

these two problems. It is guaranteed to traverse the lattice of consistent cuts

in a level by level manner where each level corresponds to the total number of

events executed in the computation. In contrast, DFS or Lexical order based

traversals may have to traverse the complete lattice to find all the cuts in which

a specific number of events have been executed, and thus are ill-suited to solve

the above problems. The traditional BFS traversal, however, requires space

proportional to the size of the biggest level of the lattice which, in general, is

exponential in the number of processes.

We present a new algorithm to perform BFS traversal of the lattice of

consistent cuts in space that is polynomial in the size of the processes [14].

We use a partitioning scheme for partial orders, called uniflow chain partition,

9

to design our algorithm to traverse any given level of the lattice of consistent

cuts. Our algorithm traverses the cuts of only the given level, and no other

level in the lattice. None of the existing traversal algorithms in the literature

can do so. In short, our contributions are:

• For a computation on n processes such that each process has m events on

average, our algorithm requires O(m2n2) space in the worst case, whereas

the traditional BFS algorithm requires O(m
n−1

n
) space (exponential in n).

• Our evaluation on seven benchmark computations shows the traditional

BFS runs out of the maximum allowed 2 GB memory for three of them,

whereas our implementation can traverse the lattices by using less than

60 MB memory for each benchmark.

1.3 Detecting Stable and Count Predicates

In many debugging/analysis applications, we are only interested in

global states of a system that satisfy a given predicate. For example, while

debugging an implementation of Paxos [45] algorithm, a programmer might

only be interested in analyzing possible system states when all the promise

messages have been delivered. Another scenario is when a programmer knows

that her program exhibits a bug only after the system has executed a certain

number of, let us say k, events. For these two scenarios, our predicate defi-

nitions are: B = all promises have been delivered, and B = at least k events

have been executed. Both of these predicates fall under the category of stable

10

predicates. A stable predicate is a predicate that remains true once it be-

comes true. In addition, some predicates are defined on the count of some

specific types of events in the system. We call such global predicates count

predicates. This category of predicates encodes many useful conditions for

debugging/verification of parallel programs. For example, B = exactly two

messages have been received is a count predicate.

If we are interested in enumerating all the consistent cuts of a trace that

satisfy a global predicate B that is of either a stable or a count predicate, then

we currently only have one choice: traverse all the cuts using existing traversal

algorithms (such as BFS, DFS, and Lex) and check which ones satisfy B. This

is wasteful because we traverse many more cuts than needed — especially if

the subset of cuts satisfying B is relatively small. For example, consider the

computation in Figure 1.1, and the predicate B = at least 4 events have been

executed. Figure 1.2b shows all the consistent cuts of the computation as a

distributive lattice using the vector clock notation. There are five such cuts in

which at least four events have been executed. Using the BFS, DFS, or Lex

traversal algorithms, however, we will have to visit all the twelve cuts to find

these five.

We present the first algorithms [13] to efficiently enumerate subset of

consistent cuts that satisfy stable or count predicates without enumerating

other consistent cuts that do not satisfy them. Our algorithms take time

and space that is a polynomial function of the number of consistent cuts of

interest, and in doing so provide an exponential reduction in time complexities

11

in comparison to existing algorithms.

1.4 Slicing Algorithms

Mathematical abstractions play a crucial role in design and analysis of

computational tasks. In the context of predicate detection, we can apply an

abstraction on a computation that removes the parts that are not relevant to

the predicate under consideration and produces a smaller computation . This

abstract computation may be exponentially smaller than the original compu-

tation, and thus our analysis becomes significantly faster. Computation slicing

is an abstraction technique for efficiently finding all global states of a compu-

tation that satisfy a given global predicate without explicitly enumerating all

such global states [51]. The slice of a computation with respect to a predicate

is a sub-computation that satisfies the following properties: (a) it contains

all global states of the computation for which the predicate evaluates to true,

and (b) of all the sub-computations that satisfy condition (a), it has the least

number of global states.

As an illustration, consider the computation shown in Fig. 1.2(a). The

computation consists of three processes P1, P2, and P3 hosting integer variables

x1, x2, and x3, respectively. An event, represented by a circle is labeled with

the value of the variable immediately after the event is executed. Suppose we

want to determine whether the property (or the predicate) (x1 ∗ x2 + x3 < 5)

∧ (x1 ≥ 1) ∧ (x3 ≤ 3) ever holds in the computation. In other words, does

there exist a global state of the computation that satisfies the predicate? The

12

a

1

b

2

c

−1

d

0

e

0

f

2

g

1

h

3

u

4

v

1

w

2

x

4

P1

P2

P3

x1

x2

x3

(a) Computation

a, e, f, u, v b

w g

(b) Slice

Figure 1.2: A Computation, and its slice with respect to predicate (x1 ≥
1) ∧ (x2 ≤ 3)

predicate could represent the violation of an invariant. Without computation

slicing, we are forced to examine all global states of the computation, twenty-

eight in total, to ascertain whether some global state satisfies the predicate.

Alternatively, we can compute a slice of the computation automatically with

respect to the predicate (x1 ≥ 1) ∧ (x3 ≤ 3) as shown in Fig. 1.2(b). We can

now restrict our search to the global states of the slice, which are only six in

number, namely:

{a, e, f, u, v}, {a, e, f, u, v, b}, {a, e, f, u, v, w},

{a, e, f, u, v, b, w}, {a, e, f, u, v, w, g}, and {a, e, f, u, v, b, w, g}.

The slice has much fewer global states than the computation itself —

exponentially smaller in many cases—resulting in substantial savings.

We focus on abstracting distributed computations with respect to reg-

ular predicates (defined in Sec. 2). The family of regular predicates contains

many useful predicates that are often used for runtime verification in dis-

tributed systems. Some such predicates are:

13

Conjunctive Predicates: Global predicates which are conjunctions of local

predicates. For example, predicates of the form, B = (l1 ≥ x1 ≥ u1) ∧ (l2 ≥

x2 ≥ u2)∧. . .∧(ln ≥ xn ≥ un), where xi is the local variable on process Pi, and

li, ui are constants, are conjunctive predicates. Some useful verification pred-

icates that are in conjunctive form are: detecting mutual exclusion violation

in pairwise manner, pairwise data-race detection, detecting if each process has

executed some instruction, etc.

Monotonic Channel Predicates [32]: Some examples are: all messages

have been delivered (or all channels are empty), at least k messages have been

sent/received, there are at most k messages in transit between two processes,

the leader has sent all “prepare to commit” messages, etc.

We make two key contributions to the problem of computational slicing:

1.4.1 Distributed Slicing Algorithm for Regular Predicates

Centralized offline [50] and online [61] algorithms for slicing based pred-

icate detection have been presented previously. For systems with large number

of processes, centralized algorithms require a single process to perform high

number of computations, and to store very large data. In comparison, a dis-

tributed online algorithm significantly reduces the per process costs for both

computation and storage. Additionally, for predicate detection, the central-

ized online algorithm requires at least one message to the slicer process for

every relevant event in the computation, resulting in a bottleneck at the slicer

process. A method of devising a distributed algorithm from a centralized al-

14

gorithm is to decompose the centralized execution steps into multiple steps

to be executed by each process independently. However, for performing on-

line abstraction using computation slicing, such an incremental modification

is inefficient as direct decomposition of the steps of the centralized online al-

gorithm requires that each process sends its local state information to all the

other processes whenever the local state (or state interval) is updated. In ad-

dition, a simple decomposition leads to a distributed algorithm that wastes

significant computational time as multiple processes may end up visiting (and

enumerating) the same global state. Thus, the task of devising an efficient

distributed algorithm for slicing is non-trivial.

We present the first distributed online slicing algorithm for regular pred-

icates in distributed systems [15, 54]. Our algorithm exploits not only the

nature of the predicates, but also the collective knowledge across processes.

The optimized version of our algorithm reduces the required storage per slicing

process, and computational workload per slicing process by O(n).

1.4.2 Slicing Algorithms for EF and AG Temporal Operators on
Non-Regular Predicates

Computation tree logic (CTL) [18] is a temporal logic specification lan-

guage to describe properties of computation trees. Formulae written in CTL

can reason about many possible executions with the notion of time and future

in executions. Two key temporal operators in CTL are: EF and AG . For a

predicate B, EF(B) encodes the expression for some execution path starting

15

from the current state, B becomes true, and AG(B) encodes the expression

starting from the current state, B is true for all execution paths. It is due to

such expressive power, and ability to capture a wide range of temporal prop-

erties that are otherwise difficult or impossible to capture using global state

based predicates, CTL operators have become a popular choice for writing

specifications in verification tasks.

Previous research [51, 59] has focused on devising slicing algorithms for

regular state based predicates, and their CTL based temporal formulae. When

a predicate B is regular, the temporal operators EF(B) and AG(B) are also

regular [60]. In many scenarios, however, the predicate B is not regular, and

thus EF(B) and AG(B) may not be regular. For this case, when B is not

regular, we present two offline algorithms: (1) to efficiently compute the slice

with respect to AG(B) when ¬B (B’s negation) can be detected efficiently;

and (2) to efficiently compute the slice with respect to EF(B) when B is

efficiently detectable. Both of these algorithms require that the slice of the

computation with respect to B is available to us as input.

1.5 Applications of Developed Algorithms to Other Fields

In developing our algorithms, we have focussed primarily on the tech-

nique of predicate detection for parallel computations. The applications of our

body of work, however, are not limited to just this field. We now discuss how

our algorithms apply to the problem of stable marriage [30], and problems in

lattice theory.

16

The stable marriage problem involves finding a stable matching of

women and men and ensure that there is no pair of woman and man such that

they are not married to each other but prefer each other over their matched

partners. Many variations of the problem with additional constraints have

been studied. Some examples include man-optimal or woman-optimal match-

ings, and introducing the notion of regret. We can use the algorithms developed

in this dissertation to enumerate matchings that meet a given lower-bound or

upper-bound, or any other combination of such criteria on the overall cumu-

lative regret of the matching, or individual regrets of actors.

The notion of consistent cut of a computation, directly maps to the

notion of order ideals in a lattice. Multiple problems in the field of lattice

theory require enumeration of a specific level of order ideals, or a range of

levels. Our rank traversal algorithm in Section 3.4.1 can be used to enumerate

order ideals of any given level without visiting other levels of the lattice. Our

algorithm for enumerating cuts satisfying counting predicate (in Section 4.2)

can also be used to traversing order ideals of a sub-lattice without visiting

ideals outside the sub-lattice. No known algorithm in lattice theory has the

ability to perform such traversals without visiting other ideals of the lattice —

whose total number can be exponentially bigger than the size of the sub-lattice

of interest.

17

1.6 Overview of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2 we

discuss the background on concepts used for developing our algorithms, includ-

ing a special chain partition of posets, called uniflow chain partition. Using

this chain partition, we present an algorithm to enumerate consistent cuts of

a computation in breadth-first manner in Chapter 3, and then evaluate its

runtime performance against that of existing enumeration algorithms on five

benchmark computations. In chapter Chapter 4, we present algorithms that

use uniflow chain partitions to enumerate consistent cuts that satisfy detect

stable and counting predicates. In Chapter 5, we present a distributed on-

line algorithm to perform slicing with respect to regular predicates, and in

Chapter 6 discuss slicing with respect to temporal logic operators when the

underlying predicate is not regular and we have already obtained a slice of the

computation with respect the predicate. We then present concluding remarks

and future work in Chapter 7.

18

Chapter 2

Background

In this chapter, we present the concepts and notation used in the rest

of this dissertation.

We use the term computation to denote an execution trace of a parallel

program. Unless specified, we restrict our focus to finite computations. Thus,

a computation is a collection of events executed by processes in the system. An

event may denote — depending on the context of the problem — the execution

of a single instruction or a collection of instructions together. It is possible

that the instructions executed by different processes/threads are different. Our

model of parallel computation is based on the happened-before relation, and

is applicable to both distributed as well as shared memory parallel compu-

tations. A shared memory parallel computation, often called a concurrent

computation, involves multiple processes/threads controlled by a scheduler on

a single machine. In shared memory computations, we use the term process

for an operating system process, and also a thread. In shared memory com-

putations processes execute their program instructions independently and use

mechanisms such as mutexes or semaphores for synchronization. A distributed

computation is a parallel computation without shared memory in which inter-

19

process communication is possible only through message-passing.

We order the events of a computation using Lamport’s happened-before

(→) relation [44]. The relation → on the set of events of a computation is the

smallest relation that satisfies the following three conditions:

1. Process Order: If a and b are events executed by the same process,

and a is executed before b, then a→ b.

2. Causal Order: Causal order between events on different processes is

imposed by either of the following:

• Message Dependency in Distributed Computations: If a is a message

send event, and b is an event corresponding to the receipt of the

same message, then a→ b.

• Synchronization Dependency in Shared Memory Computations: In

a shared memory computation, if a is the release of a lock by some

process and b is the subsequent acquisition of that lock by any

process then a→ b. Or, if a corresponds to a fork call by a process

and b is the first event in the execution of the child process, then

a → b. Similarly, if a is a termination of a child process and b is

the actual join event with its parent process then a → b. Or, if a

process goes into wait on some monitor at event a and is notified

on the same monitor at event b, then a→ b.

3. Transitivity: If a→ b and b→ c then a→ c.

20

The happened-before relation imposes a partial order the set of events

in a computation.

2.1 Computation as Partially Ordered Set of Events

Let X be a set, and R be a binary relation on X. If R is irreflexive,

antisymmetric, and transitive then it imposes a partial order on the elements

of X. 〈X,R〉, the pair of set X along with relation R, is called a partially

ordered set, or poset in short.

If E is the set of events of a parallel computation, then the happened-

before relation,→, is an irreflexive, antisymmetric, and transitive binary rela-

tion on E. Thus a computation under → relation forms a poset. We use the

notation P = (E,→) to denote this poset. It is important to note that multi-

ple computations could have the identical posets as their model. For example,

the two computations shown in Figure 2.1 will lead to the identical posets.

e f

a b

P2

P1

(a) Computation on two processes

e′

f ′a′ b′

P2

P1

(b) Computation on three processes

Figure 2.1: Illustration: Two different computations that will lead to identical
posets as their models

Let P = (E,→) be a computation on n processes {P1, P2, . . . , Pn}.

Then we use Ei to denote the set of events executed by process Pi where

1 ≤ i ≤ n. Note that Ei is a totally ordered set. Consider two events a, b ∈ E.

21

If either a → b or b → a, we say that a and b are comparable; otherwise, we

say a and b are concurrent, and denote this relation by a || b. Observe that ||

is not a transitive relation.

Let proc(e) denote the process on which event e occurs. The predeces-

sor and successor events of e on proc(e) are denoted by pred(e) and succ(e),

respectively, if they exist.

2.1.1 Chains and Antichains

Let P = (E,→) be a computation whose set of events is E. A subset

Y ⊆ E is called a chain, if every pair of distinct events from Y is comparable

in P , that is: ∀a, b ∈ Y : (a → b) ∨ (b → a). Similarly, a subset W ⊆ E is

called an antichain, if every pair of distinct events from W is concurrent in P ,

that is: ∀a, b ∈ W : a||b. Thus, Ei, the set of events executed by process Pi,

is a chain. The height of a poset is defined to be the size of a largest chain in

the poset. The width of a poset is defined to be the size of a largest antichain

in the poset. Consider the computation shown in Figure 2.2. Chains {a, b, c}

and {e, f, g} are two chains of three events each that are formed by the events

executed by processes P1 and P2 respectively. Note that {a, b, f, g} is also a

chain; moreover it is a largest chain, and thus the height of the poset is four.

For this computation, {a, e} is an antichain, and so is {e, c}. Note that {a, g}

is not an antichain. The width of this computation/poset is two.

Generally, a computation n processes {P1, P2, . . . , Pn} is partitioned

into n chains such that the events executed by process Pi (1 ≤ i ≤ n) are

22

e f g

a b c

P2

P1

Figure 2.2: A computation on two processes

placed on ith chain. This leads to the notion of chain partitions.

Definition 1 (Chain Partition). A chain partition of a poset places every

element of the poset on a chain that is totally ordered. Formally, if α is a

chain partition of poset P = (E,→) then α maps every event to a natural

number such that

∀x, y ∈ E : α(x) = α(y)⇒ (x→ y) ∨ (y → x).

For a computation P = (E,→) on n processes, we can identify each

event e with a tuple (i, k) which represents the kth event on the ith process,

where 1 ≤ i ≤ n. Similarly, if we use a different chain partition for P whose

width is w, then every event e in the computation can be identified with a

tuple (i, k) which represents the kth event on the ith chain; 1 ≤ i ≤ w.

2.2 Vector Clocks

Mattern [48] and Fidge [26] proposed vector clocks, an approach for

time-stamping events in a computation such that the happened-before relation

can be tracked. For a program on n processes, we maintain an event e’s vector

clock, denoted by e.V , as a n-length vector of non-negative integers. Note that

23

vector clocks are dependent on chain partition of the poset that models the

computation. If a chain partition of a computation has width w, then each

vector clock is an array of length w. If f is the kth event executed by process

Pi, then we set f.V [i] = k. For j 6= i, f.V [j] is the number of events that must

have happened on process j before f is executed. Thus, f.V [j] is the index of

event e on Pj that is the maximal event such that e→ f .

We use the following representation for interpreting chain partitions and

vector clocks: a vector clock on n chains is represented as a n-length vector:

[cn, cn−1, ..., ci, ..., c2, c1] such that ci denotes the number of events executed on

process Pi.

Figure 2.3 shows a sample computation with six events and their cor-

responding vector clocks. Event b is the second event on process P1, and its

vector clock is [0, 2]. Event g is the third event on P2, but it is preceded by f ,

which in turn is causally dependent on b on P1, and thus the vector clock of g

is [3, 2].

e

[1, 0]

f

[2, 2]

g

[3, 2]

a

[0, 1]

b

[0, 2]

c

[0, 3]

P2

P1

Figure 2.3: A computation with vector clocks of events

For any event f in the computation: // e → f ⇔ ∀j : e.V [j] ≤

f.V [j]∧∃k : e.V [k] < f.V [k]. A pair of events, e and f , is concurrent (denoted

24

by e || f) iff e 6→ f ∧ f 6→ e.

2.3 Consistent Cuts

A consistent global state, or consistent cut, of a computation is its

snapshot view in which all causal dependencies are satisfied. Formally:

Definition 2 (Consistent Cut). Given a computation (E,→), a subset of

events C ⊆ E forms a consistent cut if C contains an event e only if it contains

all events that happened-before e. Formally, (e ∈ C) ∧ (f → e) =⇒ (f ∈ C).

A consistent cut captures the notion of a possible global state of the

system at some point during its execution [9]. Consider the computation shown

in Figure 2.3. The subset of events {a, b, e} forms a consistent cut, whereas

the subset {a, e, f} does not; because b → f (b happened-before f) but b is

not included in the subset.

Frontiers: The frontier of a consistent cut G, denoted by frontier(G), is

defined as the set of those events in G whose successors are not in G. Formally,

frontier(G)
4
= { e ∈ G | =⇒ succ(e) 6∈ G } (2.1)

For example, in Figure 2.3 for the consistent cut G = {a, b, e} we have

frontier(G) = {b, e}. Similarly, for G = {a, b, c, e, f}, we have frontier(G) =

{c, f}.

25

2.3.1 Vector Clock Notation of Consistent Cuts

We earlier described how vector clocks can be used to time-stamp events

in the computation. We also use them to represent consistent cuts of the

computation. If the computation is partitioned into n chains, then for any cut

G, its vector clock is a n-length vector such that G[i] denotes the number of

events from Pi included in G. Note that in our vector clock representation the

events from Pi are at the ith index from the right.

For example, consider the state of the computation in Figure 2.3 when

P1 has executed events a and b, and P2 has only executed event e. The

consistent cut for the state, {a, b, e}, is represented by [1, 2]. Note that cut

[2, 1] is not consistent, as it indicates execution of f on P2 without b being

executed on P1.

2.3.2 Lattice of Consistent Cuts

The set of all consistent cuts of a computation also forms a poset (par-

tially ordered set) under the containment order. Given two consistent cuts G

and H of a computation P = (E,→), we say that G ≤ H iff G ⊆ H. For

example, in Figure 2.3 the consistent cut for this state, G = {a, b, e} contains

a smaller consistent cut H = {a, b}, thus we have H ≤ G. The consistent cut

H ′ = {a, e} similarly is contained in G, however, it is not comparable to H.

Thus, we state that H ≤ G, H ′ ≤ G, but H 6≤ H ′ ∧H ′ 6≤ H.

Let us now discuss meet and join operators on elements of a poset. Let

P = 〈X,≤〉 be a poset.

26

Definition 3 (Join). For any two elements x, y ∈ X, j is the join of x and y

iff:

1. x ≤ j ∧ y ≤ j,

2. ∀j′ ∈ X, (x ≤ j′ ∧ y ≤ j′) =⇒ j ≤ j′.

We denote the join with t symbol, and write x t y = j.

Thus, the join — if it exists — of any two elements in a poset is their

least upper bound.

The meet operator is the dual operator of join, and corresponds — if

it exists — to the greatest lower bound.

Definition 4 (Meet). For any two elements x, y ∈ X, m is the meet of x and

y iff:

1. m ≤ x ∧m ≤ y,

2. ∀m′ ∈ X, (m′ ≤ x ∧m′ ≤ y) =⇒ m′ ≤ m.

We denote the meet with u symbol, and write x u y = m.

A lattice is poset that is closed under both join and meet operators,

that is: if joins and meets exist for all finite subsets of X.

Definition 5 (Lattice). A poset P = 〈X,≤〉 is a lattice iff ∀x, y ∈ X, we have

x t y ∈ X and x u y ∈ X.

27

Moreover, if the join and meet operators distribute over each other then

the lattice is called a distributive lattice.

It has been shown [24, 48] that:

Theorem 1. Let C(E) denote the set of all consistent cuts of a computation

(E,→). C(E) forms a distributive lattice under the relation ⊆.

In Figure 2.4b, we show a computation and its lattice of consistent cuts

in their set notation. We show the same lattice in the equivalent vector clock

notation of consistent cuts in Figure 2.5.

e f g

a b c

P2

P1

(a) Computation

{}

{a} {e}

{a, b} {a, e}

{a, b, c} {a, b, e}

{a, b, c, e} {a, b, e, f}

{a, b, c, e, f} {a, b, e, f, g}

{a, b, c, e, f, g}

(b) Lattice of Consistent Cuts

Figure 2.4: A computation and its lattice of consistent cuts

28

[0, 0]

[0, 1] [1, 0]

[0, 2] [1, 1]

[0, 3] [1, 2]

[1, 3] [2, 2]

[2, 3] [3, 2]

[3, 3]

Figure 2.5: Lattice of Consistent Cuts for Figure 2.4a in Vector Clock notation

We now define the notion of rank of a cut.

Definition 6 (Rank of a Cut). Given a cut G, we define its rank, written

rank(G), to be the total number of events, across all processes, that have been

executed to reach the cut.

Recall that given a consistent cut G, we use G[i] to denote the number

of events included from process/chain Pi in G’s vector clock notation. Based

on this, we have rank(G) =
∑
G[i].

Consider the lattice of consistent cuts in Figure 2.5. There is one cut

([0, 0]) with rank 0, then there are two cuts each of ranks 1 to 5, and finally

there is one cut ([3, 3]) with rank 6.

29

2.4 Uniflow Chain Partition

We now discuss a special chain partition of called uniflow chain par-

tition. In later chapters of this dissertation, we will use this partition to

construct our algorithms for predicate detection and breadth-first traversal of

lattice of consistent cuts.

A uniflow partition of a poset P is its partition into nu chains {µi | 1 ≤

i ≤ nu} such that no element in a higher numbered chain is smaller than any

element in lower numbered chain; that is if any element e is placed on a chain

i then all elements smaller than e must be placed on chains numbered lower

than i. For poset P , chain partition µ is uniflow if

∀x, y ∈ P : µ(x) < µ(y)⇒ ¬(y 6→ x) (2.2)

P2

P1

(a)

P3

P2

P1

(b)

Figure 2.6: Posets in Uniflow Partitions

Visually, in a uniflow chain partition all the edges between separate

chains always point upwards. Figure 2.6 shows two posets with uniflow parti-

tions. Whereas Figure 2.7 shows two posets with partitions that do not satisfy

the uniflow property. The poset in Figure 2.7a can be transformed into a uni-

flow partition of three chains as shown in Figure 2.7b. Similarly, Figure 2.7c

30

e f

a b

P2

P1

(a)

e
f

a

b
µ3

µ2

µ1

(b)

a b c

e f g

P2

P1

(c)

a b c

e f

g
µ2

µ1

(d)

Figure 2.7: Posets in (a) and (c) are not in uniflow partition: but (b) and (d)
respectively are their equivalent uniflow partitions

can be transformed into a uniflow partition of two chains shown in Figure 2.7d.

Observe that:

Lemma 1. Every poset has at least one uniflow chain partition.

Proof. Any total order derived from the poset is a uniflow chain partition in

which each element is a chain by itself. In this trivial uniflow chain partition

the number of chains is equal to the number of elements in the poset.

For any poset P , the number of chains in any of its uniflow partition

is always less than or equal to |P | (the number of elements in poset). Let us

now focus on finding a uniflow chain partition of our poset model of a parallel

computation.

We define a total order, called uniflow order, on the events of the com-

putation based on its uniflow chain partition. Recall from Equation 2.2 that

for any event e, µ(e) denotes its chain number in µ. Let pos(e) denote the

index of event e on chain µ(e). Note that a chain is totally ordered, and thus

31

for any two events on the same chain one event’s index will be greater than

the other’s.

Definition 7 (Uniflow Order on Events, <u). Let µ be uniflow chain partition

of a computation P =(E,→) that partitions it into nu chains. we define a total

order called uniflow order on the set of events E as follows. Let e and f be

any two events in E. Then, e <u f ≡ (µ(e) < µ(f))∨ (µ(e) = µ(f)∧ pos(e) <

pos(f))

For example, in Figure 2.7b we have a <u e as µ(a) = 1 and µ(e) = 2;

and e <u f as µ(e) = µ(f) = 2, pos(e) = 1 and pos(f) = 2.

2.5 Uniflow Chain Partitioning: Online Algorithm

The problem of finding a uniflow chain partition is a direct extension of

finding the jump number of a poset [16, 6, 66]. Multiple algorithms have been

proposed to find the jump number of a poset; which in turn arrange the poset

in a uniflow chain partition. Finding an optimal (smallest number of chains)

uniflow chain partition of a poset is a hard problem [16, 6]. Bianco et al. [6]

present a heuristic algorithm to find a uniflow partition, and show in their

experimental evaluation that in most of the cases the resulting partitions are

relatively close to optimal. We present an online algorithm to find a uniflow

partition for a computation.

Our algorithm processes events of the computation P = (E,→) in an

online manner: when a process Pi executes event e it sends the event infor-

32

mation to our partitioning algorithm. We require that the event information

contains its vector clock in the computation. Recall from Section 2.2 that the

vector clocks are dependent on the chain partition of the poset. Let us assume

that the computation involves n processes, thus each event’s vector clock in

the original partition is a vector of length n — the original computation is

partitioned n chains where chain Pi contains the executed by ith process. We

can regenerate vector clocks for a uniflow chain partition of the computation

using the vector clock generation algorithms given in [48, 11].

Algorithm 1 FindUniflowChain(e)

Input: An event e of the computation P = (E,→) on n processes
Output: e is placed at the end of a chain in the uniflow chain partition µ
1: maxid: id of highest uniflow chain till now
2: eventChainMap: hashtable of events against their uniflow chain number
3: uid = e.procid // start with chain that executed e
4: for each direct causal dependency dep of e do
5: uid = MAX(eventChainMap[dep], uid) // max of uid and the chain of direct

causal dependency

6: //now check if there exists any chain with the same id
7: if ∃ a chain in µ with id = uid then
8: f = last event on this chain
9: if e || f then // e is concurrent with f , cannot add to this chain

10: uid = + +maxid // increment max used chain id
11: create new chain with id = uid
12: else // chain with required number doesn’t exist
13: create new chain with id = uid
14: maxid = uid // updated max assigned chain id

15: add e at the end of chain with id = uid
16: eventChainMap[e] = uid // store mapping of event to chain

Algorithm 1 shows the steps of finding an appropriate chain for e in

the uniflow partition, and appending e to the end of that chain. Note that

33

in the online setting, e’s causal dependencies are guaranteed to be processed

to the algorithm before e is processed. Given an event e, we start by setting

its uniflow chain, uid, to the e.procid that is the id of process (chain) in the

original computation on which e was executed. Then, we go over all its direct

causal dependencies, and in case any of the dependencies were placed on higher

numbered chains, we update the uid (lines 4–5). We know that to maintain

the uniflow chain partitioning, e must be placed either on a chain with id uid,

or above it. Lines 7–9 check if there already exists a chain with that id, and

if the last event on this chain is concurrent with e. If so, we cannot place e

on this chain and must put it on a chain above — possibly by creating a new

chain (lines 10–11). If e is not concurrent with f , then we can place it on

the existig chain numbered uid. If no chain has been created with uid as its

number, that means e is the first event on some chain (process) in P and we

must create a new chain in our uniflow partition for it. This is done in lines

12–14. Finally, we place e on the correct chain at line 15, and then store the

mapping of this event against the chain number on which it was placed.

e f

a b

P2

P1

(a) Original Computation

e

b

a

f

µ3

µ1

µ2

(b) Uniflow Partition with Algorithm 1

Figure 2.8: Illustration: Finding uniflow chain partition of a computation

Let us illustrate the execution of the algorithm on the poset of Fig-

ure 2.8a. Initially, our uniflow chain partition µ has no chains. Suppose, a,

34

the first event on process P1 is first event sent to this algorithm. As there

is no event in µ, a will be placed on chain id 1. In an online setting, e the

first event on P2 is going to be presented next. This event also has no direct

causal dependencies, and thus the uid value for it at line 7 will be 2 — the

id of the process that executed it. However, there is no chain with id 2 yet,

and thus we execute lines 12–14 to create a new chain and place e on chain

2 in µ. Suppose the next event to arrive is b the second event on P2. As b is

causally dependent on a and e both its uid value after the loop of line 4–5 is 2

as we take the maximum of the uids assigned to all the causal dependencies.

There is a chain with id 2 in µ, and its only event is e which not concurrent

with b. Hence, we skip to line 15, and place b at the end of chain 2. The last

event to arrive will be f . After executing lines 4–5, the uid value for f will be

2. As there is a chain with id 2 in µ, at line 9 we will compare f with b —

the last event on chain 2. However, b and f are concurrent. Hence, we have

to create a new chain with id 3 as per lines 10–11. We then place f on this

chain. The resulting uniflow partition µ is shown in Figure 2.8b. With this

uniflow chain partition, we regenerate the vector clocks of the events as per

[48, 11]. The vector clocks in the original computation and in the new uniflow

chain partition are shown in Figure 2.9.

2.5.1 Proof of Correctness

Lemma 2. Given a computation P = (E,→) and events e, f ∈ E such that

e → f , If Algorithm 1 places e on chain k, and f on chain k′ in P ’s uniflow

35

e : [1, 0] f : [2, 1]

a : [0, 1] b : [1, 2]

P2

P1

(a) Original Computation

e : [0, 1, 0]

b : [0, 2, 1]

a : [0, 0, 1]

f : [1, 1, 1]

µ3

µ1

µ2

(b) Uniflow Chain Partition

Figure 2.9: Illustration: Regenerated vector clocks for uniflow chain partition

chain partition µ, then k ≤ k′.

Proof. Suppose not, and k > k′. Since e→ e′ and our algorithm is online, we

know that e must be processed before f . By lines 4–5, we are guaranteed that

uid for f in µ will be greater than or equal to k as e is a causal dependency

of f . Thus we have k ≤ k′ when we reach line 7. All subsequent paths of

execution in lines 7–14 either keep the value of uid same, or increment it by

at least one. Thus, when we reach line 15 for placing f in µ we are guaranteed

that uid value for f is greater than or equal to k. At lines 15 and 16, we place

f at the end of chain numbered uid, and then store the mapping of f against

this number. Thus, we maintain k ≤ k′.

2.5.2 Complexity Analysis

For a computation on n processes, there can be at most n events that

are direct causal dependencies of any event. Hence, lines 4–5 of Algorithm 1

take O(n) time for any event. Checking for existence of a chain id at line 6

is a constant time operation as we can use a hash-table for storing the chains

against their ids. The check for concurrency of two events is O(n) as we can

36

use the original vector clocks of the two events. Lines 9–11 then take constant

time. If the events e and f are not concurrent at line 9, we skip to line 15. We

take constant time in appending the event at the end of a chain and storing

its mapping against the chain number at line 16. Hence, in the worst case our

algorithm takes O(n) + O(n) ≡ O(n) time per event.

We require O(|E|) space for the hash-table that stores the mapping of

each event and its uniflow chain number.

2.6 Consistent Cuts in Uniflow Chain Partitions

The structure of uniflow chain partitions can be used for efficiently

obtaining bigger consistent cuts. From now on we use the vector clock notation

of consistent cuts for our discussion. Recall that in vector clock notation G[i]

denotes the number of events included from chain i. After we find a uniflow

chain partition of a computation, and regenerate the vector clocks of events

as per this partition, we have the following result.

Lemma 3 (Uniflow Cuts Lemma). Let P be a poset with a uniflow chain

partition {µi | 1 ≤ i ≤ nu}, and G be a consistent cut of P . Then any Hk ⊆ P

for 1 ≤ k ≤ nu is also a consistent cut of P if it satisfies:

∀i : k < i ≤ nu : Hk[i] = G[i], and

∀i : 1 ≤ i ≤ k : Hk[i] = |µi|.

Proof. Using Equation 2.2, we exploit the structure of uniflow chain partitions:

the causal dependencies of any element e lie only on chains that are lower than

37

e’s chain. As G is consistent, and Hk contains the same elements as G for the

top (nu − k) chains, all the causal dependencies that need to be satisfied to

make Hk have to be on chain k or lower. Hence, including all the elements

from all of the lower chains will naturally satisfy all the causal dependencies,

and make Hk consistent.

For example, in Figure 2.6b, consider the cut G = [1, 2, 1]1 that is a

consistent cut of the poset. Then, picking k = 1, and using Lemma 3 gives us

the cut [1, 2, 3] which is consistent; similarly choosing k = 2 gives us [1, 3, 3]

that is also consistent. Note that the claim may not hold if the chain partition

does not have uniflow property. For example, in Figure 2.7c, G = [2, 2] is a

consistent cut. The chain partition, however, is not uniflow and thus applying

Lemma 3 with k = 1 gives us [2, 3] which is not a consistent cut as it includes

the third event on P1, but not its causal dependency — the third event on P2.

We now define the notion of a base cut: a consistent cut that is formed

by including events from µ in a bottom-up manner.

Definition 8 (l-Base Cut). Let G be a consistent cut of a computation P =(E,→

) with uniflow partition µ. Then, we call G a l-base cut if ∀j ≤ l : G[j] =

size(µj)

Thus, in a l-base cut we must include all the events from each chain that

is same or lower than µl in the uniflow partition µ. In Figure 2.9b, {a, e, f}

1Recall (from Section 2.2) that in our vector clock notation ith entry from the right in
the vector clock represents the events included from ith chain from the bottom in a chain
partition.

38

(or [1, 1, 1] in its vector clock notation) is a consistent cut. It is a 1-base cut

as it includes all the elements from chain µ1, but it is not a 2-base cut as it

does not include all the events from the chain µ2.

2.7 Global Predicates

A global predicate (or simply a predicate), in our model, is either a

state-based predicate or a path-based predicate. State-based predicates are

boolean-valued function on variables of processes. Given a consistent cut, a

state-based predicate is evaluated on the state resulting after executing all

events in the cut. A global state-based predicate is local if it depends on

variables of a single process. If a predicate B (state or path based) evaluates

to true for a consistent cut C, we say that “C satisfies B” and denote it by

C |= B.

Consider the computation in Figure 2.10. It shows a distributed com-

putation on three processes in which processes send messages to each other.

For example, P1 sends a message at event c, this message is received at event h

on to P2. Processes P1, P2, and P3 have local integer variables x1, x2, and x3,

respectively. The value of these local variables, after execution of each event is

shown immediately above the event. Assume that all variables are initialized

to 0. The consistent cut U = {a, e, f, u} with frontier(U) = [a, f, u] satisfies

the predicate x1 + x2 ≤ x3. However, the consistent cut V = {a, e, f, u, v}

with frontier(V) = [a, f, v] does not.

39

a

1

b

2

c

−1

d

0

e

0

f

2

g

1

h

3

u

4

v

1

w

2

x

4

P1

P2

P3

x1

x2

x3

Figure 2.10: Illustration: Computation with local variables

2.7.1 Stable, Linear, and Regular Predicates

The problem of predicate detection requires us to check if a given pred-

icate could be satisfied by any consistent cut of a computation. This problem

is intractable in general [49, 50]. To obtain a polynomial-time detection al-

gorithm, it becomes necessary to exploit some structural properties of the

predicate. The stability of a predicate is one such property. A predicate B is

stable if once it becomes true it stays true. Some examples of stable predicates

are: deadlock, termination, loss of message, at least k events have been exe-

cuted, and at least k′ messages have been sent. We discuss stable predicates

in detail in Section 4.1.

Another property that allows us to detect predicates efficiently is the

linearity property:

Definition 9 (Linearity Property of Predicates). A predicate B is said to

have the linearity property, if for any consistent cut C that does not satisfy

predicate B, there exists a process Pi such that we must advance along Pi to

reach a consistent cut that is reachable from C and satisfies B.

40

Predicates that have the linearity property are called linear predicates.

The process Pi in the above definition is called a forbidden process.

Consider the computation shown in Figure 2.10. The cut denoted by

frontier [b, f, u] does not satisfy the linear predicate “all channels are empty”,

as b sends a message and is only received at v, hence the channel between P2

and P3 is not empty. Thus, progress must be made on P3 to reach the cut with

frontier [b, f, v] which satisfies the predicate. Here P3 is the forbidden process.

Detecting a linear predicate efficiently requires an additional property

called efficient advancement property. A linear predicate has the efficient

advancement property if given a cut that does not satisfy this predicate, we can

find a forbidden process efficiently. For a computation involving n processes,

given a consistent cut that does not satisfy the predicate, the forbidden process

Pi can be found in O(n) time for most linear predicates used in practice. To

find a forbidden process given a consistent cut, a process first checks if the cut

needs to be advanced on itself; if not it checks the states in the total order

defined using process identifiers, and picks the first process whose state makes

the predicate false on the cut.

An important subclass of linear predicates is the class of regular predi-

cates. They exhibit a stronger structural property:

Definition 10 (Regular Predicates). A predicate is called regular if for any

two consistent cuts C and D that satisfy the predicate, the consistent cuts given

by C u D (meet) and C t D (join) also satisfy the predicate.

41

Examples of regular predicates include local predicates (e.g., x ≤ 4),

conjunction of local predicates (e.g., (x ≤ 4) ∧ (y ≥ 2) where x and y are

variables on different processes) and monotonic channel predicates (e.g., there

are at most k messages in transit from Pi to Pj) [50].

2.7.2 Temporal Logic Predicates

A path-based or temporal logic predicate is one that includes temporal

operators [18] such as AG , EG and EF . For a consistent cut C, the temporal

operators are defined as follows:

• C |= AG(B) iff for all consistent cut sequences C0, . . . , Ck such that

(i) C0 = C, and (ii) Ci ≤ Ci+1 (iii) Ck = E, we have: Ci |= B for all

0 ≤ i ≤ k. Thus, AG(B) means that in the lattice of consistent cuts, all

cuts reachable from cut C satisfy B.

• C |= EG(B) iff for some consistent cut sequence C0, . . . , Ck such that

(i) C0 = C, and (ii) Ci ≤ Ci+1 (iii) Ck = E, we have: Ci |= B for all

0 ≤ i ≤ k. Thus, EG(B) means that in the lattice of consistent cuts,

there exists a path starting with cut C till the biggest consistent cut E

on which each consistent cut satisfies B.

• C |= EF(B) iff for some consistent cut sequence C0, . . . , Ck such that

(i) C0 = C, and (ii) Ci ≤ Ci+1 (iii) Ck = E, we have: Ci |= B for some

0 ≤ i ≤ k. Thus, EF(B) means that in the lattice of consistent cuts,

there exists a consistent cut that satisfies B, and we can reach this cut

42

by starting with the cut C and then executing some sequence of events

on the way.

Consider a system of two processes P1 and P2 trying to execute a critical

section in a mutually exclusive manner. Let B1 and B2 be the predicates that

P1 and P2 are, respectively, in their critical section. A safe state, from which

the system will never violate mutual exclusion, can be determined by detecting

the predicate EF (B1 ∧ B2). If the predicate evaluates to false at the current

state, then there is no future state where both P1 and P2 are in the critical

section simultaneously, indicating a safe state. Otherwise, the current state is

unsafe.

It was shown in [60] that, when predicate B is regular, the three tem-

poral logic predicates AG(B), EG(B) and EF(B) are also regular predicates.

2.8 Computation Slicing

Computation slicing, is an abstraction technique for efficiently finding

all global states of a computation that satisfy a given global predicate without

explicitly enumerating all such global states [51]. The result is a computation

slice, often just called slice: a concise representation of all the consistent cuts of

a computation that satisfy a predicate. The slice of a computation with respect

to a predicate is a sub-computation that satisfies the following properties: (a) it

contains all global states of the computation for which the predicate evaluates

to true, and (b) of all the sub-computations that satisfy condition (a), it has

43

the least number of global states.

We alter our model of computation slightly for computation slicing. We

have, till now, modeled a computation as a poset of events using the happened-

before relation. For slicing, we use directed graphs to model computations

as well as their slices. This allows us to handle both of them in a uniform

and convenient manner. The set of vertices in our equivalent directed graph

includes the set of events, while the edges are derived from the traditional

model. In addition, we allow strongly connected components in our model,

which are not possible in the traditional model. To obtain the directed graph

from a computation, we perform the following steps.

We assume the presence of fictitious initial and final events on each

process. The initial event on process Pi, denoted by ⊥i, occurs before any

other event on Pi and initializes the state of that process. Likewise, the final

event on process Pi, denoted by >i, occurs after all other events on Pi. We

use final events only to ease the exposition of the slicing algorithms. It does

not imply that processes have to synchronize with each other at the end of the

computation. For convenience, let ⊥ and > denote the set of all initial events

and final events, respectively. We assume that all initial events belong to the

same strongly connected component. Likewise, all final events also belong the

same strongly connected component.

After this, we model a computation as a directed graph represented by

the tuple 〈E, 7→〉, where E now is the set of events including fictitious events,

and edges are given by the precedence relation 7→. The precedence relation on

44

the set of non-fictitious events is defined by the happened-before relation →.

Note that, for two non-fictitious events e and f , e 7→ f if and only if e → f .

The ⊥ events precede all other events in the computation. All initial events

precede all non-fictitious events and all non-fictitious events precede all final

events. Figure 2.11 shows the resulting directed graph representation after

performing these steps on the computation shown in Figure 2.10.

Any consistent cut of a distributed computation that contains all initial

events (⊥) and none of the final events (>) is referred to as a non-trivial

consistent cut. Only non-trivial consistent cuts are of interest to us they

correspond to real system states. We denote the largest non-trivial consistent

cut of the computation, which is given by E \ >, by Ê.

As mentioned earlier, we allow non-singleton strongly connected com-

ponents in our model. In a computation, however, they consist entirely of

fictitious events. We use directed graphs to model the computation slices

too. A strongly connected component in a computation slice can contain non-

fictitious events. A strongly connected component in the slice of a computation

that contains two non-fictitious events e and f implies that both events must

be present in a consistent cut of the computation for that cut to satisfy the

predicate. We define a non-trivial strongly connected component as a strongly

connected component that contains (a) at least two non-fictitious events, and

(b) none of the final events.

For a computation 〈E, 7→〉 and a predicate B, we use CB(E) to denote

the consistent cuts of that satisfy B. Note that CB(E) is a subset of C(E) —

45

the set of all consistent cuts of the computation. Let IB(E) denote the set

of all graphs on vertices E such that for every graph G ∈ IB(E), CB(E) ⊆

C(G) ⊆ C(E).

Definition 11 (Slice [50]). A slice of a computation with respect to a predicate

B is a directed graph that contains the fewest consistent cuts, such that every

consistent cut of the computation that satisfies B is contained in it. Formally,

given a computation 〈E, 7→〉 and a predicate B,

S is a slice of 〈E, 7→〉 for B
4
=

S ∈ IB(E) ∧ ∀G : G ∈ IB(E) : |C(S)| ≤ |C(G)| (2.3)

We denote the slice of computation 〈E, 7→〉 with respect to predicate B

by 〈E, 7→〉B. A slice is empty if it does not contain any non-trivial consistent

cuts. In general, there can be multiple directed graphs on the same set of

consistent cuts [50]. As a result, more than one graph may constitute a valid

representation of a given slice. Using lattice theory, it was shown in [50] that all

such graphs have the same transitive closure of edges, and thus the same set of

consistent cuts. The slice of a computation with respect to a predicate contains

two types of edges: (a) those that were present in the original computation,

and (b) those added to the computation to eliminate consistent cuts that do

not satisfy the predicate.

Consider the computation shown in Figure 2.11. Its slice with respect

to the predicate (x1 ≥ 1)∧ (x3 ≤ 3) is shown in Figure 2.12. The edges added

to the computation to eliminate irrelevant consistent cuts are shown as dotted

46

a

1

b

2

c

−1

d

0

e

0

f

2

g

1

h

3

u

4

v

1

w

2

x

4

⊥1

⊥2

⊥3

>1

>2

>3

P1

P2

P3

Figure 2.11: Computation of Figure 2.10 as a directed graph under the slicing
model

a b c d

e f g h

u v w x

⊥1

⊥2

⊥3

>1

>2

>3

P1

P2

P3

Figure 2.12: Slice of Figure 2.11 as a directed graph with respect to B = (x1 ≥
1) ∧ (x3 ≤ 3)

edges. For example, by adding a dotted edge from v to u, any consistent cut

that contains u but not v is eliminated.

To generate the slice of a computation 〈E, 7→〉 with respect to a regular

(state-based) predicate B, we compute consistent cut JB(e) for every event e,

which is defined as the smallest non-trivial consistent cut of the computation

that contains e and satisfies B [50]. If no such cut of the computation exists,

then JB(e) is set to the default cut. Recall that, in the slice with respect to B,

we are only interested in those consistent cuts of the computation that satisfy

B. Hence, every consistent cut of 〈E, 7→〉B that contains e, will include all

47

events in JB(e). By adding an edge from all events in frontier(JB(e)) to e,

those cuts of the computation that contain e but not other events in JB(e),

are eliminated. These are the consistent cuts that do not satisfy B. Note

that e does not have to be the maximal event in JB(e). Intuitively, the set of

consistent cuts given by JB(e) for all events e form the join-irreducible elements

(or basis elements) of the lattice of consistent cuts generated by the slice [50].

The slice 〈E, 7→〉B contains the set of events E as the set of vertices and has

the following edges [50]: ∀e : e /∈ >, there is an edge from e to succ(e), and

for each event e, there is an edge from every event f ∈ frontier(JB(e)) to e.

We have now completed the overview of all the required background

concepts. In the next chapter, we use the uniflow chain partition of a compu-

tation to perform breadth-first traversal of its lattice of consistent cuts.

48

Chapter 3

Polynomial Space Breadth-First Traversal of

Consistent Cuts

In this chapter, we present algorithms for breadth-first traversal of the

lattice of consistent cuts of a computation using space that is polynomial in

the size of computation.

Given a computation P = (E,→), the set of its consistent cuts, C(E),

forms a distributive lattice [24, 48]. In many scenarios, analysis of a parallel

computation may require us to visit all the cuts in this lattice in the worst case.

Such scenarios occur when we do not have specific knowledge of the predicate,

or we cannot exploit its structure to detect it efficiently. The lattice, C(E),

is a directed acyclic graph (DAG) whose vertices are the consistent cuts, and

there is a directed edge from vertex u to vertex v if state represented by

v can be reached by executing one event on u. Recall that the rank of a

consistent cut is the total number of events executed in it, hence we also have

rank(v) = rank(u) + 1. The source of C(E) is the empty set: a consistent cut

in which no events have been executed on any process. The sink of this DAG

is E: the consistent cut in which all the events of the computation have been

executed. Figure 3.1b presents a visual illustration of such a lattice.

49

[1, 0] [2, 2] [3, 2]

[0, 1] [0, 2] [0, 3]

P2

P1

(a) Computation

[0, 0] rank = 0

[0, 1] [1, 0] rank = 1

[0, 2] [1, 1] rank = 2

[0, 3] [1, 2] rank = 3

[1, 3] [2, 2] rank = 4

[2, 3] [3, 2] rank = 5

[3, 3] rank = 6

(b) Lattice of Consistent Cuts

Figure 3.1: Illustration: Level by Level (BFS) Traversal of Lattice of Consis-
tent Cuts

Cooper and Marzullo [23] gave the first algorithm for enumerating con-

sistent cuts which is based on breadth first search (BFS). Let i(P) denote

the total number of consistent cuts of a poset P . Cooper-Marzullo algorithm

requires O(n2 · i(P)) time, and exponential space in the size of the input com-

putation. The exponential space requirement is due to the standard BFS

approach in which consistent cuts of rank r must be stored to traverse the

cuts of rank r + 1.

There is also a body of work on enumeration of consistent cuts in order

different than BFS. Alagar and Venkatesan [2] presented a depth first algo-

50

rithm using the notion of global interval which reduces the space complexity to

O(|E|). Steiner [65] gave an algorithm that uses O(|E| · i(P)) time, and Squire

[64] further improved the computation time to O(log |E| · i(P)). Pruesse and

Ruskey [57] gave the first algorithm that generates global states in a combi-

natorial Gray code manner. The algorithm uses O(|E| · i(P)) time and can

be reduced to O(∆(P) · i(P)) time, where ∆(P) is the in-degree of an event;

however, the space grows exponentially in |E|. Later, Jegou et al. [43] and

Habib et al. [38] improved the space complexity to O(n · |E|).

Ganter [31] presented an algorithm, which uses the notion of lexical

order, and Garg [33] gave the implementation using vector clocks. The lexical

algorithm requires O(n2 · i(P)) time but the algorithm itself is stateless and

hence requires no additional space besides the poset. Paramount [12] gave a

parallel algorithm to traverse this lattice in lexical order, and QuickLex [10]

provides an improved implementation for lexical traversal that takes O(n ·

∆(P) · i(P)) time, and O(n2) space overall.

3.1 Traditional BFS Traversal Algorithm

Cooper and Marzullo’s algorithm [23] enumerates all the consistent cuts

in C(E) in a breadth-first manner. Even though they focussed on distributed

systems, their algorithm has been subsequently adopted for verification of

shared-memory parallel programs too [17, 28]. Breadth-first search (BFS) of

this lattice starts from the source vertex and visits all the cuts of rank 1; it then

visits all the cuts of rank 2 and continues in this manner till reaching the last

51

consistent cut of rank |E|. For example, in Figure 3.1b the BFS algorithm will

traverse cuts in the following order: [0, 0], [0, 1], [1, 0], [0, 2], [1, 1], [0, 3], [1, 2], [1, 3], [2, 2], [2, 3], [3, 2], [3, 3].

The standard BFS on a graph needs to store the vertices at distance

d from the source to be able to visit the vertices at distance d + 1 (from the

source). Hence, in performing a BFS on C(E) we are required to store the cuts

of rank r in order to visit the cuts of rank r + 1. Observe that in a parallel

computation there may be exponentially many — in the number of processes

— cuts of rank r. Thus, traversing the lattice C(E) requires space which is

exponential in the number of processes.

BFS based traversal of lattice of consistent cuts provides two key ad-

vantages in analysis of parallel programs: it is guaranteed to find an erroneous

global state (consistent cut) — that violates an invariant — with the least

number of events. In addition, it can also be used to enumerate consistent

cuts of a given rank(s). The worst case space requirement of BFS based

traversal, however, is exponential in the number of processes involved in the

computation. This space requirement can be often prohibitive in analyzing

parallel computations.

3.2 BFS Traversal Algorithm using Uniflow Partition

We now show that BFS traversal of the lattice of consistent cuts of

any computation can be performed in space that is polynomial in the size

of the input. We do this by extending the algorithm given in [34]. We use

a computation’s uniflow chain partition and enumerate its consistent cuts in

52

increasing order of ranks. We start from the empty cut, and then traverse all

consistent cuts of rank 1, then all consistent cuts of rank 2 and so on. In this

chapter, we use the vector clock notation of consistent cuts for the presentation

of our algorithms. For any rank r, 1 ≤ r ≤ |E|, we traverse the consistent cuts

in the following lexical order:

Definition 12 (Lexical Order on Consistent Cuts). Given any chain partition

of poset P that partitions it into n chains, we define a total order called lexical

order on all consistent cuts of P as follows. Let G and H be any two consistent

cuts of P . Then, G <l H ≡ ∃k : (G[k] < H[k])∧ (∀i : n ≥ i > k : G[i] = H[i])

[1, 0] [2, 1]

[0, 1] [1, 2]

(a) Original
vector clocks

[0, 1, 0]

[0, 2, 1]

[0, 0, 1]

[1, 1, 1]

(b) Renegerated vector clocks for
uniflow partition

Figure 3.2: Vector clocks of a computation in its original form, and in its
uniflow partition

Recall from our vector clock notation (Section 2.2) that the right most

entry in the vector clock is for the lowest chain. Also, the vector clocks are

dependent on chain partition. Consider the poset with a non-uniflow chain

partition in Figure 3.2a. The vector clocks of its events are shown against the

four events. The lexical order on the consistent cuts of this chain partition is:

53

[0, 0] <l [0, 1] <l [1, 0] <l [1, 1] <l [1, 2] <l [2, 1] <l [2, 2]. For the same poset,

Figure 3.2b shows the equivalent uniflow partition, and the corresponding

vector clocks that are regenerated using Algorithm 1. The lexical order on

the consistent cuts for this uniflow chain partition is: [0, 0, 0] <l [0, 0, 1] <l

[0, 1, 0] <l [0, 1, 1] <l [0, 2, 1] <l [1, 1, 1] <l [1, 2, 1].

Note that the number of consistent cuts remains same for both of these

chain partitions, and there is a one-to-one mapping between the consistent

cuts in the two partitions.

Algorithm 2 TraverseBFSUniflow(P)

Input: A poset P = (E,→) that has been partitioned into a uniflow chain partition
of nu chains, and the vector clock of the events have been regenerated for this
partition.

1: G = new int[nu] // initial consistent cut with rank 0
2: enumerate(G) // evaluate the predicate on empty cut G.
3: for (r = 1; r ≤ |E|; r + +) do
4: //make G lexically smallest cut of given rank
5: G = GetMinCut(G, r)
6: while G 6= null do
7: enumerate(G) // evaluate the predicate on G.
8: //find the next bigger lexical cut of same rank
9: G = GetSuccessor(G, r)

Algorithm 2 shows the steps of our BFS traversal using a computation

in a uniflow chain partition. In generating the input for this algorithm, we

perform two pre-processing steps: (a) finding a uniflow partition, and (b)

regenerating vector clocks for this partition. These steps are performed

only once for a computation, and are relatively inexpensive in comparison

to the traversal of lattice. Later, in Section 3.3, we show how to implement

54

our uniflow partition based BFS algorithm without regeneration of the vector

clocks.

Algorithm 3 GetMinCut(G, r)

Input: G: a consistent cut of poset P from Algorithm 2
Output: Smallest consistent cut of rank r that is lexically greater than or equal to

G.
1: d = r − rank(G) // difference in ranks
2: for (j = 1; j ≤ nu; j = j + 1) do
3: if d ≤ size(µj)−G[j] then
4: G[j] = G[j] + d
5: return G
6: else // take all the elements from chain j
7: G[j] = G[j] + size(µj)
8: d = d− size(µj)

For each rank r, 1 ≤ r ≤ |E|, Algorithm 2 first finds the lexically

smallest consistent cut at of rank r. This is done by the GetMinCut (shown

in Algorithm 3) routine that returns the lexically smallest consistent cut of P

bigger than G of rank r. For example, in Figure 3.3, GetMinCut([0, 0, 0], 4)

returns [0, 1, 3]. Given a consistent cut G of rank r, we repeatedly find the

next lexically bigger consistent cut of rank r using the routine GetSuccessor

given in Algorithm 4. For example, in Figure 3.3, GetSuccessor([0, 0, 3], 3)

returns the next lexically smallest consistent cut [0, 1, 2].

The GetMinCut routine on poset P assumes that the rank of G is

at most r and that G is a consistent cut of the P . It first computes d as the

difference between r and the rank of G. We need to add d elements to G to

find the smallest consistent cut of rank r. We exploit the Uniflow Cut Lemma

(Lemma 3) by adding as many elements from the lowest chain as possible. If

55

all the elements from the lowest chain are already in G, then we continue with

the second lowest chain, and so on.

P3

[1, 2, 0] [2, 2, 0] [3, 2, 2]

P2

[0, 1, 0] [0, 2, 0] [0, 3, 1]

P1
[0, 0, 1] [0, 0, 2] [0, 0, 3]

Figure 3.3: Illustration for GetSuccessor: Computation in uniflow partition
on three processes

Algorithm 4 GetSuccessor(G, r)

Input: G: a consistent cut of rank r
Output: K: lexical successor of G of rank r
1: K = G // Create a copy of G in K
2: for (i = 2; i ≤ nu; i++) do // lower chains to higher
3: if next element on Pi exists then
4: K[i] = K[i] + 1 // increment cut
5: for (j = i− 1; j > 0; j −−) do
6: K[j] = 0 // reset lower chains

7: //fix dependencies on lower chains
8: for (j = i+ 1; j ≤ nu; j + +) do
9: for (k = i− 1; k > 0; k −−) do

10: vc = vector clock of event number G[j] on Pj

11: K[k] = MAX(vc[k], K[k])

12: if rank(K) ≤ r then
13: return GetMinCut(K, r)

14: return null // no candidate cut

For example, consider the computation in Figure 3.3, and its consistent

cut G = [0, 0, 2]. Now let us try to find G’s lexical successor at rank 5. In this

56

case, we add all three elements from P1 to reach [0, 0, 3], and then add first

two elements from P2 to get the answer as [0, 2, 3].

The GetSuccessor routine (Algorithm 4) finds the lexical successor

of G at rank r. The approach for finding a lexical successor is similar to

counting numbers in a decimal system: if we are looking for successor of 2199,

then we can’t increment the two 9s (as we are only allowed digits 0-9), and

hence the first possible increment is for entry 1. We increment it to 2, but we

must now reset the entries at lesser significant digits. Hence, we reset the two

9s to 0s, and get the successor as 2200.

In our GetSuccessor routine, we start at the second lowest chain in

a uniflow poset, and if possible increment the cut by one event on this chain.

We then reset the entries on lower chains, and then make the cut consistent by

satisfying all the causal dependencies. If the rank of the resulting cut is less

than or equal to r, then calling the GetMinCut routine gives us the lexical

successor of G at rank r.

Line 1 copies cut G in K. The for loop covering lines 2–13 searches

for an appropriate element not in G such that adding this element makes the

resulting consistent cut lexically greater than G. We start the search from

chain 2, instead of chain 1, because for a non-empty cut G adding any event

from the lowest chain to G will only increase G’s rank as there are no lower

chains to reset. Line 3 checks if there is any possible element to add in Pi.

If yes, then lines 4–6 increment K at chain i, and then set all its values for

lower chains to 0. To ensure that K is a consistent cut, for every element in

57

K, we add its causal dependencies to K in lines 7–11. Line 12 checks whether

the resulting consistent cut is of rank ≤ r. If rank(K) is at most r, then we

have found a suitable cut that can be used to find the next lexically bigger

consistent cut and we call GetMinCut routine to find it. If we have tried all

values of i and did not find a suitable cut, then G is the largest consistent cut

of rank r and we return null.

In Figure 3.3, consider the call of GetSuccessor ([1, 2, 3], 6). As there

is no next element in P1, we consider the next element in P2. After line 5, the

value of K is [1, 3, 0], which is not consistent. Lines 7–10 make K a consistent

cut, now K = [1, 3, 1]. Since rank(K) is 5, we call GetMinCut at line 13 to

find the smallest consistent cut of rank 6 that is lexically bigger than [1, 3, 1].

This consistent cut is [1, 3, 2].

3.2.1 Proof of Correctness

Lemma 4. Let G be any consistent cut of rank at most r. Then, H = Get-

MinCut is the lexically smallest consistent cut of rank r greater than or equal

to G.

Proof. We first show that H is a consistent cut. Initially, H is equal to G which

is a consistent cut. We show that H continues to be a consistent cut after every

iteration of the for loop. At iteration j, we add elements from the jth chain

from the bottom to H. Since all elements from higher numbered chains are

already part of H, and all elements from lower numbered chains cannot be

58

smaller than any of the newly added element, we get that H continues to be

a consistent cut.

By construction of our algorithm it is clear that rank of H is exactly r.

We now show that H is the lexically smallest consistent cut of rank r greater

than or equal to G. Suppose not, and let W <l H be the lexically smallest

consistent cut of rank r greater than or equal to G. Since W <l H, let k be the

smallest index such that W [k] < H[k]. Since G ≤l W , k is one of the indices

for which we have added at least one event to G. Because rank of W equals

rank of H, there must be an index k′ lower than k such that W [k′] > H[k′].

However, our algorithm forces that for H for any index k′ lower than k, H[k′]

equals |Pk′|. Hence, W [k′] cannot be greater than H[k′].

Lemma 5. Let G be any consistent cut of rank at most r, Then GetSuc-

cessor returns the least consistent cut of rank r that is lexically greater than

G.

Proof. Let W be the cut returned by GetSuccessor. We consider two cases.

Suppose that W is null. This means that for all values of i, either all elements

in chain Pi are already included in G, or on inclusion of the next element in Pi,

z, the smallest consistent cut that includes z has rank greater than r. Hence,

G is lexically biggest consistent cut of rank r.

Now consider the case when W is the consistent cut returned at line 16

by GetMinCut(K, r). We first observe that after executing line 11, K is the

next lexical consistent cut (of any rank) after G. If rank(K) is at most r, then

59

by Lemma 4 we know that GetMinCut(K, r) returns the smallest lexical

consistent cut greater than or equal to G of rank r. If rank(K) is greater than

r, then there is no consistent cut of rank r such that ∀k : i + 1 ≤ k ≤ nu :

K[k] = G[k] and K[i] > G[i] and rank(K) ≤ r. Thus, at line 16 we use the

largest possible value of i for which there exists a lexically bigger consistent

cut than G of rank r.

3.2.2 Complexity Analysis

We regenerate vector clocks of the events in the computation P =

(E,→) after finding its uniflow chain partition µ. If µ has nu chains then each

event’s regenerated vector clock in µ will have length nu. Hence, we require

O(nu · |E|) space to store the computation in the uniflow partition.

The GetMinCut routine goes over nu chains at most, and for each

iteration performs constant work. Thus, the time complexity of GetMinCut

is O(nu). Finding the lexical successor of a cut using the GetSuccessor

routine takes O(n3
u) time. This is due to the three nested for-loops — at lines

2, 8 and 9 — that iterate over the chains of µ.

3.2.3 GetSuccessor in O(n2
u) Time

We now present an optimization to find the lexical successor of any

consistent cut in O(n2
u) time, instead of O(n3

u) time taken in GetSuccessor.

We do so by using additional O(n2
u) space.

Observe that GetSuccessor routine iterates over nu−1 chains in the

60

Algorithm 5 ComputeProjections(G)

Input: G: a consistent cut of rank r
1: for (i = nu; i ≥ 1; i−−) do // go top to bottom
2: val = G[i] // event number in G on chain i
3: vc = vector clock of event num val on chain i
4: if i == nu then // on highest chain
5: proj[i] = vc
6: else // process relevant entries in vector
7: for (j = i; j > 0; j −−) do
8: //projection on chain i:
9: proj[i][j] =MAX(vc[j], proj[i+ 1][j])

outer loop at line 2, and the two inner loops at lines 8 and 9 perform O(n2
u)

work in the worst case. When we cannot find a suitable cut of rank less than

or equal to r (check performed at line 12), we move to a higher chain (with

the outer loop at line 2). Thus, we repeat a large fraction of the O(n2
u) work

in the two inner loops at lines 8 and 9 for this higher chain. We can avoid this

repetition by storing the combined causal dependencies from higher chains on

each lower chain.

P1

P2

P3

G = [1, 3, 2]
proj[3] = [1, 0, 0]

proj[2] = [1, 3, 1]

proj[1] = [1, 3, 2]

Figure 3.4: Illustration: Projections of a cut on chains

Let us illustrate this with an example. Consider the uniflow computa-

tion shown in Figure 3.4. Suppose we want the lexical successor of G = [1, 3, 2].

Then, for each chain, starting from the top we compute the projection of events

61

included in G on lower chains. For example, G[3] = 1, and thus on the top-

most chain, the projection is only the vector clock of the first event on P3,

which is [1, 0, 0]. Thus proj[3] = [1, 0, 0]. On P2, the projection must include

the combined vector clocks of G[3] and G[2] — the events from top two chains.

As G[2] = 3, we use the vector clock of third event on P2, which is [0, 3, 1]

as that event is causally dependent on first event on P1. Combining the two

vectors gives us the projection on P2 as proj[2] = [1, 3, 1].

Algorithm 5 shows the steps involved in computing the projections of

a cut on each chain. We create an auxiliary matrix, proj, of size nu × nu, to

store these projections. In GetSuccessor routine, once we have computed

a new successor by using some event on chain i, we need to update the stored

projections on chains lower than i; and not all nu chains. This is because the

projections for unchanged entries in G above chain i will not change on chain

i, or any chain above it. Hence, we only update the relevant rows and columns

— rows and columns with number i or lower — in proj; i.e. only the upper

triangular part of the matrix proj. We keep track of the chain that gave us

the successor cut, and pass it as an additional argument to Algorithm 5. We

read and update n2
u/2 entries in the matrix, and not all n2

u of them.

Hence, the optimized implementation of finding the lexical successor of

G requires two changes. First, every call of GetSuccessor (G, r) starts with

computing the projections of G using Algorithm 5. Second, we replace the

two inner for loops at lines 8 and 9 in GetSuccessor by one O(nu) loop to

compute the max of the two vector clocks: vector clock of K[i], and proj[i].

62

The optimized implementation with these changes is shown in Algorithm 6 .

Algorithm 6 GetSuccessorOptimized(G, r)

Input: G: a consistent cut of rank r
Output: K: lexical successor of G with rank r
1: ComputeProjections(G) // G’s projections
2: K = G // Create a copy of G in K
3: for (i = 2; i ≤ nu; i++) do
4: if next element on Pi exists then
5: K[i] = K[i] + 1 // increment cut in Pi

6: //fix dependencies using projections
7: vc = vector clock of event number K[i] on Pi

8: //take component-wise max
9: for (k = i− 1; k > 0; k −−) do

10: K[k] = MAX(vc[k], proj[i][k])

11: if rank(K) ≤ r then
12: return GetMinCut(K, r) // make K’s rank equal to r

13: return null // could not find a candidate cut

3.2.4 Re-mapping Consistent Cuts to Original Chain Partition

The number of consistent cuts of a computation is independent of the

chain partition used. Their vector clock representation, however, varies with

chain partitions as the vector clocks of events in the computation depend on

the chain partition used to compute them. There is a one-to-one mapping

between a consistent cut in the original chain partition of the computation on

n chains (processes), and its uniflow chain partition on nu chains. We now

show how to map a consistent cut in a uniflow chain partition to its equivalent

cut in the original chain partition of the computation. Let P = (E,→) be a

computation on n processes, and let nu be the number of chains in its uniflow

63

chain partition. If Gu is a consistent cut in the uniflow chain partition, then

its equivalent consistent cut G for the original chain partition (of n chains)

can be found in O(nu + n2) time.

Algorithm 7 Remap(Gu, nu, n)

Input: Gu: a consistent cut in uniflow chain partition on nu chains
Output: G: equivalent consistent cut in original chain partition on n chains
1: G = new int[n] // allocate memory for G
2: I = new int[nu] // reduction vector
3: for (i = nu; i ≥ 1; i−−) do // go over all the uniflow chains
4: uvc =event number Gu[i]’s vector-clock on uniflow chain i
5: //chain of this event in original poset
6: c = OriginalChain(uvc)
7: //uvc’s event number on chain c in original poset
8: e = OriginalEvent(uvc)
9: if I[c] < e then // update indicator with e

10: I[c] = e

11: for (j = n; i ≥ 1; i−−) do // go over chains in original poset
12: vce =event number I[j]’s vector-clock on chain j in original poset
13: for (k = n; k ≥ 1; k −−) do // update G entries
14: G[k] =MAX(G[k], vce[k])

15: return G

We do so by mapping two additional entries with the new vector clock of

each event for uniflow chain partition: the chain number c, and event number

e from the original chain partition over n chains. For example, in Figure 3.2b,

for uniflow vector clock [1, 1, 1], its chain number in original poset is 1, and its

event number on that chain is 2. When generating the uniflow vector clocks,

we populate these entries in a map. Given a uniflow vector clock uvc, the call

to OriginalChain(uvc) returns c, and OriginalEvent(uvc) returns e. To

compute G from Gu, we use these two values from the corresponding event for

64

each entry in Gu. We start with I as an all-zero vector of length n. Now, we

iterate over Gu, and we update I by setting I[c] = max(I[c], e). As vector Gu

has length nu, this step takes O(nu) time. We now initiate G as an all-zero

vector clock of length n, and for each entry I[k], 1 ≤ k ≤ n, we get the vector

clock, vce, of event I[k] on chain k in the original computation. We then set

G to the component-wise maximum of G and vce. As there are n entries in

I, and for each non-zero entry we perform O(n) work in updating G (in lines

11–14 in Algorithm 7) the total work in this step is O(n2).

3.3 Implementation without Regeneration of Vector Clocks

Our discussion of GetMinCut (Algorithm 3) and GetSuccessor

(Algorithm 4) required that the vector clocks of the events must be regener-

ated for the uniflow chain partition. We now discuss how to implement the

algorithms presented earlier in this chapter without regenerating the vector

clocks for the uniflow chain partition of the computation.

Suppose the original computation under analysis, P =(E,→), is on n

processes. Then, this computation is stored as vector clocks, and state vari-

ables of |E| events on n chains. Note that a chain partition is only a way of

positioning elements of the poset. Thus, after finding the uniflow chain par-

tition µ, we can only reposition the events on their respective uniflow chains,

and do not need to regenerate their vector clocks. In our implementation un-

der this approach, there are nu chains in µ, and each of them is stored as an

array whose entries store the original vector clocks, and the state variables for

65

each event. For example, the computation on two processes in Figure 3.6a

is not in uniflow partition. Figure 3.6b shows its uniflow partition on three

chains. Note that we have retained the original vector clocks of the events,

and only repositioned them on three chains.

3.3.1 Retaining Original Vector Clocks in Uniflow Partition

Our presentation of algorithms uses G[i] to denote the number of events

from chain µi that are included in a consistent cut G. We maintain this

information by assigning an index (in the range 1 to size(µi)) to each event on

the chain. We use a vector Gu, called indicator vector, of length nu, to keep

track of which event is included in G. In Figure 3.5, we show an illustration

with multiple G cuts, and their respective indicator vectors. Whenever we add

an event e from chain µi to G we update Gu[i] to the index of e. Thus, finding

the index of the first event on chain µi not included in G can be implemented

as ind = Gu[i] + 1, and takes constant time.

Given the indicator vector Gu, we can find its equivalent cut G using

the optimized approach of Section 3.2.4 in O(nu + n2) time.

c d

a b
P1

P2

(a) Computa-
tion

c

b

a

d

µ1

µ2

µ3

(b) Uniflow Parti-
tion

G = {a} =⇒ Gu[0] = 1, Gu[1] = 0, Gu[2] = 0

G = {a, c} =⇒ Gu[0] = 1, Gu[1] = 1, Gu[2] = 0

G = {a, c, b} =⇒ Gu[0] = 1, Gu[1] = 2, Gu[2] = 0

G = {a, c, d} =⇒ Gu[0] = 1, Gu[1] = 1, Gu[2] = 1

G = {a, b, c, d} =⇒ Gu[0] = 1, Gu[1] = 2, Gu[2] = 1

(c) G values and their respective Gu vectors

Figure 3.5: Illustration: Maintaining indicator vector Gu for a cut G

66

c : [1, 0] d : [2, 1]

a : [0, 1] b : [1, 2]

P1

P2

(a) Computation

a : [0, 1]

c : [1, 0] b : [1, 2]

d : [2, 1]

µ1

µ2

µ3

(b) Uniflow Partition

a : [0, 1]
c : [1, 0]
b : [1, 2]
d : [2, 1]

(c) Events in Uniflow
Order

J [1] = [0, 1]
J [2] = [1, 1]
J [3] = [1, 2]
J [4] = [2, 2]

(d) J Vector

Figure 3.6: Illustration: Computing J vector for optimizing GetMinCut

3.3.2 GetMinCut

Observe that in the GetMinCut routine we add events to any cut in

increasing uniflow order (Definition 7). We do not skip any event, and only

return when the cut has the required rank r. Given a uniflow chain partition

µ, we can optimize the runtime for this routine by using additional O(n · |E|)

space.

The computation P =(E,→) on n processes has |E| events, and each

event has a vector clock of length n. We first collect and store all the events

in the uniflow order. Let J represent the array that stores the vector clocks

of events in their increasing uniflow order. Now, for 2 ≤ i ≤ |E| we compute

element-wise max of vector clocks in entries J [i] and J [i − 1], and store the

result in J [i]. Thus, for a computation on n processes J [i] and J [i − 1] are

67

both vector of length n, and we have:

J [i][k] = max (J [i][k], J [i− 1][k]), 2 ≤ i ≤ |E|, 1 ≤ k ≤ n.

We can now use this vector J to find the result of GetMinCut (G, r). If

G is empty, then we return the entry J [r] as the result. This takes constant

time. When G is non-empty, given that J will contain entries (vector clocks)

in increasing order, we can perform binary search on it to find the result. We

use the rank of the resulting cut formed by joining G with the entry in J to

guide our binary search.

Consider the computation in Figure 3.6a that has four events, and its

uniflow partition in Figure 3.6b. The increasing order on the vector clocks of

all the four events is in Figure 3.6c. Starting from the bottom (vector [0, 1]),

and performing the joins, we get J as shown in Figure 3.6d.

Computing and storing the vector J requires O(n · |E|) time and space.

After computing J , each call to GetMinCut (G, r) takes O(n log |E|) time

with binary search when G is non-empty. This is because there are at most

log |E| iterations to find the result, and at each iteration we do O(n) work

to find the join of two vector clocks and compute its rank. As we discussed

earlier, when G is the empty cut a call to GetMinCut (G, r) takes O(1) time

irrespective of the value of r.

68

3.3.3 ComputeProjections

The optimized GetSuccessor algorithm presented in Section 3.2.3

requires O(n2
u) time and space. This is because the ComputeProjections

routine requires O(n2
u) time and space to compute the projections of cuts

as each vector clock is of length nu after its regeneration under the uniflow

chain partition. When we do not regenerate the vector clocks, and only use

the indicator vector Gu as discussed above, we only require O(nu · n) time

and space to compute the projections. We use the indicator vector Gu to

compute the projections, and each of these projections now takes O(n) space

— the space taken by a vector clock in the original computation. We show

the modified routine in Algorithm 8.

Algorithm 8 ComputeProjections(Gu) with original vector clocks

1: for (i = nu; i ≥ 1; i−−) do // start from top, move down
2: val = Gu[i] // event number in Gu on chain i
3: vc = µi[val].V C // vector clock of event number val on chain i
4: if i == nu then // on highest chain
5: proj[i] = vc
6: else
7: for (j = n; j > 0; j−−) do // projection on chain i is max of two vectors
8: proj[i][j] = max(vc[j], proj[i+ 1][j])

Let us illustrate this with an example. Consider the uniflow compu-

tation shown in Figure 3.7 that was originally on two processes. Suppose

we want the lexical successor of G = [1, 2]. Then, for each chain, starting

from the top, using the vector Gu we compute the projection of events in-

cluded in G on lower chains. For the consistent cut G = [1, 2], we have

69

[1, 0]

[1, 2]

[0, 1]

[2, 1]

µ1

µ2

µ3 proj[3] = [0, 0]

proj[2] = [1, 2]

proj[1] = [1, 2]

G = [1, 2], Gu[1] = 1, Gu[2] = 2, Gu[3] = 0

Figure 3.7: Illustration: Projections of cuts on uniflow chains without regen-
eration of vector clocks

Gu[3] = 0, Gu[2] = 2, Gu[1] = 1. Hence, on the top-most chain, the pro-

jection is empty and we have proj[3] = [0, 0]. On chain µ2, the projection

must include the combined vector clocks of events included form chain µ3,

and µ2. As Gu[2] = 2, we take the vector clock of second event on µ2, and

perform a element-wise max operation for its entries and proj[3]. We thus get

proj[2] = [1, 2]. We then move to chain µ1 and find the vector clock of event

against entry Gu[1] = 1 which is the first event on µ1, with vector clock [0, 1].

We then set proj[1] = max(proj[2], [0, 1]), which is element-wise max of two

arrays [1, 2], and [0, 1]. Thus, we get proj[1] = [1, 2].

After the modifications discussed above, the modified GetSuccessor

algorithm takes O((nu + log |E|) · n) time in the worst case. To achieve this

improved time complexity, we require O((|E|+nu) ·n) additional space: O(n ·

|E|) space to store the computed J vector, and O(n·nu) to store the projections,

proj vector, of a consistent cut on nu chains.

70

3.4 Comparison with Other Traversal Algorithms

Based on the optimized implementation of our algorithms, we have the

following result:

Theorem 2. Given a computation P = (E,→) on n processes, Algorithm 2

performs breadth-first traversal of its lattice of consistent cuts using O((nu +

|E|) · n) space which is polynomial in the size of the computation.

Proof. Storing the original computation, and the computed J vector requires

O(n · |E|) space — each event’s vector clock has n integers. Storing the pro-

jections requires O(n · nu) space. The Gu vector takes O(nu) space.

As, nu ≤ |E|, the worst case space complexity of our BFS traversal

algorithm is O(n · |E|) which is polynomial in the size of the input.

3.4.1 Traversing Consistent Cuts of Specific Rank(s)

A key benefit of our algorithm is that it can traverse all the consistent

cuts of a given rank, or within a range of ranks, without traversing the cuts

of lower ranks. In contrast, the traditional BFS traversal must traverse, and

store, consistent cuts of rank R − 1 to traverse cuts of rank R, which in turn

requires it to traverse cuts of rank R− 2 and so on. Other algorithms such as

DFS [2], and Lex [31, 33] may traverse the all the consistent cuts of the lattice

in the worst case to enumerate cuts of a specified rank.

To traverse all the cuts of rank R, we just change the loop bounds at line

3 in Algorithm 2 to for (r = R; r ≤ R; r++). Thus, starting with an empty cut

71

Algorithm Space Required

Traditional BFS [23] O(m
n−1

n
)

DFS [2] O(|E|)
Lex [31, 33] O(n)
Original Uniflow-BFS* O((nu + |E|) · nu)
Optimized Uniflow-BFS* O((nu + |E|) · n)

Table 3.1: Space complexities of algorithms for traversing lattice of consistent
cuts; here m = |E|

n
. * denotes algorithms in this dissertation.

we find the lexically smallest consistent cut of rank R with the GetMinCut

routine. Then we repeatedly find its lexical successor of the same rank, until

we have traversed the lexically biggest cut of rank R. Similarly, consistent

cuts between the ranks of R1 and R2 can be traversed by changing the loop

at line 3 in Algorithm 2 to: for (r = R1; r ≤ R2; r + +).

Consider a computation P = (E,→) on n processes, whose uniflow

chain partition µ has nu chains. In Table 3.1, we compare the worst-case

space complexities of BFS, DFS, and Lex traversal algorithms, against that of

our uniflow partition based BFS algorithm.

Let Lr denote the number of consistent cuts of rank r for the compu-

tation. In Table 3.2, we compare the worst-case time complexities of these

traversal algorithms to traverse this level of the lattice.

In the next chapter, we extend the notion of lexical order based traversal

to enumerate consistent cuts that satisfy two important categories of predi-

cates.

72

Algorithm
Time

Per cut Level r

Traditional BFS [23] O(n2) O(n2
∑r

i=1 Li)

DFS [2] O(n2) O(n2
∑|E|

i=1 Li)

Lex [31, 33] O(n2) O(n2
∑|E|

i=1 Li)
Original Uniflow-BFS* O(n2

u) O(n2
u · Lr)

Optimized Uniflow-BFS* O((nu + log |E|) · n) O((nu + log |E|) · n · Lr)

Table 3.2: Space and Time complexities for traversing level r of the lattice of
consistent cuts. * algorithm denotes in this dissertation.

3.5 Experimental Evaluation

We conduct an experimental evaluation to compare the space and time

required by traditional BFS, Lex [33, 12], and our uniflow based traversal al-

gorithm to traverse consistent cuts of specific ranks, as well as all consistent

cuts up to a given rank. We do not evaluate DFS [3] implementation as pre-

vious studies have shown that Lex implementation outperforms DFS based

traversals in both time and space [33, 12, 10]. Lexical enumeration is signif-

icantly better for enumerating all possible consistent cuts of a computation

[12, 10]. However, it is not well suited for only traversing cuts of a specified

ranks, or finding the smallest counter example. For these tasks, BFS traversal

remains the algorithm of choice. We optimize the traditional BFS implemen-

tation as per [33] to enumerate every global state exactly once. We use seven

benchmark computations from recent literature on traversal of consistent cuts

[12, 10]. The details of these benchmarks are shown in Table 3.3. Bench-

marks d-100, d-300 and d-500 are randomly generated posets for modeling

distributed computations. Each of them simulates a distributed computation

73

Name n |E| Approx. # of cuts

d-100 10 100 1.2×106

d-300 10 300 4.3×107

d-500 10 500 4.9×109

bank 8 96 8.2×108

hedc 12 216 4.5×109

w-4 4 480 9.3×106

w-8 8 480 7.3×109

Table 3.3: Benchmark details

on n = 10 processes, with varying number of events: d-100 has 100 events, and

d-300, d-500 have 300 and 500 events respectively. After each internal event,

every processes sends a message to a randomly selected process with a proba-

bility of 0.3. The benchmarks bank, and hedc are computations obtained from

real-world concurrent programs that are used by [17, 28, 68] for evaluating

their predicate detection algorithms. The benchmark bank contains a typical

error pattern in concurrent programs, and hedc is a web-crawler. Benchmarks

w-4 and w-8 have 480 events distributed over 4 and 8 processes respectively,

and help to highlight the influence of degree of parallelism on the performance

of enumeration algorithms.

We conduct two sets of experiments: (a) complete traversal of lattice of

consistent cuts (of the computation) in BFS manner, and (b) traversal of cuts

of specific ranks. We conduct all the experiments on a Linux machine with an

Intel Core i7 3.4GHz CPU, with L1, L2 and L3 caches of size 32KB, 256KB,

and 8192KB respectively. We compile and run the programs on Oracle Java

1.7, and limit the maximum heap size for Java virtual machine (JVM) to 2GB.

74

For each run of our traversal algorithm, we use Algorithm 1 to find the uniflow

chain partition of the poset. The runtimes and space reported for our uniflow

traversal implementation include the time and space needed for finding and

storing the uniflow chain partition of the poset.

3.5.1 Results with Regenerated Vector Clocks

Our initial presentation of uniflow based BFS traversal algorithms re-

quired that vector clocks of events be regenerated for uniflow chain partitions.

Under this setup, we require O((nu + |E|) · nu) space and take O(n2
u) time to

enumerate a consistent cut of the computation. We first present the results of

our experiments under this setup.

Table 3.4 compares runtimes, and the sizes of JVM heap for traditional

BFS and our uniflow based BFS traversal of lattice of consistent cuts of the

benchmarks. The traditional BFS implementations runs out of memory on

hedc, bank, and w-8. Our implementation requires significantly less memory

despite regenerating vector clocks whose lengths are usually bigger than the

original vector clocks. Even though our implementation is slower, it enables

us to do BFS traversal on large computations — something that is impossible

with traditional BFS due to its memory requirement.

Table 3.5 highlights the strength of our algorithm in traversing consis-

tent cuts of specific ranks. We compare our implementation with traditional

BFS as well as the implementation of Lexical traversal. For traversing consis-

tent cuts of three specified ranks (equal to quarter, half, and three-quarter of

75

Name nu Tpart Traditional BFS Uniflow BFS
Space Time Space Time

d-100 26 0.030 108 0.48 31 0.37
d-300 68 0.031 842 16.84 33 46.20
d-500 112 0.033 893 108.07 34 607.55
bank 8 0.023 × × 59 73.2
hedc 26 0.028 × × 56 1129
w-4 121 0.036 258 0.99 25 8.59
w-8 63 0.032 × × 40 1445.57

Table 3.4: Heap-space consumed (in MB) and runtimes (in seconds) for two
BFS implementations to traverse the full lattice of consistent cuts. Tpart =
time (seconds) to find uniflow partition; × = out-of-memory error.

Name r = |E|
4 r = |E|

2 r = 3|E|
4

tbfs lex uni tbfs lex uni tbfs lex uni
d-100 0.12 0.10 0.06 0.22 0.11 0.05 0.20 0.89 0.04
d-300 0.39 1.23 0.05 2.70 1.15 0.07 6.33 1.25 0.13
d-500 2.29 5.73 0.11 7.83 6.52 0.33 67.59 6.86 1.48
bank 3.36 16.80 0.27 × 16.34 3.07 × 17.02 0.32
hedc 4.72 16.50 0.50 × 152.76 15.70 × 153.54 0.51
w-4 0.09 0.18 0.07 0.53 0.18 0.10 0.93 0.19 0.09
w-8 26.39 143.08 0.72 × 171.23 12.27 × 169.21 3.09

Table 3.5: Runtimes (in seconds) for tbfs: Traditional BFS, lex: Lexical, and
uni: Uniflow BFS implementations to traverse cuts of given ranks; × = out-
of-memory error.

number of events) our algorithm is consistently and significantly faster than

both traditional BFS, as well as Lex algorithm. Thus, it can be extremely

helpful in quickly analyzing traces when the programmer has knowledge of the

conditions when an error/bug occurs.

In addition, there are many cases when we are not interested in checking

76

Name r ≤ 32

tbfs lex uni
d-100 0.19 0.93 0.12
d-300 0.20 1.22 0.14
d-500 0.19 4.93 0.19
bank 45.43 16.87 5.70
hedc 0.23 128.60 0.12
w-4 0.01 0.13 0.05
w-8 0.02 196.21 0.05

Table 3.6: Runtimes (in seconds) for tbfs: Traditional BFS, lex: Lexical, and
uni: Uniflow BFS implementations to traverse cuts of ranks upto 32.

all consistent cuts of a computation. It has been argued that most concurrency

related bugs can be found relatively early in execution traces [53, 4]. As

highlighed by Table 3.6, we also perform well in visiting all consistent cuts of

rank less than or equal to 32. Hence, our implementation is faster on most

benchmarks for smaller ranks, and has a much smaller memory footprint (see

Table 3.7). These results emphasize that our algorithm is useful for practical

debugging tasks while consuming less resources.

3.5.2 Results without Regenerated Vector Clocks

We now present the results of our experiments for the implementations

of our algorithms in which we use the original vector clocks of the computa-

tion. Recall that under this setting we require O((nu + |E|) · n) additional

space, and we take O((nu + log |E|) · n) time in the worst case to enumerate a

consistent cut of the computation. From here on, we use the term UniR for the

implementation that regenerates vector clocks of events for the uniflow chain

77

Name r = |E|
4

r = |E|
2

r = 3|E|
4

r ≤ 32

tbfs lex uni tbfs lex uni tbfs lex uni tbfs lex uni
d-100 95 32 41 121 29 41 134 32 42 112 32 42
d-300 107 33 53 342 32 54 583 32 54 113 31 42
d-500 299 33 56 695 32 55 1604 34 55 112 32 41
bank 1014 21 52 × 22 54 × 21 54 1312 22 54
hedc 934 33 61 × 34 62 × 34 62 602 31 60
w-4 83 21 49 313 22 49 301 21 51 36 20 49
w-8 1786 27 44 × 28 43 × 28 45 1240 28 43

Table 3.7: Heap Memory Consumed (in MB) for tbfs: Traditional BFS, lex:
Lexical, and uni: Uniflow BFS implementations to traverse cuts of ranks up
to 32. ×= out-of-memory error

partition, and UniNR for the implementation that does not regenerate them,

and uses the original vector clocks.

Table 3.8 compares the runtimes and sizes of the JVM heap for travers-

ing the lattice of consistent cuts for the benchmarks with UniR and UniNR

implementations. Note that the heap space usage of the two uniflow based

traversals remains more or less same. This is because the measured heap size

includes the size of all the objects allocated from it, including the original

computation and its state information, and not just the uniflow chain parti-

tion and its vector clocks. In addition, the memory footprint of regenerated

vector clocks for the benchmarks computations is a few kilobytes at most.

Thus, we do not see a considerable saving in heap memory usage with to the

UniNR implementation. However, if the computation has a really large num-

ber of events, and its resulting uniflow chain partition also has a many more

chains than the number of processes then we may see a big saving in memory

78

Name Traditional BFS UniR BFS UniNR BFS
Space Time Space Time Space Time

d-100 108 0.48 31 0.37 31 0.33
d-300 842 16.84 33 46.20 33 26.62
d-500 893 108.07 34 607.55 33 301.72
bank × × 59 73.24 58 87.97
hedc × × 56 1129.35 56 1304.74
w-4 258 0.99 25 19.59 25 21.48
w-8 × × 40 1445.57 40 1880.45

Table 3.8: Heap-space consumed (in MB) and runtimes (in seconds) for
traversing the full lattice of consistent cuts using traditional BFS, UniR: uni-
flow BFS that regenerates vector clocks, and UniNR: uniflow BFS that does
not regenerate vector clocks.

usage with the UniNR implementation. Note that the for many cases UniNR

implementation is significantly faster than our earlier implementation, and is

relatively close to traditional BFS in runtimes.

Name r = |E|
4 r = |E|

2 r = 3|E|
4 r ≤ 32

UniR UniNR UniR UniNR UniR UniNR UniR UniNR
d-100 0.06 0.04 0.05 0.01 0.04 0.05 0.16 0.12
d-300 0.05 0.04 0.07 0.07 0.13 0.12 0.20 0.14
d-500 0.11 0.09 0.33 0.34 1.48 1.61 0.16 0.15
bank 0.27 0.25 3.07 2.97 3.12 0.31 5.28 5.88
hedc 0.50 0.41 15.70 16.61 0.51 0.52 0.15 0.09
w-4 0.07 0.06 0.10 0.10 0.09 0.09 0.05 0.01
w-8 0.72 0.71 11.27 12.69 3.09 3.08 0.05 0.02

Table 3.9: Runtimes (in seconds) to traverse cuts of given ranks with UniR
and UniNR implementations

Table 3.9 shows the runtimes of the two implementations in traversing

consistent cuts of specific ranks. For some cases, the improvement in runtime

79

performance with UniNR over the UniR is considerable. Note that UniR is

already significantly faster than Lex and traditional BFS for traversing specific

ranks of the lattice.

80

Chapter 4

Detecting Stable and Counting Predicates

In this chapter, we give an algorithm to enumerate all consistent cuts

satisfying a stable predicate. In addition, we define a new category of global

predicates called counting predicates and give an algorithm to enumerate all

consistent cuts that satisfy it.

In the previous chapter, we focused on enumerating all consistent cuts

of the computation lattice. In many practical scenarios, we may only be inter-

ested in a subset of consistent cuts that satisfy a given predicate. Moreover,

knowledge about the properties and structure of this predicate can be helpful

in enumerating the states that satisfy it. We first focus on a subclass of global

predicates called stable predicates. Predicates such as B = all promises have

been delivered, and B = at least k events have been executed fall under the

category of stable predicates. In this chapter, we introduce another category

of global predicates called counting predicates. This category encodes many

useful conditions for debugging/verification of parallel programs. For example,

B = exactly two messages have been received is a counting predicate.

If we are interested in enumerating all the consistent cuts of a compu-

tation that satisfy a global predicate B that is of the type stable or counting,

81

then we currently only have one choice: traverse all the cuts using existing

traversal algorithms (such as BFS, DFS, and Lex) and enumerate each visited

cut that satisfies B. This is wasteful because we traverse many more cuts than

needed — especially if the subset of cuts satisfying B is relatively small. For

example, consider the computation shown in Figure 4.1a, and the predicate B

= at least 4 events have been executed. Figure 4.1b shows all the consistent

cuts of the computation as a distributive lattice. There are five cuts in which

at least four events have been executed; we have highlighted these cuts with

a gray background. The BFS, DFS, or Lex traversal algorithms, however, will

have to visit all the twelve cuts to find these five.

We now present algorithms to efficiently enumerate subset of consis-

tent cuts that satisfy stable or counting predicates without enumerating other

consistent cuts that do not satisfy them. Our algorithms take time and space

that is a polynomial function of the number consistent cuts of interest, and in

doing so provide an exponential reduction in time complexities in comparison

to existing algorithms. For the earlier example of the computation Figure 4.1a,

and the predicate B = at least 4 events have been executed, our algorithm only

visits and enumerates the five gray cuts in Figure 4.1b.

4.1 Enumerating Consistent Cuts Satisfying Stable Pred-
icates

A predicate B is stable if once it becomes true it stays true. Some

examples of stable predicates are: deadlock, termination, loss of message, at

82

e f g

a b c

P2

P1

(a) Computation

{}

{a} {e}

{a, b} {a, e}

{a, b, c} {a, b, e}

{a, b, c, e} {a, b, e, f}

{a, b, c, e, f} {a, b, e, f, g}

{a, b, c, e, f, g}

(b) Lattice of Consistent Cuts

Figure 4.1: A computation and its lattice of consistent cuts. Cuts with gray
background satisfy predicate B = at least 4 events have been executed.

least k events have been executed, and at least k′ messages have been sent.

Definition 13 (Stable Predicate). Let C be the set of all consistent cuts of

a computation. A predicate B defined on C is called stable if and only if

∀G,H ∈ C : G ⊆ H implies that if B(G) is true then B(H) is also true.

Thus, for any stable predicate B the lattice of consistent cuts can be

split in two parts using a boundary: every consistent cut higher than the

boundary satisfies B, and no consistent cut lower than the boundary satisfies

B. Figure 4.2 presents a visualization for this concept.

83

Satisfies B

Figure 4.2: Illustration: Visual representation for some stable predicate B:
the cuts in the blue region of the lattice satisfy a stable predicate, and cuts in
the white region do not.

Our goal is to enumerate all consistent cuts of a computation P =(E,→

) that satisfy a stable predicate B. Note that if the empty cut, {} satisfies B,

then by the stability property of B all the consistent cuts of the computation

satisfy B. In this case, the problem is equivalent to traversing all the con-

sistent cuts of a computation. We can use a fast traversal algorithm such as

QuickLex [10] to do so. We now focus on the non-trivial case, and present our

algorithm that enumerates only the consistent cuts that satisfy B, and does

not enumerate the remaining parts of the lattice of consistent cuts.

Recall that C(E) represents the set of all consistent cuts of the com-

84

putation P =(E,→). Let SB ⊂ C(E) be the set of all consistent cuts of P

that satisfy a stable predicate B. We use P ’s uniflow partition µ to enumerate

them in their lexical order based on the uniflow partition. Let G and H be

two consistent cuts of P , then applying the definition of lexical order (Defini-

tion 12) over nu chains, we get G <l H ≡ ∃k : (G[k] < H[k]) ∧ (∀i : nu ≥ i >

k : G[i] = H[i]).

We use the EnumerateStable routine in Algorithm 9 for this enu-

meration. We first find the lexically smallest consistent cut G that satisfies

B. We then find the next cut that is lexically greater than G and satisfies B,

and repeat the process after re-assigning G to this cut. We stop when no such

lexically greater cut satisfying B is found.

Algorithm 9 EnumerateStable((E,→), B)

Input: Computation (E,→) in its uniflow chain partition µ, B: a stable predicate
Output: Enumerate all consistent cuts satisfying B.
1: G = GetMinCut(B, {}) // find the lexically smallest consistent cut satisfying
B

2: while G 6= null do
3: enumerate(G) // enumerate the cut
4: G = GetMinCut(B,G) // find the next lexically smallest consistent cut
>l G satisfying B

Algorithm 10 GetMinCut(B,G)

Input: B: a stable predicate, G: a consistent cut
Output: lexically smallest consistent cut >l G that satisfies B
1: 〈H, c〉 = GetBiggerBaseCut(B,G)
2: return BackwardPass(B, c− 1, H)

Given a consistent cut G, and a stable predicate B, we use the Get-

MinCut routine in Algorithm 10 to find the lexically smallest cut that is

85

greater than G and satisfies B. We use two sub-routines for this task: Get-

BiggerBaseCut and BackwardPass.

The GetBiggerBaseCut routine in Algorithm 11 takes a consistent

cut, G, and returns a pair: the first entry is the lexically smallest l-base cut

(Definition 8) H lexically greater than G that satisfies B, and the second entry

is the chain number from which we added the last event to H before returning

the result. If no such cut H can be found, then we return 〈null,−1〉. We

start by copying G into H, and from the lowest chain, i = 1, add events to

H that are not included in it. Each time we add an event e (not already

present in H) to H, we form a bigger consistent cut, and then check if this

H satisfies B. Note that we move from lower chains to higher, and by the

property of uniflow chain partition, we know that adding events in this order

will not violate any causal dependencies and keep the cut consistent. At the

first instance of finding a bigger cut that satisfies B, we stop and return the

pair 〈H, c〉, where i is the chain number in µ on which we found e. If we

consume all the events from a chain, we move to the chain immediately above

and repeat this process.

c d

a b
P1

P2

(a) Original Computation

c

b

a

d

µ1

µ2

µ3

(b) Uniflow Partition

Figure 4.3: A computation on two processes in: (a) its original non-uniflow
partition, (b) equivalent uniflow partition

86

Let us illustrate the execution with an example. Consider the compu-

tation in Figure 4.3b and the predicate B=P2 has executed two or more events,

and the call GetBiggerBaseCut (B, {c}). We use the uniflow partition,

and starting at µ1, with H = G = {c}, we add the first and only event of this

chain, a, to H and get {a, c} that is greater than G but does not satisfy B,

as a was executed on P1 in the computation. We now jump to chain µ2, and

find the first event on µ2 that is not included in H. This event is b, the second

event on chain. We add it to H and get H = {a, b, c} that still does not satisfy

B. We now move to the third chain, and add its only event d to H. We now

have H = {a, b, c, d} and it satisfies B. We return 〈H = {a, b, c, d}, i = 3〉.

Algorithm 11 GetBiggerBaseCut(B,G)

Input: B: a stable predicate, G: a consistent cut
Output: pair 〈H, i〉: H is the smallest base cut that is lexically greater than G and

satisfies B, i is the chain number in µ from which we added the last event to H.
1: H = G
2: for (i = 1; i ≤ nu; i = i+ 1) do // go from lowest chain to highest
3: j = index of the smallest event on chain µi that is not included in H
4: for (; j ≤ size(µi); j = j + 1) do // use events on chain i not included in G
5: H = H ∪ {µi[j]} // add event to cut H
6: // H is guaranteed to be lexically greater than G now
7: if B(H) then // if H satisfies B
8: return 〈H, i〉 // return H and chain number of the event

9: return 〈null,-1〉 // no cut lexically greater than G and satisfying B was found

The BackwardPass routine (in Algorithm 12) takes three arguments:

a stable predicate B, a chain number start, and a consistent cut G that satisfies

B. It returns a consistent cut H such that H satisfies B, and H is the lexi-

cally smallest member of the set: {G′ ⊆ G : H[j] = G[j], start+ 1 ≤ j ≤ nu}.

87

Thus, H is the lexically smallest consistent cut H ≤l G that satisfies B such

that H and G include the same set of events from chains start+ 1 and higher.

Note that whenever start = nu, we have start + 1 > nu, and the routine re-

turns without changing the passed cut. We start from the given chain number

and traverse backwards on it removing the events as long as the resulting cut

continues to satisfy B. If removing an event will cause the cut to become

inconsistent or not satisfy B, we do not remove the event and move to the

chain immediately below. Consider the computation in Figure 4.3b and the

predicate B=P2 has executed two or more events, and the call Backward-

Pass (B, 2, {a, b, c, d}). We start at chain i = 2, and remove the last event on

this chain, b, from H, to get K = {a, c, d}. This cut satisfies B as it has two

events c and d that were executed on P2. We now update H = K = {a, c, d}.

We then try to remove c the first event on chain µ2 from H, but get the cut

K = {a, d} that is not consistent — d’s causual dependency c is not included

in this cut. Hence, H is not changed, and kept as {a, c, d}. We now move to

the lower chain µ1. We again cannot remove the only event from this chain

(event a) as it will make the cut inconsistent. We now have exhausted all the

chains, and thus at the end return H = {a, c, d} which is lexically smaller than

G = {a, b, c, d} and satisfies B.

For the computation in Figure 4.3b and the predicate B=P2 has exe-

cuted two or more events, let us find the lexically smallest cut that satisfies B.

We use the GetMinCut routine, and since we are interested in finding the

lexically smallest cut, we start with G = {}. Calling GetBiggerBaseCut

88

Algorithm 12 BackwardPass(B, start, G)

Input: B: a stable predicate, start: a chain number (from µ) such that 0 < start <
nu, G: a base cut that satisfies B.

Output: H: Lexically smallest consistent cut ≤ G that satisfies B and has H[k] =
G[k] for start+ 1 ≤ k ≤ nu.

1: H = G
2: for (j = start; j ≥ 1; j = j − 1) do // iterate from start argument chain to

lower chains
3: for (e = H[j]; e ≥ 1; e = e− 1) do // from last event on chain to first
4: K = H \ {µj [e]} // remove event from cut
5: if K is inconsistent then // removing the event violated consistency
6: break // break inner loop on events to move to the lower chain

7: // K must be consistent now
8: if B(K) then // K is consistent, smaller than G, and satisfies B
9: H = K // update H to this cut

10: return H

(B, {}) returns 〈H = {a, b, c, d}, i = 3〉 as shown earlier. Now calling Back-

wardPass (B, 2, {a, b, c, d}) returns {a, c, d}. This is the lexically smallest

cut of the computation that satisfies B.

Let us now go through a run of EnumerateStable routine. For

the computation in Figure 4.3b and the predicate B=P2 has executed two

or more events, we have already seen that lexically smallest cut that satis-

fies B is {a, c, d}. We enumerate this cut at line 3 (in Algorithm 9) and

then call GetMinCut (B, {a, c, d}). This in turn will first call GetBig-

gerBaseCut (B, {a, c, d}), and the result is 〈H = {a, b, c, d}, i = 2〉. The

second call (in GetMinCut) is BackwardPass (B, 1, {a, b, c, d}) that re-

turns G = {a, b, c, d}, and we enumerate it. The next call of GetMinCut

(B, {a, b, c, d}) will return null as there is no cut greater than {a, b, c, d}. Hence,

89

the loop will now terminate, and we have enumerated all the cuts that satisfy

B.

4.1.1 Proof of Correctness

Lemma 6. Let P =(E,→) be a computation, and B be a stable predicate. If

B is true for any consistent cut G of P , then there exists a l-base cut H where

1 ≤ l ≤ nu that satisfies B.

Proof. By the stability property of B, we know that if B is true for any

consistent cut K of a computation, then it will be true for each consistent cut

K ′ such that K ⊆ K ′. We use this property to create H. Since B(G) is true,

we know that B(E) is true as G ⊆ E and B is stable. E itself is a l-base

cut, with l = nu, as it includes all the events from all the chains. Hence, just

setting H = E, we have a l-base cut that satisfies B.

If B(G) is true, and G does not include all the events from the lowest

chain µ1, then the smallest l-base cut lexically greater than G satisfying B

can be formed by adding the first event from µ1 that is not included in G. If

G includes all the events from µ1 but not all from µ2, then we can find the

desired l-base cut by adding the first non-included event from µ2, and so on

(moving up chains). The steps of GetBiggerBaseCut encode this process.

Lemma 7. Let G be a consistent cut of a computation P =(E,→), and B be

a stable predicate. Then the cut H returned in 〈H, i〉 =GetBiggerBaseCut

90

(B,G) is the lexically smallest l-base cut with l = i− 1 that is lexically greater

than G and satisfies B.

Proof. Note that we return H=null only if we have added all the events to H

such that H = E and B(H) is still not true. In this case, we know from the

previous lemma that B never becomes true in the computation. Hence, for

this case the claim trivially holds.

In GetBiggerBaseCut, we start with H = G, and add the events

of the lowest chain to H as long as the resulting cut does not satisfy B. If we

have added all the events from the lowest chain to H and B(H) is still false,

we move to the chain immediately above and repeat the process. Given that

we do not skip any event that is not already present in H, and only move

to a higher chain k if we have added all the events from chain k − 1 we are

guaranteed that the returned cut is l-base cut for l = i− 1.

We return a non-empty H only at line 8 that is executed under the

condition that B(H) is true. Hence we have established that H is a l-base

cut, with l = i − 1, that satisfies B. Line 8, however, is executed only once

in the routine, and is executed at the first instance the condition in line 7 is

true. The if condition in line 7 checks if B is satisfied for each new formed cut.

Hence, we are guaranteed that if H is non-empty, it must be returned at the

first instance we found an event on chain i whose addition to the i−1-base cut

satisfies B. Hence, the returned H is guaranteed to be the lexically smallest

l-base cut for l = i− 1 that is greater than G and satisfied B.

91

Lemma 8. Let H be a consistent cut that satisfies a stable predicate B. Then

H ′ =BackwardPass (B, i−1, H) is the lexically smallest consistent cut that

has H[j] = H ′[j], i ≤ j ≤ nu and satisfies B.

Proof. If H is null, then H ′ will also be null as the routine BackwardPass

only removes events from H and does not add any event to it. In this case,

the claim is trivially true.

We start in BackwardPass with H ′ = H that satisfies B. Subse-

quently in the routine, we possibly remove some events from H ′. In case no

event was removed H ′, our claim holds.

Now we only need to consider the case when H ′ 6= H. Hence, we

must have removed some events from H to construct H ′. The outer loop

(at line 2) starts the iteration with j = start, and we call the routine with

start = i−1. Hence, for each higher chain j ≥ i, we do not change H ′. Hence,

H[j] = H ′[j], i ≤ j ≤ nu. We remove an event e from H ′ if the resulting cut,

H ′−{e} remains consistent and still satisfies B, otherwise we retain the older

version of H ′. Hence, we know that returned H ′ is consistent and satisfies B.

In the routine, we move top-down starting from chain i − 1. At each

iteration of the outer loop on chains, our construction ensures that the cut H ′

is consistent, and satisfies B.

Hence, for any consistent cut W that satisfies B and W [j] = H[j] for

i ≤ j ≤ nu, we must have W ≥l H
′. If not, then that means that our algorithm

did not remove an event on some chain numbered k where i− 1 ≥ k ≥ 1 that

92

could have been removed. But, by construction, in the inner loop on the

events of chain k, we remove events from H ′ in their decreasing order, and

in this order remove every single event that can be removed while keeping

H ′ consistent and satisfying B. Hence, the assumption that W [k] < H ′[k]

contradicts the construction of the algorithm.

Lemma 9. Let G be a consistent cut of a computation P =(E,→), and B

be a stable predicate. Then GetMinCut (B,G) returns the lexically smallest

consistent cut that is lexically greater than G and satisfies B.

Proof. Let K be the cut returned by GetMinCut (B,G). If we have K = null

(ie. {}), then by Lemma 6 we know that B is not satisfied by any consistent

cut in the computation. The claim trivially holds.

Now, we focus on the case when K is non-empty. We first show that K

is consistent and satisfies B. Let 〈H, i〉 = GetBiggerBaseCut (B,G), then

by definition of GetMinCut, we know that K =BackwardPass (B, i −

1, H). Then by Lemma 7, and Lemma 8 we know that K is consistent and

satisfies B.

From GetBiggerBaseCut construction i is the highest chain from

which we added an event to G. Hence, we know that H[i] > G[i], and H[j] =

G[j] for i < j ≤ nu. To get K = BackwardPass (B, i − 1, H), we only

remove some events, if any, from chains numbered i− 1 or lower in H to form

K. Thus, we have K[j] = G[j] for i < j ≤ nu, and K[i] > G[i].

93

We now show that K is the lexically smallest cut lexically greater than

G that satisfies B. Suppose not, and let W be the lexically smallest consistent

cut lexically greater than G that satisfies B. Thus, we have K >l W >l G.

Recall that i is the chain number returned in 〈H, i〉 = GetBiggerBaseCut

(B,G). We claim that W [j] = H[j] = G[j], for i < j ≤ nu. This claim is valid

since we have already established earlier that that K[j] = G[j] for i < j ≤ nu.

Thus, the three consistent cuts, that is G, K, and W , contain same events

from every chain that is higher than chain i. Let us now analyze the cuts for

chain number i. Since W >l G, we are guaranteed that W [i] ≥ G[i]. There

are only two possible cases:

Case (1): W [i] ≥ G[i] ∧W [i] < K[i]. Naturally, this will ensure that W <l

K[i]. Then, we form a consistent cut W ′ by setting W ′[j] = W [j] for i ≤ j ≤

nu, and W ′[j] = size(µj) for 1 ≤ j ≤ i − 1. This will make W ′ a l-base cut

with l = i − 1, and will give us W ′ <l H. In addition, since W satisfies B

which is a stable predicate, then W ′ ⊃ W must also satisfy B. This makes W ′

the lexically smallest (i − 1)-base cut that satisfies B and is lexically greater

than G — a contradiction with Lemma 7.

Case (2): W [i] > G[i] ∧W [i] = K[i]. Since K[i] = H[i], we now have W [j] =

H[j] for i ≤ j ≤ nu. Since we assumed that W <l K, and W satisfies B,

we now have W as the lexically smallest cut that is: less than or equal to H,

satisfies B, and has W [j] = H[j] for i ≤ j ≤ nu. This contradicts Lemma 8.

Lemma 10. For a computation P =(E,→), and a stable predicate B, Enu-

94

merateStable in Algorithm 9 enumerates all consistent cuts of P that satisfy

B.

Proof. In EnumerateStable we start with the empty cut G = {} and call

GetMinCut (B,G). Note that if B never becomes true, then we get the

lexically smallest cut satisfying B as null and the result trivially holds.

If B ever becomes true in the computation, then by Lemma 9 we know

that in the result of G =GetMinCut (B, {}), at line 1, we get the lexically

smallest non-trivial consistent cut that satisfies B. We enumerate this cut at

the first execution of line 3. We then find and enumerate the next lexically

smallest cut lexically greater than G that satisfies B. Proceeding in this man-

ner, we enumerate the consistent cuts satisfying B in the lexical order — which

is a total order over all consistent cuts. We continue enumerating subsequent

lexically bigger cuts satisfying B without stopping unless we have reached the

cut E. Thus, we are guaranteed to enumerate all consistent cuts that satisfy

B.

4.2 Enumerating Consistent Cuts satisfying Counting
Predicates

Many applications involve analysis of computations based on some spe-

cific type of events. The type of an event is defined either in the context of

the system under consideration, or in the context of the analysis problem. For

example, we can categorize events in a message-passing computation in three

95

base types: send event, receive event, and local event. Similarly, in a shared

memory parallel computation that uses locks, we can define three base types:

acquire-lock event, release-lock event, and thread-local event. Analyzing such

computations may require us to check all consistent cuts that satisfy counting

conditions on a type of event. For example, we may be interested in analyzing

the computation when a certain number of send events have occurred, or a cer-

tain number of messages have been received. We call such predicates counting

predicates. Counting predicates are used in multiple debugging and analysis

applications. For example, while debugging an implementation of Paxos [45]

algorithm, a programmer might only be interested in analyzing possible sys-

tem states when kth propose message has been sent, or k′ promise messages

have been delivered. Another scenario is when a programmer knows that her

program exhibits a bug only after the system has executed a certain number

of events. We use the notion of colors to represent types. We assume that

by default each event in a computation is colored white. Then, every event of

interest is assigned a color where each color represents a type categorization.

Note that an event can have only when color, and on assigning a color c to

it, we replace its previously assigned color. For example, in the Paxos imple-

mentation scenario discussed earlier, we may assign the color blue to all the

events that send a propose message, and the color red to all the events that

deliver promise messages. We then define the notion of a view of a consistent

cut with respect to a color:

Definition 14 (view(G, c)). Let each event e of the computation P = (E,→)

96

be colored with a color c from the set of colors C. Then for a consistent cut G

of P we define view(G, c) as the set of events that are included in G and are

colored c.

For example, consider the computation shown in Figure 4.4. The

events in this computation are colored either white or blue. Given the

cut G = {a, b, e} in this computation, we have view(G,white) = {a, b, e},

and view(G, blue) = {}. For G = {a, b, c, d, e, f, g}, we get view(G,white) =

{a, b, c, e, g}, and view(G, blue) = {d, f}.

e f g

a b c

h

d

µ2

µ1

Figure 4.4: A computation in uniflow partition

We now use the view with respect to a color to define a counting pred-

icate.

Definition 15 (Counting Predicate). Let P = (E,→) be a computation, and c

be a color from the set of colors C. A predicate B is called a counting predicate

if it can be written in the form: |view(G, c)| = k ∈ N, for any consistent cut

G of P .

If c is the color used in definingB, then we use the notation countB(G) =

|view(G, c)|. Observe that for a counting predicate B, we get:

97

• countB(G) ≤ rank(G).

• If H is a consistent cut such that G ⊆ H then countB(H) ≥ countB(G).

• If K is a consistent cut such that G ⊂ K and countB(K) > countB(G),

then ∃H : (G ⊂ H ⊆ K) ∧ countB(H) = countB(G) + 1.

Given that B is defined with respect to one color c, for brevity and ease

of notation we usually write view(G) for view(G, c) when c is obvious from

the context.

We now present an algorithm to enumerate all consistent cuts of a

computation (E,→) that satisfy a counting predicate B. We use the compu-

tation’s uniflow partition µ for enumerating these cuts in their lexical order.

Algorithm 13 shows our approach outline. First we find the lexically small-

est cut that satisfies B. Given the properties of B, we know that adding

new events to any consistent cut G can either increase countB(G) or keep it

same. Thus, using the uniflow chain partition µ we can use the GetMinCut

routine from Algorithm 10 to find the lexically smallest cut that satisfies B.

This works because the lexically smallest cut that satisfies the counting pred-

icate countB(G) = k is also the lexically smallest cut that satisfies the stable

predicate countB(G) > k − 1. We then repeatedly enumerate lexically big-

ger cuts that satisfy B using two sub-routines: EnumSameViewCuts and

GetSuccessor.

EnumSameViewCuts in Algorithm 14 takes two arguments: a count-

ing predicate B, and a consistent cut G that satisfies B. It uses the uniflow

98

Algorithm 13 EnumerateCounting((E,→), B)

Input: Computation (E,→) in its uniflow chain partition µ, B: a counting predi-
cate

Output: Enumerate all consistent cuts satisfying B.
1: G = GetMinCut(B, {}) // now G is the smallest cut satisfying B
2: while G 6= null do
3: EnumSameViewCuts(B,G)
4: G = GetSuccessor(B,G)

chain partition µ to enumerate all the consistent cuts that satisfy the predi-

cate and have the same view with respect to the color c used to define B. For

example, consider the predicate B=number of blue events is 1, and the compu-

tation in Figure 4.4. Calling EnumSameViewCuts with G = {a, b, e, f} will

enumerate three cuts: {a, b, e, f}, {a, b, e, f, g}, {a, b, c, e, f, g} as they have the

same view — the same blue event f has been executed in all of them. The

routine goes from lower chains to higher, and on each chain adds events in

their increasing order to the cut. We know from the structure of uniflow chain

partition that the resulting cut will be consistent. If it has the same view,

then we enumerate it. Otherwise, if the view is different, by the properties

of B we know that adding more events from the same chain will also give a

different view than the one we seek. Hence, we move to the chain above, and

repeat the steps.

Given a consistent cut G that satisfies B, GetSuccessor routine in

Algorithm 15 finds a consistent cut H such that H satisfies B and view(G) 6=

view(H). For example, suppose B = number of blue events is 2. Then for the

computation in Figure 4.4, givenG = {a, b, c, d, e, f}, we have GetSuccessor

99

Algorithm 14 EnumSameViewCuts(B,G)

Input: B: a counting predicate, G: a consistent cut that satisfies B.
Output: Enumerate each consistent cut H that is ≥l G and satisfies view(G) ==

view(H).
1: enumerate(G)
2: H = G
3: K = G
4: for (i = 1; i ≤ nu; i = i+ 1) do // go from lowest chain to highest
5: j = index of the first event on chain µi that is not included in H
6: for (; j ≤ size(µi); j = j + 1) do // use events not included in G
7: H = H ∪ {µi[j]} // add event to cut
8: if view(H) == view(G) then // same view
9: K = H // update cut

10: enumerate(K)
11: else // B(H) = false; countB(H) must have increased
12: H = K // retain old cut
13: break // break the inner loop on events; move to the chain above

(B,G) = {a, b, e, f, g, h}. This is because view({a, b, c, d, e, f}) is the set with

two blue events: {d, f}. The next lexically bigger consistent cut that has two

blue events and has a different view is the cut {a, b, e, f, g, h} with two blue

events: f and h.

In this routine, we start at the lowest chain in a uniflow poset, and if

possible increment the cut by one event on this chain. If the new cut has the

same view, we move on to the next event. When we encounter an event whose

addition changes the view of the resulting cut K, we reset the entries on lower

chains, and then make K consistent by satisfying all the causal dependencies.

Note that at this point view(K) is guaranteed to be different than view(G).

However, K may not satisfy B as it may have a lower countB. If that is the

case, we make countB(K) == countB(G) by calling the GetMinCut routine

100

Algorithm 15 GetSuccessor(B,G)

Input: B: a counting predicate, G: a consistent cut satisfying B
Output: K: lexically smallest consistent cut >l G that satisfies B and view(G) 6=

view(K)
1: V = view(G)
2: r = countB(G)
3: K = G // Create a copy of G in K
4: for (i = 1; i ≤ nu; i++) do // lower chains to higher
5: ind = index of the first event on chain µi that is not included in K
6: for (; ind ≤ size(µi); ind = ind+ 1) do // move forward on chain
7: K = K ∪ {µi[ind]} // add event to cut
8: if view(K) 6= V then // K is lexically greater than G and has a different
view than G

9: for (j = i− 1; j > 0; j −−) do // first reset lower chains
10: remove all elements on µj from K

11: //K may not be consistent: fix causual dependencies on all lower chains
12: for (j = i+ 1; j ≤ nu; j + +) do
13: for (k = i− 1; k > 0; k −−) do
14: S = causal dependencies of events from chain µj on chain µk
15: K = K ∪ S
16: //K is a consistent cut now, and view(K) 6= view(G)
17: if B(K) == true then
18: return K // K satisfies B, and is the successor cut we want

19: if countB(K) < r then // K can be used to construct the lexically bigger
cut that satisfies B

20: return GetMinCut(B,K)

21: return null // could not find a candidate cut

to find lexically smallest cut that is greater than K and satisfies B. If we have

tried all chains and did not find a suitable cut, then G is the largest consistent

cut satisfying B and we return null.

Consider the computation in Figure 4.5 which is in a uniflow partition.

Given the predicate B = number of blue events is 2, and consistent cut G =

{a, b, c, d, e, f} that satisfies B, consider the call of GetSuccessor (B,G).

101

i j k

e f g

a b c

h

d

µ3

µ2

µ1

Figure 4.5: A computation in uniflow partition

We find V = view(G) = {c, f}, and r = countB(G) = 2, and create K = G.

We start from the bottom chain µ1 but there is no event in µ1 that is not

included in K. We move on to µ2 and find the next event not in K: event

g. We add it to K at line 7, to make K = {a, b, c, d, e, f, g}, which is bigger

than G but view(K) == V as g is not a blue event. We then move on to the

next event in µ2 which is h. Adding it to K makes K = {a, b, c, d, e, f, g, h}.

Now K is bigger than G and view(K) = {c, f, h} which is different than

V . We now remove all the events (lines 9–10) from lower chain µ1, and get

K = {e, f, g, h}. This cut is not consistent, and we make it consistent by

executing lines 12–15 and add all the causal dependencies required: {a, b}.

We now have K = {a, b, e, f, g, h}. At line 17, we get countB(K) which is

2; thus we have our result and we return this K. Hence, GetSuccessor

(B,G) = {a, b, e, f, g, h} whose view is {f, h}. If we call GetSuccessor

(B, {a, b, e, f, g, h}), we get {a, b, c, i, j} whose view is {c, j}.

102

4.2.1 Proof of Correctness

Lemma 11. Let G be a consistent cut of a computation P =(E,→), and B be

a counting predicate. Then GetMinCut (B,G) in Algorithm 10 returns the

lexically smallest consistent cut that is lexically greater than G and satisfies

B.

Proof. Note that our construction of GetMinCut is with respect to sta-

ble predicates. In this case, B is a counting predicate that is of the form:

countB(G) = k. We construct a stable predicate B′ from B by setting:

B′ = countB(G) > (k − 1). The lexically smallest cut that satisfies the

counting predicate B is also the lexically smallest cut that satisfies the B′.

Hence, we can use the GetMinCut routine to find the lexically smallest cut

satisfying B. The result then follows from Lemma 9.

Lemma 12. For a computation P =(E,→), and a counting predicate B, let

G be a consistent cut of P that satisfies B. Then, EnumSameViewCuts

in Algorithm 14 enumerates all consistent cuts of P that are lexically greater

than G, satisfy B, and have same view as that of G.

Proof. Algorithm 14 enumerates a cut H only if view(G) == view(H); line 1

enumerates G itself, and the only other line that enumerates a cut is line 10

that is executed only if view(G) == view(H).

We now show that the algorithm does not miss any consistent cut of

P that satisfies B and has the same view as that of G. We know that G is

103

already enumerated. Suppose W >l G is a consistent cut that satisfies B and

view(W) == view(G) and is not enumerated by the algorithm. Thus, there

exists an event e on some chain i, 1 ≤ i ≤ nu, that is not included in G,

and G ∪ {e} is consistent and view(G) == view(G+ {e}). But starting from

the lowest chain (chain number 1), the algorithm adds each event not in G

to H, where H is initially same as G. The cut H is only updated at line 9

under the condition H >l G ∧ view(H) == view(G). Hence, it is impossible

that iterating through all the chains, we did not find e to construct W and

subsequently enumerate it.

Lemma 13. Let G be any consistent cut of computation P =(E,→), that

satisfies a counting predicate B Then GetSuccessor (B,G) returns the lex-

ically smallest consistent cut greater than G that satisfies B and has a different

view than that of G.

Proof. Let W be the cut returned by GetSuccessor. We consider two cases.

Suppose that W is null. This means that for all values of i, either all event

in chain µi are already included in G, or on inclusion of the next event in µi,

z, the smallest consistent cut that includes z has the same view as that of G.

Hence, G is lexically biggest consistent cut satisfying B such that no other

bigger cut has a different view.

Now consider the case when W is the consistent cut returned at line

18 by GetMinCut(B,K). We first observe that after executing line 15, K

is the next lexically bigger consistent cut (of any view) after G. If countB(K)

104

is at most r, then by Lemma 9 we know that GetMinCut(B,K) returns the

smallest lexical consistent cut greater than G that satisfies B. If for any con-

sistent cut K, countB(K) is greater than r, then by the properties of counting

predicates, there is no consistent cut of countB equal to r such that it includes

more events from the same chain i. Thus, when calling GetMinCut at line

18 we use the largest possible value of i for which there exists a lexically bigger

consistent cut than G that satisfies B, and this line is executed under the if

condition (of line 8) that this cut has a different view than view(G).

Lemma 14. Given a computation P =(E,→) with its uniflow chain partition

µ, and a counting predicate B Algorithm 13 enumerates all consistent cuts of

P that satisfy B.

Proof. At line 1 in Algorithm 13 we find the lexically smallest consistent cut

G that satisfies B. If its not null we pass it to EnumSameViewCuts that

will enumerate it at its first line. By Lemma 12, we know that all subsequent

cuts satisfying B with the view(G) will be enumerated. After this, the only

consistent cuts that satisfy B and have not been enumerated are the cuts that

have a different view. In the first iteration of loop of lines 2–4, we find the

lexically smallest consistent cut that is bigger than G, satisfies B, and has a

different view. We then enumerate it and all the cuts that have the same view.

Repeating this unless we cannot find a cut with a new view ensures that at

the end we have enumerated all the consistent cuts that satisfy B.

105

4.3 Optimized Implementation

We now discuss optimized implementations of our algorithms for de-

tecting stable and counting predicates.

First, note that we do not need to regenerate the vector clocks of the

computation for its uniflow chain partition. In implementing our algorithms

based on the uniflow chain partition, µ, we only reposition the events on their

respective uniflow chains. There are nu such chains, and each of them is stored

as an array in which whose entries store the original vector clocks, and the state

variables for each event. For example, the computation on two processes in

Figure 4.7a is not in uniflow partition. Figure 4.7b shows its uniflow partition

on three chains. Note that we have retained the original vector clocks of the

events, and only repositioned them on three chains.

We achieve this by replicating the process described in Section 3.3.1. In

short, we use a vector Gu, called indicator vector, of length nu, to keep track

of which event is included in G. In Figure 4.6, we show an illustration with

multiple G cuts, and their respective indicator vectors. Whenever we add an

event e from chain µi to G we update Gu[i] to the index of e. Thus, finding

the index of the first event on chain µi not included in G can be implemented

as ind = Gu[i] + 1, and takes constant time.

Given the indicator vector Gu, we can find its equivalent cut G using

the optimized approach of Section 3.2.4 in O(nu + n2) time.

106

c d

a b
P1

P2

(a) Computa-
tion

c

b

a

d

µ1

µ2

µ3

(b) Uniflow Parti-
tion

G = {a} =⇒ Gu[0] = 1, Gu[1] = 0, Gu[2] = 0

G = {a, c} =⇒ Gu[0] = 1, Gu[1] = 1, Gu[2] = 0

G = {a, c, b} =⇒ Gu[0] = 1, Gu[1] = 2, Gu[2] = 0

G = {a, c, d} =⇒ Gu[0] = 1, Gu[1] = 1, Gu[2] = 1

G = {a, b, c, d} =⇒ Gu[0] = 1, Gu[1] = 2, Gu[2] = 1

(c) G values and their respective Gu vectors

Figure 4.6: Illustration: Maintaining indicator vector Gu for a cut G

4.3.1 GetBiggerBaseCut

In the GetBiggerBaseCut routine we add events to any cut in in-

creasing uniflow order (Definition 7). We do not skip any event, and only

return 〈H, c〉 when the cut satisfies a predicate B. Given a uniflow chain

partition µ, we can optimize the runtime for this routine by using additional

O(n · |E|) space.

The computation P =(E,→) on n processes has |E| events, and each

event has a vector clock of length n. We first collect and store all the events

in the uniflow order. Let J represent the array that stores the vector clocks

of events in their increasing uniflow order. Now, for 2 ≤ i ≤ |E| we compute

element-wise max of vector clocks in entries J [i] and J [i − 1], and store the

result in J [i]. Thus, for a computation on n processes J [i] and J [i − 1] are

both vector of length n, and we have:

J [i][k] = max (J [i][k], J [i− 1][k]), 2 ≤ i ≤ |E|, 1 ≤ k ≤ n.

We can now use this vector J to find the result of GetBiggerBaseCut for

any predicate B. Moreover, given that J will contain entries (vector clocks)

107

c : [1, 0] d : [2, 1]

a : [0, 1] b : [1, 2]

P1

P2

(a) Computation

a : [0, 1]

c : [1, 0] b : [1, 2]

d : [2, 1]

µ1

µ2

µ3

(b) Uniflow Partition

a : [0, 1]
c : [1, 0]
b : [1, 2]
d : [2, 1]

(c) Events in Uniflow
Order

J [1] = [0, 1]
J [2] = [1, 1]
J [3] = [1, 2]
J [4] = [2, 2]

(d) J Vector

Figure 4.7: Illustration: Computing J vector for optimizing GetBigger-
BaseCut

in increasing order, we can perform binary search on it to find the result.

If a predicate B is stable, we perform the binary search using its evaluation

(true or false) on the cuts, and return the smallest entry in J on which B

evaluates to true.. If B is a counting predicate, then we use countB to guide

the binary search, and return the smallest entry in J for which countB matches

the requirement in B.

Consider the computation in Figure 4.7a that has four events, and its

uniflow partition in Figure 4.7b. The increasing order on the vector clocks of

all the four events is in Figure 4.7c. Starting from the bottom (vector [0, 1]),

and performing the joins, we get J as shown in Figure 4.7d. Now, given a

predicate B that is stable or counting, we can perform the binary search on

this J to find the result of GetBiggerBaseCut for this computation.

108

Computing and storing the vector J requires O(n · |E|) time and space.

After computing J , each call to GetBiggerBaseCut takes O(n · log |E|)

time with binary search: there are O(n · log |E|) iterations, and for each such

iteration we take O(n · log |E|) time to check the consistent cut satisfies the

predicate.

4.3.2 BackwardPass

In BackwardPass routine, we iterate on chains in top to bottom

manner, and try to remove as many events from a cut G from the end of the

chain as possible. We only stop removing events from a chain i if G becomes

inconsistent or B(G) becomes false on removal. Then, we move to chain i− 1.

We can exploit the properties of stable and counting predicates, and use binary

search, instead of linear search used in Algorithm 12 to remove events on each

chain. This is possible possible because for a stable or counting predicate, if

removal of an event from a chain makes the predicate become false (from true)

then we know that removing any smaller events on that chain will never make

it true. Using this implementation, BackwardPass takes O(nu · n2 · logm)

time, where m = max1≤j≤nu size(µj), in the worst case. This is because the

outer loop on the uniflow chains takes O(nu ·n2 · logm) iterations in the worst

case. In the inner body of this loop, we check if removal of an event makes

the resulting cut inconsistent, and this check requires O(n2) time. There are

O(logm) search iterations for such an event in the worst case.

109

4.3.3 GetSuccessor

We optimize the routine GetSuccessor by replicating the strategy of

computing projections as per Section 3.3.3. Whenever the routine is called, we

compute the causal dependencies, called projections, of the input consistent

cut on each chain in µ, and store them in a vector called proj. We then use

this vector to fix the causal dependencies on each chain in O(n) time (see

Section 3.3.3 for details). For this optimization, we require O(nu · n) space

to store the computed projections, and by using them we can find the result

of GetSuccessor in O((nu + log |E| + nu logm) · n) time in the worst case.

As logm > 1 for most of the computations, we can simplify this bound to

O((log |E|+ nu logm) · n).

4.4 Complexity Analysis

Consider the computation P = (E,→) whose uniflow partition µ has

nu chains. We now present the time and space complexity of the optimized

versions of our algorithms for detecting stable and counting predicate for P .

From Section 4.3.1, we know that computing and storing the vector J

requires O(n · |E|) time and space. This task is only performed once. After

computing J , each call to GetBiggerBaseCut takes O(n log |E|) time with

binary search: there are O(log |E|) search iterations, and for each such itera-

tion, we require O(n) time to check if the consistent cut under consideration

satisfies the predicate. From Section 4.3.2, we know that optimized version of

BackwardPass takes O(nu ·n2 · logm) time, where m = max1≤j≤nu size(µj),

110

in the worst case. Hence, getting a consistent cut result from GetMin-

Cut in the representation corresponding to original chain partition takes

O((nu · n · logm+ log |E|) · n) time in the worst case.

Based on this, we can state that for a stable predicate B enumerating all

consistent cuts of P = (E,→) that satisfy B takes O((nu ·n·logm+log |E|)·n)

time per cut.

Let us now analyze the EnumSameViewCuts routine. Given a cut G,

the routine adds events not already present in G to form bigger cuts, and then

checks if the cut satisfies the predicate B. There are at |E − G| events that

are not present in G. Hence, in the worst case the two for loops at lines 4 and

6 perform O(|E −G|) iterations in combination. Each time we form a bigger

cut by adding an event, we check if the view of the cuts remains the same (at

line 8). Finding view(H) requires O(n) time. Thus, EnumSameViewCuts

takes O(n · |E −G|) in the worst case.

We now analyze the optimized version of GetSuccessor routine.

Recall that with the projection based optimization, we first call the Com-

puteProjections routine that takes O(n · nu) time. We need O(n · nu)

space to store the computed projections. We then iterate over nu chains,

and perform O(n) work in finding viewK and then O(n) work in taking the

component-wise maximum of proj[i − 1] and the vector clock of event being

included. Thus, in the worst case we perform O(n · nu) work before return-

ing a result. Note that, we may call GetMinCut routine at the end to

return the correct result. As per our earlier analysis, that requires additional

111

Algorithm Space Required

Traditional BFS O(m
n−1

n
)

DFS O(|E|)
Lex O(n)
Optimized Uniflow-BFS* O((nu + |E|) · n)

Table 4.1: Space complexities of algorithms for detecting a stable or counting
predicate in the lattice of consistent cuts; here m = |E|

n
. * denotes algorithm

in this dissertation.

Algorithm Time

Traditional BFS O(n2 · |C(E)|)
DFS O(n2 · |C(E)|)
Lex O(n2 · |C(E)|)
Optimized Uniflow-BFS* O(n · |SB| · (nu · n · logm+ log |E|))

Table 4.2: Time complexities for enumerating all consistent cuts of C(E) that
satisfy a stable predicate B. * denotes algorithm in this dissertation.

O((nu ·n · logm+ log |E|) ·n) time. Hence, in the worst case GetSuccessor

takes O((nu · n · logm+ log |E|) · n) time and requires O(n · nu) space.

In Table 4.1, we compare the worst-case space complexities of our op-

timized algorithm against those of BFS, DFS, and Lex algorithms, to detect

a predicate that is either of type stable or counting.

Let SB ∈ C(E) denote the set of consistent cuts that satisfy the stable

predicate B. Then, Table 4.2 compares the worst-case time complexities of

these algorithms to enumerate all consistent cuts in SB. Note that the |C(E)|

can be exponentially bigger than |SB|.

We now move on to computation slicing, and in the next chapter present

112

a distributed algorithm for slicing with respect to regular predicates.

113

Chapter 5

Distributed Online Algorithm for Slicing

In this chapter, we give a distributed online algorithm to compute slice

of a computation with respect to a state based regular predicate.

A computation slice of a computation with respect to a predicate B

is a concise representation of all the consistent cuts of the computation that

satisfy the predicate B. When the predicate B is regular, the set of consistent

cuts satisfying B, CB(E), forms a sublattice of C(E) that is the lattice of all

consistent cuts of the computation. CB(E) can equivalently be represented

using its join-irreducible elements [24]. Intuitively, join-irreducible elements

form the basis of a lattice, such that the lattice can be generated by taking

joins of its basis elements. Let JB be the set of all join-irreducible elements of

CB(E), and let JB(e) denote the least consistent cut that includes an event e

and satisfies predicate B. Then, it has been shown [35] that

JB = {JB(e) | e ∈ E}

Remark 1. Observe that for an event e, JB(e) may not necessarily exist be-

cause there may not be any consistent cut that includes e and satisfies B. Also,

multiple events may have the same JB(e).

114

For the predicate B = “all channels are empty”, the JB(event) values

for each event of the computation in Figure 5.1 are: JB(a) = {a}, JB(b) =

{a, b, e, f}, JB(c) = {a, b, c, e, f}, JB(e) = {e}, JB(f) = {a, b, e, f}, JB(g) =

{a, b, e, f, g}. In the vector clock notation of consistent cuts, these cuts can be

representation as: JB(a) = [0, 1], JB(b) = [2, 2], JB(c) = [2, 3], JB(e) = [1, 0],

JB(f) = [2, 2], JB(g) = [3, 2].

a b c

e f g

P1

P2

(a) Computation

[e]

[a]

[b, f] [b, g]

[c, f]

(b) Slice

Figure 5.1: A Computation, and its slice with respect to predicate B =“all
channels are empty”

Intuitively, a join-irreducible element of a lattice is one that cannot be

represented as the join of two distinct elements of the lattice, both different

from itself. For the computation of Figure 5.1, the join-irreducible consistent

cuts are: {a}, {a, b}, {a, b, c}, {e}, {a, b, e, f}, {a, b, e, f, g}. Figure 5.2 shows

the join-irreducible consistent cuts of the sub-lattice induced by predicate “all

channels empty” for computation of Figure 5.1.

A centralized online algorithm to compute JB was proposed in [51].

In the online version of this centralized algorithm, a pre-identified process,

called slicer process, plays the role of the slice computing process. All the

processes in the system send their event and local state values whenever their

local states change. The slicer process maintains a queue of events for each

115

{}

{a} {e}

{a, b} {a, e}

{a, b, c} {a, b, e}

{a, b, c, e} {a, b, e, f}

{a, b, c, e, f} {a, b, e, f, g}

{a, b, c, e, f, g}

predicate not satisfied

predicate satisfied but not join-irreducible

join-irreducible in predicate sub-lattice

Figure 5.2: Illustration: Join-irreducible elements of the lattice of consistent
cuts for Figure 5.1 with respect to predicate B = “all channels are empty”.

process in the system, and on receiving the data from a process adds the

event to the relevant queue. In addition, the slicer process also keeps a map

of events and corresponding local states for each process in the system. For

each received event, the slicer appends the event and local state mapping to

the respective map. For every event e it receives, the slicer computes JB(e)

using the linearity property. This centralized algorithm, however, suffers from

drawbacks that apply to almost most centralized algorithms: they are not fault

116

tolerant, and push all the message and computational load to one processes

and thus scale poorly.

Online algorithms for detecting certain classes of predicates, such as

stable, termination and conjunctive predicates, have been proposed (cf., [32]).

Using the equivalence result described in [51], these algorithms can also be used

to derive online slicing algorithms for those predicates. However, in the resul-

tant slicing algorithms, the incremental cost of updating the slice on arrival of

a new event is quite high due to the generic nature of the transformation.

Distributed algorithms for monitoring a program execution have been

proposed previously [62, 5]. The algorithm in [62], however, can only detect a

subset of safety properties, whereas the algorithm in [5] requires the underlying

system to be synchronous.

We propose a distributed algorithm that significantly reduces the com-

putational load, as well as the message load on any process. For our distributed

slicing algorithm, we require that message channels between processes impose

first-in-first-out (FIFO) order. In our distributed online slicing algorithm, we

have n slicer processes (running as local threads on application processes),

S1, S2, ..., Sn, one for every application process P1, ..., Pn. For a computation

P = (E,→), Ei denotes the set of events executed by process Pi. All slicer

processes cooperate to compute the task of slicing (E,→). In our algorithm,

Si computes

Ji(B) = {JB(e)|e ∈ Ei}

117

where JB(e) is the join-irreducible consistent cut that satisfies B and includes

event e. Observe that by the definition of join-irreducible consistent cut, e→ f

implies JB(e) ⊆ JB(f). Since all events in a process are totally ordered, the

set of consistent cuts generated by any Si is also totally ordered.

Algorithm 16 presents the distributed algorithm for online slicing with

respect to a regular predicate B. Each slicer process has a token assigned

to it that goes around in the system. Other slicer processes cooperate in

maintaining and processing the token. The goal of the token for the slicer

process Si is to compute JB(e) for all events e ∈ Ei. Whenever the token

has computed JB(e) it returns to its original process, reports JB(e) and starts

computing JB(succ(e)), succ(e) being the immediate successor of event e. The

token Ti carries with it the following data:

• pid: Process id of the slicer process to which it belongs.

• event: Details of event e, specifically the event id and event’s vector

clock, at Pi for which this token is computing JB(e). The identifier for

event e is the tuple 〈pid, eid〉 that identifies each event in the compu-

tation uniquely.

• gcut: The vector clock corresponding to the cut which is under consid-

eration (a candidate for JB(e)).

• depend: Dependency vector for events in gcut. The dependency vector

is updated each time the information of an event is added to the token

118

(steps explained later), and is used to decide whether or not some cut be-

ing considered is consistent. On any token, its vector gcut is a consistent

global state iff for all i, depend[i] ≤ gcut[i].

• gstate: Vector representation of global state corresponding to vector

gcut. It is sufficient to keep only the states relevant to the predicate B.

• eval: Evaluation of B on gstate. The evaluation is either true or false;

in our notation we use the values: {predtrue, predfalse}.

• target: A pointer to the unique event in the computation for which a

token has to wait. The event need not belong to the local process.

A token waits at a slicer process Pi under three specific conditions:

(C1) The token is for process Si and it has computed JB(pred(e)), pred(e)

being the immediate predecessor event of e, and is waiting for the arrival

of e.

(C2) The token is for process Si and it is computing JB(f), where f is an

event on Pi prior to e. The computation of JB(f) requires the token to

advance along process Pi.

(C3) The token is for process Sj such that j 6= i, and it is computing JB(f)

which requires the token to advance along process Pi.

On occurrence of each relevant event e ∈ Ei, the computation process

Pi performs a local enqueue to slicer Si, with the details of this event. Note

119

Algorithm 16 Distributed Slicing Algorithm at Si

Input: 1. An ongoing computation; each event e ∈ Ei reported to Si
2. Regular predicate B

Output: Online slice of computation with respect to B
1: function ReceiveEvent(Event e, State localstatee)
2: save 〈e.eid, localstatee〉 in local state map procstates
3: for each waiting token t at Si do
4: if (t.target = e) then // t waiting for event e
5: AddEventToToken(t,e)
6: ProcessToken(t)

7: function AddEventToToken(Token t, Event e)
8: t.gstate[e.pid] = procState[e.eid]
9: t.gcut[e.pid] = e.eid

10: if t.pid == i then // my token: update token’s event pointer
11: t.event = e
12: t.depend = max(t.depend, e.V) // set causal dependency

13: function ProcessToken(Token t)
14: if t.gcut is inconsistent then
15: // find lowest k for which t.gcut[k] < t.depend[k]
16: t.target = t.gcut[k] + 1 // set desired event
17: send t to Sk
18: else EvaluateToken(t) // t.gcut is consistent

19: function EvaluateToken(Token t)
20: if B(t.gstate) then // B is true on cut given by t.gcut
21: t.eval = predtrue
22: send t to process St.pid
23: else // B is false on t.gstate
24: t.eval = predfalse
25: // Pk: forbidden process in t.gstate for B
26: t.target = t.gcut[k] + 1
27: send t to Sk

that Pi and its slicer Si are modeled as two threads on the same process, and

therefore the local enqueue is simply an insertion into the queue — that is

shared between the threads on the same process — of the slicer. The inserted

information contains the event identifier 〈pid, eid〉, the corresponding vector

120

Algorithm 17 Continued: Distributed Slicing Algorithm at Si

28: function ReceiveToken(Token t)
29: if (t.eval == predtrue) ∧ (t.pid == i) then // my token, B true
30: output(t.pid, t.eid, t.gcut)
31: // token waits for the next event
32: t.target = t.gcut[i] + 1
33: t.waiting = true
34: else // either inconsistent cut, or predicate false
35: newid = t.target // id of event t requires
36: if ∃f ∈ localEvents : f.id == newid then // required event has hap-

pened
37: AddEventToToken(t,f)
38: EvaluateToken(t)

39: // else, the token remains in waiting state

40: function ReceiveStopSignal
41: for each token t : t.pid 6= i do
42: // not my token, send back to parent
43: send t to St.pid

clock e.V , and Pi’s local state localstatee corresponding to e. We now explain

each function of the algorithm in detail:

ReceiveEvent (Lines 1–6): On receiving the details of event e from Pi, Si adds

them in the mapping of Pi’s local states procstates (line 2). It then iterates

over all the waiting tokens, and checks their target. For each token that has

e as the target (required event to make progress), Si updates the state of the

token, and then processes it.

AddEventToToken (Lines 7–12): To update the state of some token t on Si, we

advance the candidate cut to include the new event by setting t.gcut[i] to the

121

id of event e. If Si is the parent process of the token (Ti), then the t.event

pointer is updated to indicate the event id for which token is computing the

join–irreducible cut that satisfies the predicate. The causal-dependency is up-

dated at line 12, which is required for checking whether or not the cut is

consistent.

ProcessToken (Lines 13–18): To process any token, Si first checks that the

global state in the token is consistent (line 14) and at least beyond the global

states that were earlier evaluated to be false. For t’s evaluation of a global cut

t.gcut to be consistent, t.gcut must be at least t.depend. This is verified by

checking the component-wise values in both these vectors. If some index k is

found where t.depend > t.gcut, the token’s cut is inconsistent, and t.gcut must

be advanced by at least one event on Pk, by sending the token to slicer of Pk.

If the cut is consistent, the predicate is evaluated on the variables stored as

part of t.gstate by calling the EvaluateToken routine.

EvaluateToken (Lines 19–27): The cut represented by t.gstate is evaluated;

if the predicate is true, then the token has computed JB(e) for the event

e = 〈t.pid, t.eid〉. The token is then sent to its parent slicer. If the evaluation

of the predicate on the cut is false, the target pointer is updated, at line 26,

and the token is sent to the forbidden process on which the token must make

progress.

122

ReceiveToken (Lines 28–39 in Algorithm 17): On receiving a token, the slicer

checks if the predicate evaluation on the token is true, and the token is owned

by the slicer. In such a case, the slicer outputs the cut information, and now

uses the token to find JB(succ(e)), where succ(e) denotes the event that lo-

cally succeeds e. This is done by setting the new event id in t.target at line 32,

and then setting the waiting flag (line 33). If the predicate evaluation on the

token is false, then the target pointer of the token points to the event required

by the token to make progress. Si looks for such an event (line 36), and if it

has been reported to Si by Pi, then adds that event (line 37) to the token and

processes it (line 38). In case the desired event has not been reported yet to

the slicer process, the token is retained at the process Si and is kept in the

waiting state until the required event arrives. Upon arrival of the required

event, its details are added to the token and the token is processed.

Note: The notation of target = t.gcut[i] + 1 means that if the t.gcut[i] holds

the event id 〈pid, eid〉, then the target pointer is set to 〈pid, eid+ 1〉.

ReceiveStopSignal (Lines 40-43 in Algorithm 17): For finite computations, a

single token based termination detection algorithm is used in tandem. When

termination is detected, a pre-determined slicer sends the ‘stop’ signal to all

the slicer processes, including itself. On receiving the ‘stop’ signal, Si sends

all the slicing tokens that do not belong to it back to their parent processes.

Note that the functions in our algorithm require atomic updates and

reads on the local queues, as well as on tokens present at Si. These atomic

123

updates can be easily implemented using common local synchronization tech-

niques.

5.1 Example of Algorithm Execution

This example illustrates the algorithm execution steps for one possible

run (real time observations) of the computation shown in Figure 5.1, with

respect to the predicate B = “all channels empty”.

The algorithm starts with two slicing processes S1 and S2, each with

token T1 and T2 respectively. The target pointer for each token Ti is initialized

to the event 〈i, 1〉. When event a is reported, S1 adds its details to T1, and on

its evaluation finds the predicate “all channels empty” to be true, and outputs

this information. It then updates T1.target pointer and waits for the next

event to arrive. Similar steps are performed by S2 on T2 when e is reported.

When b is reported to S1, and T1 is evaluated with the updated infor-

mation, the predicate is false on the state [b]. Given that b is a message send

event, it is obvious that for the channel to be empty, the message receive event

should also be incorporated. Thus, S1 sends T1 to S2 after setting the target

pointer to the first event on S2. On receiving T1, S2 fetches the information

of its first event (e) and updates T1. The subsequent evaluation still leads to

the predicate being false. Thus S2 retains T1 and waits for the next event.

When f is reported, S2 updates both T1 and T2 with f ’s details. S2’s

evaluation on T1.gstate, represented by [b, f] is true, and as per line 22, T1 is

124

sent back to S1 where the consistent cut [b, f] is output. T1 now waits for the

next event. However, after being updated with the details of event f , the re-

sulting cut on T2 is inconsistent, as the message-receive information is present

but the information regarding the corresponding send event is missing. By us-

ing the vector clock values, T2’s target would be set to the id of message-send

event b. S2 would then send T2 to S1. On receiving T2, S1 finds the required

event (looking at T2.target) and after updating T2 with its details, evaluates

the token. The predicate is true on T2.gstate now, and T2 is sent back to S2.

On receiving T2, S2 outputs the consistent cut [b, f], and waits for the next

event. On receiving details of event c, and adding them to the waiting token

T1, the predicate is found to be true again on T1, and S1 outputs [c, f]. Sim-

ilarly on receiving g, S2 performs similar steps and outputs [b, g]. Note that

the consistent cuts [a, b] and [c, g], both of which satisfy the predicate are not

enumerated as they are not join-irreducible, and can be constructed by the

unions of [a], [b] and [c, f], [b, g] respectively.

5.2 Proof of Correctness

We now prove the correctness and termination of the distributed algo-

rithm of Algorithm 16 for finite computations. The correctness argument can

be easily extended to infinite computations.

Lemma 15. The algorithm presented in Algorithm 16 does not deadlock.

125

Proof. The algorithm involves n tokens, and none of the tokens wait for any

other token to complete any task. With non-lossy channels, and no failing

processes, the tokens are never lost. The progress of any token depends on

the target event, and as per lines 4–6, whenever an event is reported to a

slicer, it always updates the tokens with their target being this event. Thus,

the algorithm can not lead to deadlocks.

Lemma 16. If a token Ti is evaluating JB(e) for e ∈ Ei, assuming JB(e)

exists, and if Ti.gcut < JB(e), then Ti.gcut would be advanced in finite time.

Proof. If during the computation of JB(e), at any instance Ti.gcut < JB(e),

then there are two possibilities for gcut:

(a) gcut is consistent: This means that the evaluation of predicate B on gcut

must be false, as by definition JB(e) is the least consistent cut that satisfies B

and includes e. In this case, by line 26 and subsequent steps, the token would

be forced to advance on some process.

(b) gcut is inconsistent: The token is advanced on some process by execution

of lines 14–17.

Lemma 17. While evaluating JB(e) for event e ∈ Ei on token Ti, if Ti.gcut <

JB(e) currently and JB(e) exists then the algorithm eventually outputs JB(e).

Proof. By Lemma 16, the global cut of Ti would be advanced in finite time.

Given that JB(e) exists, we know that by the linearity property, there must

exist a process on which Ti should progress its gcut and gstate vectors in order

126

to reach the JB(e); lines 26–27 ensure that this forbidden process is found and

Ti sent to this process. By the previous Lemma, the cut on the Ti would be

advanced until it matches JB(e). By line 30 of the algorithm, whenever JB(e)

is reached, it would be output.

Lemma 18. For any token Ti, the algorithm never advances Ti.gcut vector

beyond JB(e) on any process, when searching JB(e) for e ∈ Ei.

Proof. The search for JB(e) starts with either an empty global state vector,

or from the global state that is at least JB(pred(e)), where pred(e) is the im-

mediate predecessor event of e on Si. Thus, till JB(e) is reached, the global

cut under consideration is always less than JB(e). From the linearity property

of advancing on the forbidden process, and Lemma 16, the cut would be ad-

vanced in finite time. Whenever the cut reaches JB(e), it would be output as

per Lemma 17 and the token would be sent back to its parent slicer, to either

begin the search for succ(e) or to wait for succ(e) to arrive (succ(e) being the

immediate successor of e). Thus, Ti.gcut would never advance beyond JB(e)

on any process when searching for JB(e) for any event e.

Lemma 19. If token Ti is currently not at Si, then Ti would return to Si in

finite time.

Proof. Assume Ti is currently at Sj (j 6= i). Sj would advance Ti.gcut in finite

time as per Lemma 16. With no deadlocks (Lemma 15), and by Lemmas 17

and 18, we are guaranteed that if JB(Ti.event) exists then within a finite time,

127

Ti.gcut vector would be advanced to JB(Ti.event) and Ti would be sent back

to Si. If JB(Ti.event) does not exist then at least one slicer process Sk would

run out of all its events while attempting to advance on Ti.gcut . In such a

case, knowing that there are no more events to process, Sk would send Ti back

to Si (lines 40-43).

Lemma 20. (Termination): For a finite computation, the algorithm termi-

nates in finite time.

Proof. We first prove that for any event e ∈ Ei, computation of finding JB(e)

with token Ti takes finite time. By Lemma 16, Ti always advances in finite time

while computing JB(e). If JB(e) exists, then based on this observation within a

finite time the token Ti would advance its gcut to JB(e), if it exists. By Lemma

17, the algorithm would output this cut, thus finishing the JB(e) search and as

per Lemma 18 would not advance any further for JB(e) computation. Thus,

if JB(e) exists then it would be output in finite time. By Lemma 19 the token

would be returned to its parent process and the JB(e) computation for e ∈ Ei

would finish in finite time.

If JB(e) does not exist, then as we argued in Lemma 19 some slicer

would run out of events to process in the finite computation, and thus return

the token to Si, which would result in search for JB(e) computation to ter-

minate. As each of these steps is also guaranteed to finish in finite time as

per above Lemmas, we conclude that JB(e) computation for e ∈ Ei finishes in

finite time.

128

Applying this result to all the events in E leads to the desired result of

termination in finite time.

Lemma 21. The algorithm outputs all the elements of JB.

Proof. Whenever any event e ∈ E occurs, it is reported by some process Pi

on which it occurs, to the corresponding slicer process Si. Thus e can be

represented as e ∈ Ei . If at the time e is reported to Si, Ti is held by Si then

by Lemmas 16 and 17, it is guaranteed that the algorithm would output JB(e).

If Si does not hold the token Ti when e is reported to it, then by Lemma 19, Ti

would arrive on Si within finite time. If Si has any other events in its processing

queue before e, then as per Lemma 20, Si would finish those computations in

finite time too. Thus, within a finite time, the computation for finding JB(e)

with Ti would eventually be started by Si. Once this computation is started,

the results of Lemmas 16 and 17 can be applied again to guarantee that the

algorithm would output JB(e), if it exists.

Repeatedly applying this result to all the events in E, we are guaranteed

that the algorithm would output JB(e) for every event e ∈ E . Thus the

algorithm outputs all the join-irreducible elements of the computation, which

by definition together form JB.

Lemma 22. The algorithm only outputs join-irreducible global states that sat-

isfy predicate B.

Proof. By Lemma 18, while performing computations for e ∈ Ei on token Ti,

the algorithm would not advance on token Ti beyond JB(e). Since only token

129

Ti is responsible for computing JB(e) for all the events e ∈ Ei , the algorithm

would not advance beyond JB(e) on any token. In order to output a global

state that is not join-irreducible we must advance the cut of at least one token

beyond a least global state that satisfies B. The result follows from the above

assertions.

Lemma 20 guarantees termination, and correctness follows from Lem-

mas 21, and 22.

5.3 Complexity Analysis

Each token Ti processes every event e ∈ Ei once for computing its

JB(e). If there are |E| events in the system, then in the worst case Ti does

O(n · |E|) work, because it takes O(n) to process one event. We are assuming

here that evaluation of B takes O(n) time given a global state. There are n

tokens in the system, hence the total work performed is O(n2 · |E|). Since there

are n slicing processes and n tokens, the average work performed is O(n · |E|)

per process. In comparison, the centralized algorithm (either online or offline)

requires the slicer process to perform O(n2 · |E|) work.

Let |S| be the maximum number of bits required to represent a local

state of a process. The actual value of |S| is subject to the predicate un-

der consideration, as the resulting number/type of the variables to capture

the necessary information for predicate detection depends on the predicate.

The centralized online algorithm requires O(|E| · |S|) space in the worst case;

130

however it is important to notice that all of this space is required on a sin-

gle (central slicer) process. For a large computation, this space requirement

can be limiting. The distributed algorithm proposed above only consumes

O(|Ei| · |S|) space per slicer. Thus, we have a reduction of O(n) in per slicer

space consumption.

The token can move at most once per event. Hence, in the worst case

the message complexity is O(|E|) per token. Therefore, the message com-

plexity of the distributed algorithm presented here is O(n · |E|) total for all

tokens. The message complexity of the centralized online slicing algorithm is

O(|E|) because all the event details are sent to one (central) slicing process.

However, for conjunctive predicates, it can be observed that the message com-

plexity of the stalling-based implementation of the distributed algorithm is also

O(|E|). With speculative stalling of tokens, only unique join-irreducible cuts

are computed. This means that for conjunctive predicates, a token only leaves

(and returns to) Si, O(|Ei|) times. As there are n tokens, the overall message

complexity of the stalling-based implementation for conjunctive predicates is

O(|E|).

Algorithm Total Work Work/Slicer Messages Space/Slicer

Centralized O(n2 · |E|) O(n2 · |E|)) O(|E|) O(|E| · |S|)
Distributed (this chapter) O(n2 · |E|) O(n · |E|) O(n · |E|) O(|Ei| · |S|)

Table 5.1: Comparison of Centralized and Distributed Online Slicing Algo-
rithms

In the next chapter, we present algorithms to create slices of two tem-

131

poral logic operators with respect to predictaes that are not regular.

132

Chapter 6

Slicing for Non-Regular Predicates

Computation slicing is an abstraction technique for efficiently finding

all global states of computation that satisfy a given global predicate, without

explicitly enumerating all such global states [51]. The slice of a computation

with respect to a predicate is a sub-computation that satisfies the following

properties: (a) it contains all global states of the computation for which the

predicate evaluates to true, and (b) of all the sub-computations that satisfy

condition (a), it has the least number of global states. The slice has much fewer

global states than the computation itself — exponentially smaller in many

cases — resulting in substantial savings. Multiple algorithms [51, 55, 58] have

been presented for computing the slice for temporal logic predicates where B

is a regular state-based predicate. In many scenarios, however, the predicate

B is not regular. Note that if B is not regular, then their temporal versions

AG(B), EG(B), and EF(B) may not be regular. In this chapter, we present

offline algorithms for computing slices for AG(B), and EF(B) when B is not a

a regular predicate but either ¬B or B itself is efficiently detectable, and we

are given the slice of the computation with respect to B.

133

6.1 Slicing Algorithm for AG(B)

For a predicate B, we say a consistent cut C satisfies the temporal logic

predicate AG(B) iff in the lattice of consistent cuts, all cuts reachable from C

satisfy B. That is: C |= AG(B) iff for all consistent cut sequences C0, . . . , Ck

such that (i) C0 = C, and (ii) Ck = Ê, we have: Ci |= B for all 0 ≤ i ≤ k.

Thus,

When predicate B is not regular, we require that ¬B be efficiently

detectable for efficient computation of the slice with respect to AG(B). Al-

gorithm 18 shows the algorithm for computing the slice for AG(B) when this

condition is met.

Recall that a slice of a computation is its equivalent directed graph

containing additional directed edges. Hence, the directed graph for the slice

will have at least as many edges as in original computation. When constructing

a slice for a computation G = 〈E, 7→〉, the slice contains two types of directed

edges:

1. all the edges of G,

2. edges added by the slicing algorithm.

In constructing the slice for AG(B), edges of type (2) eliminate consistent

cuts of the original computation that do not satisfy AG(B). To do so, we

consider all possible pairs of events (e, f) such that e��7→f in G. Let A be the

set of consistent cuts of G that contain f but not e. Adding an edge from e

134

to f eliminates those and only those consistent cuts of G that are in A. To

determine if such an edge can be added, we need to ascertain that no consistent

cut in A satisfies AG(B). Let C be the largest consistent cut of A. Note that

C exists and is well defined; and every other consistent cut of A can reach C.

It is sufficient to check that C satisfies AG(B). If C does not satisfy AG(B)

then there exists a consistent cut D in G such that C ⊆ D and D does not

satisfy B. Such a consistent cut will be reachable from every other consistent

cut of A as well. As a result, none of the consistent cuts of A will satisfy

AG(B). On the other hand, if C does satisfy AG(B), then clearly the slice

of the computation w.r.t. AG(B) must contain C. Hence, the slice cannot

contain an edge from e to f because that will eliminate the cut C.

Algorithm 18 Slicing algorithm for AG(B) when B is not regular.

Input: (1) computation graph G = 〈E, 7→〉, (2) predicate B such that ¬B is
efficiently detectable

Output: the slice of 〈E, 7→〉 with respect to AG(B)
1: M = G
2: for each event pair (e, f) such that e��7→f in 〈E, 7→〉 do
3: // Find C and H as follows:
4: C: largest consistent cut of G that contains f but not e
5: H: a reduced computation of G such that C is the initial consistent cut of H
6: if some cut in H satisfies ¬B then
7: add e 7→ f in M

8: return M

We now explain how to efficiently check whether or not C satisfies

AG(B). This is done by starting from the largest consistent cut C that contains

event f but not e. If starting from this cut, anywhere in the future — in the

remaining computation — we detect that B is not satisfied for some cut (hence

135

¬B is true) then we are guaranteed that AG(B) cannot hold for C.

6.1.1 Proof of Correctness

Let S be a graph that represents an actual slice of G with respect to

AG(B). We show that M returned by Algorithm 18 is same as S. As our

algorithm only adds edges to the original computational graph, we only need

to show the following:

Lemma 23. Each edge of M is also an edge of S, and vice-versa.

Proof. Note that M and S both must contain all the edges of the original

computation. Hence, if they differ in their edges, it must be due to the type

(2) edges: the additional edges added to construct the slice. Let EM and ES

be the set of edges of type (2) in M and S respectively. There are the following

two possibilities.

(a) ∃ edge e 7→ f ∈ EM : e��7→f ∈ ES: Hence, our algorithm added the edge

e 7→ f to eliminate all the consistent cuts that contain f but not e when

constructing the slice. Observe that our algorithm only adds such an edge

after ensuring that no consistent cut that contains f but not e can satisfy

AG(B) in the G. Let us construct a graph S ′ by adding this edge e 7→ f to S.

Note that S ′ still contains all the consistent cuts of G that satisfy AG(B) but

will form a smaller sub-lattice than that of S. This leads to a contradiction of

S being a slice of G with respect of AG(B) as it violates the definition of slice.

(b) ∃ edge e 7→ f ∈ ES : e��7→f ∈ EM : As this edge is of type (2) — an edge

136

that is not originally present in G, but added to construct a slice — we know

that e��7→f in G. Hence, our algorithm must have considered the event pair

e, f (at line 2) and subsequently checked if there exists a largest consistent

cut containing f but not e such that it satisfies AG(B). But, by having the

edge e 7→ f the graph S will not contain at least one consistent cut of G that

satisfies AG(B). Hence, we again have a contradiction that S is a slice of G

with respect to AG(B).

6.1.2 Complexity Analysis

Suppose the complexity of detecting ¬B is O(T) where T = g(n, |E|),

and g is a polynomial. Then, we have the following result.

Theorem 3. The time complexity of the algorithm in Algorithm 18 is O(max(T.|E|2, |E|3)).

Proof. There are O(|E|2) possible pairs of events e, and f (line 2). Finding

the largest consistent cut C (at line 4) takes O(|E|) time. Detecting ¬B

(line 6) in the computation is O(T). Hence, the overall time complexity is

O(max(T.|E|2, |E|3)).

6.2 Slicing Algorithm for EF(B)

A consistent cut C satisfies the temporal logic predicate EF(B) iff in the

lattice of consistent cuts, there exists some consistent cut C ′ ⊇ C that satisfies

B, and we can reach C ′ by starting with the cut C and then executing some

sequence of events on the way. That is: C |= AG(B) iff for some consistent

137

cut sequences C0, . . . , Ck such that (i) C0 = C, and (ii) Ck = Ê, we have:

Ci |= B for some 0 ≤ i ≤ k. We now present an algorithm to compute the

slice for EF(B) when predicate B is not regular. Algorithm 19 shows the steps

of our algorithm. Note that the slice is efficiently computable only if B is

efficiently detectable. Let W denote the greatest (final) consistent cut of the

input slice 〈E, 7→〉B. In the algorithm, we construct a graph H with vertices

as the vertices in the original computation, G, and the following edges:

1. all the edges in G, and

2. from > to the successors of events in frontier(W).

The first type of edges ensure that the consistent cuts of H are a subset

of the consistent cuts of G. The second type of edges ensure that the final

consistent cut of H is W , therefore all consistent cuts of G that can reach W

are consistent cuts of H. Note that when B is not regular, the slice 〈E, 7→〉B

may not be lean — some of its consistent cuts may not satisfy B. Hence, it

is possible that W may not satisfy the predicate B. From the definition of

EF(B), all consistent cuts of the computation that can reach some consistent

cut that satisfies B will also satisfy EF(B) and furthermore these are the only

cuts that satisfy EF(B). However, the definition of slice requires that it is

a lattice, and hence W must be the join-closure of all the consistent cuts of

〈E, 7→〉B that satisfy B. It can be shown that any consistent cut C less than

equal to W can be written as join of C1 . . . Cm such that Ci satisfies EF(B).

Hence W is the largest consistent cut that is reachable from every consistent

138

cut that satisfies B in the computation. We can find the cut W using slice

〈E, 7→〉B when it is nonempty. We construct the slice for EF(B) from the

computation so that the slice contains all consistent cuts of the computation

that can reach W . To ensure that all cuts that cannot reach W do not belong

to the slice, we add edges from > to the successors of events in the frontier of

W in the computation. Note that adding an edge from > to an event makes

any cut that contains the event trivial.

Algorithm 19 Slicing algorithm for EF(B) when B is not regular.
Input:

(1) computation G = 〈E, 7→〉, (2) predicate B such that B is efficiently detectable
(3) slice of 〈E, 7→〉 with respect to B, denoted by 〈E, 7→〉B

Output: slice of 〈E, 7→〉 with respect to EF(B)
1: H = G
2: if slice 〈E, 7→〉B is non-empty then
3: W = the final consistent cut of slice 〈E, 7→〉B
4: ∀e ∈ frontier(W): add an edge from the vertex > to succ(e) in H
5: else // H becomes an empty slice
6: add an edge from > to ⊥ in H

7: return H

6.2.1 Proof of Correctness

Lemma 24. Every consistent cut of G = 〈E, 7→〉 that satisfies EF(B) is a

consistent cut of H.

Proof. Consider a consistent cut C of G = 〈E, 7→〉 that satisfies EF(B). In this

case, slice 〈E, 7→〉B is nonempty. Observe that when 〈E, 7→〉B is non-empty,

by construction, H contains only those consistent cuts of the computation that

139

can reach W . Since C satisfies EF(B), there exist a cut D ⊇ C such that D

satisfies B. Since W is join-closure of all the maximal cuts that satisfy B in

G, D ⊆ W . This implies that C ⊆ W , and based on the earlier observation C

must be a consistent cut of H.

Lemma 25. Every consistent cut of H either satisfies EF(B) or is a join of

some set of cuts such that all of them satisfy EF(B).

Proof. Let C be a consistent cut of H. Then, either C |= B, or C does not

satisfy B. C |= B ⇒ C |= EF(B). We now show that if C does not satisfy B,

then it is join-closure of some consistent cuts that satisfy EF(B). Note that

W is the largest consistent cut of slice 〈E, 7→〉B, and by our algorithm W

is included in H. Hence, C ⊆ W . Since W is the largest consistent cut in

slice with respect to B, W can be written as: W = W1 ∪W2 ∪ . . .Wm where

Wi |= B as every slice is a join-closed lattice. As C ⊆ W , we can re-write C

as:

C = C ∩W

≡ C = C ∩ (W1 ∪W2... ∪Wm)

≡ C = (C ∩W1) ∪ (C ∪W2)... ∪ (C ∪Wm).

Let us define Ci = C ∩Wi. Then, we have: Ci ⊆ Wi, and Wi |= B.

Therefore, Ci |= EF(B). Since all Ci’s are in H, then C must also be in H

because it is union of Cis.

140

6.2.2 Complexity Analysis

Note that the slice with respect to B is required as an input to our

algorithm. When B is not regular, computation of this slice may not be effi-

cient itself. We now analyze the complexity of the algorithm in Algorithm 19

once this slice has been computed. The graph H produced by our algorithm

has O(|E|) vertices, and O(|E| + n) edges, and can be built in O(n|E|) time.

The slice with respect to a predicate contains O(n|E|) edges using the skeletal

representation. The non-emptiness check at line 2 can be done by checking

whether the number of strongly connected components of the input slice is

greater than one, which takes O(n|E|) time. We can compute the final con-

sistent cut of this slice, that is W , by proceeding backwards from vertex > as

follows: first, we compute the strongly connected component of the slice that

contains >, in O(n|E|) time. Second, for each process Pi, starting from the

final event on Pi, we find the predecessors of events until we reach events on

Pi that do not belong to the strongly connected component. This step takes

O(|Ei|) time. Hence, we can compute the frontier of W in O(|E|) time across

all the processes. There are n successor events to the events in frontier of W ,

requiring O(n) time to add edges from > to these successor events. Thus the

algorithm has O(n|E|) overall time-complexity.

This chapter ends the presentation of algorithmic contributions of this

dissertation. In the next chapter, we present concluding remarks and future

work.

141

Chapter 7

Conclusion and Future Work

The ubiquity of multicore and cloud computing has significantly in-

creased the degree of parallelism in programs. This change has in turn made

verification and analysis of large parallel programs even more challenging.

For such verification and analysis tasks, breadth-first-search based traversal

of global states of parallel programs is a crucial routine. We have reduced

the space complexity of this routine exponentially. This reduction in space

complexity allows us to analyze computation with high degree of parallelism

with relatively small memory footprint. Moreover, our BFS based enumera-

tion algorithm (Algorithm 2) lends itself well to parallel implementations with

minimal effort. This is because it traverses cuts of rank r+ 1 independently of

those of rank r. We can perform a parallel traversal easily using a parallel-for

loop at line 3 of Algorithm 2. It is an interesting future problem to implement

this parallel approach and compare its performance against parallel traversal

algorithms such as Paramount [12].

Our algorithm for detecting counting predicates has a wide-ranging

potential scope in analysis of parallel computations. In addition to predicate

detection for verifying correctness, it can also be used to analyze logs of dis-

142

tributed protocols such as Paxos, and various distributed systems for perfor-

mance related analysis. Further optimizations of this algorithm can provide

improved runtimes for its implementation which can make it an appealing

choice as a lightweight and fast component in online runtime verification sys-

tems.

Our algorithm for enumerating all consistent cuts that satisfy a stable

predicate has applications not only in predicate detection, but also in analysis

of parallel computations. Observe that many useful analysis criterion can be

written in the form of stable predicates. For example, if we are interested in

analyzing logs of a distributed system to identify causes of a system failure or

performance degradation, we can create stable predicates that include either

thresholds or upper bounds for performance load factors. By using these

predicates, we can then use our algorithm (Algorithm 9) to efficiently find

only those system states that are of interest to us without going through the

states that came before them. A promising future application of our work is

implementation of a system that accepts either a stable or counting predicate

and returns the set of consistent cuts satisfying it. Our algorithm also applies

to solving instance of stable marriage [30, 37] problem with constraints on the

minimum or maximum regret. Optimization of our algorithm for efficiently

solving such stable marriage instances is another future direction of research.

Our algorithms on computation slicing are useful for online global pred-

icate detection. Suppose the predicate B is of the form B1 ∧ B2, where B1 is

regular but B2 is not, and we are interested in monitoring the system online

143

to check if any possible global state satisfies B during its execution. Cooper

and Marzullo’s widely used online algorithm [23] traverses the lattice of global

states while remaining oblivious to the nature of the predicate. It will check

all possible states of the computation, and can be quite expensive in terms

of both time and space. In contrast, instead of searching for the global state

that satisfies B in the original computation, with our distributed slicing al-

gorithm we can search the global states in the slice for B1. Thus, running

our algorithm together with Cooper and Marzullo’s algorithm, the space and

time complexity of predicate detection is reduced significantly (possibly expo-

nentially) for predicates in the above mentioned form. Our distributed online

slicing algorithm has been adopted by others for detecting general temporal

logic formulas for runtime verification [52, 7]. However, detection performed

by these works is sound but not complete. An important future problem is

to extend our slicing algorithms to develop techniques that guarantee both

soundness and completion.

Our distributed slicing algorithm is also useful for recovery of dis-

tributed programs based on checkpointing. For fault-tolerance, we may want

to restore a distributed computation to a checkpoint which satisfies the re-

quired properties such as “all channels are empty”, and “all processes are in

some states that have been saved on storage”. If we compute the slice of the

computation in an online fashion, then on a fault, processes can restore the

global state that corresponds to the maximum of the last vector of the slice at

each surviving process. This global state is consistent as well as recoverable

144

from the storage.

To conclude, we have presented multiple algorithms that provide ex-

ponential savings in either space or time — in many cases both — for the

task of detecting predicates in parallel computations. These algorithms are

not only limited to the field of predicate detection, and can also be applied

to solve problems in the fields of performance analysis, check-pointing, stable

marriage, and lattice theory.

145

Bibliography

[1] R. Alagappan, A. Ganesan, Y. Patel, T. S. Pillai, A. C. Arpaci-Dusseau,

and R. H. Arpaci-Dusseau. Correlated crash vulnerabilities. In 12th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI 16), pages 151–167, GA, 2016. USENIX Association.

[2] S. Alagar and S. Venkatesan. Hierarchy in Testing Distributed Programs.

In Proceedings of the International Workshop on Automated Debugging

(AADEBUG), pages 101–116, 1993.

[3] S. Alagar and S. Venkatesan. Techniques to Tackle State Explosion in

Global Predicate Detection. In IEEE Transactions on Software Engi-

neering, pages 412–417, Dec. 1994.

[4] T. Ball, S. Burckhardt, K. E. Coons, M. Musuvathi, and S. Qadeer. Pre-

emption sealing for efficient concurrency testing. In International Con-

ference on Tools and Algorithms for the Construction and Analysis of

Systems, pages 420–434. Springer, 2010.

[5] A. Bauer and Y. Falcone. Decentralised LTL Monitoring. In Proceedings

of the 18th International Symposium on Formal Methods, pages 85–100,

Paris, France, Aug. 2012.

146

[6] L. Bianco, P. Dell Olmo, and S. Giordani. An optimal algorithm to find

the jump number of partially ordered sets. Computational Optimization

and Applications, 8(2):197–210, 1997.

[7] B. Bonakdarpour, P. Fraigniaud, S. Rajsbaum, D. A. Rosenblueth, and

C. Travers. Decentralized asynchronous crash-resilient runtime verifica-

tion. In LIPIcs-Leibniz International Proceedings in Informatics, vol-

ume 59. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[8] I. Calciu, D. Dice, T. Harris, M. Herlihy, A. Kogan, V. J. Marathe, and

M. Moir. Message passing or shared memory: Evaluating the delegation

abstraction for multicores. In OPODIS, pages 83–97, 2013.

[9] K. M. Chandy and L. Lamport. Distributed Snapshots: Determining

Global States of Distributed Systems. ACM Transactions on Computer

Systems, 3(1):63–75, Feb. 1985.

[10] Y. Chang and V. K. Garg. Quicklex: A fast algorithm for consistent

global states enumeration of distributed computations. In 19th Interna-

tional Conference on Principles of Distributed Systems, OPODIS 2015,

December 14-17, 2015, Rennes, France, pages 25:1–25:17, 2015.

[11] Y.-J. Chang. Predicate Detection for Parallel Computations. PhD thesis,

UT Austin, Austin, TX, 2016.

[12] Y.-J. Chang and V. K. Garg. A parallel algorithm for global states enu-

meration in concurrent systems. In Proceedings of the 20th ACM SIG-

147

PLAN Symposium on Principles and Practice of Parallel Programming,

PPoPP 2015, pages 140–149. ACM, 2015.

[13] H. Chauhan and V. K. Garg. Detecting stable and counting predicates

in parallel computations. Under review, 2017.

[14] H. Chauhan and V. K. Garg. Space efficient breadth-first and level

traversals of consistent global states of parallel programs. To appear in

Proceedings of the 17th International Conference on Runtime Verification

(RV 2017), 2017.

[15] H. Chauhan, V. K. Garg, A. Natarajan, and N. Mittal. A distributed ab-

straction algorithm for online predicate detection. In Reliable Distributed

Systems (SRDS), 2013 IEEE 32nd International Symposium on, pages

101–110. IEEE, 2013.

[16] M. Chein and M. Habib. The jump number of dags and posets: an

introduction. Annals of Discrete Mathematics, 9:189–194, 1980.

[17] F. Chen, T. F. Serbanuta, and G. Roşu. jPredictor: a predictive runtime

analysis tool for java. In Proceedings of the International Conference on

Software Engineering, pages 221–230, 2008.

[18] E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchroniza-

tion Skeletons using Branching Time Temporal Logic. In Proceedings of

the Workshop on Logics of Programs, Yorktown Heights, New York, May

1981.

148

[19] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of

finite-state concurrent systems using temporal logic specifications. ACM

Trans. Program. Lang. Syst., 8(2):244–263, Apr. 1986.

[20] E. M. Clarke and O. Grumberg. Avoiding the state explosion problem in

temporal logic model checking. In Proceedings of the sixth annual ACM

Symposium on Principles of distributed computing, PODC ’87, pages 294–

303, New York, NY, USA, 1987. ACM.

[21] E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT

Press, 2000.

[22] S. A. Cook. The complexity of theorem-proving procedures. In Proceed-

ings of the third annual ACM symposium on Theory of computing, pages

151–158. ACM, 1971.

[23] R. Cooper and K. Marzullo. Consistent detection of global predicates.

In Proc. of the Workshop on Parallel and Distributed Debugging, pages

163–173, 1991.

[24] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.

Cambridge University Press, Cambridge, UK, 1990.

[25] P. Fatourou and N. D. Kallimanis. Revisiting the combining synchroniza-

tion technique. In ACM SIGPLAN Notices, volume 47, pages 257–266,

2012.

149

[26] C. J. Fidge. Timestamps in Message-Passing Systems that Preserve the

Partial-Ordering. In K. Raymond, editor, Proceedings of the 11th Aus-

tralian Computer Science Conference (ACSC), pages 56–66, Feb. 1988.

[27] R. E. Fikes and N. J. Nilsson. Strips: A new approach to the application

of theorem proving to problem solving. Artificial intelligence, 2(3-4):189–

208, 1971.

[28] C. Flanagan and S. N. Freund. FastTrack: efficient and precise dynamic

race detection. In Proceedings of the Conference on Programming Lan-

guage Design and Implementation, pages 121–133, 2009.

[29] P. Fonseca, K. Zhang, X. Wang, and A. Krishnamurthy. An empirical

study on the correctness of formally verified distributed systems. In

Proceedings of the Twelfth European Conference on Computer Systems,

EuroSys ’17, pages 328–343, New York, NY, USA, 2017. ACM.

[30] D. Gale and L. S. Shapley. College admissions and the stability of mar-

riage. The American Mathematical Monthly, 69(1):9–15, 1962.

[31] B. Ganter. Two basic algorithms in concept analysis. In Proceedings of

the International Conference on Formal Concept Analysis, pages 312–340,

2010.

[32] V. K. Garg. Elements of Distributed Computing. John Wiley and Sons,

Incorporated, New York, NY, 2002.

150

[33] V. K. Garg. Enumerating global states of a distributed computation. In

Proceedings of the International Conference on Parallel and Distributed

Computing Systems, pages 134–139, 2003.

[34] V. K. Garg. Introduction to Lattice Theory with Computer Science Ap-

plications. Wiley, 2015.

[35] V. K. Garg and N. Mittal. On Slicing a Distributed Computation. In

Proceedings of the 21st IEEE International Conference on Distributed

Computing Systems (ICDCS), pages 322–329, Phoenix, Arizona, USA,

Apr. 2001.

[36] V. K. Garg and B. Waldecker. Detection of weak unstable predicates

in distributed programs. IEEE Transactions on Parallel and Distributed

Systems, 5(3):299–307, 1994.

[37] D. Gusfield and R. W. Irving. The stable marriage problem: structure

and algorithms. MIT press, 1989.

[38] M. Habib, R. Medina, L. Nourine, and G. Steiner. Efficient algorithms

on distributive lattices. Discrete Appl. Math., 110(2-3):169–187, 2001.

[39] M. Herlihy. A methodology for implementing highly concurrent data

objects. ACM Transactions on Programming Languages and Systems

(TOPLAS), 15(5):745–770, 1993.

151

[40] J. Huang and C. Zhang. Persuasive prediction of concurrency access

anomalies. In Proceedings of the International Symposium on Software

Testing and Analysis, pages 144–154, 2011.

[41] W.-L. Hung, H. Chauhan, and V. K. Garg. Brief announcement: Non-

blocking monitor executions for increased parallelism. In 28th Inter-

national Symposium on Distributed Computing (DISC), pages 553–554,

2014.

[42] W.-L. Hung, H. Chauhan, and V. K. Garg. Activemonitor: Asyn-

chronous monitor framework for scalability and multi-object synchro-

nization. In LIPIcs-Leibniz International Proceedings in Informatics,

volume 46. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[43] R. Jegou, R. Medina, and L. Nourine. Linear space algorithm for on-line

detection of global predicates. In Proc. of the International Workshop

on Structures in Concurrency Theory, pages 175–189, 1995.

[44] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed

System. Communications of the ACM (CACM), 21(7):558–565, July

1978.

[45] L. Lamport. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.

[46] Y. Lei and R. Carver. Reachability testing of concurrent programs. IEEE

Transactions on Software Engineering, 32(6):382–403, 2006.

152

[47] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: detecting atomicity vio-

lations via access interleaving invariants. In Proceedings of the Interna-

tional Conference on Architectural Support for Programming Languages

and Operating Systems, pages 37–48, 2006.

[48] F. Mattern. Virtual Time and Global States of Distributed Systems.

In Parallel and Distributed Algorithms: Proceedings of the Workshop on

Distributed Algorithms (WDAG), pages 215–226, 1989.

[49] N. Mittal and V. K. Garg. On Detecting Global Predicates in Distributed

Computations. In Proceedings of the 21st IEEE International Conference

on Distributed Computing Systems (ICDCS), pages 3–10, Phoenix, Ari-

zona, USA, Apr. 2001.

[50] N. Mittal and V. K. Garg. Techniques and Applications of Computation

Slicing. Distributed Computing (DC), 17(3):251–277, Mar. 2005.

[51] N. Mittal, A. Sen, and V. K. Garg. Solving Computation Slicing using

Predicate Detection. IEEE Transactions on Parallel and Distributed

Systems (TPDS), 18(12):1700–1713, Dec. 2007.

[52] M. Mostafa and B. Bonakdarpour. Decentralized runtime verification

of ltl specifications in distributed systems. In Parallel and Distributed

Processing Symposium (IPDPS), 2015 IEEE International, pages 494–

503. IEEE, 2015.

153

[53] M. Musuvathi and S. Qadeer. Iterative context bounding for system-

atic testing of multithreaded programs. In Proceedings of Conference on

Programming language design and implementation, pages 446–455, 2007.

[54] A. Natarajan, H. Chauhan, N. Mittal, and V. K. Garg. Efficient abstrac-

tion algorithms for predicate detection. Theoretical Computer Science,

688:24 – 48, 2017. Distributed Computing and Networking.

[55] V. A. Ogale and V. K. Garg. Detecting temporal logic predicates on

distributed computations. In Proceedings of International Symposium in

Distributed Computing, pages 420–434, 2007.

[56] Y. Oyama, K. Taura, and A. Yonezawa. Executing parallel programs

with synchronization bottlenecks e ciently. In Proceedings of Interna-

tional Workshop on Parallel and Distributed Computing for Symbolic and

Irregular Applications (PDSIA’99). World Scientific, 1999.

[57] G. Pruesse and F. Ruskey. Gray codes from antimatroids. Order 10,

pages 239–252, 1993.

[58] A. Sen and V. K. Garg. Detecting temporal logic predicates on the

happened-before model. In Proceedings of the International Parallel and

Distributed Processing Symposium, 2002.

[59] A. Sen and V. K. Garg. Automatic generation of computation slices for

detecting temporal logic predicates. Technical Report TR-PDS-2003-001,

154

Department of Electrical and Computer Engineering, The University of

Texas at Austin, 2003.

[60] A. Sen and V. K. Garg. Detecting Temporal Logic Predicates in Dis-

tributed Programs using Computation Slicing. In Proceedings of the In-

ternational Conference on Principles of Distributed Systems (OPODIS),

pages 171–183, Dec. 2003.

[61] A. Sen and V. K. Garg. Formal Verification of Simulation Traces Using

Computation Slicing. IEEE Transactions on Computers, 56(4):511–527,

Apr. 2007.

[62] K. Sen, A. Vardhan, G. Agha, and G. Roşu. Efficient Decentralized

Monitoring of Safety in Distributed Systems. In Proceedings of the 26th

International Conference on Software Engineering (ICSE), pages 418–

427, 2004.

[63] W. Song, T. Gkountouvas, K. Birman, Q. Chen, and Z. Xiao. The freeze-

frame file system. In ACM Symposium on Cloud Computing (SOCC),

2016.

[64] M. B. Squire. Enumerating the ideals of a poset. In PhD Dissertation,

Department of Computer Science, North Carolina State University, 1995.

[65] G. Steiner. An algorithm to generate the ideals of a partial order. Oper.

Res. Lett., 5(6):317–320, 1986.

155

[66] M. M. Sys lo. Minimizing the jump number for partially ordered sets: A

graph-theoretic approach. Order, 1(1):7–19, 1984.

[67] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model check-

ing programs. Automated Software Engineering Journal, 10(2):203–232,

2003.

[68] C. von Praun and T. R. Gross. Object race detection. In Proceedings

of the Conference on Object-Oriented Programming, Systems, Languages,

and Applications, pages 70–82, 2001.

156

Vita

Himanshu Chauhan was born to Beena Chauhan and Devendra Singh

Chauhan in Kanpur, India on 27 October 1984. He received the Bachelor

of Technology degree in Chemical Engineering from the Indian Institute of

Technology, Kanpur in 2005. He then worked as a software engineer for Price-

waterhouseCoopers, and IBM Research Labs. He started graduate school at

the University of Texas at Austin in August, 2011.

Permanent address: 463/6 Shastri Nagar
Kanpur, Utter Pradesh
India

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

157

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Predicate Detection
	Space Efficient Breadth First Traversal of Consistent Global States
	Detecting Stable and Count Predicates
	Slicing Algorithms
	Distributed Slicing Algorithm for Regular Predicates
	Slicing Algorithms for and Temporal Operators on Non-Regular Predicates

	Applications of Developed Algorithms to Other Fields
	Overview of the Dissertation

	Chapter 2. Background
	Computation as Partially Ordered Set of Events
	Chains and Antichains

	Vector Clocks
	Consistent Cuts
	Vector Clock Notation of Consistent Cuts
	Lattice of Consistent Cuts

	Uniflow Chain Partition
	Uniflow Chain Partitioning: Online Algorithm
	Proof of Correctness
	Complexity Analysis

	Consistent Cuts in Uniflow Chain Partitions
	Global Predicates
	Stable, Linear, and Regular Predicates
	Temporal Logic Predicates

	Computation Slicing

	Chapter 3. Polynomial Space Breadth-First Traversal of Consistent Cuts
	Traditional BFS Traversal Algorithm
	BFS Traversal Algorithm using Uniflow Partition
	Proof of Correctness
	Complexity Analysis
	GetSuccessor in O(nu2) Time
	Re-mapping Consistent Cuts to Original Chain Partition

	Implementation without Regeneration of Vector Clocks
	Retaining Original Vector Clocks in Uniflow Partition
	GetMinCut
	ComputeProjections

	Comparison with Other Traversal Algorithms
	Traversing Consistent Cuts of Specific Rank(s)

	Experimental Evaluation
	Results with Regenerated Vector Clocks
	Results without Regenerated Vector Clocks

	Chapter 4. Detecting Stable and Counting Predicates
	Enumerating Consistent Cuts Satisfying Stable Predicates
	Proof of Correctness

	Enumerating Consistent Cuts satisfying Counting Predicates
	Proof of Correctness

	Optimized Implementation
	GetBiggerBaseCut
	BackwardPass
	GetSuccessor

	Complexity Analysis

	Chapter 5. Distributed Online Algorithm for Slicing
	Example of Algorithm Execution
	Proof of Correctness
	Complexity Analysis

	Chapter 6. Slicing for Non-Regular Predicates
	Slicing Algorithm for B
	Proof of Correctness
	Complexity Analysis

	Slicing Algorithm for B
	Proof of Correctness
	Complexity Analysis

	Chapter 7. Conclusion and Future Work
	Bibliography
	Vita

