
Optimization of BLAS on the Cell Processor

Vaibhav Saxena∗, Prashant Agrawal∗, Yogish Sabharwal∗, Vijay K. Garg∗,
Vimitha A. Kuruvilla†, John A. Gunnels‡

Abstract

The unique architecture of the heterogeneous multi-core Cell processor offers great
potential for high performance computing. It offers features such as high memory
bandwidth using DMA, user managed local stores and SIMD architecture. In this
paper, we present strategies for leveraging these features to develop a high performance
BLAS library. We propose techniques to partition and distribute data across SPEs
for handling DMA efficiently. We show that suitable pre-processing of data leads
to significant performance improvements, particularly when data is unaligned. In
addition, we use a combination of two kernels – a specialized high performance kernel
for the more frequently occurring cases and a generic kernel for handling boundary
cases – to obtain better performance. Using these techniques for double precision,
we obtain up to 70-80% of peak performance for different memory bandwidth bound
BLAS level 1 and 2 routines and up to 80-90% for computation bound BLAS level 3
routines.

1 Introduction

Recent trends in processor design exhibit a predominant shift toward multi-core archi-
tectures, primarily driven by increasing power consumption and the diminishing gains in
processor performance from increasing operating frequency. The Cell Broadband Engine,
also referred to as the Cell processor, is a multi-core processor jointly developed by Sony,
Toshiba and IBM. The Cell is a radical departure from conventional multi-core architectures
– combining a conventional high-power PowerPC core (PPE) with eight simple Single-
Instruction, Multiple-Data (SIMD) cores, called Synergistic Processing Element (SPE) in
a heterogeneous multi-core offering. It offers extremely high compute-power on a single
chip combined with a power-efficient software-controlled memory hierarchy. The theoretical
peak performance of each SPE for single precision floating point operations is 25.6 GFLOPS
leading to an aggregate performance of 204.8 GFLOPS for 8 SPEs. The theoretical peak
performance for double precision is 12.8 GFLOPS per SPE and 102.4 GFLOPS aggregate.
Each SPE has 256 KB of Local Store for code and data. An SPE cannot directly access
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the data stored in an off-chip main memory and explicitly issues Direct Memory Access
(DMA) requests to transfer the data between the main memory and its local store. Access
to the external memory is handled via a 25.6 GB/s Rambus extreme data rate (XDR)
memory controller. The PPE, eight SPEs, memory controller and input/output controllers
are connected via the high bandwidth Element Interconnect Bus (EIB) [20], as shown in
Fig. 1.

Distinctive features of the Cell such as the XDR memory subsystem, coherent EIB
interconnect, SPEs, etc. make it suitable for computation and data intensive applications.
There has been a considerable amount of work that has demonstrated the computational
power of the Cell processor for a variety of applications, such as dense matrix multiply
[32], sparse matrix-vector multiply [32], fast Fourier transforms [3, 8, 16, 32], sorting [14],
ray tracing [6] and many others. The Cell processor is commercially available in various
platforms such as Sony Playstation 3 gaming console and IBM BladeCenter (with 2 Cell
processors connected in a NUMA configuration).

Numerical linear algebra is fundamental to scientific computing, financial engineering,
image and signal processing, data mining, bioinformatics, and many other applications.
It is often the most computationally intensive part of these applications. Basic Linear
Algebra Subprograms (BLAS) is a widely accepted standard for linear algebra interface
specifications in high-performance computing and scientific domains and forms the basis for
high quality linear algebra packages such as LAPACK [1] and LINPACK [10]. BLAS routines
are categorized into three classes – level 1 routines (vector and scalar operations), level 2
routines (vector-matrix operations) and level 3 routines (matrix-matrix operations). Level 2
and level 3 routines were motivated by the advent of vector machines, hierarchichal memory
machines and shared memory parallel machines. There exists a rich set of documentation
[26] that discusses general optimization strategies for BLAS routines as well as optimization
for specific architectures.

BLAS has been tuned and optimized for many platforms to deliver good performance,
e.g. ESSL on IBM pSeries and Blue Gene [23], MKL for Intel [24], GotoBLAS on a variety of
platforms [15], etc. Successful efforts have also been made towards automatic tuning of linear
algebra software (ATLAS) [2] to provide portable performance across different platforms
using empirical techniques. Some of these portable libraries give good performance when
executed on the Cell PPE. However, given the unique architecture of the Cell processor and
the SPE feature set, specialized code needs to be designed and developed for obtaining high
performance BLAS for the Cell processor. Williams et al. [32] have discussed optimization
strategies for the general matrix-multiply routine on the Cell processor, obtaining near-
peak performance [18, 21, 26, 27, 29, 31]. However, existing literature and optimization
strategies of linear algebra routines on the Cell make simplified assumptions regarding the
input data related to their alignment, size, etc. A BLAS library needs to address many issues
for completeness, such as different alignments of the input vectors/ matrices, unsuitable
vector/ matrix dimension sizes, vector strides, etc. that can have significant impact on
the performance. Moreover, there are many combinations of input parameters in BLAS
routines, such as transpose or non-transpose, upper or lower triangular, diagonal or non-
diagonal, stride or non-stride vector access, positive or negative stride vector access, etc.
This leads to a large number of combinations of the operations to be performed. Hence
productivity is a very important factor to be considered while optimizing the BLAS library.
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Figure 1: Cell Broadband Engine Overview

For example, a commonly used technique is the reuse of a highly optimized GEMM core
routine in developing other BLAS level 3 routines [25].

In this paper, we discuss the challenges and opportunities involved in optimizing BLAS
for the Cell processor. We focus on the optimization strategies used for producing the high
performance BLAS library that is shipped with the Cell Software Development Kit (SDK).
The library consists of single and double precision routines ported to the PPE; a selected
subset of these routines have been optimized using the SPEs. The routines conform to the
standard BLAS interface at the PPE level. This effort, of offering a high performance BLAS
library, is the first of its kind for the Cell. We propose techniques to partition and distribute
data across SPEs for handling DMA efficiently. We show that suitable pre-processing of
data leads to significant performance improvements, particularly when data is unaligned. In
addition, we use a combination of two kernels – a specialized high performance kernel for
the more frequently occurring cases and a generic kernel for handling boundary cases – to
obtain better performance.

The rest of the paper is organized is as follows. In Section 2 we discuss the challenges
and opportunities that the Cell offers with respect to BLAS. In Section 3, we discuss the
optimization strategies followed by performance results in Section 4. We conclude in Section
5 with a brief discussion of the ongoing and future planned work.

2 Challenges and Opportunities

The non-traditional architecture of the Cell demands more than a simple re-compilation of
the application to achieve high performance. Therefore, a good design of the BLAS library
needs to address the challenges posed by the unique architecture of the Cell and efficiently
leverage the opportunities that it has to offer.

The most important factor in developing a high performance library such as BLAS for any
multi-core architecture is the task/data partitioning and distribution, i.e. breaking down the
routines into smaller operations that can be mapped to multiple cores. Most BLAS routines
are highly data-parallel [9, 13] – they can be broken down into smaller but similar set of
operations that can be scheduled on separate cores. Even for routines that have inherent
dependencies, a careful data partitioning and distribution strategy can lead to high data-
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parallelism for a significant part of the computation. The data partitioning and distribution
strategy depends on various factors such as input data sizes, vector or matrix operations,
load balancing considerations, etc.

There are other architecture specific features that need to be considered for obtaining
good performance of BLAS on the Cell. These features are described in the subsequent
sections.

2.1 Memory Hierarchy and DMA

One of the major factors limiting the processor performance is the widening gap between
the processor frequency and the memory latency. Memory hierarchy is a popular technique
used in processor architecture to reduce the impact of high memory latencies.

On the Cell processor, the memory hierarchy of the PPE is similar to conventional
processors whereas SPEs have a distinctive three-level hierarchy: (a) 128×128-bit unified
SIMD register file, (b) 256 KB of local store memory, and (c) shared off-chip main memory.
Each SPE works only on the code and data stored in its local store memory and uses DMA
transfers to move data between its local store and the main memory (or the local stores of
other SPEs).

These DMA transfers are asynchronous and enable the SPEs to overlap computation
with data transfers. Although the theoretical peak memory bandwidth is 25.6 GB/s, the
effective bandwidth obtained may be considerably lower if the DMA transfers are not setup
properly. This can degrade performance of BLAS routines, particularly level 1 and level 2
routines, which are typically memory bandwidth bound. Therefore, it is important to take
into account the factors that influence the DMA performance in order to develop a high
performance BLAS library. Some of these factors are discussed here.

Memory Alignment: DMA performance is best when both source and destination buffers
are 128-byte (one cache line) aligned and the size of the transfer is a multiple of 128 bytes.
This involves transfer of full cache lines between main memory and local store. If the source
and destination are not 128-byte aligned, then DMA performance is best when both have
the same quadword offset within a cache line. This affects the data partitioning strategy.
Typically, an SPE works on blocks of the input data by iteratively fetching them from main
memory to its local store, performing required operation on these blocks and finally storing
back the computed data blocks to main memory. Therefore, it is important to partition
the input data in a manner such that the blocks are properly aligned so that their DMA
transfers are efficient.

Transfer of unaligned data may result in the use of DMA lists. However, direct
(contiguous) DMA transfers generally lead to better bandwidth utilization in comparison
to DMA list accesses. To illustrate this, consider a block of size 16x+ 12 bytes starting at a
128 byte aligned address. DMA transfers can be done in units of 1, 2, 4, 8 and multiple of
16 bytes starting at memory addresses that are 1, 2, 4, 8 and 16 byte aligned, respectively.
One way of transferring this block is to construct a DMA list that has 3 list elements, one
each for (1) the 16x byte aligned part, (2) the 8 byte part and (3) the 4 byte part. As each
transfer consumes 128 bytes worth of bandwidth, there may be close to 128 bytes worth of
bandwidth loss for each of the transfers. A better strategy is to transfer some extra bytes at
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the tail, making the transfer size a multiple of 16 bytes so that a direct DMA transfer can
be used. When fetching data, the extra fetched bytes can be discarded by the SPE. However
this strategy cannot be used for writing data back to main memory as it can lead to memory
inconsistencies. Hence, DMA lists need to be used for writing back unaligned data.

Data Access Pattern: Input vectors may be accessed contiguously or non-contiguously
depending upon stride value. When the data is stored contiguously, a direct DMA transfer
can be used to move the data. However for non-contiguous access, a DMA list needs to be
created and used to scatter/ gather the required elements. Every DMA list element consumes
at least 128 bytes worth of bandwidth, independent of the size of the transfer. This opens
the possibility of rearranging data in certain cases (e.g. vectors in BLAS 2 routines) that
may be reused multiple times resulting in improved overall performance.

Data Block Size: Selection of an appropriate block size is critical for high performance.
Large data block size not only improves DMA efficiency but also results in sufficient
computations to hide overlapped DMA latencies. DMA efficiency improves as it leads to
larger transfers per DMA request which results in higher memory bandwidth. However,
SPE local store size limitation of 256 KB restricts the data block sizes that can be handled
and places demanding constraints on the size of the SPE code.

2.2 SPE Architecture

Each SPE is a dual issue SIMD processor. It supports in-order execution of the instructions
that operate on multiple elements in the 128-bit registers in parallel. SPE instructions
typically have a latency of 2-9 cycles with single cycle throughput in most cases. Each SPE
has two pipelines with which it can simultaneously issue two independent instructions per
cycle – one to each of the pipelines. The availability of a large number of registers allows
compilers to efficiently schedule instructions by loop unrolling and other techniques to resolve
code dependencies and hide instruction latencies.

An efficient BLAS library on the Cell requires design and development of highly optimized
SPE computation kernels that make effective use of the above mentioned SPE features to
perform specialized BLAS-like operations on the data present in the local store.

3 Optimization Strategies

Algorithmic and architecture specific optimizations of linear algebra libraries such as BLAS
and LAPACK, have been well studied [1, 2, 15, 24, 26]. However, several factors have to
be taken into consideration when applying these proven strategies on the Cell processor.
Besides, new techniques are required for enabling high performance of routines like BLAS
on the Cell, as discussed in Section 2. In this section we discuss the different strategies
used for optimizing BLAS on the Cell. It should be noted that these strategies are targeted
for a single Cell processor, large data sets, column-major matrices and huge memory pages
(16 MB).
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3.1 Data Partitioning and Distribution

Data partitioning and distribution are a critical part of designing linear algebra subprograms
on multi-cores. The proposed strategy for data partitioning and distribution differs across
the three categories of the BLAS routines. For the memory bandwidth bound level l and
level 2 routines, data partitioning is carried out with an objective to get close to the peak
memory-bandwidth, whereas for the computation bound level 3 routines the objective is to
get close to the peak computation rate.

BLAS Level 1 Routines: BLAS level 1 routines typically operate on one or two vector(s)
and produce as output a vector or a scalar. The goal is to partition the data into equal sized
blocks that can be distributed to the SPEs with each SPE getting roughly an equal number of
blocks. When the output is a vector, the output (e.g. in DCOPY) or I/O1 (e.g. in DSCAL)
vector is divided into blocks that are 128-byte aligned, are multiple of 128 bytes and large
enough (16 KB – the maximum transfer size for a single DMA operation). These blocks are
then divided (almost) equally, among the SPEs, with each SPE getting a contiguous set of
blocks.

In the case of two vectors – an input and an I/O vector (e.g. in DAXPY), both the
vectors have to be partitioned such that an SPE receives the same range of elements of each
vector. One of the two vectors is divided into blocks taking into consideration the 128-byte
alignment of the blocks, as described above. The other vector is divided with respect to
the former vector, without considering the memory alignment, such that its blocks have the
same range of elements as the former vector. In our strategy, we partition and distribute the
I/O vector based on 128-byte alignment considerations and DMA in the corresponding part
of the other vector by pulling in 128 bytes extra (if required). This ensures that the DMA
writes from local store to main memory can be performed without the need for DMA lists.
In cases where the output is a scalar (e.g. in DDOT), partitioning with memory alignment
considerations can be carried out for any of the vectors.

When the vector being partitioned does not start or end on a 128-byte boundary, there
may be small parts of the vector at the start (head) and the end (tail) that do not satisfy
the alignment and size criteria mentioned above. These are handled directly on the PPE.

In case where access for one or more vectors is strided, the size of each block is restricted
to 2048 elements (the maximum number of DMA transfers that can be specified in a single
DMA list operation).

BLAS Level 2 Routines: BLAS level 2 routines perform matrix-vector operations and
their output can either be a vector or a matrix. The complexity of these routines is
determined by the memory bandwidth requirements for fetching/storing the matrix. Thus,
data partitioning and distribution for these routines is done keeping in mind efficient DMA
considerations for the matrix. The column-major matrix is divided into rectangular blocks
which are distributed among the SPEs. The SPEs typically operate on one block in an
iteration. A block is fetched using a DMA list where each list element transfers one column
of the block. To improve the efficiency of the DMA, column sizes of the block should be large
and multiples of 128 bytes. In case where column start addresses are not 128-byte aligned,

1Data that is both read and updated
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up to 128 extra bytes are fetched for each column in order to ensure that each column can be
transferred using a single DMA list element. The block dimensions are appropriately chosen
depending on the number of vectors used and SPE local store size.

If the output is a vector and there are two vectors – an input and a I/O vector (e.g.
in DGEMV), the I/O vector is divided into blocks by taking memory alignment into
consideration, as it is done for level 1 routines. The I/O vector blocks are divided among
the SPEs uniformly with each SPE getting a set of contiguous blocks. Each SPE fetches an
I/O vector block, iteratively fetches the blocks of the matrix and the input vector required
for the computation, carries out the computation and writes back the I/O vector block to
the main memory.

If there is only one I/O vector (e.g. in DTRMV), a block of elements cannot be updated
until all the computations involving it are completed. To resolve this dependency, a copy
of the vector is created and is used as the input vector. The SPEs can then independently
update the blocks of the output vector.

BLAS Level 3 Routines: BLAS level 3 routines perform matrix-matrix operations and are
computationally intensive. Thus, the key consideration in data partitioning and distribution
for these routines is computational efficiency. The matrices are partitioned into square blocks
(to maximize computations in order to hide DMA latencies) instead of rectangular blocks
(which are more DMA efficient) as in the case of level 2 routines . The blocking factor
of the matrices is decided based on factors such as SPE local store size and the number
of input and output matrices being operated upon. Another important factor influencing
the blocking factor is that when up to 16 SPEs are used on multi-Cell processor platforms,
such as the IBM BladeCenter, the blocksize should result in sufficient computations so that
the routine does not become memory bandwidth bound. Taking all these constraints into
consideration, we have determined that a blocking factor of 64 × 64 can be used with the
given memory constraints and is sufficient to keep the BLAS level 3 routines computation
bound, even with 16 SPEs.

When there are no dependencies in the computation of the output matrix blocks (e.g.
in DGEMM), these blocks are distributed across the SPEs and each SPE determines at
runtime the output matrix block to process. This dynamic distribution of the blocks ensures
a better load balancing across the SPEs. An SPE fetches an output matrix block, iteratively
fetches the input matrices blocks required for the computation of the output block, carries
out the computation and stores back the computed block to main memory. Since input
matrix blocks are used multiple times in the computation of different output matrix blocks,
the input matrices are reformatted before the computation (see Section 3.2 for more details)
to improve the DMA efficiency for the transfer of these blocks.

In case where there are dependencies in the computation of the output matrix blocks,
the blocks are distributed across the SPEs such that the computation across these sets are
independent as much as possible. The order of computation of the blocks within a set is
routine specific, e.g. in case of TRSM while computing B ← A−1 · B, where A is a lower
triangular matrix, dependencies exists in the computation of the elements along a column
but there is no dependency among elements in different columns. Therefore the columnsets2

2A set of blocks along the column of the matrix; columnset i refers to the set of all the ith blocks in each
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can be computed independently. Thus for TRSM, the columnsets of the output matrix are
distributed across the SPEs and the blocks are processed in the top-down order within a
columnset. Similar distribution can be used for other input parameter combinations as well.
The SPEs determine at runtime the sets they should process.

For particular combinations of input parameters, we carry out the complete computation
on the PPE if it is more beneficial – for instance when the matrix/vector dimensions are so
small that SPE launching overheads exceed computation time.

3.2 Efficient DMA Handling

Efficient DMA is critical for high performance of BLAS level 1 and level 2 routines since they
are memory bandwidth bound. Even though BLAS level 3 routines are computation bound,
the blocks of the matrices are fetched multiple times. Therefore, unless careful attention is
given to DMA related aspects, especially alignment related issues, there can be significant
performance degradation in the form of creation of DMA lists, packing/unpacking of data
in the SPE local store, etc. We discuss some of the DMA related optimizations for BLAS in
this section.

Pre-Processing of Input Matrices for BLAS Level 3 Routines: Pre-processing of
input data such as data layout transformation, padding, etc. have been used previously
for improving performance of BLAS level 3 like operations for various reasons [17, 30, 33].
We demonstrate that such techniques are useful in improving the performance of BLAS
routines on the Cell as they improve efficiency of the underlying DMA operations. We also
show how we can apply simple operations during the pre-processing step in order to reduce
computations during the actual processing, thereby improving performance and increasing
productivity. For BLAS level 3 routines, we rearrange the column-major input matrices
into block-layout form, using blocksize of 64×64, before performing the operation, so that
the columns of a block are stored contiguously starting at 128-byte aligned addresses. The
advantages of pre-preprocessing are:

• Transfer of Blocks Using Direct DMA: The block columns are not contiguous in memory,
and therefore fetching the blocks requires a DMA list of 64 elements where each list
element transfers 64 matrix elements. This DMA list has to be created everytime a block
is transferred between main memory and local store. When a column does not begin
at a 128-byte aligned address, this can lead to significant bandwidth loss. Though this
may not impact performance when few SPEs are in service, it can significantly deteriorate
performance when there are 16 SPEs – pushing the memory bandwidth to its limits. With
pre-processing, each block can be fetched using direct DMA.

• Reduction in the Number of SPE Kernels : Several transformations can be applied to
input matrices during the pre-processing phase itself. These transformations enhance
productivity by reducing the number of different kernels required for different combinations
of input parameters such as transpose, triangularity (upper or lower), side (left or right),
unit or non-unit triangular, etc. For example, the GEMM operation C = αATB + βC

row of the matrix.
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can be performed using the same kernel as the one used for C = αAB + βC by simply
transposing the matrix A during the pre-processing phase. For the DTRSM routine,
we implemented only 2 kernels to cater to 8 different input parameter combinations by
applying such transformations. Similar reductions in kernel implementations were achieved
for other routines.

• Simpler and More Efficient SPE Kernels : The computational kernels on the SPEs are
designed to handle matrix blocks which are properly aligned in the local store. This
leads to design of simpler kernels that make effective use of the SIMD features of the
SPEs without having to realign the vectors/ matrices based on their current alignment
offsets. In the absence of pre-processing, either the vector/ matrix blocks would have to be
realigned in memory before invoking the SPE kernels, leading to performance degradation,
or more complex SPE kernels would have to be designed.

• Reduction in Computation within SPE Kernels : BLAS level 3 routines typically involve
scaling of the input matrices. This scaling is carried out in the pre-processing stage itself.
This eliminates the requirement of scaling being carried out by the SPE kernel thereby
reducing its computation.

• Reduction in Page Faults and Translation Lookaside Buffer (TLB) Misses : In the absence
of pre-processing, adjacent columns may be in different pages when smaller page sizes are
used. Pre-processing can potentially reduce TLB misses under such circumstances [30].

We do not reformat the output matrices. This is because blocks of these matrices are typically
updated only once (or few times in some cases) after a large number of computations.
Therefore, the cost of fetching blocks of these matrices and reformatting them on the SPEs
is fairly small and does not lead to significant performance loss.

Clearly, the suggested pre-processing techniques are feasible only for BLAS level 3
routines as BLAS level 2 routines have complexity comparable to the memory bandwidth
requirements for fetching/ storing the matrix. However, it is feasible to similarly pre-process
the vectors in case of BLAS level 2 routines. For instance, a strided-vector can be pre-
processed and copied into contiguous locations so that parts of the vectors can be fetched
using direct DMA instead of DMA lists.

All the pre-processing is carried out using SPEs since the SPEs together can attain better
aggregate memory bandwidth compared to the PPE. The reformatting of the matrix blocks
is independent and therefore lends itself naturally to parallel operations.

Use of Double Buffering: Double buffering is used across all the routines to overlap
DMA transfers with computations. In some cases, statically assigning these buffers for
all the matrices may not leave enough space in the SPE local store for code and other
data structures. However not all the buffers are required at all times. Therefore, in our
optimization strategy, we declare a pool of buffers from which buffers are fetched and returned
back as and when required. The number of buffers initialized in this pool is the maximum
number of buffers required at any point of time in the routine.
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Reuse of DMA Lists: When DMA lists are used for data transfers, creation of the lists
is an additional overhead. In the case of I/O data, lists are created both while fetching and
storing the data. In our implementation, we minimize the overhead of creating the lists by
retaining the list created while fetching the data and reusing it while storing it back.

3.3 Two-Kernel Approach for Level 3 Routines

Highly optimized and specialized SPE kernels are a key component of high performance
BLAS routines, especially level 3 routines. As mentioned in Section 3.1, the matrices are
partitioned into blocks of 64×64 elements. The SPE kernels which are optimized for 64×64
blocks are henceforth referred as 64×64 kernel. When the dimension of the matrices is not
a multiple of 64, blocks in the last rowset3 and/or columnset of the matrices may not be
of dimension 64×64. However, developing a kernel that handles all different block sizes is
detrimental to performance – particularly if the kernel has to deal with matrix sizes that are
not suitable for SIMD operations. A common and simple solution is to pad the last blocks
to make them of a suitable size and use the same kernel. However, if the last blocks have
very small dimension (1 in the worst case), this approach entails unnecessary computations.

We adopt a two-kernel strategy to cope with such scenarios. If the dimension of a matrix
is not a multiple of 64, zeros are padded along that dimension to make it a multiple of 16. This
results in blocks along the border of the matrix whose dimensions are a combination of 16,
32, 48 or 64. In this strategy, a set of two kernels is developed for each required combination
– a 64×64 kernel and a generic kernel which can process blocks of any dimension which
is a multiple of 16 elements and is 16-byte aligned. This approach limits the maximum
number of padded rows or columns to 15 in the worst case and at the same time ensures
that the performance of the generic kernel is acceptable because it can still perform SIMD
operations. The generic kernels typically show a degradation of less than 10% in comparison
to the 64×64 kernel performance, as shown in Fig. 2(a).

The use of two-kernel approach places significant demand on the memory requirements
in the SPE local store. This is also the case when kernels such as DGEMM are reused
for performing other BLAS level 3 operations. However, not all the kernels are required at
all times. We use SPE overlays4[22] to share the same region of memory across multiple
kernels. Since one kernel routine is used for most computations (e.g. GEMM in BLAS level
3 routines), the amortized overheads of dynamic code reloading are small.

3.4 Efficient Use of Memory

BLAS routines allocate memory internally for pre-processing and rearranging input matrices/
vectors at runtime. There are overheads associated with allocation of memory and accessing

3A set of blocks along the row of the matrix; rowset i refers to the set of all the ith blocks in each column
of the matrix.

4Overlay is an SPE programming feature supported on the Cell to overcome the physical limitations on
code and data size in the SPE. Depending on the frequency of use and interactions of the SPE routines,
they are grouped into one or more segments which are further grouped into one or more overlay regions.
The segments within the same region share the same space, replacing each other dynamically as and when
required.
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it for the first time due to page faults and TLB misses. To minimize this overhead across
multiple BLAS calls, a small portion of memory, called swap space, can be allocated by the
user (using environment variables) and retained across multiple calls of the BLAS routines.
The swap space is allocated using huge pages. If the internal memory required by the
BLAS routine is less than the size of the swap space, the routine uses the swap space else it
allocates fresh memory. This leads to considerable improvement in the performance of the
BLAS routines when the input data size is small, as shown for DGEMM in Fig. 2(b).

4 Performance Results

In this section, we report the performance of the BLAS routines obtained with our
optimizations. The performance is profiled on IBM Cell Blade (QS22 with 8 GB RAM, RHEL
5.2, Cell SDK 3.0) with enhanced Double Precision pipeline using GCC 32-bit compiler. Huge
pages are used by default. For level 1 and 2 routines, the performance is reported in units
of GigaBytes per second (GB/s) since they are memory bandwidth bound and for level 3
routines the performance is reported in units of GigaFlops (GFLOPS).

Figure 2(c) shows the performance results for BLAS level 1 routines – IDAMAX,
DSCAL, DCOPY, DDOT and DAXPY for ideal input data combinations, i.e. when the
starting addresses are 128-byte aligned, stride is 1, dimensions are an exact multiple of
their blocksizes. We achieve performance in the range of 70-85% of the peak performance
(25.6 GB/s) depending on the routine – routines that largely perform unidirectional transfers
(e.g. IDAMAX, DDOT) are observed to perform better than the routines that perform
transfers in both directions. For BLAS level 1 routines, the performance for non-ideal cases,
e.g. when vector start offsets are not 128-byte aligned, are almost the same and hence not
reported.

Figure 2(d) compares the performance of BLAS level 2 routines – DGEMV, DTRMV
and DTRSV for ideal input cases. We achieve performance in the range of 75-80%% of the
peak performance (25.6 GB/s) for BLAS level 2 routines as well. Performance for non-ideal
cases (i.e., when data is not properly aligned or leading dimensions are not suitable multiples
and vector strides are not 1) is expected to be worse for level 2 routines. This is because
for each column within a matrix block, multiple list elements are used to transfer the entire
column which results in several short DMAs instead of a single DMA used when the matrix
is aligned. Figure 2(e) compares the performance of the DGEMV routine for ideal and non-
ideal cases. Performance degrades by about 30% for the unaligned cases. As these routines
are memory bandwidth-bound, it is not possible to pre-process the matrix for efficient DMA
for unaligned matrices.

For BLAS level 1 and level 2 routines, performance is reported using 4 SPEs. This is
because, typically 4 SPEs are enough to exhaust the memory bandwidth and we do not
observe significant performance improvement using more SPEs.

Figure 2(f) shows the performance results of BLAS level 3 routines – DGEMM, DSYMM,
DSYRK, DTRSM and DTRMM for ideal input combinations (i.e. when matrix starting
addresses are 128-byte aligned and dimensions are multiples of 64). We achieve up to
80-90% of the peak performance (102.4 GFLOPS). Figure 2(g) compares the performance
of DGEMM and DTRSM routines for ideal and non-ideal cases. For the non-ideal cases, the
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(a) Comparison of performance of 64x64 and generic
SPE kernels for Level 3 routines.

(b) Comparison of performance with and without
swap space for DGEMM with 8 SPEs. Swap space
size is 16MB.

(c) Comparison of ideal case performance of all BLAS
level 1 routines with 4 SPEs.

(d) Comparison of ideal case performance of all BLAS
level 2 routines with 4 SPEs.

(e) Comparison of ideal and non-ideal case perfor-
mance of DGEMV with 4 SPEs.

(f) Comparison of ideal case performance of all BLAS
level 3 routines for 8 SPEs.

(g) Comparison of ideal and non-ideal case perfor-
mance of DGEMM and DTRSM for 8 SPEs.

(h) Comparison of ideal case performance of SGEMM
and DGEMM for 8 SPEs.

Figure 2: Performance Results
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leading dimension is made not to be a multiple of 128 bytes. The performance difference for
the non-ideal case is mostly within 10% of the ideal case, demonstrating to a large extent
that the pre-processing restricts the performance loss for the non-ideal cases.

We performed additional experiments to determine the advantages of pre-processing.
We found that the performance degradation is more than 25% without pre-processing in
comparison to our approach. The drop in performance is due to the overhead associated in
using DMA lists (bandwidth loss as described in Section 2) for fetching the blocks of the
input matrices and pre-processing required in aligning the fetched blocks and/ or performing
matrix related operation (e.g. transpose) before invoking the SPE kernel.

In Fig. 2(h), we compare the performance of SGEMM and DGEMM for ideal input
combinations to give an idea of the difference in the performance of the single precision and
double precision routines. It is observed that the performance of the single precision routines
shows performance trends similar to the double precision routines.

5 Conclusions and Future Work

We have discussed the strategies used for optimizing and implementing the BLAS library
on the Cell. We have proposed techniques for data partitioning and distribution to ensure
optimal DMA and computational performance. We have shown that suitable pre-processing
of data results in significant improvement in performance, especially for unaligned data.
Besides these, we have proposed a combination of two kernels approach where a specialized
high performance kernel is used for more frequently occurring cases and a generic kernel is
used to handle boundary cases. Our experimental results for double precision show that the
performance of level 1 routines is up to 70-85% of the theoretical peak (25.6 GB/s) for both
ideal and non-ideal input combinations. The performance of level 2 routines is up to 75-80%
of the theoretical peak (25.6 GB/s) for ideal input combinations. The performance of level 3
routines is up to 80-90% of the theoretical peak (102.4 GFLOPS) for ideal input combinations
with less than 10% degradation in performance for non-ideal input combinations. These
results show the effectiveness of our proposed strategies in producing a high performance
BLAS library on the Cell.

The BLAS routines discussed in this paper have been optimized for a single Cell processor,
large size data sets and huge memory pages. There is scope for optimizing these routines
to optimally handle special input cases, normal memory pages and for multi-processor Cell
platforms.
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