
Highly Scalable Algorithm For Distributed Real-Time Text Indexing

Ankur Narang, Vikas Agarwal, Monu Kedia and Vijay K Garg

IBM India Research Laboratory, New Delhi, INDIA

Email: {annarang, avikas, monkedia, vijgarg1}@in.ibm.com

Abstract

Stream computing research is moving from terascale to

petascale levels. It aims to rapidly analyze data as it streams

in from many sources and make decisions with high speed

and accuracy in fields as diverse as security surveillance and

financial services including stock trading. We specifically

consider real-time text indexing and search with high input

data rates (10 GB/s or more) along with small index age-

off(expiry) time. This makes it necessary to have maximal

indexing rates for large volumes of data as well as minimal

latency for indexing (time between start of indexing for a

document and its availability for search) while maintaining

very-low search response time. In addition, future massively

parallel architectures with storage class memories will en-

able high speed in-memory real-time indexing, where index

can be completely stored in a high capacity storage class

memory.

In this paper, we present the design of distributed data-

structures and distributed real-time text indexing algorithm

for parallel systems having large (thousands to hundred

thousand) number of cores/processors, while simultaneously

providing acceptable search performance [1]. The inherent

trade-offs involved in index space, indexing throughput and

search response time make this problem particularly chal-

lenging. Our algorithm uses group-based index construction

and leverages novel index data structures that reduce load

imbalance and make text indexing and merge process more

scalable and efficient. We show analytically that the asymp-

totic parallel time complexity of our distributed indexing

algorithm, is at least Ω(log(P)) factor better than typical
indexing approaches, where P is the number of indexing
nodes in a group. We further demonstrate the performance

and scalability of our distributed indexing algorithm, on an

MPP architecture (Blue Gene/L 1) using actual IBM intranet

data. We achieved high indexing throughput of around 312

GB/min on an 8K node Blue Gene/L machine. In comparison

with parallel indexing implemented using typical approaches

like CLucene 2, this is 3× - 7× better. To the best of our
knowledge, this is the first published result on indexing

throughput at such a large scale, with sustained search

performance. We further show that our approach is scalable

1. http://www.research.ibm.com/bluegene

2. http://www.sourceforge.net/projects/clucene

to 128K nodes, giving an estimated indexing throughput of
5TB/min. We also achieved indexing latency that is around
10× better than typical indexing approaches.

1. Introduction

Stream computing is a burgeoning area of research and

product development driven by customers confronting the

exponential growth in the volume of information 3, 4. It

aims to rapidly analyze data as it streams in from many

different sources and make decisions with high speed and

accuracy. Also, Data-Intensive Super Computing (DISC) is

gaining research momentum (see [2]). DISC systems differ

from conventional supercomputers in their focus on data:

they acquire and maintain continually changing data sets,

in addition to performing large-scale computations over the

data. With the massive amounts of data arising from such

diverse sources as telescope imagery, medical records, online

transaction records, and web pages, DISC systems have the

potential to achieve major advances in science, health care,

business efficiencies, and information access.

In future there will be a strong need for real-time in-

dexing of massive amounts of data flowing at the rate of

10GB/s or more. This data needs to be searched for patterns

and the search results are time-critical in fields as diverse

as security surveillance, financial services including stock

trading, monitoring critical health conditions of patients,

climate warning systems and so on. Here, the index will

be expected to age-off (expire) in a small time and hence

will be of bounded size. However, such scenarios cannot

tolerate any violation of indexing latency and strict search

response times. In addition, future massively parallel (multi-

core) architectures with storage class memories [3] will

enable high speed in-memory real-time indexing, where

index can be completely stored in a high capacity storage

class memory. However, current approaches are primarily

focused at reducing disk-access time in indexing and its

trade-offs with search time ([4], [5], [6], [7], [8]). This

motivates exploration of performance optimizations for in-

memory text indexing and search. Here, we need extremely

fast indexing rates and minimal indexing latency along with

tight constraints of search response time in large scale

systems.

3. www.almaden.ibm.com/institute/resources/2008/presentations/Halim.ppt

4. http://ati.amd.com/technology/streamcomputing/

The current indexing approaches such as CLucene and

single-pass based indexing [9] use inefficient data-structures

for merging two index segments(segment represents inverted

index for a subset of documents in a collection). The data-

structures used in such approaches require two expensive

operations for merge between two index segments, namely:

merge-sort of terms and data re-organization of document

and postings data(list of positions for the occurrence of

a term in a document). Efficient parallel merge sort can

help here but expensive data reorganization is unavoidable.

Since these data-structures lead to expensive merge they are

not suitable for real-time indexing with high throughput.

Expensive merge leads to load-imbalance and hence poor

scalability in distributed indexing algorithm that uses sepa-

rate nodes to generate segments and to merge them. Hence,

one needs to re-design the index data-structures and ensure

they enable efficient merge. For distributed indexing, the

algorithm should lead to scalable indexing throughput and

low indexing latency while at the sametime sustaining search

response time and throughput. This is a challenging problem

due to inherent trade-offs between index size, indexing

throughput and search response time and throughput. We

focus on indexing throughput maximization with same or

better search performance and around two times the index

size of typical indexing approaches. We present the design

of innovative distributed data-structures and algorithm that

meet the design goals by enabling efficient index merge that

leads to improved load balance and hence better scalability.

It is known that for a single cluster, search is not scalable

when performed over more than certain number of nodes in a

system depending on workload and system configuration. [1]

claims, using experiments and queuing theory based analyt-

ical model, that after 2K nodes in a single cluster the search

performance degrades at a fast rate. After this threshold, we

need to have hierarchical indexing and search. In addition,

the future multi-core and many-core architectures will have

large number of cores where individual core performance

may be very small compared to out-of-order cores of cur-

rent high-performance microprocessors. To provide scalable

indexing performance on such multi-core and many-core

architectures, we need to have fast hierarchical indexing that

scales well with increase in number of cores.

We use the technique of partitioning the total input data

across groups of nodes to deal with massive amounts of

data and simultaneously meet stringent constraints on search

response times. Instead of constructing single index per node

(single-node-based distributed indexing), a single index per

group is constructed. This is referred to as group-based

distributed indexing. The group-based index is constructed

by merging the indexes from each node in the group. The

encoding of index data structures helps in improving cache

performance and also in reducing communication cost of

the distributed indexing algorithm. The group-based index

construction algorithm helps in reducing the number of

nodes involved in search. This helps in reducing the search

response time in large systems, especially in cases where

global scoring requires communication between the search

nodes. Our group-based distributed indexing algorithm is

well-suited for massively parallel architectures with large

number of cores/processors as it allows scalability to the

order of 100K nodes. We store the index in memory,

eliminating disk access overheads for index construction and

search.

This paper makes the following contributions:

• Design of distributed data-structures and indexing al-

gorithm: We designed (architecture independent) novel

data-structures and group-based in-memory distributed

text indexing algorithm which have better load balance

and low communication cost and hence improved scala-

bility of distributed indexing. We establish theoretically

that the asymptotic parallel time complexity of the

distributed algorithm using our data-structures is at least

Ω(log(P)) better than the same algorithm using the

data-structures of typical indexing approaches, where

P is the number of indexing nodes in a group.

• Indexing throughput: We obtained peak indexing rates

of around 312 GB/min on 8K nodes of BG/L using

actual IBM intranet data. To the best of our knowl-

edge, this is the first published result on indexing

throughput at such a large scale, with sustained search

performance. Based on semi-quantitative analysis, we

show that our algorithm is scalable to 128K nodes

giving an estimated indexing rate of 5TB/min. We

also demonstrate 3× - 7× gain in distributed indexing

performance and better strong scalability 5 and weak

scalability 6, compared to parallel in-memory imple-

mentation of typical indexing approaches like CLucene.

• Indexing latency: We demonstrate 10× better index-

ing latency than typical indexing approaches on Blue

Gene/L. This is due to efficient merge that does not

involve data re-organization.

We note that our design of data-structures and algorithm

for indexing is independent of the architecture. So, it is

really applicable to Clusters, Cluster of SMPs, large-scale

SMPs and MPPs like Blue Gene and other distributed and

massively parallel multi-core architectures of the future.

Moreover, it does not require expensive or fine-grain syn-

chronization.

The rest of the paper is organized as follows. Section 2

gives related work in the area of distributed and real-

time text indexing. Section 3 gives the performance draw-

backs of typical indexing approaches, presents the design

of novel data-structures for indexing, and describes single

node index construction algorithm. Next, in Section 4 we

5. Scaling in time with increase in number of nodes while maintaining
constant input data size

6. Scaling in time with increase in both number of nodes and data

present detailed design and analysis of the group-based

distributed indexing algorithm. Section 5 presents the results

and analysis of our experiments on Blue Gene/L. Finally,

Section 6 concludes with summary and directions for future

work.

2. Related Work

In this section we provide an overview of previous efforts

in distributed and real-time text indexing. [10] explains

a generalized Map-Reduce framework. Here the programs

written in functional style are automatically parallelized

and executed on a large cluster of nodes. Our scalable in-

memory indexing techniques can be implemented as part

of the run-time of this framework, which will improve the

performance of this system for large-scale indexing. This

makes our approach complementary to the general Map-

Reduce frameworks.

[11] uses geometric partitioning to construct multiple

indexes and provides fast on-line indexing throughput. But it

makes a trade-off on search-time although to a limited extent

using controlled number of indexes. We provide scalable

distributed indexing algorithm without trade-off on search

time. [12] also explores the idea of doing less preprocessing

of arriving data, at the expense of tolerable latency in the

query response time. It targets search systems that rebuild

smaller stop-press indices once or twice an hour. We target

very high indexing throughput of around 5TB/min on a

large parallel system (128K nodes) with sustained search

performance. [13] optimizes real-time index updates in the

context of file-system search, using hybrid index mainte-

nance technique that includes logarithmic merge for disk-

based indexes and in-place update for long-inverted lists. It

uses generalized Zipfian distribution to derive characteristics

of the inverted file. We build single in-memory index within

an index-group and derive asymptotic time complexity for

indexing using document distribution parameters apart from

detailed experiments on an MPP system(BG/L). Hadoop 7

uses an optimized file system, HDFS, to provide distributed

indexing and search using many nodes where the index

resides on disk. We optimize parallel in-memory real-time

indexing performance where the index resides completely in

memory.

[9] provides optimizations for indexing using single-pass

approach with limited main memory by creating bit-vectors

per term for postings. Their approach uses an expensive

merge-sort approach to merge temporary segments on disk

to create the final index file. In contrast, we have an efficient

segment merge step for in-memory single-pass text indexing.

7. hadoop.apache.org/core/

3. Design of Data-Structures & Algorithm For

In-Memory Text Indexing

In this section, we first study the scalability challenges

for indexing, followed by, the design of novel data-structures

and algorithm for text indexing and time complexity analysis

of our algorithm.

3.1. Scalability Challenges For Indexing

Typical indexing approaches like CLucene and single-

pass based indexing [9] involve expensive merge. Fig. 1

shows two input segments, Segment(1) and Segment(2) that

are merged to form the Merged Segment. Both the input

segments contain a list of Terms, each with their TermIn-

fos. Each TermInfo has an associated Document-List(list of

documents containing that term and term frequency in the

document) and Position-List(list of positions per document

where that term occurs in the document). The merge in-

volves two expensive operations. First, it involves merge-

sort of sorted terms in the input segments to generate the

list of Terms and TermInfos for the MergedSegment(refer

Step(1) in Fig. 1). Second, the Document-List and Position-

List of the input segments are merged and re-organized to

form the Document-List and Position-List of the Merged

Segment(refer Step(2) in Fig. 1). Hence, parallel indexing

algorithms using such approaches have poor scalability as

the index-merge process becomes the bottleneck quickly

and causes load imbalance. Further, there are inherent trade-

offs involved in index size, indexing throughput and search

performance which makes the design challenging.

Positions List : p11,p12,p21,p22,p23,

p31,p32,p41,p42,p43

Segment(1) Segment(2)

Term (T(i)) Term (T(i))

TermInfo(T(i))
TermInfo(T(i))

TermInfo(T(i))

Document-List :

Doc(1) / Freq(1),

Doc(2) / Freq(2)

Position-List : p11,p12,

p21,p22,p23

Position-List : p31,p32,

p41,p42,p43

Document-List :

Doc(1’) / Freq(1’),

Doc(2’) / Freq(2’)

Document-List :

Doc(1)/F1,Doc(2)/F2,

Doc(3)/F3, Doc(4)/F4

Step(1) : Merge-

Sort Of Terms &

Creation of new

TermInfo

Step(2) : Merge of

Document-Lists

and Position-Lists

Merged Segment

Term(T(i))

Positions List : p11,p12,p21,p22,p23,

p31,p32,p41,p42,p43

Segment(1) Segment(2)

Term (T(i)) Term (T(i))

TermInfo(T(i))
TermInfo(T(i))

TermInfo(T(i))

Document-List :

Doc(1) / Freq(1),

Doc(2) / Freq(2)

Position-List : p11,p12,

p21,p22,p23

Position-List : p31,p32,

p41,p42,p43

Document-List :

Doc(1’) / Freq(1’),

Doc(2’) / Freq(2’)

Document-List :

Doc(1)/F1,Doc(2)/F2,

Doc(3)/F3, Doc(4)/F4

Step(1) : Merge-

Sort Of Terms &

Creation of new

TermInfo

Step(2) : Merge of

Document-Lists

and Position-Lists

Merged Segment

Term(T(i))

Figure 1. Lucene index merge process

3.2. Two-level Hierarchical Index Data Structure

Design

The design for the index data structure considers efficient

index merge while sustaining the search performance includ-

ing search throughput and search response time. The key

idea for eliminating index merge overheads is to use a two-

level hierarchical data structure based index representation.

In this approach we keep a top-level hash-table called

GHT (Global Hash Table), that maps unique terms in the

document collection to a set of second-level hash tables.

The second-level hash-table, called IHT (Document Interval

Hash Table) is an index for a set(interval) of documents

with contiguous Document IDs(documents numbered from

1 to D). Each term in IHT is mapped to a list of document

IDs, where each document contains that term. For each such

document the detailed occurrence positions called postings

data is stored.

We note that our two-level hierarchical data-structure is

different from a standard two-level hash-table where for

the first level hash table the key is a term and the value

is another hash-table. This hierarchical data structure based

approach gives two key advantages over single level hash-

table approach and sorted list of terms based approach as

used in CLucene. First it avoids the need for repeated re-

organization of data in the IHTs that get merged in the final

merged index (GHT) as it only involves adding a reference

to the IHT in GHT for terms contained in that IHT (details

described in the sections below). Second, the terms in both

IHT and GHT are organized in a hash-table structure and

hence don’t require merge-sort during merging.

3.2.1. IHT Design. The IHT represents an index for doc-

uments with contiguous IDs (documentID ∈ [1..D]). Fig. 2

illustrates the structure of IHT. Here, each term in IHT points

to list of documentIDs that contain that term. Each entry in

this list contains the documentID, the term-frequency in that

document, and pointer to the postings data for that term in

the document. In the implementation, the IHT is serialized

and stored in an encoded format(for details refer [14]).

The serialization enables good cache performance, lesser

memory consumption by enabling compression techniques

and low communication cost for distributed indexing. The

encoding preserves hash-table based access for document

and positions data for a given term. This helps in keeping

search efficient while at the same time enabling efficient

merge of IHT into GHT.

3.2.2. GHT Design. The GHT (Fig. 3) contains a hash-table

where the key is a unique term in the document collection

and the value is a list of IHT numbers, where each IHT has at

least one document that contains that term. This design leads

to low memory for GHT and fast search using it. Our index

also has an array called the Array-of-IHTs whose each entry

Term Collision

Resolution
. . . . Ti. . .

DocID, Frequency,

Positions Array

Dj. Di+1Di

Ti : HF(Ti)

IHT Data

Hash Table

Term Collision

Resolution
. . . . Ti. . .

DocID, Frequency,

Positions Array

Dj. Di+1Di

Ti : HF(Ti)

IHT Data

Hash Table

Figure 2. Interval Hash Table (IHT)

points to the encoded IHT corresponding to that document

interval. Since, the document IDs in an IHT are local to

it, we also keep a base document ID with each entry in

the Array-of-IHTs. The global document ID is computed by

adding the base ID to the document ID in the IHT.

3.3. Indexing Algorithm

Our indexing algorithm has three main steps:

• Posting table (LHT) for each document is constructed

without involving sorting of terms;

• Posting tables of k documents are merged into an IHT,

which are then encoded appropriately;

• Encoded IHTs are merged into a single GHT in an

efficient manner.

For IHT construction, first, the posting table (also referred

to as LHT) for each of the documents is formed separately

without involving sorting of terms. Then, each set of k
posting tables(LHTs) are merged into one IHT per set.

From each LHT, each unique term is read one-by-one and

inserted into the IHT, if it is a new term. Then, the document

and postings data for this term is merged into the already

available document and postings data for the term in the

IHT. IHT helps in scalable distributed indexing by providing

the ability to offload the construction of index for a set of

documents with contiguous IDs to another processor before

merging that into GHT.

The GHT is constructed by merging IHTs one at a time

into the GHT. The steps for merging an IHT into the GHT

are as follows:

1) Insert pointers to the IHT data, including encoded IHT

data array and the positions array, into the Array-Of-

IHTs. This insertion happens at that entry in Array-

of-IHTs which represents the document-interval corre-

sponding to the current IHT being read. In Fig. 3, the

entry g points to IHT(g). Also, store a base document

ID for this IHT. The base ID is the sum of the base

ID of the previous IHT and the number of documents

in it (or the document interval size, if all IHTs contain

same number of documents).

2) The unique term list in the IHT is traversed. For

each term, position of that term is identified in the

GHT using hash-function evaluation and term collision

resolution. Then, in the IHT-list for that term, the

current IHT number is inserted. Fig. 3 illustrates how

IHT(g), is merged into the GHT. First (Step-S1 in

Fig. 3), IHT(g) is pointed to by the appropriate

location in the Array-of-IHTs. Then (Steps-S2(a) &

S2(b) in Fig. 3), IHT(g), is inserted into both IHT-lists

corresponding to the terms Ti and Tj in the GHT.

The above merge process does not involve re-organizing

of the IHT data while merging it into GHT, in contrast, to

typical indexing approaches which re-organize the segment

data when merging it into the final merged segment. This

makes GHT/IHT design efficient for distributed indexing.

Array Of IHTs

HF(Ti)

Global Hash Table

Ti
.
.

.

Ti Tj
. . .

New Encoded IHT(g)

Distinct terms

Encoded IHT array

IHT(g)

Tj
.
.
.

IHT(g)

HF(Tj)

S2(a)

S2(b)

S1g

Array Of IHTs

HF(Ti)

Global Hash Table

Ti
.
.

.

Ti Tj
. . .

New Encoded IHT(g)

Distinct terms

Encoded IHT array

IHT(g)

Tj
.
.
.

IHT(g)IHT(g)

HF(Tj)

S2(a)

S2(b)

S1g

Figure 3. GHT structure and construction from IHT

3.4. Search using GHT/IHT data structures

The sequential search algorithm for a query term using

our GHT/IHT data structures has following three steps: (a)
GHT is searched for the query term, using typical hash-

table operations, to obtain the list of IHT numbers and the

corresponding IHT data. (b) Each IHT is searched, using

hash-table based access, for the above term to get the list

of document IDs (and the corresponding term-frequencies)

containing that term (refer Fig 2). (c) The results of each

IHT are combined to get the list of document IDs containing

that term in the full index. These steps demonstrate that

the search algorithm used to retrieve the document IDs for

a term using IHT/GHT based hierarchical data structure

is efficient. In case of distributed search, our index data-

structures enable parallel matching document search for a

term on IHTs at different nodes with low communication

overheads. This leads to potentially better distributed search

performance over single-node based parallel indexing and

search(refer section 5.4). Further, as mentioned in section 1,

this group-based indexing approach using IHT/GHT index

data-structure results in sustained search performance over

hundred thousand nodes which is not possible in a single-

node based approach.

3.5. Asymptotic Time Complexity of Sghtl

This section presents the time complexity of the core

phases in the text indexing algorithm using our novel data-

structures. The sequential version of the text indexing algo-

rithm is referred to as Sghtl in the paper.

We don’t use typical IR models like Generalized Zipfian

distribution [13] for term-distribution in text collection, or,

Heaps’s Law [13] for size of an active text vocabulary. In-

stead, we present the time complexity in terms of parameters

at a finer level of granularity as they can vary independently

depending on the nature of the document collection. These

are as follows:

“α”: Number of unique-terms-per-document (averaged over

all documents).

“β”: Number of term-occurrences-per-doc-per-term (aver-

aged over all documents and terms).

“γ(k)”: Number of unique-terms in a set of k documents

(averaged over all document sets of size k). This will be

referenced as γ in the paper.

“θ”: Number of docs-per-term in a set of k documents

(averaged over all document intervals of size k and over

all terms in the interval).

“δ”: Number of unique-terms in a set of documents that

represents one complete index.

We note that α = γ(1), δ = γ(R) where R is the total

number of documents in the index. Both γ and θ vary with

k, number of documents considered in a set. Since, α and β
are per-document parameters, averaged appropriately, they

are treated as constants in the paper.

3.5.1. IHT Construction: Time Complexity Analysis.

Since LHT construction involves typical hash-table oper-

ations its complexity is proportional to α. When IHT is

formed from k LHTs, the final unique list of terms (O(γ)) is

kept efficiently in a hash-table. The work involving copying

term-postings per document and term is proportional to the

postings data being processed. Hence, the work in this merge

phase is proportional to [(α ∗ k ∗ β) + γ]. The following

equation represents the IHT production time:

T (IHT production) = O(α ∗ k ∗ β + γ) (3.1)

3.5.2. GHT Construction: Time Complexity Analysis.

During GHT construction from IHT, we do not need to

perform work proportional to number of documents in an

interval (i.e. k), as in typical indexing approaches. Here,

we simply take the constructed IHT and insert a pointer

to it in the Array-of-IHTs. The work mentioned in Fig. 3 is

proportional to number of unique-terms in an IHT i.e. γ. The

hash table insert operations are proportional to δ. Hence, the

GHT construction time is given by the following equation:

T (IHT merge) = O(γ ∗ R/k + δ) (3.2)

Assuming α and β as constants, adding (3.1) and (3.2)

and simplifying, we get the time complexity of index con-

struction on single node, Sghtl as:

T (Sghtl) = O(R/k ∗ γ) (3.3)

Typical indexing approaches (referred to as Sorgl) do

merge-sort and index data re-organization during the index-

merge phases, therefore their time complexity is higher.

Below is the equation that represents this time complexity

(for details refer [14]):

T (Sorgl) = O(R∗α∗(log(α∗k)+β)+R/k∗γ∗(log(R/k)+θ))
(3.4)

Assuming α, β as constants and simplifying, we get,

T (Sorgl) = O(R/k ∗ γ ∗ (log(R/k) + θ)) (3.5)

4. Distributed Algorithm For Text Indexing

In this section we explain the group-based distributed

indexing algorithm. The distributed algorithm using typical

indexing approaches is referred to as Porgl while that using

our data-structures and merge approach is referred to as

Pghtl.

4.1. Distributed Indexing Algorithm Design

The nodes in the distributed system are partitioned into

index-groups. Each index group of size (P + 1), has P
Producer nodes and one Consumer node (also called index-

group head). Total text data is partitioned document-wise and

assigned to the index-groups. Within each index-group the

data is divided equally amongst the Producer nodes. Hence,

instead of creating single index for each node in the sys-

tem(referred as single-node-based approach), as is common

in most distributed indexing approaches, we actually create

one index per index-group which results in distributed index

for the complete set of documents in the system (hence the

term group-based distributed indexing algorithm).

In case of Porgl, each Producer generates segments (one

segment represents index for limited, k, number of docu-

ments) for the data provided to it. These are then sent to the

Consumer that merges them into the final merged segment

using tree-based merge procedure.

In case of Pghtl, the Producers, construct encoded IHTs.

All Producers store the encoded IHTs locally and for each

IHT, a Producer generates the list of terms and the document

frequency per term in that IHT(referred to as the IHT-

meta-data for that IHT). Since the Producers don’t send the

complete IHT and instead send only the IHT-meta-data, it

helps in saving space at the Consumer node and also reduces

communication cost. The Consumer takes each IHT-meta-

data and merges it into a single GHT maintained by it. The

distributed indexing and search algorithm is illustrated in

Fig. 4. Efficient merge at the Consumer node leads to better

load balance for Pghtl as compared to Porgl.

For search, in Pghtl, same query is provided to each

Consumer (index-group head) that has the merged index.

Each Consumer determines the matching documents for that

query by communicating with the Producers that have the

IHTs which contain the document information for the terms

in the query. The Consumers share matching document in-

formation for global scoring. This is followed by scoring and

selection of top-N documents by each Consumer; and finally,

across-Consumer top-N document selection and reporting to

the user. The search in case of Porgl is similar except that

the each Consumer has full index for its group to perform

search. Pghtl enables parallel search for matching documents

for a term with low communication overhead it can lead to

lower distributed search time compared to Porgl.

Documents

Indexing Group

Search

Group

Index Groups

Query

Documents Documents

Documents

Documents

I0

I2

I4
I3

I1

Figure 4. Distributed Indexing & Search

Time (Parallel Indexing Algorithm)

Producer(1)

Producer(2)

Producer(3)

Consumer

Produce IHTs/segments

Merge IHTs/segments

Send IHTs/segments

Barrier Sync.

Time (Parallel Indexing Algorithm)

Producer(1)

Producer(2)

Producer(3)

Consumer

Produce IHTs/segments

Merge IHTs/segments

Send IHTs/segments

Barrier Sync.

Figure 5. Distributed Indexing Pipeline Diagram

The pipeline diagram in Fig. 5 illustrates the steps

involved in distributed indexing. These overall steps are

applicable in both cases - Pghtl and Porgl. These are:

• (a) Generation of encoded IHTs(Pghtl)/segments

(Porgl), in parallel, at the Producers;

• (b) Communication of IHT-meta-data/segments from

the Producers to the Consumer;

• (c) Merge of IHTs/segments at the Consumer.

These steps get repeated across a number of rounds till all

the documents get indexed. In case of limited memory in

the system, the documents are assumed to be aged-off after

some duration. When all the documents in an IHT have been

aged-off it is deleted from the index.

4.2. Time Complexity Analysis of Distributed In-

dexing

Let the size of the indexing group be (P + 1) : P
Producers and 1 Consumer. We can use the pipeline diagram

in Fig. 5 to analyze the time complexity of both Pghtl

and Porgl. Let there be n rounds with P Producers in

each round (also referred to as produce-consume round).

Let Prod(j,i) denote the total time for jth Producer, in

ith round, where 1 ≤ j ≤ P, 1 ≤ i ≤ n. This includes

both the compute time(denoted by ProdComp(j,i))) and the

communication time for the jth Producer. Similarly, Cons(i)

denotes the total time spent by the Consumer in the ith round

which includes both the compute time for merging and its

communication time in ith round. The distributed indexing

time is approximately given by the following equation :

T (distributed) = X + Y + Z (4.1)

where,X = max
j

ProdComp(j,1) (4.2a)

Y =
∑

2≤i≤n

max(max
j

Prod(j,i) , Cons(i−1))

(4.2b)

Z = Cons(n) (4.2c)

We use equations (3.1) and (3.2) for IHT production and

merge time in the above equation for Pghtl time, and ignore

the communication time as it is small in our experiments

(with index-group size <= 128). Due to the pipelining of

the produce and merge phases, the overall indexing time

depends on whether the produce phase dominates the merge

phase or vice-versa. Hence, we consider these two cases (for

details refer [14]):

Case(1) : Production time per round > Merge time per

round

T (Pghtl) = O(R ∗ α ∗ β/P) = O(R/P) (4.3)

Case(2) : Merge time per round > production time per

round

T (Pghtl) = O(R ∗ γ/k) (4.4)

Thus, we see that the scalability of Pghtl is fine in Case(1)

but when Case(2) occurs then the merge time becomes the

bottleneck. Additionally using term-based partitioning gives

even better scalability but we omit these details for brevity.

Porgl has an expensive merge phase and worse asymptotic

time complexity and is less scalable compared to Pghtl.

We developed the time complexity for Porgl and observed

time complexity for Case(1) as O((R/P) ∗ log(k)) and for

Case(2) as O((R ∗ γ/k) ∗ log(P)). This proves that the

parallel time complexity of Pghtl is at least Ω(log(P)) better

than Porgl (for details refer [14]).

5. Results and Analysis

5.1. Experimental Setup

We implemented our GHT/IHT based indexing data-

structures and algorithm, Pghtl, on the original CLucene

codebase (v0.9.20). We also implemented CLucene based

distributed indexing algorithm, Porgl, where we maintain

the index in memory using the RAMDirectory. We used

CLucene for comparison due to its easy availability and its

wide acceptance in the open source community.

We studied the scalability of Porgl and Pghtl by doing

experiments on IBM intranet website data as used in [1].

The text data was extracted from HTML files and loaded

equally into the memory of the producer nodes, before, the

indexing time measurement is started. For Porgl, we used

a value of k so that only one segment is created from all

the text data fed to a Producer so as to get its best indexing

throughput. For indexing latency measurement we had to

however choose the same lower value of k = 256 as used

for Pghtl, so that we could compare it meaningfully with

Pghtl.

The experiments were conducted on the BlueGene/L plat-

form as it was readily available with large configurations(up

to 16K nodes). BG/L has thousands of processor nodes (PPC

440) connected in a high bandwidth 3D torus network. We

ran the experiments in co-processor mode for each node.

We also evaluated the L1 Icache and L1 Dcache perfor-

mance of our indexing algorithm on a single node using

the Dinero cache simulator 8. We ran the experiment for

indexing 100MB of data and got 99% hit-rates for both L1-

Icache and L1-Dcache, as in CLucene.

5.2. Indexing Throughput Analysis

In this section we study the scalability of indexing

throughput with variation in number of processor nodes and

input text data size.

5.2.1. Strong Scalability Study. In the strong scalability

experiment, the input data size for an index group remains

constant while the size of the group is increased. We

8. http://pages.cs.wisc.edu/ markhill/DineroIV/

consider index group size of G processors with P Producers

and 1 Consumer, with group size varying from 2 to 512

nodes. We indexed large volumes of data up to 256 GB, by

having multiple index-groups and 1 GB text data per group.

The plots of strong scalability study for Porgl and Pghtl

are given in Fig. 6. As we can see Porgl time decreases

initially from 600 s, when G=2, to 151 s, when G=32, but

after this it keeps increasing for G >= 64. For Pghtl, the

distributed indexing time decreases continuously from 304

s, when G=2, to 24.55 s, when G=64, but after this it keeps

increasing for G >= 128. Thus, both follow a U-shaped

curve, but, Pghtl scales till G = 64 while Porgl scales only

till G = 32. Fig. 7 shows the variation of speedup as the

number of processors is increased. The maximum speedup

(relative to G = 2) obtained for Pghtl is approximately 12.38,

which is 3.12 times better compared to Porgl, speedup = 3.9.

In terms of best distributed indexing time (over all G), Pghtl

is approximately 6.17 times better than Porgl.

0

100

200

300

400

500

600

In
d

e
x
in

g
 T

im
e
 (

s
)

I nde x Gr oup S i z e (# Node s)

Strong Scalability (1 GB/index-gp)

Porgl 600 480 224 162 151.435 182 195.33 220 265

Pght l 304 119 60.88 36.9 26.18 24.55 28.72 37.82 39.02

2 4 8 16 32 64 128 256 512

Figure 6. Strong Scalability

Speedup (1 GB / index-gp)

0

2

4

6

8

10

12

14

2 4 8 16 32 64 12
8

25
6

512

Index Group Size (#Nodes)

S
p

e
e

d
u

p

Speedup Pghtl

Speedup Porgl

Figure 7. Speedup (strong scalability)

This behavior can be explained by the inefficient merge

process of Porgl that leads to load-imbalance and hence poor

performance and scalability. For a given number of pro-

cessors, Porgl takes more time in both segment generation

and merging compared to IHT generation and merging by

Pghtl. Hence, the indexing time for Pghtl is lower than Porgl

for the same index-group size and the maximum speedup

for Porgl, 3.97, is lower than maximum speedup for Pghtl,

12.38. Now, as the number of processors increases with the

same total input text data size, the amount of text data per

processor goes down and hence the segment/IHT production

time goes down while the merge time increases. So, initially

in each round, the production time is more than the merge

time and it dominates the overall distributed indexing time.

This corresponds to Case(1) in section 4.2 and equation

(4.3) for Pghtl. However, as the index-group size increases,

the segment/IHT production time goes down and merge

time becomes more than production time. Then the merge

time dominates the overall distributed indexing time. This

corresponds to Case(2) in section 4.2 and equation (4.4)

for Pghtl. Since, merge is performed by a single consumer

node it becomes a bottleneck for scalability due to load

imbalance. Because, Porgl has much more in-efficient merge

compared to Pghtl it reaches this bottleneck point earlier

at G = 32, than Pghtl at G = 64. We have observed even

better scalability of Pghtl, upto G = 512, using term-based

partitioning but we leave these details for brevity. We get

peak indexing rate within a single-index group(G = 64) of

about 2.44 GB/min. Now assuming search is scalable to

around 2K nodes [1], if we have 2K such independent index-

groups, each of size 64 nodes, we will get a peak indexing

rate of around 5 TB/min, while maintaining acceptable

search performance. As part of our experiment, we instead

used 8K nodes and got a peak indexing rate 312 GB/min. We

can obtain even better indexing throughput by implementing

sequential code optimizations but leave this for future work.

5.2.2. Weak Scalability. In the weak scalability experiment,

both the data and number of processors are increased, and

we study the increase in overall distributed indexing time.

In this experiment the data to be indexed per index group is

increased from 50MB to 1.6 GB, as G is increased from 4 to

128 processors. As illustrated in Fig. 8, as G increases from

4 to 128, Pghtl time increases from 6.64s to 37.92s, i.e. by

5.71× factor, while Porgl time increases from 15s to 290s,

i.e. by 19.4× factor. This behavior can again be explained by

the in-efficient merge for Porgl and its dominant impact on

overall distributed indexing time. So, we improve the weak

scalability of distributed text indexing compared to CLucene

by employing our more efficient algorithm Pghtl.

5.2.3. Scalability with increase in data size. In this ex-

periment we study the indexing time variation with increase

in text data size for a constant group size. Here the size of

text data used to generate index in one index group is varied

from 64MB to 1GB. Again, Pghtl performs better than Porgl

(Refer Fig 9).

0

100

200

300

In
d

e
x

in
g

 T
im

e
 (

s
)

Index Group size (#Nodes)

Weak Scalability

Porgl 15 14.1 33.8 52.6 118 290

Pghtl 6.64 7.2 8.72 12.9 21.3 37.9

4 8 16 32 64 128

Figure 8. Weak Scalability Study

Scalability with Text Data (G = 128)

0

50

100

150

200

250

64 128 256 512 1024

 Text Data Size (MB) Per Index Group

In
d

e
x

in
g

 T
im

e
 (

s
)

Porgl Pghtl

Figure 9. Scalability with increasing text-data (G = 128)

5.3. Indexing Latency Analysis

We measure the indexing latency as the time from the start

of document indexing to the time the index for the document

is available for search.

Fig. 10 displays the variation in indexing latency with

increase in size of the group, G. The amount of data indexed

per group is maintained constant at 1 GB and the number

of documents per IHT in Pghtl is kept as 256, and is the

same as number of documents per first-level segment in

Porgl. We can see that the indexing latency for Pghtl is

one order of magnitude(around 9.91x) better than Porgl. The

indexing latency is dependent on the segment merge time

at the Consumer node in case of Porgl and since this is

inefficient it leads to a larger latency and this increases with

the increase in the number of segments to merge. In case

of Pghtl the merge of IHT-meta-data is much more efficient

and hence it is better.

5.4. Distributed Search Performance

We measured the distributed search performance on BG/L

using two experiments:

1) Using single index-group of size increasing up to 128

nodes that indexed 2GB of text data;

0

50

100

150

200

In
d

e
x

in
g

 L
a
te

n
c
y
 (

s
)

Index Group Size (#Nodes)

Indexing Latency Variation (1 GB/index-gp)

Porgl 21.89 27.4 38.13 70.5 87 182

Pghtl 1.79 2.73 3.56 7.52 9.9 17

8 16 32 64 128 256

Figure 10. Indexing Latency Variation

2) Using multiple index groups of same size(8) with total

number of nodes increasing up to 512 that indexed

total 8GB of data.

Both experiments used 1000 queries from query-set used

in [1]. For the first experiment Pghtl got better or similar

search performance (2.34s for 64 nodes/group, 1.75s for 32

nodes/group) compared to Porgl (2.85s for 64 nodes/group,

2.13s for 32 nodes/group). In the second experiment, for

Pghtl, we observed sustained search performance (0.94s

for 64 nodes, 1.55s for 512 nodes). Pghtl enables parallel

matching document search for a term, in an index-group,

on different nodes that have IHTs with low communication

overhead. Porgl however performs sequential search for

matching docs for a term in a single-group. Hence, for

smaller group size Pghtl has lower search time as compared

to Porgl.

6. Conclusions and Future Work

Data Intensive Supercomputing at terascale and petascale

levels has opened up challenging research problems in

distributed algorithm design. Towards this end, we have

delivered high throughput text indexing which has been

demonstrated for the first time at such a large scale. We

presented the design (architecture independent) of new data-

structures and algorithm for distributed in-memory real-time

group-based text indexing which has better load balance,

low communication cost and good cache performance. We

proved analytically that the parallel time complexity of our

indexing algorithm is at least Ω(log(P)) better asymptot-

ically compared to typical indexing approaches. We have

demonstrated around 3× - 7× improvement in indexing

throughput and around 10× better indexing latency com-

pared to typical indexing approaches on Blue Gene/L. We

achieved peak indexing throughput of 312 GB/min on 8K

Blue Gene/L nodes and extrapolate this to show that for

128K nodes we could achieve 5 TB/min, with acceptable

search performance. As part of the future work, we plan

to study sequential indexing optimizations and distributed

search algorithm optimizations.

References

[1] J. E. Moreira, M. M. Michael, D. D. Silva, D. Shiloach,
P. Dube, and L. Zhang, “Scalability of the Nutch Search
Engine,” in Proceedings of the 21st Annual International
Conference on Supercomputing, Seattle, Washington, 2007.

[2] R. E. Bryant, “Data Intensive Supercomputing: The Case
for DISC,” Computer Science Department, Carnegie Melon
University, Tech. Rep. CMU-CS-07-128, May 2007.

[3] R. F. Freitas and W. W. Wilcke, “Storage Class Memory: The
Next Storage System Technology,” IBM Journal of Research
and Development, vol. 52, no. 4/5, 2005.

[4] J. Zobel and A. Moffat, “Inverted Files for Text Search
Engines,” ACM Computing Surveys, vol. 38, no. 2, 2006.

[5] L. A. Barroso, J. Dean, and U. Hölzle, “Web Search for
a Planet: The Google Cluster Architecture,” IEEE Micro,
vol. 23, no. 2, pp. 22–28, 2003.

[6] S. Melink, S. Raghavan, B. Yang, and H. Garcia-Molina,
“Building a Distributed Full-Text Index for the Web,” ACM
Transactions on Information Systems, vol. 19, no. 3, pp. 217–
241, 2001.

[7] K. J. Rao, “Cache Conscious Indexing For Decision Support
In Main-Memory,” Columbia University, Tech. Rep., 1998.

[8] S. Büttcher and C. L. Clarke, “Indexing Time vs. Query
Time Trade-offs in Dynamic Information Retrieval Systems,”
University of Waterloo, Ontario, Canada, Tech. Rep. CS-
2005-31, Oct 2005.

[9] S.Heinz and J. Zobel, “Efficient Single-Pass Index Construc-
tion For Text Databases,” Jour. of the American Society for
Information Science and Technology, vol. 54, no. 8, pp. 713–
729, 2003.

[10] J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” in Proceedings of the 6th
Symposium on Operating Systems Design & Implementation,
San Francisco, CA, December 2004.

[11] A. M. N. Lester and J. Zobel, “Fast OnLine Index Construc-
tion by Geometric Partitioning,” in Proceedings of the 14th
ACM International Conference on Information and Knowl-
edge Management, Bremen, Germany, 2005.

[12] R. Lempel, Y. Mass, S. Ofek-Koifman, D. Sheinwald, Y. Petr-
uschka, and R. Sivan, “Just In Time Indexing for up to
the Second Search,” in Proceedings of the sixteenth ACM
conference on Conference on Information and Knowledge
Management, Lisbon, Portugal, 2007.

[13] S. Büttcher, “Multi-User File System Search,” Ph.D. disser-
tation, University Of Waterloo, Canada, 2007.

[14] A. Narang, V. Agarwal, V. Garg, and M. Kedia, “Scalable
Algorithm Design for Parallel Hierarchical Text Indexing,”
IBM Research, Tech. Rep. RI08009, June 2008.

