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Abstract. The lattice of maximal antichains of a distributed computa-
tion is generally much smaller than its lattice of consistent global states.
We show that a useful class of predicates can be detected on the lattice
of maximal antichains instead of the lattice of consistent cuts obtaining
significant (exponential for many cases) savings. We then propose new
online and offline algorithms to construct and enumerate the lattice of
maximal antichains. Previously known algorithm by Nourine and Ray-
noud [NR99,NR02] to construct the lattice takes O(n2m) time where n is
the number of events in the computation, and m is the size of the lattice
of maximal antichains. The algorithm by Jourdan, Rampon and Jard
[JRJ94] takes O((n + w2)wm) time where w is the width of the com-
putation. All these algorithms assume as input the lattice of maximal
antichains prior to the arrival of a new event. We present a new online
incremental algorithm, OLMA, that computes the newly added elements
to the lattice without requiring the prior lattice. Since the lattice may be
exponential in the size of the computation, we get a significant reduction
in the space complexity. The OLMA algorithm takes O(mw2 logwL) time
and O(wLw logn) space where wL is the width of the lattice of maximal
antichains. The lower space complexity makes our algorithm applicable
for online global predicate detection in a distributed system. For the
purposes of analyzing offline traces, we also propose new enumeration
algorithms to traverse the lattice.

1 Introduction

A distributed computation can be modeled as a partially ordered set (poset) of
events based on the happened-before relation [Lam78]. Given any poset, there
are three important distinct lattices associated with it: the lattice of consistent
cuts (or ideals), the lattice of normal cuts, and the lattice of maximal antichains.
The lattice of consistent cuts captures the notion of consistent global states in
a distributed computation and has been discussed extensively in the distributed
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computing literature [Mat89,CM91,GM01]. The other lattices have not received
as much attention. For a poset P , its completion by normal cuts is the smallest
lattice that has P as its suborder [DP90]. Its applications to distributed com-
puting are discussed in [Gar12]. In this paper, we discuss the lattice of maximal
antichains with applications to global predicate detection.

For the set of events in a distributed computation ordered with happened-
before relation, a subset of events forms an antichain if all events in the subset
are pairwise concurrent. Informally, an antichain captures a possible set of events
that could have occurred concurrently, and the events do not have any causal
or happened-before relationship with each other. The lattice of all antichains
is isomorphic to the lattice of all consistent cuts. An antichain A is maximal if
there does not exist any event that can be added to the set without violating
the antichain property. The lattice of maximal antichains, denoted by LMA(P )
is the set of all maximal antichains under the order consistent with the order on
the lattice of consistent cuts.

The lattice of maximal antichains captures all maximal sets of concurrent
events and has applications in detection of global predicates because it is usu-
ally much smaller than the lattice of consistent cuts. In the extreme case, the
lattice of consistent cuts may be exponentially bigger in size than the lattice of
maximal antichains. We show in this paper that some global predicates can be
detected on the lattice of maximal antichains instead of consistent cuts, thereby
providing an exponential reduction in the complexity of detecting them. Fig.
1(i) shows a distributed computation with six events. For example, process P1

executes a send event a, and then receives a message at event d. The message
sent by P1 is received by P3 as event e. Fig. 1(ii) shows the computation with
vector clocks. Fig. 2(i) shows the poset corresponding to the computation. Its
lattices of consistent cuts and maximal antichains are shown in Fig. 2(ii), and
(iii) respectively.
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Fig. 1: (i) A computation (ii) Its equivalent representation in vector clocks

In this paper, we also discuss algorithms for computing LMA for a distributed
computation (or a trace of events) given as a finite poset P with implicit repre-
sentation using vector clocks. Incremental algorithms assume that we are given
a poset P and its lattice of maximal antichains L and we are required to con-
struct LMA of the poset P ′ corresponding to P extended with an element x.
The algorithms by Jourdan, Rampon and Jard [JRJ94], and Lourine and Ray-
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Fig. 2: (i) The original poset. (ii) Its lattice of ideals (consistent cuts) (iii) Its
lattice of maximal antichains

naud [NR99,NR02] fall in this class. These algorithms store the entire lattice
LMA and have space complexity O(mn log n) where n is the size of the poset
P , and m is the size of LMA(P ). The algorithm by Jourdan, Rampon and Jard
[JRJ94] has O(w3m) time complexity and the algorithm by Lourine and Ray-
naud [NR99,NR02] has O(mn) time complexity.

Our first algorithm called ILMA is a simple modification of the algorithm
by Nourine and Raynoud [NR99,NR02] based on vector clocks. The algorithm
requires O(wm logm) time and O(wm log n) space where w is the width of the
poset P . The second algorithm called OLMA does not require lattice LMA(P )
to compute elements of the new lattice. Let mx be the size of the set of maxi-
mal antichains that include the element x. Then, the algorithm OLMA requires
O(w2mx logwL) time and O(wLw log n) space, where wL is the width of the
lattice of maximal antichains. Since wL is much smaller than m, there is a sig-
nificant reduction in the space complexity. The algorithm OLMA answers the
open problem posed in [NR99]: “One open question is the enumeration of the
family generated by a basis without computing the tree or the lattice with the
same complexity.”

Even though the OLMA algorithm has lower space complexity than ILMA,
in the worst case the size of wL can be exponential in the number of processes.
If the goal is to not construct, but simply enumerate (or check for some global
predicate) all the elements of LMA, then we propose BFS and DFS based enu-
meration of lattice of maximal antichains. Earlier algorithms for enumeration
of closed sets by Ganter [Gan84] use lexical enumeration. The BFS and DFS
algorithms are more meaningful in the context of distributed systems. For ex-



ample, when searching for a maximal antichain satisfying a given predicate the
programmer may be interested in the maximal antichain that appears first in
the BFS enumeration. It is important to note that algorithms for BFS and DFS
enumeration of lattices are different from the standard graph-based BFS and
DFS enumeration because our algorithms cannot store the explicit graph corre-
sponding to the lattice. Hence, the usual technique of marking the visited nodes
is not applicable.

Table 1 summarizes the time and space complexity for construction and
enumeration algorithms for the lattice of maximal antichains with the notation
in Table 2.

Table 1: Lattice Construction of Maximal Antichains.
Incremental Algorithms Time Complexity Space Complexity

Jourdan et al.[JRJ94] O(w3m) O(mn logn)
Nourine and Raynaud[NR99,NR02] O(mn) O(mn logn)

Algorithm ILMA [this paper] O(wm logm) O(mw logn)
Algorithm OLMA [this paper] O(mxw

2 logwL)) O(wLw logn)

Offline Algorithms

Jourdan et al.[JRJ94] O((n + w2)wm) O(mn logn)
Nourine and Raynaud[NR99,NR02] O(mn2) O(mn logn)

Algorithm ILMA [this paper] O(nwm logm) O(mw logn)
BFS-MA [this paper] O(mw2 logm) O(wLw logn)
DFS-MA [this paper] O(mw4) O(nw logn)

Lexical by Ganter [Gan84] O(mn3) O(n logn)

Table 2: The notation used in the paper

Symbol Definition Symbol Definition

n size of the poset P m size of the maximal antichains lattice L
w width of the poset P mx number of strict ideals ≥ D(x) (Section 2)
wL width of the lattice L

The paper is organized as follows. Section 2 gives the background definitions.
Section 3 discusses the lattice of maximal antichains and some other lattices that
are useful for incremental lattice construction. Section 4 discusses incremental
and online construction of the lattice of maximal antichains. Section 5 discusses
enumeration of the lattice of maximal antichains. We discuss distributed com-
puting applications in Section 6.

2 Background: Posets with Implicit Representation

We assume that the reader is familiar with the basic concepts of posets and
lattices [DP90]. A partially ordered set (or poset) is a pair P = (X,≤) where X
is a set and ≤ is a reflexive, antisymmetric, and transitive binary relation on X.
We write x ≤ y when (x, y) ∈ P . If either x ≤ y or y ≤ x, we say that x and



y are comparable; otherwise, we say x and y are incomparable or concurrent. A
subset Y ⊆ X is called an antichain (chain), if every distinct pair of points from
Y is incomparable (comparable) in P . The width (height) of a poset is defined
to be the size of a largest antichain (chain) in the poset.

Given a subset Y ⊆ X, the meet of Y , if it exists, is the greatest lower bound
of Y and the join of Y is the least upper bound. In Fig. 2(i), the meet of the
set {d, e} is a. The meet of the set {b, c} does not exist. An element is join-
irreducible (meet-irreducible) if it cannot be expressed as join (meet) of other
elements. In Fig. 2(i), the elements {a, b, c} are join-irreducible but {d, e, f} are
not. A poset P = (X,≤) is a lattice if joins and meets exist for all finite subsets
of X. The largest element of a lattice is called the top element.

Let P be a poset with a given chain partition of width w. In a distributed
computation, P would be the set of events executed under the happened-before
partial order. Each chain would correspond to a total order of events executed
on a single process. In such a poset, every element e can be identified with a
tuple (i, k) which represents the kth event in the ith process. In this paper, we
keep the order relation of the poset implicit using vector clocks [Mat89,Fid89] as
explained next. For e ∈ P , let D[e], the down-set of e, be the elements of P that
are less than or equal to P . The set D[e] can equivalently be captured using a
vector e.V such that e.V [i] = j iff there are exactly j elements on chain i that
are less than or equal to e. It is easy to verify that e ≤ f iff e.V ≤ f.V .

In this paper, we also use the set D(e), the strict down-set of e, which contains
all elements in the poset P that are strictly less than e. The reader should note
the difference in the notation D[e] and D(e); the former is a down-set and the
latter a strict down-set. The notation D(e) can be extended to apply for sets as
follows: D(Y ) = ∪e∈Y D(e). We also use the dual notation for up-sets, U(Y ) and
U [Y ].

A subset Q is an ideal (order ideal, or a consistent cut) of P if it satisfies the
constraint that if f is in Q and e is less than or equal to f , then e is also in Q.
For any element e ∈ P , D[e] is always an ideal. In distributed computing, when
a distributed computation is modeled as a poset of event, the order ideals are
called consistent cuts, or consistent global states [CL85].

Any ideal Q of P can be represented using a vector Q.V with the interpre-
tation that Q.V [i] = j iff exactly j elements of chain i are in Q. We use the set
and the vector notation for an ideal interchangably. Given two ideals Q and R,
their intersection (union) is simply the component-wise minimum (maximum)
of the vectors for Q and R. The set of order ideals is closed under both union
and intersection and therefore forms a lattice under the set containment order.

3 Maximal Antichain Lattice

We first define three different but isomorphic lattices: the lattice of maximal
antichain ideals, the lattice of maximal antichains and the lattice of strict ideals.
Besides giving an insight in the structure of the lattice of maximal antichains,
these lattices have different closure properties making them useful in different



contexts. The lattice of strict ideals is closed under union and is used in our
ILMA and OLMA algorithms. The lattice of maximal ideals is closed under
intersection and is used in our DFS-MA algorithm.

Definition 1 (Maximal Antichain). An antichain A is maximal in a poset
P = (X,≤) if every element in X −A is comparable to some element in A.

In Fig. 3(i), the set {d, e} is an antichain but not a maximal antichain because
f is incomparable to both d and e. The set {d, e, f} is a maximal antichain. It
is easy to see that A is a maximal antichain iff D(A) ∪ U [A] = X.

Definition 2 (Maximal Ideal). An ideal Q of a poset (X,P ) is a maximal
antichain ideal (or, maximal ideal) if the set of its maximal elements, denoted
by maximal(Q), is a maximal antichain.

The set of maximal ideals is closed under intersection but not union. In
Fig.3(ii) the ideals {a, b, c, d} and {a, b, c, e} are maximal ideals, but their union
{a, b, c, d, e} is not a maximal ideal.

Definition 3 (Lattice of Maximal Ideals of a Poset). For a given poset
P = (X,≤), its lattice of maximal ideals is the poset formed with the set of all
the maximal ideals of P under the set inclusion. Formally,

LMA(P ) = ({A ⊆ X : A is a maximal ideal of P},⊆).

For the poset in Figure 2(a), the set of all maximal ideals is:
{{a, b, c}, {a, b, c, d}, {a, b, c, e}, {a, b, c, f}, {a, b, c, d, e, f}}.

The poset formed by these sets under the ⊆ relation is shown in Figure 2(iii).
This poset is a lattice with the meet as the intersection.

A lattice isomorphic to the lattice of maximal ideals is that of the maximal
antichains.

Definition 4 (Lattice of Maximal Antichains of a Poset). For a given
poset P = (X,≤), its lattice of maximal antichains is the poset formed with the
set of all the maximal antichains of P with the order A � B iff D[A] ⊆ D[B].

In Section 4 we discuss incremental algorithms for lattice construction. In
these algorithms, we have the lattice LMA(P ) for a poset P and our goal is
to construct LMA(P ∪ {x}) where x is a new event that is not less than any
event in P . It would be desirable if all the elements of LMA(P ) continue to be
elements of LMA(P ′). However, this is not the case for maximal antichains. An
antichain that is maximal in P may not be maximal in P ∪ {x}. For example,
in Fig. 3, suppose that f arrives last. The set {d, e} is a maximal antichain
before the arrival of f , but not after. The algorithm by Jourdan, Rampon and
Jard explicitly determines the maximal antichains that get changed when a new
event arrives. In this paper, and also in [NR99], the problem is circumvented by
building the lattice of strict ideals instead of the lattice of maximal antichains.
If S is a strict ideal of P then it continues to be one on arrival of x so long as
x is a maximal element of P ∪ {x}. The lattice of strict ideals is isomorphic to
the lattice of maximal antichains, but easier to implement via an incremental
algorithm.



Definition 5 (Strict Ideal). A set Y is a strict ideal of a poset P = (X,≤),
if there exists an antichain A ⊆ X such that D(A) = Y .

Definition 6 (Lattice of Strict Ideals of a Poset). For a given poset P =
(X,≤), its lattice of strict ideals is the poset formed with the set of all the strict
ideals of P with the ⊆ order.
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Fig. 3: (i) The original poset. (ii) Its lattice of maximal ideals (iii) Its lattice of
maximal antichains (iv) Its lattice of strict ideals

Fig. 3 shows a poset with the three isomorphic lattices: the lattice of maximal
ideals, the lattice of maximal antichains and the lattice of strict ideals. To go from
the lattice of maximal ideals to the lattice of maximal antichains, a maximal ideal
Q is mapped to the antichain maximal(Q). Conversely, a maximal antichain A
is mapped to the maximal ideal D[A]. To go from the lattice of antichains to
the lattice of strict ideals, a maximal antichain A is mapped to the set D(A).
Conversely, a strict ideal Z is mapped to an antichain as the minimal elements
in Zc, the complement of Z. For example, when Z equals {b, c}, its complement
is {a, d, e, f}. The set of the minimal elements of the set {a, d, e, f} is {a, f}
which is the antichain corresponding to {b, c}. The correctness of this mapping
is shown in the proof of correctness of ILMA algorithm (Theorem 1).

4 Incremental Algorithms to Construct Lattice of
Maximal Antichains

In this section, we give two incremental algorithms, ILMA and OLMA. The
ILMA algorithm makes it easier to understand the difference in the technique of
previous algorithms and the OLMA algorithm.

4.1 The ILMA Algorithm

The ILMA algorithm is a modification of the algorithm given by Nourine and
Raynaud [NR99], based on computing the lattice of strict ideals. There are two
main differences. First, our algorithm does not use the lexicographic tree used in
their algorithm. Another difference is that we have used the implicit represen-
tation of the poset and the lattice based on vector clocks making the algorithm
more suitable for distributed systems.



The ILMA algorithm, shown in Fig. 4, is based on computing closure under
union of strict ideals. It takes as input the poset P , an element x, and the
lattice of maximal antichains of P . The poset and the lattice are assumed to be
represented using vector clocks. It outputs the lattice of maximal antichains of
P ′ = P ∪ {x}. At step 1, we compute the vector clock corresponding to the set
D(x). The vector clock for x, V corresponds to D[x]. By removing x from the
set D[x], we get D(x). The removal of x is accomplished by decrementing S[i]
in step 1. At step 2, we add S to L and make L closed under union.

Input: P : a finite poset as a list of vector clocks
L: lattice of maximal antichains as a balanced binary tree of vector clocks
x: new element
Output: L′ := Lattice of maximal antichains of P ∪ {x} initially L

// Step 1: Compute the set D(x)
Let V be the vector clock for x on process Pi;
S := V ; S[i] := S[i]− 1;
// Step 2:
if S 6∈ L then

L′ := L′ ∪ {S};
forall vectors W ∈ L: if max(W,S) 6∈ L then L′ := L′ ∪max(W,S);

Fig. 4: The Algorithm ILMA for Construction of Lattice of Maximal Antichains

The above algorithm can also be used to compute the lattice of maximal
antichains of any poset in an offline manner by repeatedly invoking the algorithm
with elements of the poset in any total order consistent with the poset. To start
the algorithm, the initial poset P would be a minimal element of P and the
corresponding lattice L would be a singleton element corresponding to the empty
strict downset.

We now show the correctness of the algorithm.

Theorem 1. The lattice L′ constructed by ILMA algorithm is isomorphic to the
lattice of maximal antichains of P ′.

Proof. It is easy to verify that every vector in L′ is a strict ideal I of the poset
P ′ = P ∪ {x}. By induction, we can assume that L contains all the strict ideals
of P . Step (1) adds the strict ideal for D(x) and step (2) takes its union with
all existing strict ideals. Since max is an idempotent operation, it is sufficient to
iterate over L once.

The bijection from L′ to the set of maximal antichains is as follows. Let I be
a strict ideal in L′, i.e., there exists an antichain A such that D(A) = I. Let Ic

denote the complement of I, and let B equal to the set of the minimal elements
of Ic. Thus, B = minimal(Ic). It can be shown that every strict ideal I gives a
unique antichain B by this construction. To show that B is a maximal antichain



it is sufficient to show that D(B)∪U [B] = X. This claim follows from the facts
that A ⊆ minimal(Ic), D(A) = I and U [minimal(Ic)] = Ic.

The time complexity of ILMA is dominated by Step 2. Checking if the vector
is in L requires O(w logm) time if L is kept as a balanced binary search tree of
vector clocks. Thus, the time complexity of Step 2 is O(wm logm). By repeat-
edly invoking ILMA algorithm for a maximal element, we can construct DM
completion of a poset with n elements in O(nwm logm) time. The algorithm by
Jourdan, Rampon and Jard takes O((n + w2)wm) time, and the algorithm by
Nourine and Raynaud takes O(mn2) time. The space complexity is dominated
by storage requirements for L. With implicit representation, we have to store m
elements where each element is stored as a vector of dimension w of coordinates
each of size O(log n). Hence, the overall space complexity is O(mw log n).

4.2 The OLMA Algorithm

In the ILMA algorithm, we traverse the lattice L for every element x. It requires
us to maintain the lattice L which may be exponentially bigger than poset P ,
making the algorithm impractical for distributed computations. We now show
an online algorithm OLMA which does not require the lattice L but only uses
the poset P . Let M be the set of new elements (strict ideals) generated due to
x. The time complexity of OLMA is dependent on the size of M independent of
the size of the lattice L.

The incremental online algorithm OLMA is shown in Fig. 5 At lines (1) and
(2), we compute the vector S for the set D(x). At line (3), we check if S is
already in LMA(P ). Note that we do not store the lattice LMA(P ). The check
at line (3) is done by checking if S is a strict ideal of P . If this is the case, we
are done and M is an empty set. Otherwise, we need to enumerate all strict
ideals that are reachable from S in the lattice LMA(P ′). We do so in lines (5)-
(15) by traversing the strict ideals greater than or equal to S in the BFS order.
The set T consists of strict ideals that have not been explored yet. At line (7),
we remove the smallest strict ideal H and enumerate it at line (8). For global
predicate detection applications, we would evaluate the global predicate on H
at this step. To find the set of strict ideals that are reachable by taking union
with one additional event e, we explore the next event e after the ideal H along
every process. There are two cases to consider.

If (D(e) ⊆ H), then the smallest event on process k that will generate new
strict ideal by taking union with H is the successor of e on process k, succ(e), if
it exists. Since D(succ(e)) contains e which is not in H, we are guaranteed that
max(H,D(succ(e))) is strictly greater than H. It is also a strict ideal because
it corresponds to union of two strict ideals H and D(succ(e)).

If (D(e) 6⊆ H), then the smallest event on process k that will generate
new strict ideal by taking union with H is e. We add to T the strict ideal
max(H,D(e)).

This method of BFS traversal is guaranteed to explore all strict ideals greater
than or equal to S as shown by the next theorem.



Input: a finite poset P , x maximal element in P ′ = P ∪ {x}
Output: enumerate M such that LMA(P ′) = LMA(P ) ∪M

(1) S := the vector clock for x on process Pi;
(2) S[i] := S[i]− 1;
(3) if S is not a strict ideal of P then
(4) // BFS(S): Do Breadth-First-Search traversal of M
(5) T := set of vectors initially {S};
(6) while T is nonempty do
(7) H := delete the smallest vector from T in the levelCompare order;
(8) enumerate H;
(9) foreach process k with next event e do
(10) if (D(e) ⊆ H) then
(11) if (succ(e) exists then T := T ∪ {max(H,D(succ(e)))};
(12) else
(13) T := T ∪ {max(H,D(e))};
(14) endfor;
(15) endwhile;
(16) endif;

int levelCompare(VectorClock a, VectorClock b)
(1) if (a.sum() > b.sum()) return 1;
(2) else if (a.sum() < b.sum()) return -1;
(3) for (int i = 0; i < a.size(); i++)
(4) if (a[i] > b.[i]) return 1;
(5) if (a[i] < b[i]) return -1;
(6) return 0;

Fig. 5: The Algorithm OLMA for Construction of Lattice of Strict Ideals

Theorem 2. The Algorithm OLMA enumerates all H ∈M such that LMA(P ′) =
LMA(P ) ∪M .

Proof. We first show that M contains only strict ideals greater than or equal
to D(x). Since we enumerate only the vectors deleted from T (at line 8) it is
sufficient to show the claim for T . The claim is initially true because T initially
contains S which is a strict ideal equal to D(x). For induction, we assume that
H deleted at line 7 is also such a strict ideal. We add vectors only at lines 11
and 13. Since the set of strict ideals is closed under union, and both D(e) and
D(succ(e)) are strict ideals, we get that the vector added to T at lines 11 and
13 are also strict ideals. Both the ideals contain H due to the max operation,
and hence they are greater than or equal to D(x).

We now show that any strict ideal greater than or equal to D(x) is added
to T at some point in the algorithm. Let T be any strict ideal of P ′ greater
than or equal to D(x). We use induction on r, the size of T − D(x). When r
is zero, T equals D(x), and is part of T due to line (5). Assume by induction
that any strict ideal, T ′ with |T ′−D(x)| < r is added to T . Let A be a minimal



set such that D(A) = T . Since r > 0, there exists y ∈ A that is not in D(x).
Let T ′ = D(A − {y}). T ′ must be a proper subset of T ; otherwise, A is not a
minimal set such that D(A) = T . From induction hypothesis T ′ is added to T
in the algorithm. Let z be the predecessor of y on the process that contains y.
We have the following cases.
Case 1: z ∈ T ′. Since T ′ ∈ T and z ∈ T ′, y would be considered at line (9) when
T ′ is explored. Since T ′ = D(A− {y}) and T ′ is a proper subset of T , we know
that D(y) 6⊆ T ′. By line (13), T is added to T .
Case 2: z 6∈ T ′. There are two cases to consider.
Case 2.1: D(z) ⊆ T ′. Since T ′ ∈ T and D(z) ⊆ T ′, z would be considered at line
(9) when T ′ is explored. Then by line (11), we add max(T ′, D(y)). Therefore, T
is added to T .
Case 2.2: D(z) 6⊆ T ′. When T ′ is explored, we add to T , T ′′ := max(T ′, D(z))
due to line (13). Clearly, D(z) ⊆ T ′′ Since T ′′ ∈ T and D(z) ⊆ T ′′, when we
explore T ′′, we add max(T ′′, D(y)) due to line (11). Therefore, we get that T is
added to T

Finally, we show that no vector is added to T again once it has been deleted.
The function levelCompare provides a total order on all vectors. The vector H
deleted is the smallest in T . Any vector that we add due to H is strictly greater
than H (either at line (11) or line (13)). Hence, once a vector has been deleted
from T it can never be added back again.

We now analyze the time and space complexity of the algorithm OLMA.
Lines (7) to (15) are executed for every strict ideal in M . Suppose that the
number of strict ideals greater than or equal to D(x) is mx. The foreach loop
at line (9) is executed w times. Computing max of two vectors at lines (11)
and (13) take O(w) time. Adding it to the set T takes O(w logwL) time if T is
maintained as a balanced binary tree of the vectors, where wL is the maximum
size of T . Since T corresponds to BFS enumeration, it can also be viewed as the
width of the lattice L in the worst case. Hence, the total time complexity for
enumerating M is O(mxw

2 logwL). Recall that the ILMA algorithm traversed
over the entire lattice when adding a new element resulting in O(wm logm)
complexity for incremental construction.

We now compute the complexity of the OLMA algorithm to build the lat-
tice for the entire poset. For simplicity, we bound mx by m. Since the OLMA
algorithm would be called n times, the time complexity is O(nmw2 logwL). The
space complexity of the OLMA algorithm is O(wLw log n) bits to store the set
T where wL is the maximum size that T will take during BFS enumeration.

5 Traversal Based Algorithms for Enumerating Lattice of
Maximal Antichains

In some applications (such as global predicate detection discussed in Section 6),
we may not be interested in storing LMA but simply enumerating all its elements
(or storing only those elements that satisfy given property). In this section, we



consider the problem of enumerating all the maximal antichains of a computation
in an offline manner. In the OLMA algorithm, we enumerated all strict ideals
greater than or equal to D(x), when x arrives. We can use the OLMA algorithm
in an offline manner as well. We simply use BFS({}) instead of BFS(D(x))
which enumerates all the ideals. The time complexity is O(mw2 logwL) and the
space complexity is O(wLw log n). We call this algorithm BFS-MA.

We now show that the space complexity can be further reduced by using DFS
(depth first search) enumeration of LMA. The depth first search enumeration
requires storage proportional to the height of LMA which is at most n.

In previous section, we had used the lattice of strict ideals instead of lattice
of maximal ideals. In this section, we use the lattice of maximal ideals because
the lattice of maximal ideals is closed under intersection which allows us to find
the smallest maximal ideal that contains a given set (at line (3) in 6).

One of the main difficulties is to ensure that we do not visit the same max-
imal antichain ideal twice because we do not store all the nodes of the lattice
explicitly and hence cannot use the standard technique of marking a node visited
during traversal. The solution we use is similar to that used for the lattice of
ideals [AV01] and the lattice of normal cuts [Gar12]. Let pred(H) be the set of
all maximal ideals that are covered by H in the lattice. We use the total order
levelOrder on the set pred(H). We make a recursive call on H from the maximal
ideal G iff G is the biggest maximal ideal in pred(K) in the total order given
by levelOrder. To find pred(H), we first note that every maximal antichain of
a poset P is also a maximal antichain of its dual P d. Hence the lattice of max-
imal antichains of P is isomorphic to the lattice of maximal antichains of P d.
Traversing LMA(P ) in the upward direction (in the Hasse diagram) is equivalent
to traversing LMA(P d) in the backward direction.

The algorithm for DFS enumeration is shown in Fig. 6. From any maximal
ideal G, we explore all enabled events to find maximal ideals with at least one
additional event. There are at most w enabled events and for each event it takes
O(w2) time to compute the smallest maximal ideal K at line (3). At line (4)
we check if K covers G using the characterization provided by Reuter [Reu91]
as follows. A maximal ideal K covers the maximal ideal G in the lattice of
maximal ideals iff (K − G) ∪ (U [Maximal(G)] − U [Maximal(K)]) induces a
complete height-one subposet of P with (K −G) as the maximal elements and
(U [Maximal(G)] − U [Maximal(K)]) as minimal element. This check can be
performed in O(w2) time. In line (5), we traverse K using recursive call only if
M equals G. Since there can be w predecessors for K and it takes O(w2) time
to compute each predecessor; the total time complexity to determine whether K
can be inserted is O(w3). Hence the overall time complexity of the algorithm is
O(mw4).

The main space requirement of the DFS algorithm is the stack used for
recursion. Every time the recursion level is increases, the size of the maximal
ideal increases by at least 1. Hence, the maximum depth of the recursion is n,
and the space requirement is O(nw log n) bits because we only need to store
vectors of dimension w at each recursion level.



Algorithm DFS-MaximalIdeals(G)
Input: a finite poset P , starting state G
Output: DFS Enumeration of all maximal ideals of P

(1) output(G);
(2) for each event e enabled in G do
(3) K := smallest maximal ideal containing Q := G ∪ {e};
(4) if K does not cover G then go to the next event;
(5) M := get-Max-predecessor(K) ;
(6) if M = G then
(7) DFS-MaximalIdeals(K);

function VectorClock get-Max-predecessor(K) {
//takes K as input vector and returns the maximal ideal that is biggest in the

levelCompare order

(1) H = maximal ideal in P d that has the same maximal antichain as K
(2) // find the maximal predecessor using maximal ideals in the dual poset
(3) for each event e enabled in the cut H in P d do
(4) temp := advance along event e in P d from cut H;
(5) // get the set of maximal ideals reachable in P d

(6) pred := smallest Maximal ideal containing temp that covers H
(7) return the maximal ideal that corresponds to maxPred in P ;

Fig. 6: Algorithm DFS-MA for DFS Enumeration of Maximal Ideals

6 Application of Lattice of Maximal Antichains

Global predicate detection problem has applications in distributed debugging,
testing, and software fault-tolerance. The problem can be stated as follows. Given
a distributed computation (either in an online fashion, or an offline fashion),
and a global predicate B (a boolean function on the lattice of consistent global
states), determine if there exists a consistent global state that satisfies B. The
global predicate detection problem is NP-complete [CG98] even for the restricted
case when the predicate B is a singular 2CNF formula of local predicates [MG01].
The key problem is that the lattice of consistent global states may be exponential
in the size of the poset. Given the importance of the problem in software testing
and monitoring of distributed systems, there is strong motivation to find classes
of predicates for which the underlying space of consistent global states can be
traversed efficiently. The class of linear predicates [CG98] and relational predi-
cates [TG93,IG06] are two such classes. We now describe a class called antichain
predicates which satisfies the property that they hold on the lattice LCGS iff
they hold on the lattice LMA. We give several examples of predicates that occur
in practice which belong to this class.

A global predicate B is an antichain-consistent predicate if its evaluation
depends only on maximal events of a consistent global state and if it is true on
a subset of processes, then presence of additional processes does not falsify the
predicate. Formally,



Definition 7 (Antichain-Consistent Predicate). A global predicate B de-
fined on LCGS is an antichain-consistent predicate if for all consistent global
states G and H: (maximal(G) ⊆ maximal(H)) ∧B(G)⇒ B(H).

We now give several examples of antichain-consistent predicate.

– Violation of mutual exclusion: Consider the predicate, B, “there is more
than one process in the critical section.” The relevant critical section events
for this predicate are entry to the critical section and exit from the critical
section. B is true in a global state G iff maximal(G) has more than one
critical section event. Clearly, if B is true in G and maximal(G) is contained
in maximal(H), then it is also true in H.

– Violation of resource usage: The predicate, B, “there are more than k con-
current activation of certain service,” a slight generalization of the previous
example, is also antichain-consistent.

– Global Control Point: The predicate, B, “Process P1 is at line 35 and P2 is
at line 23 concurrently,” is also antichain-consistent.

We can now show the following result.

Theorem 3. There exists a consistent global state that satisfies an antichain-
consistent predicate B iff there exists a maximal ideal that satisfies B.

Proof. Let G be a consistent global state that satisfies B. If G is a maximal ideal,
we are done. Otherwise, consider Gc. Since G is not a maximal ideal, there exists
y ∈ minimal(Gc) such that y is incomparable to all elements in maximal(G). It
is easy to see that G1 = G ∪ {y} is also a consistent global state. Furthermore,
maximal(G) ⊆ maximal(G1). Since B is antichain-consistent, it is also true in
G1. If G1 is a maximal ideal, we are done. Otherwise, by repeating this procedure,
we obtain H such that maximal(G) ⊆ maximal(H), and H is a maximal ideal.
From the definition of antichain-consistent, we get that B(H).

The converse is obvious because every maximal ideal is also an ideal.

Hence, instead of constructing the lattice of ideals, we can use algorithms
in Section 4 and Section 5 to detect an antichain-consistent global predicate
resulting in significant reduction in time complexity.
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