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Abstract. In this paper, we show that for elections in distributed systems the
conversion from non-binary choices to binary choices does not always provide
optimal results when the preferences of nodes are not identical. With this obser-
vation, we study the problem of conducting democratic elections in distributed
systems in the form of social choice and social welfare functions with three or
more candidates. We present some impossibility and possibility results for dis-
tributed democratic elections in presence of Byzantine behavior. We also discuss
some existing election schemes, and present a new approach that attempts to miti-
gate the effects of Byzantine votes. We analyze the performance of these schemes
through simulations to compare their efficacy in producing the most desirable so-
cial welfare rankings.

1 Introduction

Many problems in distributed systems require election for processes to carry out glob-
ally consistent actions. For example, the problem of binary consensus can be viewed
as an election between two possible choices. The value decided by the protocol can be
considered the winner elected by the system. The leader election problem requires that
all the processes in the system agree on a leader. The agreed upon leader may then per-
form certain privileged tasks on assuming this role. Most protocols for leader election
select processes with the lowest or the highest identifier value as the leader. It can be
argued that such a selection on the basis of identifiers does not constitute an ‘election’
in true sense as the results are not based on the choices of the involved nodes in the
system, assuming the nodes can indicate their preferences. Given that one of the funda-
mental problems in the area of distributed systems, the Byzantine Agreement problem,
assumes malicious intent as well as collusion, it seems natural that the problem of fair
democratic elections be also studied in this context.

Democratic elections have been studied extensively in the fields of economics and
game theory. A large set of interesting problems for elections with three or more can-
didates have already been explored [1,2]. Arrow’s theorem, an important result on this
topic, shows impossibility of elections under some specific requirements [3]. Yet, the
confluence of democratic elections (with more than two candidates) and distributed pro-
tocols has not been explored to the best of our knowledge. Involvement of Byzantine
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processes in the system presents some additional challenges for this task. The notion
of strategy-proofness [4] does not readily apply to Byzantine processes as they can be
considered unaffected by individual losses. In this paper, we introduce the notion of
democratic elections in distributed settings by addressing the following sub-problems:

Sub-optimality of Standard Protocol: With the background setting of elections, the
idea of deciding on a winner based on every node’s most preferred choice seems ap-
pealing. With this approach the eventual winner would be the node receiving highest
number of votes (ties broken arbitrarily). This scheme is called ‘plurality’ scheme in
economics and game-theory literature. However this approach does not always lead to
outcomes that maximize the overall gains for the system. The term ‘gains’ may be at-
tributed to any property that is relevant to global observations of the system, such as the
overall latency of a message broadcast or the average load on each node in the system in
some distributed computing protocol. For example, let us consider a system with seven
nodes {P1, P2, . . ., P7} that run a distributed protocol in presence of a leader node that
controls the distribution of work. Based on the resulting latency or load values of their
individual communications with three possible candidate nodes, the seven nodes want
to elect a leader. Let a,b, and c denote the three possible outcomes of such an election
among three candidates. For one such instance of voting assume that Table 1 repre-
sents the votes of each node in the system. This tabular representation means that P1

prefers the outcome b the most, and then prefers a over c; the preferences of all other
processes can also be inferred in this manner. ‘Plurality’ method on this vote profile,
with coin-toss based tie breaking, elects b or c with equal probability, and never elects
a . However, it is easy to verify that a beats both b and c on individual pairwise com-
parisons. Additionally, if a positional vote counting mechanism1, such as Borda-Count
Method (see Section 5) [5] is applied, then a’s score is strictly higher than those of both
b and c. Hence, even though election of a seems the most optimal outcome for the over-
all system, the standard approach never elects a, and by electing either b or c reduces
the social welfare2 of the system.

Table 1. Votes by Processes P1 to P7

P1 P2 P3 P4 P5 P6 P7

1st choice b b b c c c a
2nd choice a a a a a a b
3rd choice c c c b b b c

Strategic Voting by Byzantine Processes: The Byzantine processes can exhibit any
kind of malicious behavior. One such malicious act is to cast strategic votes so that the
overall social welfare is not maximized. For example, in Table 1, if P7 is Byzantine,
it may broadcast its vote (to all the processes) with c as its first choice and a as its

1 Considers the positions of each candidate in all the votes, assigning fixed points to each posi-
tion and then computing aggregate points of every candidate.

2 Standard term from economics literature; defined in Section 2. For detailed explanations see
[6].
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last. With the changed vote profile, even the pairwise comparison, or positional voting
schemes would not elect a. Thus, this fault would result in decrease of overall social
welfare of the system. For binary choices, [7] studies the similar problem when one of
the two available choices is more desirable, and it is beneficial for the system to agree
on that choice despite the efforts of Byzantine processes.

In short the contributions of this paper are following:

– We introduce the problem of democratic elections in distributed systems by study-
ing: Social Choice and Social Welfare in distributed settings with Byzantine faults.

– We present the impossibility and possibility results for some specific requirements
for the problems.

– We propose a social welfare function called Pruned-Kemeny, and by means of sim-
ulations show that our scheme significantly outperforms other popular schemes for
Byzantine Social Welfare problem.

2 Preliminaries

In economics and game theory, elections have been studied primarily in two forms – so-
cial choice functions, and social welfare functions [6]. For both of these forms, the vot-
ers are required to cast their vote indicating their preferences over all the candidates. As
the result of voting, social choice functions elect one candidate as the winner; whereas
social welfare functions produce an overall ranking of the candidates. Formally, these
functions are defined as follows:

LetA be a set of choices/candidates and {P1, ..., Pn} be the set of n voters. LetL denote
the set of linear orders on A (L is isomorphic to the set of permutations on A). The
preferences of each voter Pi are given by ≺i ∈ L, where a ≺i b means that Pi prefers
choice b to choice a. A social welfare functionW is a function of the formW : Ln →
L; and a social choice function C takes the form C : Ln →A.

The preferences of a voter are strict if the voter is not indifferent between any two
candidates. Throughout the paper, we limit our focus to strict preferences. Construction
of a social choice function from a social welfare function, and vice-versa is trivial [8].
Given a social welfare function W, one could construct a social choice function by
simply declaring the top-most ranked candidate in the result obtained byW as the social
choice. Conversely, to construct a welfare functionW from a given choice function C
one could applyC over k candidates and place the winning candidate on top of the result
ofW, and repeat this processes k − 1 times (at each iteration, removing the candidates
already placed in the result).

A ranking is a total order over a fixed set of candidates. A vote is an individual
voter’s preference ranking over the set of candidates. Based on the above notation, ≺i

is the vote of voter Pi. A ballot is a collection of the votes. The size of the ballot is the
number of votes the ballot contains. A scheme is a mechanism that takes a ballot as input
and produces a ranking or a winner as output. Given a ballot, the ranking/winner pro-
duced by any scheme is called the result of the scheme on that particular ballot instance.
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Condorcet Candidate: If a candidate is preferred by all the voters over each of the
other candidates in a head-to-head comparisons, then such a candidate is called Con-
dorcet Candidate. It is not necessary that such a candidate always exists.

3 Model

We assume a synchronous distributed system consisting of n processes. In our model
any two nodes in the system can communicate privately with each other, thus the in-
duced communication graph is complete. Of the n nodes in the system, at most f can
be Byzantine. For the synchronous model of communication, [9] showed that agree-
ment can only be guaranteed when f < n/3. Throughout this paper, we assume that this
bound of f < n/3 holds. All non-faulty processes in the system are called good pro-
cesses, and the faulty processes are called bad processes. The terms voters, processes,
and nodes represent the same entities, and are used interchangeably. The set of choices,
A, is known to all the nodes in the system and each node votes with its strict prefer-
ences as a total order over the elements ofA.

Byzantine Social Choice Problem: Given a set of n processes of which at most f are
faulty, and a setA of k choices, design a protocol that elects one candidate as the social
choice (while providing the guarantees 1 to 3 listed below).

Byzantine Social Welfare Problem: Given a set of n processes of which at most f are
faulty, and a setA of k choices, design a protocol that produces a ranking of the choices
(while providing the guarantees 1 to 3 listed below).

Protocol Guarantees

1. Agreement: All good processes decide on the same choice/ranking.
2. Termination: The protocol terminates in a finite number of rounds.
3. Validity: This condition imposes requirement on the choice/ranking decided based

upon the preferences provided by the good processes.
If V is the validity condition selected for the election, then BSC(k,V) denotes the
Byzantine Social Choice problem over k choices that satisfies the validity condition V;
similarly BSW(k,V) denotes the Byzantine Social Welfare problem that is defined with
the constraints of V for the available k choices. Some examples of validity conditions
are listed in Table 2 in the context of BSC problem.

In the standard Byzantine agreement problem [9], all the good processes must agree
on a common value v ∈ A. The only requirement on the decided value is that if all
good processes propose the same value v, then the value decided must also be v. If
all good processes do not propose the same value, then there is no requirement on the
value that is decided. In Byzantine Social Choice/Welfare problem the value decided by
the protocol is important, as some of the choices/rankings may be more desirable than
others.

4 Byzantine Social Choice (BSC)

For the Byzantine Social Choice (BSC) problem, we always require agreement, and
termination conditions but may want to impose different validity conditions. In the
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Table 2. Various Validity Conditions for Byzantine Social Choice

Condition Description
S If v is the top choice of all good voters, then v must be the winner.
M If v is top choice of majority of good voters, then v must be the winner.
S ′ If v is the last choice of all good voters, then v must not be the winner.
M′ If v is last choice of majority of good voters, then v must not be the winner.
P If v is not the top choice of any good process, then v must not be the winner.

standard Byzantine Agreement literature, the problem of deciding from more than two
choices is considered equivalent to that of choosing from a set of two choices because
a solution for either one of the problems can be used to solve the other [10]. However,
as we show in this paper (Sec. 1), this is not the case for the BSC problem. BSC(k,V)
denotes a BSC problem over k choices that satisfies the validity condition V . Thus,
BSC(2, S ) is the standard binary Byzantine Agreement. Note that when k equals two,
S , P and S ′ are equivalent to the standard validity requirements for binary Byzantine
Agreement protocol [11]. Similarly, M and M′ are equivalent when there are only two
choices.

BSC(3,M) is the Byzantine social choice problem on three choices with agreement,
termination, and the majority validity condition. We show in Section 4.1 that this prob-
lem is impossible to solve in a distributed system. However, somewhat surprisingly
BSC(3,M′) is possible to solve. As an example of BSC(3,M′) consider the problem of
leader election in a distributed system with Byzantine processes. Suppose that processes
need to choose a leader among three choices. It is known that one of the three choices
may be Byzantine and the good processes would want to avoid its election. Although
there is no initial agreement on which of these choices is Byzantine, it is a reasonable
assumption that majority of good processes will identify the Byzantine choice correctly.
In Section 4.2, we give a protocol for solving BSC(3,M′) .

Observe that BSC(k, S ) is simply the standard Byzantine agreement problem in which
every process proposes its first choice. Hence BSC(k, S ) is solvable for any k so long
as f < n/3. It is also possible to solve BSC(k, S ∧ S ′). We give such a protocol in
Section 4.2.

4.1 Impossibilities

Arrow [3] showed that for elections with three or more alternatives, no voting system
that provides two basic properties: Pareto Efficiency and Independence of Irrelevant
Alternatives (IIA), can guarantee non-dictatorial elections. In this section, we show im-
possibilities for elections in distributed systems with Byzantine faults. We focus on
instances of BSC(k,V) problems which are impossible to solve for specified values of
k and V . Let us first consider the case when k equals two. For this case, the condi-
tions S , P and S ′ are equivalent. Standard Byzantine agreement protocols can be used
to solve BSC(2, S ).
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Lemma 1. There is no protocol to solve BSC(2,M) when f ≥ n/4.

Proof: If f ≥ n/4, then good processes are at most 3n/4. Suppose that the set of choices
is {a, b}. Assume that just the bare majority of good processes propose value a. Thus,
the total number of processes proposing a is at most 3n/8+ 1. The number of processes
proposing b is at least 5n/8 − 1. Then for n ≥ 4, we have that more processes are
proposing b. Since processes do not know which processes are good, this problem is
indistinguishable from the instance where 5n/8 − 1 good processes propose b and re-
maining 3n/8+1 processes propose a. In the second instance, the protocol must choose
b, and therefore it will also choose b in the first instance. �

Lemma 2. There is no protocol to solve BSC(2,M′) when f ≥ n/4.

Proof: For binary choices, k = 2, it can be easily observed that the problem BSC(2,M′)
is equivalent to BSC(2,M). Thus, based on the result of previous lemma, BSC(2,M′) is
also unsolvable when f ≥ n/4. �

Lemma 3. There is no protocol to solve BSC(k, P) for any k ≥ n when f ≥ 1.

Proof: Given that k ≥ n, consider the case when each process proposes a different
value. Since each value appears exactly once, there is no way to distinguish the value
proposed by a bad process from that proposed by a good process. �

Theorem 1. There is no protocol to solve BSC(k,M) for any k ≥ 2 when f ≥ n/4.

Proof: Suppose that there is a protocol that solves BSC(k,M) for any k ≥ 3. We will
use this protocol to solve BSC(2,M). Given an instance of BSC(2,M) problem, all the
processes construct an instance of BSC(k,M) by first constructing k−2 artificial choices.
However, none of the good processes use these choices as their first two choices. Now
they run the protocol for BSC(k,M) which must choose a value that has been proposed
by the majority (ties broken in favor of lower value) of good processes as the first choice.
All good processes return this as the decided value for the given BSC (2,M) problem.
But by Lemma 1, BSC(2,M) is unsolvable. �

4.2 Possibilities

As BSC(k, S ) is solvable by standard Byzantine agreement [10] and BSC(k,M) is un-
solvable, it is natural to seek some validity conditions that admit solution. Consider the
following validity condition:

Mo (Overwhelming Majority): If there is a choice that is the first choice of at least 3/4th

good processes, then all the good processes elect that choice.
It can be observed that any protocol that ensures M also ensures Mo. Similarly Mo is
a stronger requirement than S, and thus any protocol providing guarantee on Mo also
guarantees S.

Lemma 4. Protocol α given by Algorithm 1, solves BSC(k,Mo) when for any k ≥ 2
when f < n/3.
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Proof: Let v be the value proposed by at least 3/4th fraction of processes. It is easy to
see that 3/4 ∗ (n− f ) > 1/4 ∗ (n− f ) + f for all values of f < n/3. Hence, all processes
decide on v. �

Algorithm 1. Protocol α at Pi to ensure BSC(k,Mo) and therefore also BSC(k, S )
T : array[1..n] (container to store all the votes) /* Proposals */
vote: array[1..k] (ranking of k candidates) /* My vote */
/* Every process proposes its first choice */
T [i] = vote[1] /* index starts from 1 */
/* Step 1: Exchange first choice with all */
for j = 1 to n do

send T [i] to Pj

receive T [ j] from Pj

/* if no value received from Pj set T [ j] = 0 */
end for
/* Step 2: Agree on T vector : the ballot of all votes */
for j = 1 to n do

run Standard Byzantine Agreement on T [ j];
end for
/* Step 3: Choose the value with the highest tally, breaking ties in favor of the smaller value */
return the least value from 1..k that has the highest frequency in T .

We showed in Section 4.1 that P is impossible to achieve when k ≥ n. However, if
choices are limited, then P can be guaranteed as follows.

Lemma 5. Protocol α solves BSC(k, P) for 2 ≤ k< n when f < min(n/k, n/3).

Proof: It is sufficient to show that the largest tally would be of a value proposed by a
correct process. Suppose, if possible, the largest tally is for the value v which is not pro-
posed by any good process. The tally for v can be at most f . There are n − f proposals
by good processes. None of these proposals is for v, and therefore all these proposals
are for remaining k − 1 values. Since none of these values had tally more than v, we get
that the total number of proposals possible are (k− 1) ∗ f . From f < n/k, we obtain that
(k − 1) ∗ f < n − f which is a contradiction because all correct processes make at least
one proposal. �

However, if we were to require (M′ ∧P) and use the steps in the protocolαwith suitable
adjustments (not picking a social choice that would violate M′) to handle the validity
requirements – it would be evident that the modified protocol α would not satisfy (M′ ∧
P). It is not possible for a protocol to deterministically know which nodes are good and
which are bad in all the instances. Thus to provide M′ the only option any deterministic
protocol would have to discard a choice that appears �(n − f )/2 + 1� or more times as
the bottom choice in the ballot. Consider the example ballot presented in Table 3, with
P6 and P7 as Byzantine voters. In this example, a simple majority over the first choices
would result in choosing c as the winner which violates M′. The modified protocol α
(that attempts to provide M′) will elect a as the winner. However, an overwhelming
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Table 3. A ballot with P6 and P7 as Byzantine Voters

P1 P2 P3 P4 P5 P6 P7

1st choice b b b c c c c
2nd choice a a a b a a a
3rd choice c c c a b b b

majority of good processes, 4 out of 5, prefer b over a. Note that the choice a is not the
first choice for any process, leave alone being the first choice of a good process. In this
example, with n = 7 and f = 2, �(n− f )/2+ 1� is 3 and thus it is clear that any protocol
that guarantees M′ can only choose a as winner (because both b and c are last choices
for at least three processes).

We now show the surprising result that BSC(k,M′ ∧ S ) is solvable for k ≥ 3 when
f < n/3. Protocol β, shown in Algorithm 2, is based on the idea of processes proposing
their last choice. Since Byzantine processes may send conflicting values to different
processes, Protocol β first agrees on the vector T of last choices. Each process then
discards the values that appear as the last choice at least �(n− f )/2+ 1� times. It should
be noted that since f < n/3, the size of discard set in protocol β is at most two. Now all
the processes run Byzantine Agreement with their top choice from the remaining set.

Algorithm 2. The BSC(k,M′ ∧ S ) Protocol β at Pi

T : array[1..n] (container to store all the votes) /* Proposals */
vote: array[1..k] (ranking of k candidates) /* My vote */
/* Every process proposes its last choice */
T [i] = vote[k]
/* Step 1: Exchange last choice with all */
for j = 1 to n do

send T [i] to Pj

receive T [ j] from Pj

/* if no value received from Pj set T [ j] = 0 */
end for
/* Step 2: Agree on T vector, ballot of last choice votes */
for j = 1 to n do

run Standard Byzantine Agreement on T [ j];
end for
/* Step 3: Eliminate unqualified choices */
discard = set of choices to discard; initially {φ}
for j = 1 to k do
/* count returns the frequency of any value in T */
if (count(vote[ j]) >= �(n − f )/2 + 1�) then

add vote[ j] to discard
end if

end for
/* Step 4: Now use the remaining choices for selecting top choices of processes */
run Byzantine Agreement on top choice � discard
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Lemma 6. Protocol β, given by Algorithm 2, solves BSC(k,M′ ∧ S ) for k ≥ 3 when
f < n/3.

Proof: We first note that if Pi is good then T [i] at P j will be same as the value proposed
by Pi. This means that if there is any value v that is considered the last choice by a
majority of good processes then it appears at least �(n− f )/2+ 1� times in T vector; all
such values are discarded. Since k ≥ 3 and | discard | ≤ 2, there is at least one value
which is not discarded by any good process. Hence, the agreement phase in step 4 leads
to selection of a choice proposed by some good process.

It is also easy to verify that the protocol satisfies S . If all good processes have v as
their first choice, then it cannot appear �(n − f )/2 + 1� times as the last choice. Hence
no good process will discard this choice and will propose it in step 4. �

Lemma 7. Protocol β does not guarantee Mo condition.

Proof: Consider the vote ballot presented in Table 4 in which 4 out of 5 good processes
have b as their first choice. Since it can not differentiate between good and bad processes
based on the ballot, protocol β would be forced into electing a as the social choice. �

Table 4. A ballot with P6 and P7 as Byzantine Voters

P1 P2 P3 P4 P5 P6 P7

1st choice b b b b a c c
2nd choice a a a a c a a
3rd choice c c c c b b b

5 Byzantine Social Welfare (BSW)

The problem of Byzantine Social Welfare can be seen as an extension to the BSC prob-
lem. In the Byzantine Social Welfare (BSW) problem, the goal is to produce a ranking, a
total order over k candidates, of choices as the result of elections. Multiple such schemes
exist in the literature of economics and game theory. We now discuss some of these as
social welfare functions, and propose a new scheme called Pruned-Kemeny specially
tailored towards handling Byzantine votes. We focus only on the schemes that require
a single round of voting. After exchanging their votes with all the other processes in
the system, the processes participate in O( f ) rounds of agreement to ensure that all the
good processes agree on the same ballot.

From here on, for notational convenience we use a short form representation of rank-
ings such that abc represents ranking a  b  c.

PlacePlurality: For each position in the result ranking, the scheme finds the candidate
with most votes for that position in the ballot, and places this candidate at that position
in the result. Only the candidates that are not already placed in the result ranking are
considered. Plurality based schemes satisfies S and S ′ criteria. Revisiting the example
ballot of Table 1 from Section 1, one can verify that the rankings cab and bac are the
two possible outcomes of a social welfare function that applies PlacePlurality.
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Pairwise Comparison: This scheme uses the Condorcet Criterion and compares the
pairwise preferences over the ballot for all

(
k
2

)
pairs. Detailed description of the scheme

is presented in [12]. Using this scheme, the output for the welfare function on the ballot
of Table 1 is abc.

Borda Count: This scheme applies the positional voting approach to calculate the
points scored by each candidate. Each position in a vote is assigned unique points -
top position given the highest, and the bottom position given the lowest points. The
cumulative score of a candidate is the sum of all the points it accumulates over the
complete ballot. The resulting social welfare ranking is the list of candidates sorted in
non-increasing order of their overall scores (ties broken arbitrarily). For the ballot of
Table 1, the social welfare result using Borda Count scheme is abc.

Young in [13] shows with convincing arguments that most of the simple schemes,
including the three presented above, do not necessarily produce the outcomes that are
optimal in terms of overall representation of the voter preferences. The discussion in
[13] points out that schemes that use the mean as the representative outcome of the
voting process tend to generate ‘inferior’ results as opposed to the schemes that try to
compute an outcome that is close to the median. The following two schemes, use the
median as the basis for the result computation, and we show by means of simulation
that they do produce better social rankings.

Kemeny-Young Scheme: This approach, proposed by J. Kemeny and H. Young in
[14,13], uses a metric to identify a ranking that is closest to the median of the ballot. The
metric used in this scheme is the distance between rankings, where distance between
any two rankings is defined as the number of pairs on which the rankings differ. For
example, taking r = abc and r′ = bac the distance between these two rankings is 1,
whereas if r′ = cba, then the distance between r and r′ is 3.

Algorithm 3 presents the steps involved in the scheme. The scheme iterates over
each of the possible k! permutations of k candidates and considers each ranking (per-
mutation). The goal is to identify a ranking that maximizes the agreement on pairwise
comparisons with the overall ballot. For a detailed analysis of the scheme, we refer the
reader to [13]. Applying this scheme on the ballot in Table 1 gives a result ranking of
abc.

Pruned-Kemeny: We propose a scheme called Pruned-Kemeny that is aimed towards
mitigating the damaging effects of bad voters. The key motivation for this scheme is
that good voters, while indicating their individual preferred choices would in addition
be also inclined towards the final outcomes that are beneficial to the overall system.
Where as the bad voters would not only send conflicting information to the good vot-
ers, but also focus on manipulating their vote preferences in order to reduce the overall
welfare of the system. The steps of the scheme are presented in Algorithm 4. Simi-
lar to the Kemeny-Young scheme, our approach also iterates through all the possible
permutations of candidates but we restrict the ballot in consideration for each iterated
permutation. The restriction on the ballot is attained in the following manner:

Let P denote the set of all permutations of k candidates, and B be the initial ballot
of n voters. For each ranking r ∈ P compute a pruned ballot B′ by setting B′ = B \ F ,
where F is the collection of f most distant rankings in B from r. Hence, size of the
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Algorithm 3. Kemeny-Young Scheme
P = Set of all permutations of k candidates,
B = agreed upon ballot of n votes
maxScore= 0,maxRank = nil
for each ranking r in P do

score = Kemeny-YoungScore(r, B)
if score > maxScore then

maxScore= score
maxRank = r

end if
end for
return maxRank

Kemeny-YoungScore(ranking, ballot):
score = 0
for each pair (ab) in ranking do

score = score + # of ab in ballot
end for

return score

Algorithm 4. Pruned-Kemeny Scheme
P = Set of all permutations of k candidates,
B = agreed upon ballot of n votes
maxScore= 0,maxRank = nil
for each ranking r in P do
F = f most distant rankings from r in B
B′ = B \ F
score = Kemeny-YoungScore(r,B′)
if score > maxScore then

maxScore = score
maxRank = r

end if
end for
return maxRank

restricted ballot B′ is n − f . The score for ranking r is its Kemeny-Young score on B′.
The result of the scheme is the ranking with highest score (ties broken arbitrarily). For
instance, when applied to the ballot of Table 1, this scheme produces bac as the result.

We show shortly that the problem of finding a solution to the election problem us-
ing either Kemeny-Young or Pruned-Kemeny scheme is NP-Hard. In the context of
distributed systems, the round and message complexities for agreement on the the bal-
lots, performed before application of the schemes, are essentially the complexities of
the protocols used reach agreement. We use the Gradecast based Byzantine agreement
protocol presented in [15], mainly because this protocol provides the early termination
property. Based upon this, the agreement requires O( f ) rounds, and has the message
complexity of O( f n3). For proofs and detailed discussions on these bounds we refer the
reader to [15].

Lemma 8. The problem of finding the result of a ballot using Pruned-Kemeny scheme
is NP-Hard.

Proof: Consider any instance of the problem of finding optimal rankings with Kemeny-
Young scheme. Each such instance can be converted to an instance of the problem of
finding the result with Pruned-Kemeny with f set to zero. Hence, the Pruned-Kemeny
based optimization problem is at least as hard as the Kemeny-Young based problem,
which is already known to be NP-Hard [16]. �

Theorem 2. Pruned-Kemeny satisfies S and S ′ requirements.

Proof: First, we prove that Pruned-Kemeny satisfies S . Let us assume that Pruned-
Kemeny violates S , and thus its output is ranking r that does not put v on top when all
the good processes put v as their top choice. Hence, there is at least one candidate u that
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is immediately above v in r. Construct a new ranking r′ by swapping the places of u and
v in r. We now show that r′ would have a higher Kemeny-Young score than r, which
would be a contradiction. Since r′ puts v above u, it agrees with all the good processes
on at least one more pairwise comparison. It may disagree with the votes of all the bad
processes. Also, in the worst case scenario r′ discards f good votes during the protocol
run. Thus in the worst case the overall Kemeny-Young score of r′ increases by

(n − f ) − f − f = n − 3 f

in comparison to the Kemeny-Young score of r. The first term of (n − f ) is due to the
increment (by at least one point) in score for each good vote, however if we assume that
it is possible to discard f good votes in the worst case, the second term indicates that
adjustment. Also, all the bad processes might provide exact opposite rankings in their
votes, hence a further decrease of f (third term) in points is possible in the worst case.
Since n ≥ 3 f + 1, the score of r′ is strictly greater than that of r, which means r being
selected as the final outcome of Pruned-Kemeny is a contradiction. S ′ can be shown
similarly by placing v at the bottom of each good vote. �

Similar to the Kemeny-Young scheme, Pruned-Kemeny also performs exponential com-
putations by iterating over all the k! permutations. However, for small values of k and
large values of n, the performance of the scheme is acceptable.

Lemma 9. Kemeny-Young scheme satisfies S and S ′ requirements.

Proof: As Kemeny-Young is a special case of Pruned-Kemeny scheme with f set to
zero; the proof immediately follows from Theorem 2. �

6 Simulation Results

It is possible to have scenarios in which the bad voters need not just send conflicting
information, but may as well have much more malignant intentions. Consider the case
when the good voters want to reach a consensus on a ranking that is beneficial to the
system as a whole, and thus have similar if not exactly the same preferences. On the
other hand, the bad voters may want to minimize the benefit that the system may attain
by the resulting welfare ranking (that is the outcome of the election). Schemes that do
not assume that a small section of voters might behave in this manner, may thus produce
rankings which are prone to manipulation by the bad voters. Given the knowledge that
at most f voters can be bad, our scheme Pruned-Kemeny tries to produce best possible
social welfare outcomes in presence of such hostile voting by the bad voters.

We now list the details of our experimental setup and the simulations performed to
evaluate the utility of Pruned-Kemeny in computing ‘near-optimal’ welfare rankings in
comparison to the other discussed schemes. Let ω represent an ideal ranking for the
BSW problem, such that selection of ω as the result of the election maximizes the so-
cial welfare of the system. Let us assume that ω is not completely known to any good
process, however each good process tends to favor the ideal ranking. The voting prefer-
ences of good and bad processes in presence of an ideal ranking are defined as follows:
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Let goodProb denote the probability of a good voter ranking two candidates a and b
in the same order as that in the ideal ranking ω, and badProb denote the probability of
a bad voter ranking the candidates in the reverse order to that in ω. Hence, if ω ranks
two candidates a and b with a  b then goodProb is the probability that any good voter
decides to put a  b in its vote, and badProb is the probability that any bad voter puts
a ≺ b in its vote. For our experimental setup we fix the following values:

n = 100, f = 33, badProb = 0.9

By setting f to its highest possible value, and badProb to a considerably high value
in the possible range, we try to realize the assumption that bad voters would want to
disrupt the election of ideal ranking, and would vote in opposite polarity of the good
voters. The value of the number of candidates k is varied in the range [3,8]. For each
value of k, the value of goodProb is varied from 0.55 to 0.90 in step increments of
0.05. For each such resulting configuration of 〈k, n, f , goodProb, badProb〉, 50 ballots
(of n = 100 voters) are generated by fixing an ideal ranking and applying the prob-
abilistic model on individual votes based on goodProb and badProb. We then apply
the discussed schemes, and find the distance (defined in previous section) of their re-
sult rankings from the ideal ranking. We then compute the average distance over the 50
ballots for each configuration.

Figure 1 shows the variation in the average distance values. As evident from the
plots, Pruned-Kemeny produces results that are much closer to the ideal ranking even
for comparatively low values of goodProb. In addition, the plots also indicate that as
the number of candidates increases, the results of Pruned-Kemeny consistently match
the ideal ranking. Another interesting observation is that the distance of results for
PlacePlurality from the ideal ranking increases significantly with increase in the number
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Fig. 1. Comparison of Average Distance of Results from Ideal
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of candidates. This clearly indicates that PlacePlurality is not a good choice for a social
welfare function. We argued in Section 1 that for more than three choices, the plurality
based methods do not guarantee best results. The observations on the variation in result
distances clearly validate our argument.

7 Discussion

Extensive literature is already present on the topic of leader election in distributed
systems [11,17,18,19]. [11] presents various protocols and lower bounds for message
complexity for the leader election problem in absence of Byzantine processes. Leader
Election has also been studied in presence of Byzantine failures. [20] gives a random-
ized distributed protocol to elect a leader in the asynchronous full information model
that tolerates n/(6+ ε) cheaters with positive constant success probability in rounds that
is polylogarithmic in n.

Our work studies the problem of democratic elections in a distributed system as so-
cial choice and social welfare ranking problems [6]. When number of choices is more
than two, elections based on the top-preference-only model may not lead to optimal re-
sults, and hence we assume that processes in the system propose a ranking of candidates
rather than a single leader. For agreement that is dependent only on the number of fail-
ures we use the deterministic early-stopping Byzantine agreement protocol from [15]
to reach the agreement on every processes’ vote within min{ f + 1, fa + 2} rounds where
fa is the actual number of failures. We focus on the guarantees on the social choice or
the social welfare ranking produced by the election, rather than on the message or bit
complexity of election protocols.

Prisco et al. in [21] present some impossibility and possibility results for the k-set
consensus problem in which each node starts with one value and the protocol must
decide on a value so that at most total k values are decided by the correct processes. The
k-set problem does not involve voting over multiple candidates. Under some specific
boundary conditions there is a slight overlap between two impossibility results in [21]
and those presented in this work.

In the standard Byzantine agreement [9] the protocols only need to guarantee agree-
ment on some value that is proposed by a good process. With this objective, the pro-
tocols do not need to guard against the possibility of Byzantine voters affecting the
eventual outcome by strategic reporting of their values. However, as we saw in Sec-
tion 3 it is important to design voting mechanisms that do not allow this advantage to
Byzantine voters.

8 Future Work

If all the good processes lean towards some fixed ideal ranking, even with weak in-
clinations, the simulation results indicate that our proposed approach Pruned-Kemeny
provides desired results with much higher accuracy in comparison to other schemes.
However, determining the provable guarantees for optimal results under some specific
conditions is an important open challenge for this work.
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Another interesting problem is to differentiate between the ideal results, and the re-
sults that comply with the Condorcet Criterion. It should be noted that for some given
ballot, it is possible to have a clear Condorcet candidate/ranking yet the ideal win-
ner/ranking might differ from it. However, in terms of computational complexity both
Kemeny-Young and Pruned-Kemeny schemes are NP-Hard, where as a Condorcet can-
didate/ranking can be found in polynomial time. With this observation, it would be
beneficial to design a social welfare scheme that can strike a balance between these two
approaches. Depending on the constraints of the computing environment, this balanced
scheme could have the flexibility to employ either the PrunedKemeny or the Condorcet
scheme so that the difference between the social welfare resulting from the two out-
comes is either relatively small or bounded in some acceptable form.

9 Conclusion

In this paper, we introduced the problem of democratic elections in distributed systems.
We showed that the standard approach of reducing three or more choices to binary
choices does not guarantee optimal outcomes, and hence the standard assumption of
always having binary choices is weak. We presented impossibility results under some
specific validity requirements, as well as showed some surprising possibilities that result
from availability of more than two choices.

For producing results that are close to an ideal ranking when there exists one, we
proposed a new scheme called Pruned-Kemeny that aims to counter the votes of Byzan-
tine processes. The results of our simulations show that for the purpose of finding
ideal order, Pruned-Kemeny provides significantly improved results over existing voting
systems.
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