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Abstract

An important problem in distributed systems is observa-
tion of global properties of distributed computations. What
makes this problem difficult is that events in the computa-
tion can be concurrent, i.e. the relation between events
forms a partial order, not a total order. One of the fun-
damental parameters of a partial order is the width, which
corresponds to the maximum number of mutually incompa-
rable elements. For example, a process-time diagram that
shows this partial order decomposition in minimum num-
ber of chains can be very useful in monitoring or debugging
such computations. In this paper, we present an incremen-
tal algorithm to compute the optimal chain partition. We
compare our algorithm with existing chain reduction algo-
rithms. From a practical point of view, performance evalu-
ation shows that our approach achieves up to 90% run-time
improvement over the previously known algorithms.

Keywords:Mutual exclusion, testing, predicate detection,
partial order, chain partition

1. Introduction

Partial orders [3] play an important role in many dis-
ciplines of computer science and engineering such as dis-
tributed computing, concurrency theory, programming lan-
guage semantics, and data mining. In this paper, we fo-
cus on applications in distributed computing. A distributed
computation is generally modeled as a partially ordered set
(poset) of events based on the happened before relation as
defined by Lamport [14]. Fidge [6] and Mattern [15] in-
dependently introduced vector clocks to timestamp events
such that the happened-before relationship between any two
events can be determined by examining their timestamps.

A set of events with vector clocks implicitly defines a
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poset where the order of events is given by the vector clock
order. To solve many problems in distributed systems, we
need to determine properties of such a computation poset.
For example, suppose that we are interested in determining
whether a conjunctive predicate (l1 ∧ l2 ∧ . . .∧ lN ) became
true in a computation where li is a local predicate on process
i [10]. Then, determining the least set containing N mutu-
ally incomparable elements is equivalent to determining the
least global state in which the global predicate is true. As
another example, let tokeni denote that process i has the
token. Assume that we are interested in any violation of the
assertion that “there are at most K tokens in the system.”
This assertion is violated if and only if the poset (of token
related events) has width K + 1 or more. In particular, if K
equals to 1, then violation of the assertion is equivalent to
mutual exclusion violation [16]. The violation of K-mutual
exclusion problem can be detected by computing the width
of a computation poset. Figure 1 shows an example for de-
tection of 1-mutual exclusion violation.
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Figure 1. (a) A computation <E,→> (b) the
trace as chain partition (c) optimal chain
partition (d) the corresponding partial order
trace.



Determining properties of the underlying partial order of
events is also useful in visualization of a distributed compu-
tation. Visualization tools for program traces significantly
facilitate the efforts of debugging parallel and distributed
programs. These tools provide a process-time diagram of
the computation. There are two approaches to place the
events in this diagram: the real-time of event occurrence [9]
and the partial order induced by the vector clocks [13]. For
example, POET is a tool for the visualization of partially
ordered event traces [13]. Because process-time diagrams
may be quite large and complicated, users may be inter-
ested in visualizing only a subset of events called interesting
events. A visualization that partitions the set of interesting
events into smallest number of chains provides user a much
more simplified view than a random drawing of the poset.
Thus, our algorithm has applications also in visualizing a
set of events in a distributed computation.

In partial order theory, the optimal chain partition of a
poset is known as the Dilworth’s chain partition (DCP) [3].
Motivated by the importance of partial orders in distributed
systems, we investigate the problem of computing the width
of a poset and its Dilworth’s chain partition in an incremen-
tal manner. We introduce a novel incremental algorithm that
has O(swn) time complexity, where w is the width, n is the
size of the poset, and s is the maximum number of relevant
elements. We define the relevant elements later in section 4.
In the worst case s is n giving our algorithm complexity
of O(wn2). Table 1 shows a comparison of our work with
existing algorithms.

Table 1. Comparison with related work (N is
the initial partition, n is the poset size, w is the poset
width, e≤ is the number of edges in the poset and s is
the maximum number of relevant elements).

Additional Time
Space Complexity

Bogart and
Magagnosc [8] O(e≤) O((N − w)(n + e≤))

Tomlinson
and Garg [16] O(n) O((N − w)Nn)

This paper O(n) O(wsn)

In summary, this paper makes the following contribu-
tions.

1. We propose a new algorithm to compute optimal de-
composition of a poset specified using vector clock
representation. Our algorithm is incremental and re-
quires less memory and time than previously known
algorithms.

2. We show results of an experimental study that com-
pares various algorithms for memory and time usage
for optimal decomposition of posets.

The rest of the paper is organized as follows: In section
2, basic background definitions in partial order theory and
its relation to distributed computing are given. In section
3, we compare two algorithms on finding the optimal chain
partition of a poset. First algorithm is given by Bogart and
Magagnosc [8], and hereafter we refer to it as BM . Second
algorithm is given by Tomlinson and Garg [16], and here-
after is referred as TG. We also show how these algorithms
can be used under incremental and offline assumptions, and
discuss their drawbacks compared to each other. In section
4, a novel incremental algorithm CP (chain partitioner)
that improves on the previous ones is introduced. The sim-
ulation results of the algorithms are presented in section 5.
We also give the details of implementations and testing en-
vironment.

2. Background

2.1. Partially Ordered Sets and Lattices

A partially ordered set (or poset, or partial order) is a pair
(X, P ) where X is a set and P is a reflexive, antisymmetric,
and transitive binary relation on X . A subposet is a poset
whose set is a subset of X , and whose relation is restriction
of P to the subset. We simply write P as a poset when X
is clear from the context. We call X the ground set while P
is a partial order on X . The ≤ and divides relations on the
set of natural numbers are some examples of partial orders.

We write x ≤ y and y ≥ x in P when (x, y) ∈ P . Also,
x < y and y > x in P means x ≤ y ∈ P and x �= y.
Let, x, y ∈ X with x �= y. If either x < y or y < x, we
say x and y are comparable. On the other hand, if neither
x < y nor y < x, then we say x and y are incomparable
and write x‖y.

A poset (X, P ) is called an antichain (chain or a linear
order), if every distinct pair of points from X is incompara-
ble (comparable) in P . Moreover, we call P a k antichain
if the size of X is k. An antichain (chain) C of a poset
(X, P ) is a maximum antichain (chain) if no other antichain
(chain) contains more elements than C. The width of a
poset is defined to be the largest antichain in the poset and
is denoted by width(P ), and hereafter referred to as w. In
the context of a distributed computation, the width must be
less than or equal to the number of processes.

It is possible to extend any partial order to a linear order
by adding order between incomparable elements. A total
order L is said to be a linear extension or linearization of
P , if L is a total order on the same ground set X of P , such
that for all u, v ∈ X for which u ≤P v implies u ≤L v.

An element x ∈ X is called a maximal (minimal) el-
ement if there is no element y ∈ X with x < y ∈ P
(x > y ∈ P ).

A chain partition of a poset P is a partition of the ground
set into (nonempty) chains. A famous theorem of R. P. Dil-



worth [3] states that if an ordered set P has a maximum
sized antichain with k elements, i.e. w = k, then P can be
partitioned into k chains. We call a partition of a poset P
Dilworth’s chain partition or DCP for short, if P is parti-
tioned into w chains.

2.2. System Model

We presume the standard model of distributed systems
initially defined by Lamport [14]. The system consists of
multiple sequential processes (or threads) communicating
via message passing. Each process executes a sequence of
events. Each event is an internal, a send or a receive event.
A distributed computation is the union of all of the events
across all of the processes. In the happened before model
it is defined as a tuple (E,→) where E is the set of events
and → is a partial order on events in E. For an event e ∈ E,
e.p denotes the process on which e occurred.

The happened before relation (→) is the smallest transi-
tive relation which satisfies:

• e → f if e.p = f.p and e immediately precedes f in
the sequence of events on process e.p.

• e → f if e is a send event and f is the corresponding
receive event.

The happened before relation defines a partial order over
the set of events in the distributed computation. The events
for which the happened-before order needs to be determined
are called interesting events and the set of such events are
denoted by I ⊆ E.

3. Previous Algorithms

There are two principal approaches for finding a DCP of
a poset P :

1. Partitioning the poset greedily into N initial chains and
reducing the number of partitions by finding reducing
sequences [8], or

2. Reducing the problem to a maximum matching prob-
lem in a bipartite graph and then using the results of
the maximum matching problem [7].

For an execution trace of a distributed program, the first
approach is more appealing since the history of execution
can be recorded easily as a chain on each process. Hence,
we do not consider the bipartite approach in this paper.
The algorithms by Bogart and Magagnosc [8] and Tomlin-
son and Garg [16] are based on the first approach. Given a
chain partition of size k, they answer the question whether
the partition could be reduced to k − 1 chains. The result
follows from Dilworth’s theorem that a poset can be parti-
tioned into k − 1 chains if and only if there does not exist
an antichain of size at least k. We give a brief description of
these algorithms in the next subsection. For a more detailed
discussion of the algorithms, refer to [8] and [16].

3.1. Algorithm BM

Bogart and Magagnosc [8] solve the chain reduction
problem by defining the reducibility conditions and alter-
nating sequence. They begin with the trivial chain partition,
the one in which each element of poset is a one element
chain. In O(n + e≤), a lookup table is constructed. This ta-
ble is essentially the adjacency list representation of a poset.
With this setup, BM is called. Let C be a chain partition,
then it either finds a reducing sequence, forms new chains,
and returns the reduced C; or returns the original chain par-
tition C.

Definition 1 [8] A sequence of elements
a0;b0;a1;b1;· · ·;as;bs is a reducing sequence if

(a) a0 is the least element of some chain,

(b) bi is the immediate predecessor of ai+1 in some chain,

(c) all bi’s are distinct,

(d) for all i: ai > bi in the partial order,

(e) bs is the greatest element of its chain.

BM , as a first step, uses a breadth first search to find a
reducing sequence. In the second step it modifies the chains
in C according to the reducing sequence. An example is
given in figure 2 to illustrate how this chain manipulation
works according to a reducing sequence.

(b)(a)

C1 C2C1 C3C4C3C2

a2

b2

a2a1a0 a0 a1

b0 b0 b2b1b1

Figure 2. An example for BM: (a) a reducing
sequence (b) chain reduction

The complexity of the first and second steps are O(n +
e≤) and O(n) [8], where n is the poset size and e≤ is the
number of edges in the poset.

3.2. Algorithm TG

Tomlinson and Garg [16] solve the chain reduction prob-
lem using additional chains and a spanning tree data struc-
ture for the reducibility condition. They begin with a chain
partition C that contains k chains called input chains and
k−1 empty chains called output chains C′. With this setup,
TG is invoked. It either merges k chains to k − 1 chains
and returns C′, or returns an antichain of size k. At each
step, TG considers only the chains’ heads. It repeatedly se-
lects chain heads that satisfy the reducibility condition for



removal, and appends them to an output chain. This contin-
ues until either one of the input chains is empty or no such
element can be found.

Definition 2 Let ai be the least element (head) of input
chain i, and bi be the maximum element (tail) of output
chain i. Then, a chain head as satisfies the reducibility con-
dition if

(a) for all i: there exists j and k s.t. bi < aj and bi < ak,
where j �= k,

(b) for all i: there exists j s.t. bj < ai,

(c) there exists i st. as < ai, where i �= s.

A spanning tree is formed by the input and the output
chains. It is used in the decision process of where (which
output chain) to append the elements. Input chains are rep-
resented as nodes, while edges are represented as output
chains. The algorithm maintains the following invariant:
If an edge between vertices Ci and Cj is labeled as C′

k ,
then the heads of Ci and Cj are bigger than the tail of C′

k .
Hence, item b in the reducibilty condition is always true
(each output chain tail is less than at least two of the input
chain heads). Intuitively, the reducibility condition says that
chain head as is selected for removal if it is less than at least
one of the input chain heads.

An example is given in figure 3 to show how the state of
the tree and of the chains are modified at each step. Fig-
ure 3a shows the initial setup; C shows the input chains,
C′ shows the empty output chains, and dashed lines shows
the spanning tree. At step 1, chain head (1,0,0) is selected
for removal since (1,0,0) is less then (2,0,0). Figure 3b
shows the resultant chains and tree. Chain head (0,1,0) is
selected for removal at the second step, while (2,0,0) and
(2,2,0) are selected at the third step. At the fourth step chain
heads (1,2,0) and (2,2,0) are selected for removal. Since the
first chain is empty, TG places all the elements in the input
chains to the output chains. Figure 3d shows the final output
chains C′.
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Figure 3. An example for TG

3.3. Computing DCP in Offline Manner

The execution trace of a distributed program can be
recorded easily as a chain on each process. At the termina-
tion of the execution, N chains are obtained. Such a trace
corresponds to the trivial partition of a computation poset.
We can now define the offline version of the DCP problem
as follows:
Definition 3 Let P be a partially ordered set with n ele-
ments. Given a chain partition of P , C = {C1, . . . , CN}
into N disjoint chains, rearrange these chains into a chain
partition with the fewest number of chains.

The complexity of an algorithm that computes DCP in
an offline manner by using BM or TG could be computed
as follows: Let the initial partition be given in N disjoint
partitions. Subsequently, N − w BM or TG calls need to
be made to obtain the DCP. Hence, the total complexity of
BM is O((N − w)(n + e≤)), where the total complexity
of TG is O((N − w)Nn). The worst case complexities of
both algorithms are the same, O(n3).

3.4. Computing DCP in Online Manner

Online or incremental algorithms work on dynamic
structures with unpredictable behavior. Informally, in an in-
cremental approach, at each step some new event is added
to the poset and we want to compute DCP of the new poset.
There are two frameworks for general incremental algo-
rithms. The first approach assumes that a value computed
at a step is never updated in a latter step. This approach is
useful for applications where a previous decision cannot be
changed, e.g. scheduling or motion control. For this ap-
proach, the best known online algorithm for partitioning the
poset is given by Kierstead [12]. His algorithm to partition

any poset of width k requires (5k−1)
4 chains. Felsner [4] and

Agarwal et al. [1] have presented online algorithm for some
special cases that require

(
k+1
2

)
chains to partition a poset.

The second approach for incremental DCP allows the
chains to be reorganized to reach the optimal solution. In
this paper, we are concerned with the second approach for
finding the width of the known subposet P ′ ⊆ P , and parti-
tioning it into w′ chains. At each step, we have the accurate
width of the subposet and a corresponding chain partition.
However, when a new element arrives the chain partition
may get reorganized.

Here, we assume that a new element arrives adher-
ing linear extension hypothesis -elements arrive consistent
with to a linearization of the poset- defined by Bouchitté
et al. [2]. Thus, when a new element arrives, all ele-
ments that happened-before it have already arrived and been
processed. This is achieved by buffering the new element if
it violates the assumption and processing it later. Whether
to buffer an element can be determined efficiently by ex-
amining its vector clock. We now define the incremental
version of the DCP problem as follows:



Definition 4 Let P be a partially ordered set with n ele-
ments and Ct−1 be the chain partition at time t − 1. Given
a linearization L of P , and vt as the tth element of L, com-
pute the optimum chain partition Ct of Ct−1 ∪ vt.

We now outline an algorithm that uses BM or TG for
computing the DCP in an incremental manner. Given BM
and TG, one simple way to use them in an incremental fash-
ion is calling them whenever a new element arrives. Let Cj

be the chain partition of size k at step j, and ej be the new
element. Then, we create a new chain Cj

k+1 that contains
only ej and append it to the chain partition Cj . Later, we
call BM or TG with the modified chain partition. Then, the
chain partition returned by BM or TG becomes the current
chain partition for step j+1. If there were no reduction, then
the current width of the subposet is increased. We refer to
these algorithms as BM -Incremental and TG-Incremental.
Figure 4 shows the incremental algorithm.

procedure Incremental
(v:vector clock, Alg:algorithm): C:chain partition

assume: 1 ≤ k ≤ |w′|
C =Alg(C, v);
return C;

endprocedure

Figure 4. Incremental algorithm

We now analyze the time complexities of the algorithm.
Let the width of the current subposet be k. Then running
BM and TG once have time complexity of O(j + e≤) and
O(kj), respectively. Since there are n steps, and k ≤ w,
the total complexity of the incremental algorithm is O(n3)
when BM is used, and O(wn2) when TG is used. Fel-
sner et al. [4] [5] argue that O(Kn2) is optimal for any
K > 0 even for the decision problem: Whether P can be
partitioned into K chains.

4. Algorithm IG

In this section, we present a new incremental algorithm
CP to compute DCP of a poset. Our algorithm can be used
both in incremental and offline manner. We only give the
incremental version, since offline version is trivial.

The algorithm uses chains to store the poset elements.
Each chain is stored in an increasing order so that head is
the smallest element and tail is the largest element in the
chain. CP keeps two types of chains: work and history. We
refer to the set of work (history) chains as work (history)
space. W j (Hj) represents the work (history) space, while
W j

i (Hj
i ) represents the ith chain of the work space (history

space) at time j. On arrival of a new element at time j, CP
returns the width and the partition of the subposet P j .

Whenever a new element arrives, CP tries to append it
to one of the chain tails. However, this might not be al-

ways possible. In this case, CP calls the Merge func-
tion to merge k chains into k − 1 if possible. The Merge
function takes k chains as input. It returns three types
of chain sets; input chains C=C1, · · · , Ck, output chains
C′=C′

1, · · · , C′
k−1, and history chains H ′= H ′

1, · · · , H ′
k−1.

Merge uses the following operations on chains (q and p
represent chainsS):

append(p, e) : append element e to chain p
removehead(p) : remove the head of the chain p
head(p) : return the first item in p, or a maximal

value if p is empty
append(q, p) : append p content to the end of q, and

empty p

The Merge function borrows the basic merge idea, and
the FindQ function along with the spanning tree data struc-
ture from [16]. Merge is performed by repeatedly removing
an element from one of the k input chains and inserting it
in one of the k − 1 output chains. The output chain to place
the element is decided by FindQ according to the spanning
tree data structure. At each step, Merge only compares the
heads of chains which have not been compared earlier. It
keeps track of this in the variable ac which is the set of in-
dices indicating those input chains whose heads are known
to form an antichain. It terminates when either ac has k
elements or one of the input chains is empty. Whenever
ac has k or k − 1 elements, the Merge function appends
the content of output chains to history chains and clears the
output chains. A detailed discussion of spanning tree data
structure, and FindQ can be found in [11].

CP updates its work and history chains according to the
result of Merge. It uses the following operations on work
and history chains (p and q represent chains, P and Q rep-
resent sets of chains):

tail(p) : return the last item in p, or a minimal value
if p is empty

insert(P, e) : insert element e in P as a new chain
join(Q, P ) : append each p in P to a q in Q if possible,

or add p to Q as a new chain
CP is shown in figure 5. It updates its work space ac-

cording to the output chains of Merge, if Merge reduces
the chain partition (see line 7 in figure 5). Otherwise it uses
the input chains of Merge to update its work space (see line
9 in figure 5). The history space of CP is updated by the
history chains of Merge (see line 11 in figure 5).

CP splits the the current chain partition into work and
history space, and continues the merge operation on new el-
ements by only comparing them to the elements in the work
space. Once an element is placed in the history space, it
never appears in the work space in a later step. Besides, the
partition of the history space never changes. This splitting
reduces the number of comparisons in the Merge function,
since at step j we do not need to compare the new incoming



procedure CP (v:vector clock):W, H:chain sets
assume: 1 ≤ K ≤ wj (wj is the width of the execution seen)

1: if ∃i : tail(Wi) ≤ v then
2: append(Wi, v); //append at a chain tail
3: else
4: insert(W, v);
5: (C,C′,H′)=Merge(W );
6: if C = ∅ then //no width increase
7: W = C′
8: else //width increase
9: W = C;
10: endif
11: join(H, H′);
12: endif
13: return W, H;
endprocedure

Figure 5. Algorithm CP

element with the elements that are properly below the max-
imum wj antichain, M j . It is sufficient to compare it with
M j and the elements that are above it. The intuition be-
hind this optimization is that when elements arrive accord-
ing to linear extension hypothesis, the new element is either
greater than an element in M j , or forms a new antichain
with M j . We define the elements that are properly below
this antichain as irrelevant elements for the later steps.

We now give the definition of a relevant element.

Definition 5 Let M j be the biggest maximum antichain of
P j . Then, an element e ∈ P j is relevant at time j if there
exist an f ∈ M j s.t. f < e.

Observe that once an element is labeled as irrelevant el-
ement, it is never relabeled. Moreover, after a Merge call,
work space includes all the relevant elements while, history
space includes all the irrelevant elements.

When CP calls the Merge function, the width of the
chain partition either increases or stays the same. We know
give an example how CP updates its work and history space
according to two of the cases. The details of the Merge
could be found at [11].

4.1. Example

Consider the example in figure 6. Assume that the exe-
cution happened is x2, x1, x3, x4, x5, x6, x7, x8, x9,x10.

Case 1: There is no increase in width with new element
At time 4, the execution seen so far is X3 = {x2, x1, x3}

and the new element is x4. The width of the subposet is two.
The content of work space is as follows: C1 contains x2

and x3, and C2 contains x1. There is no chain to append x4

since both x1 and x3 are incomparable with x4, hence CP
creates a new chain C3 and appends x4 to C3, and invokes
Merge. Observe that k is three. Merge places x2 in C′

1

and x1 in C′
2, and computes ac as {x3, x4}. Since ac has

two elements, it appends the contents of C′ to H ′. It places
x3 in C′

1, x4 in C′
2, and returns C (as empty), C′, and H ′

to CP . Then, CP assigns the output chains C′ as work

{}
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Figure 6. (a) A poset P (b) transition in steps
3 & 4 (c) transition in steps 6 & 7

chains, and appends the history chains H ′ of Merge to its
history space. Figure 6b shows the transition between time
3 and 4.
Case 2: The width increases with the new element

At time 6, the execution seen so far is X6 =
{x2, x1, x3, x4, x5, x6} and the new element is x7. The
width of the subposet is two. The content of work space
is as follows: C1 contains x3 and x5, and C2 contains x4

and x6. There is no chain to append x7 since both x5

and x6 are incomparable with x7, hence CP creates a new
chain C3 and appends x7 to C3, and makes a Merge call.
Merge places x3 in C′

1 and x4 in C′
2, and computes ac as

{x5, x6,x7}. Since ac has three elements -an antichain of
size three, hence no reduction is possible-, it appends the
contents of C′ to H ′, and returns C, C′ (as empty), and
H ′. Then, CP assigns the input chains C as work chains,
and appends the history chains H ′ of Merge to its history
space. Figure 6c shows the transition between time 6 and
7. The discussion of the algorithm correctness can be found
in [11].

5. Experiments

In this section we present our simulation results for both
incremental and offline algorithms. All the tests are done on
a computer system equipped with 512MB RAM and 1.13
Ghz Pentium3 processor. Each test case is performed five
times and the average is used in the analysis.

5.1. Previous Algorithms

In the implementation of BM and TG, chains are repre-
sented as vectors, and each event is represented as a Vec-
torClock object, while adjacency list of an event is a vector
containing pointers to VectorClock objects that are properly
below this object. Moreover, adjacency lists are sorted to
increase the efficiency of BM .



We set up three different test suites such that each in-
cludes twelve simple test cases. First test suite includes
several small width posets that have at most 90 elements.
Second test suite includes posets of size 100 while width of
the poset changes from 2 to 13. Third test suite includes
a fixed size initial partition, while the number of elements
changes from 10 to 10,000. The posets are randomly cre-
ated according to a given poset size.

In offline manner, TG outperforms BM both in mem-
ory consumption (see figure 7a), and running times (see fig-
ure 7b). Moreover, BM gives out of memory error when
the number of elements is bigger than 9,000. This is, in
fact, expected since constructing the lookup table is done in
O(n2) and needs space O(n2).

In online manner, we introduce one element at a time in
agreement with linear extension hypothesis.

It is trivial to observe that memory usage of each step
of incremental versions never exceeds memory usage of the
offline algorithms. Therefore, hereafter we do not compare
memory usage. We observe that the running time of incre-
mental TG is at least twice as good compared to BM (see
figure 7b).

Another worthwhile comparison is the running times of
incremental and offline versions of these algorithms (see
figure 7b). Although TG performs better than BM in incre-
mental fashion, its performance is still far behind the offline
versions.

5.2. Algorithm CP

We have implemented and tested CP using the identical
objects and test suites mentioned in the previous section.
When a new element arrives, we have observed that Merge
is called at most 22% of the time.

In this section, we compare our incremental algorithm
CP with the offline TG since it has the best performance
so far. Pruning the work space has a big effect on the per-
formance of incremental algorithm, and gives promising re-
sults when compared to the offline TG, see figure 7c.

To confirm these results, we increase our test cases.
Seven new test suites are created. Each test suite contains
18 different test cases whose initial partition vary from 10 to
450, and size vary from 100 to 70,000. Posets are generated
randomly according to a given poset width and size. We
fix the vectorclock size as 10. The random poset generator
takes the vectorclok size, width and size of the poset, and
its initial partition size as parameters. It creates a poset of
the given width and size initially, then partitions it greedily
into the given partition size. Let N and w be respectively
the size of the initial partition and poset width. We define
reducing factor as (N − w)/N . Test suites differ in reduc-
ing factor. The first test suite contains test cases that DCP
of the poset is equal to the initial partition. The second test
suite contains test cases that the width of the poset is 90%
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of the initial partition, hence reducing factor is 0.1. Other
test suites follow the same convention. We test the range of
0% to 60% reductions of initial size. Figure 7d shows the
running times of CP and TG for three test cases (note that
the scale of time axis is logarithmic), detailed graphs for all
test cases can be found in [11].

As expected, when the reducing factor is low, offline al-
gorithm outperforms incremental algorithm. On the other
hand, incremental outperforms offline when the reducing
factor is high. It appears that there is no fixed cut-off point
to choose between incremental and offline algorithm. When
the reducing factor is 0.3, offline algorithm performs better
for the second test, while incremental algorithm performs
better for the first test case. However, when the reducing
factor is more than 0.5, incremental algorithm computes the
optimal chain partition efficiently.

To simplify the results, for each test case the average
time spent for an element is calculated by dividing the run-
ning time by the number of elements in the test case. Then,
we have averaged them according to their reducing factor.
CP gives encouraging results when compared to TG, see
figure 7e. TG computes at best 8 times faster than CP
when the reducing factor is 0, while CP computes 30 times
faster than TG when reducing factor is 0.6.

6. Conclusion

The ability to compute the optimal chain partition of a
distributed computation is useful for debugging, testing and
analyzing distributed programs. For example, we can deter-
mine if there is a potential violation of a limited resource by
monitoring an execution of a distributed program.

In this paper, we have implemented and analyzed two
offline algorithms by Bogart and Magagnosc [8], and Tom-
linson and Garg [16] to investigate this problem. Then, we
generalize the offline algorithms to incremental versions.
However, our experiments have shown that these algorithms
do not perform well under the incremental assumption.

Finally, we have developed a novel incremental algo-
rithm for computing the optimal chain partition and the
width of a poset under the linear extension hypothesis. The
main idea of this algorithm is that we prune the work space
and reduce the number of elements to those most essential
that we call relevant elements. Thus, the number of relevant
elements bound the number of comparisons at each step and
reduce the complexity to O(wsn), where s is the maximum
number of relevant elements, w the width, and n the size of
the poset.

A further research topic could be developing a decentral-
ized incremental algorithm for computing the optimal chain
partition of distributed program traces. Also, it would be
interesting to see the application of the algorithm in a visu-
alization tool.

References

[1] A. Agarwal and V. K. Garg. Efficient dependency tracking
for relevant events in shared-memory systems. In PODC
’05: Proceedings of the twenty-fourth annual ACM SIGACT-
SIGOPS symposium on Principles of distributed computing,
pages 19–28, New York, NY, USA, 2005. ACM Press.
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