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�nite representations. This allows us to automateoperations on periodic signals, and therefore, to im-plement the algorithms of Cofer and Garg [3, 4]. Weuse periodic signals not only to represent event se-quences, but also the delays that can be applied tothese sequences.We �rst present an overview of max-plus algebrasfor discrete event systems. Then, we de�ne a �niterepresentation for event sequences, called signals. Wethen present algorithms for implementing operationson signals. We also de�ne algorithms for computingclosures on signals and on matrices of signals. We il-lustrate our framework with a manufacturing processexample. Because of space limitation, we omit proofsthat do not o�er any di�culty, including the proofsof correctness of our algorithms.2 Background and ExampleMax-plus algebras were studied by Cuninghame-Green [8] in the framework of operation research.Cuninghame-Green observed that non-linear equa-tions can be expressed linearly using an algebra inwhich sum and product are de�ned as maximizationand conventional addition respectively. In this sec-tion, we give a short introduction to the max-plusalgebra for discrete event systems. Further detailscan be found in [3].Let " = �1, e = 0, and Z be the union of the set ofintegers and f"g. Let + be the conventional additionon Z given that, for any element a 2 Z, a + " = ".De�ne � and 
 such that� for all (a; b) 2 Z2, a � b = max(a; b)� for all (a; b) 2 Z2, a 
 b = a+ bThe � operator has the following properties:� commutativity, i.e., for all (a; b) 2 Z2, a � b =b� a1



� associativity, i.e., for all (a; b; c) 2 Z3, (a � b) �c = a � (b� c)� idempotency, i.e., for all a 2 Z : a� a = a� " is the identity element, i.e., for all a 2 Z, a �" = "� a = aThe 
 operator has the following properties:� associativity, i.e., for all (a; b; c) 2 Z3, (a 
 b) 
c = a 
 (b
 c)� distributivity over �, i.e., for all (a; b; c) 2 Z3,a
 (b� c) = (a
 b)� (a 
 c)� e is the identity element, i.e., for all a 2 Z, a 
e = e
 a = a� " is absorbing with respect to 
, i.e., for all a 2Z, a
 " = " 
 a = "The structure (Z;�;
) is a max-plus algebra, alsocalled a dioid. For example, 1� 2 = 2 and 1
 2 = 3.This concept can be extended to matrices as follows.If A,B 2 ZN�N , then, for all i and j from 1 to N ,(A �B)ij = aij � bij, and(A 
B)ij = NMk=1 aik 
 bkj.(ZN�N ;�;
) is also a dioid, where the identity ele-ments for � and 
 are, respectively," = 0B@ " � � � "... ..." � � � " 1CA and I = 0B@ e ". . ." e 1CA .In [1, 3], the max-plus algebra has been applied tothe modeling of discrete event systems. The behaviorof a system is captured by a special class of Petri netscalled timed event graphs. Petri nets are widely usedas a graphical tool to model distributed processes. Acomprehensive review of their de�nition and use canbe found in [10]. A Petri net is a bipartite graph inwhich vertices are either places or transitions. Edgesmay go from transitions to places or from places totransitions. Initially, places are marked with zero ormore tokens. The presence of tokens in a place in-dicates that some condition, or state, in the processis satis�ed. Transitions are normally associated withevents. A transition may be activated, or �red, whenall its predecessor places contain at least one token(i.e., some conditions are met that cause an event tooccur). Upon �ring, one token is removed from eachplace preceding the transition and one token is addedto each of its successors.In a TEG model, an event sequence corresponds tothe successive �ring times of a transition. In [1], Bac-celli et al. describes a method for calculating all event

sequences in the system using max-plus algebra. ATEG (with N transitions) is represented by a N �Ndelay matrix in the (ZN�N ;�;
) max-plus algebra.The element Aij of a delay matrix A is the time de-lay associated with the place whose input (output)transition is �j (�i respectively). The problem can beposed as a set of equationsxi = M1�j�NAijxj � vi, where 1 � i � N .xi is the actual �ring time of transition �i, and viis the earliest time that transition �i may �re. Thissystem of equations can be written asx = Ax� v,the least solution of which is A�v [6] whereA� =Mk�0Ak.A�, called the *-delay matrix of A, gives the maxi-mum delay between transitions along in�nite paths.In [3], Cofer and Garg show that max-plus alge-bra and timed event graphs can be used to analyzethe controllability of discrete event systems (DES).Using the max-plus algebra framework, they de�neconditions under which supremal controllers can befound for any system represented by a TEG. The goalof this paper is to automate their work by de�ninga max-plus algebra for event sequences that have a�nite representation.
a r

s wt 1 t 2 t 3Figure 1: Timed event graph of a manufacturing pro-cess.Example: Manufacturing ProcessConsider the timed event graph of Figure 1 whichrepresents a manufacturing process. Upon arrival(represented by transition t1), parts are �rst set-up(s) in a machine queue, and then worked (w) in or-der of arrival. Transition t2 represents a part leav-ing the queue, and transition t3 the completion ofa part. Each operation takes a constant amount oftime. However, the inter-arrival time (a) may varydue to the work oor schedule. Moreover, the ma-chine reset time (r) is not constant either. We, how-ever, assume that both a and r ultimately follow pe-riodic patterns. The delay functions are de�ned asfollows: s(x) = x+ 12



w(x) = x+ 4a(x(k)) = � x(k) + 5 if k is oddx(k) + 7 if k is evenr(x(k)) = � x(k) + 4 if k mod 5 = 0x(k) + 1 otherwisewhere k is the kth occurrence of the event type x.3 De�nition of SignalsWe use sequences of natural numbers to model tim-ing behavior of DES. Each natural number representsthe date at which events, indexed in the set of natu-ral numbers, of the same type occur. A sequence Xis de�ned as a function from the set of natural num-bers, called indices, to the union of the set of naturalnumbers and f"g such that8k � 0 : (X[k] = ")) (8j < k : X[j] = ").A sequence X is periodic if and only if there exist k,C,and n such that. for all i � n, X[i + k] = X[i] + C.For example, the sequence f0; 4; 7; 9; 11; 13; : : :g rep-resents event occurrences that happen at time zero,four, seven, and every two time units from then on.This sequence is in�nite, but it can be representedby an initial �nite sequence f0; 4; 7g, and an in�niteperiodic sequence f9; 11; 13; : : :g.By de�nition, not all sequences can be modeledusing a �nite number of bits. Therefore, we restrictourselves to periodic sequences. We view a periodicsequence as an initial �nite sequence (called transi-tory sequence) and a periodic �nite sequence (calledperiod). Periodic sequences have a �nite representa-tion that we call periodic signals.De�nition 1 Let I be the set of integers. A signalis de�ned as a tuple (T ;P ) where1) T = (t1; t2; : : : ; tn) is a �nite list of n � 0 elements(called transitory steps) in I [ f"g s.t.80 � k � n : (tk = ")) (8j < k : tj = ").2) P = (p1; p2; : : : ; pm) is a �nite list of m � 0 inte-gers (called periodic steps) s.t. Pk=mk=1 pk � 0.Each ti and pi represents the time elapsed be-tween occurrences of consecutive indices of a sametype of events. For example, the sequence X =f0; 4; 7; 9; 11; 13; : : :g, can be represented by the signalx = ((0; 4; 3); (2)). In fact, all periodic sequences canbe represented by a periodic signal and vice versa.There are many representations of a same sig-nal. For example, x = ((2; 3); (1; 3; 1; 3)) and y =((2); (3; 1)) represent the same signal. For every sig-nal, there exists a canonical form that can be com-puted by eliminating any su�x of the transitory se-quence matching a su�x of the period, and then, �nd-ing the minimal representation of the period. In our

example, y is the canonical form of x. Canonizinga signal can be performed using a O(m + n) algo-rithm. The canonical form gives us a simple meansto compare two signals. Conversely, it is sometimeconvenient (as in our algorithms) to expand the rep-resentation of two signals so that their transitory se-quences (periods) have the same number of transi-tory (periodic respectively) steps. This operationsis called homogenizing two signals and can be per-formed using an O(m2 + n) algorithm.We now de�ne some notations that will be used inthe next sections. The function T (x) maps a signalx = (T ;P ) to its transitory sequence T . Similarly,the function P (x) maps a signal x = (T ;P ) to itsperiod P . Finally, the slope �(x) of a periodic signalx = ((t1; : : : ; tn); (p1; : : : ; pm)) is de�ned as �(x) =1mPmi=1 pi. For example, if x = ((0; 4; 7); (2)), thenT (x) = (0; 4; 7), P (x) = (2), and �(x) = 2. Notethat we limit our work to signals with non-negativeslopes. Finally, Z is de�ned as the union of f"; "; : : :gand the set of periodic signals.Note, that, in [9], Gaubert de�nes a similar class ofsignals, which he represents using a polynomial form.The di�erence between his work and ours is coveredin subsequent sections.4 Operations on Signals4.1 Max operationDe�nition 2 Given two signals x and y, and theirunderlying sequences X and Y , the signal w =max(x; y), also denoted w = x � y, is de�ned by itsunderlying sequence W = max(X;Y ), which is de-�ned as the pointwise maximization of the sequencesX and Y .We also present an O(m2 +n+N ) algorithm (wheren = jT (x)j � jT (y)j, m = jP (x)j � jP (y)j and N isde�ned in Step 3 of the algorithm) to compute themax of two signals (x and y respectively).maximize(x,y):1. If �(x) = �(y) then T (x � y) = T (x) � T (y),and P (x� y) = P (x)� P (y);2. elsif �(x) < �(y) then maximize(y,x);3. else /* let S(i; x) =Pik=1 pk; pi 2 P (x) */xl = minfS(i; x)� i�(x); 1 � i � mg;yu = maxfS(i; y) � i�(y); 1 � i � mg;N = (xl �X[0] + yu + Y [0])=(�(x)� �(y));X[�1] = 0; Y [�1] = 0;for i from 1 to N + n doT (x� y)[i] = ((X[i]� Y [i])�(X[i � 1]� Y [i� 1]);P (x� y) = P (x);4. Canonize(x� y);3



The maximization of an in�nite number of signalsdoes not necessarily result in a periodic signal. Theunderlying sequence of the signal y = ((0); (1)) isY = f0; 1; 2; 3; 4; : : :g. The set X = fxk; 0 � k :xk = ((Pji=0 Y [i]; 0 � j � k); (0))g is an in�niteset of periodic signals; but Lx2X x corresponds tothe sequence f0; 1; 3; 6;10;15;21; : : :g, which is not aperiodic sequence.4.2 Backshift operatorInitial marking in TEGs are modeled using the back-shift operator. Tokens initially present in a givenplace immediately contribute to the enabling of itsoutput transition, even if the place's delay is not null.De�nition 3 Let x = (T; P ) be a periodic signal inwhich T = (t1; t2; : : : ; tn). Then, the backshift opera-tor  is de�ned as x = (x) = (("; t1; t2; : : : ; tn); P ).In our manufacturing process example, the place withthe delay function a initially contains a token. There-fore, the actual delay associated with this place is a.Let xi denote the occurrence times of event ti. Then,the manufacturing process is described by the follow-ing equation:0@ x1x2x3 1A = 0@ a " "s " r" w " 1A0@ x1x2x3 1A �0@ v1v2v3 1Awhere v1 = v2 = v3 = ((); (0).Note that Z is closed under the backshift opera-tor i, for all i � 1. The backshift operator alsodistributes over the max operator.4.3 Periodic delay functionThis section de�nes and characterizes a function thatcan delay a periodic signal according to another pe-riodic signal.De�nition 4 - Delay -Let x = ((t1; : : : ; tn); (p1; : : : ; pm)) be a periodic sig-nal, and �d be a periodic delay function such thatd = ((t01; : : : ; t0n); (p01; : : : ; p0m)).Let ti (t0j) be the �rst element of T (x) (T (d) respec-tively) not equal to ".Then, P (�d(x)) = (p1 + p01; : : : ; pm + p0m)and, if j � i, T (�d(x)) is equal to(t1; : : : ; tj�1; tj + t0j ; : : : ; tn + t0n)otherwise,(t1; : : : ; ti�1; ti +Pil=j t0l; ti+1 + t0i+1; : : : ; tn + t0n).

The complexity of the algorithm implementing thedelay operator is O(m2 + n) where (m = jP (x)j �jP (d)j and n = jT (x)j � jT (d)j) because of the needto homogenize the input and delay signals.delay(x,d): y1. for i from 1 to n doif (T (x)[i] = ") thenT (y)[i] := ";if (T (d)[i] 6= ") then init := init + T (d)[i];elsif (T (d)[i] = ") then T (y)[i] := T (x)[i];else T (y)[i] := T (x)[i] + T (da)[i] + init;init := 0;2. P(y) := pointwise addition of P(x) and P(d);3. Canonize (y);Note that Z is closed under the operation de-�ned by a periodic delay, and that the compositionof two periodic delay functions is commutative, as-sociative, and the neutral element is the zero delayfunction. However, the composition of a periodic de-lay function and the backshift operator is, in gen-eral, not commutative except when the delay is con-stant. In fact, if d and x are arbitrary periodic signals,�d(x) = �d(x).In our manufacturing process example, our delayfunctions can be de�ned in terms of periodic signals.The constant delays s and w can be expressed with((1); ()) and ((4); ()) respectively. The periodic de-lays a and r can be represented by ((7); (�2; 2)) and((); (4;�3; 0; 0; 0)).Our periodic delay function should not be confusedwith the 
 operator in [1, 9], which is de�ned as thesup-convolution of two sequences. The e�ect of thesup-convolution of an input signal and a delay signalare not easily predictable. For example, delaying odd-indexed events of a signal by seven and even-indexedevents by �ve (as in the a delay function in our manu-facturing process example), cannot be expressed withthe 
 operator.5 Closure OperationsThe least solution of x = Ax � v is A�v, whereA� = Lk�0Ak [1]. The next two sections describealgorithms to compute A�.5.1 Periodic *-delay functionDe�nition 5 A periodic *-delay function (d)� isde�ned by a periodic delay signal d,where the slopeof d is null, as (d)� =Lk�0(�d)k .To show the completeness of the *-delay function inZ, we need to prove that Lk�0(�d)k is equal to a4



�nite maximization. In the rest of this section, weassume that the periods of the periodic delay signaland the input periodic signals are homogeneous andcontain m steps. We also de�ne the maximum indexof the transitory pattern of the input signal to be n.Due to space limitation, we only outline the majorsteps of the proof.The �rst step of the proof consists of showing that,for any signal x, Lk�0(�d)k(x) can be re-writtenas the maximization over an in�nite set of signalsthat are rooted at time instants corresponding to theelements of X (the underlying sequence of x). Thus,we want to show thatMk�0(�d)k(x) =Mk�0 kxk,where xk = k((X[k]); (D[k + 1]; : : : ; D[k+m])) andD is the underlying sequence of the delay signal d.For example, if x = ((0); (2)) and d = ((); (1;�1)),then Lk�0(�d)k(x) corresponds to the maximiza-tion of the signals corresponding to the following se-quences: f0; 1; 3; 5; 7;9;11; : : :g� f"; 0; 2; 3; 6; 7; 10; : : :g� f"; "; 1; 2; 4; 6;8; : : :g� f"; "; "; 1; 3; 4; 7; : : :g� : : :which can be re-written asf0; 0; 1; 1;2;2; 3; : : :g� f"; 1; 2; 2; 3;3;4; : : :g� f"; "; 3; 3; 4; 4; 5; : : :g� f"; "; "; 5; 6; 6;7; : : :g� : : :The second part of the proof is simply a mat-ter of comparing the slopes of the xk's to the slopeof x. Observe that the xk's have the same slope(1=mPmi=1D[k+ i]). Using that fact, it is quite easyto show that, in any case, Lk�0 kxk can be com-puted using, at most, the �rst (n + 2m) xk signals.Therefore, it shows that (d)�(x) is the maximiza-tion of a �nite number of signals. We now give analgorithm to compute such quantity.*-delay (x,d): y1. Compute �(xi) = 1=mPmi=n+1D[i];2. if (�(xi) � �(x)) theny := Ln+mk=0 xk;3. else T(z) := T (Ln+mk=n+1 xk);P(z) := P (Ln+2mk=n+m+1 xk);y := Maximize(z,Lnk=0 xk);4. Canonize (y);

The complexity of the algorithm lies in Steps 2 and3, each of which is in O((n+m)(m2+n+N )) wherem2+n+N represents the cost of maximizing two sig-nals. Therefore, the complexity of the *-delay func-tion is O((n+m)(m2 + n+ N )).5.2 Closure matrices of signalsOur algorithm to compute the *-delay matrix of amatrix representing a TEG is based on the algorithmdeveloped in [9] and described by the following for-mula: A�ij = Mp2Pij p
 (e� MC2A(p)Oc2C c+). (1)A is a matrix representing a system and G(A) is thegraph structure of the Petri net associated with ma-trix A. Pij is the set of elementary paths from j toi in G(A), and A(p) is the set of elementary circuitsaccessible from a path p. A circuit C is said to beaccessible from a path p if C [ fpg is a connectedsubgraph of G(A).We cannot directly apply Gaubert's formula be-cause it assumes that 
 is commutative, and, in ourmax-plus algebra, the delay function (which corre-sponds to 
) is not commutative. We have to alterGaubert's formula by taking into account the positionof the elementary circuits in the considered elemen-tary paths. Thus, after rearranging terms, Gaubert'sformula becomesA�ij = Mp2Pij ;C2A(p)(c�i aikc�kaklc�l : : : c�mamjc�j ),(2)where each elementary path p 2 Pij can be writtenas aikakl : : :amj and the c�i ; c�k; c�l ; : : : c�m; c�j are thetransitive closures of the delays in elementary circuitscontaining transitions �i; �k; �l; : : :�m; �j.Let us illustrate our formula by computing A�31 inour manufacturing process example. This element ofA� corresponds to the closure of all paths from t1to t3. There is only one elementary path from t1 tot3, which means that P31 = f!sg. Along this path,there are two distinct elementary circuits, which givesus A(!s) = ffwrg; fag; fwr; agg. Therefore,A�31 = (wr)�ws �ws(a)� � (wr)�ws(a)�= (wr)�ws(a)�Using the same technique, we can calculate each ele-ment of A�. This leads toA� = 0@ (a)� " "(rw)�s(a)� (rw)� (rw)�r(wr)�ws(a)� (wr)�w (wr)� 1A ,which corresponds to the matrix computing by Coferand Garg.5



Moreover, it yieldsx3 = (wr)�ws(a)� [0]= (wr)�ws[((0); (5; 7))]= (wr)�[((5); (5; 7))]= [((5; 5; 7); (5; 7; 8; 5; 5;6;5; 8; 5; 6))]which corresponds to the following in�nite periodicsequence:x3 = f5; 10; 17; 22;29;37;42;47;53;58;66;71;77; : : :gEven though delay matrices can be rather sparse,*-delay matrices are usually very dense. In [2], we de-�ne composition/decomposition techniques that donot require the construction of entire *-delay ma-trices. The �rst composition technique, called se-quential composition, leads to the decomposition ofa graph based on its strongly connected components(SCCs). The second composition technique, calledsynchronization, divides a graph along its elementarycircuits.6 ConclusionIn this paper, we have de�ned a composable max-plus algebra of periodic signals that can represent thetiming of events in real-time discrete event systems.A signal is a �nite representation of in�nite eventsequences. We de�ned and analyzed the complexityof several algorithms that implement synchronizationand delay functions on signals as well as the closuresof transition delay matrices. Our algebra constitutesan implementation of the max-plus algebra of Coferand Garg [3, 4], which can compute supremal con-trollers for real-time discrete event systems.References[1] F. Baccelli, G. Cohen, G.J. Olsder, and J.-P.Quadrat. Synchronization and Linearity: an Al-gebra for Discrete Event Systems. John Wileyand Sons, 1992.[2] G. Brat and V. K. Garg. Composability of themax-plus algebra of signals for the evaluation ofreal-time software systems. Submitted to the1998 Workshop on Formal Methods in SoftwarePractice, 1997.[3] D. D. Cofer and V. K. Garg. A max-algebra solu-tion to the supervisory control problem for real-time discrete event systems. In G. Cohen andJ.-P. Quadrat, editors, Lecture Notes in Con-trol and Information Sciences 199: 11th Inter-national Conference on Analysis and Optimiza-tion of Systems, 1994.
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