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Abstract

In this paper, we define a max-plus algebra of sig-
nals for the evaluation of timing behavior of discrete
event systems modeled by timed event graphs. We
restrict ourselves to infinite, periodic sequences for
which we can compute finite representations called
signals. This framework allows us to implement a
max-plus algebra for computing supremal controllers
for real-time, discrete event systems.

KGYWOI‘dS: max-plus algebra, discrete event
systems, real time, supervisory control, periodic sig-
nals.

1 Introduction

It has been shown that max-plus algebra can be ap-
plied to the modeling of timing behavior in for dis-
crete event systems (DES) [5, 6, 7]. Advances in
this field have been extensively reported in [1] and
[9]. The same framework has been used by Cofer
and Garg to solve the supervisory control problem
for real-time DES [3, 4]. Behaviors of DES are cap-
tured by Timed Event Graphs (TEG). Certain events
are declared controllable and they may be disabled
or delayed by a supervisor to restrict the system to
a specified behavior. Cofer and Garg defined algo-
rithms to compute supremal controllers for real-time
DES. Unfortunately, event sequences are generally in-
finite, and therefore, some sequences do not have a fi-
nite representation. This problem has prevent Cofer
and Garg to automate their work.

Our goal is to define a max-plus algebra for event
sequences that ultimately exhibit periodic patterns.
These sequences, which we call periodic signals, have
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finite representations. This allows us to automate
operations on periodic signals, and therefore, to im-
plement the algorithms of Cofer and Garg [3, 4]. We
use periodic signals not only to represent event se-
quences, but also the delays that can be applied to

these sequences.

We first present an overview of max-plus algebras
for discrete event systems. Then, we define a finite
representation for event sequences, called signals. We
then present algorithms for implementing operations
on signals. We also define algorithms for computing
closures on signals and on matrices of signals. We il-
lustrate our framework with a manufacturing process
example. Because of space limitation, we omit proofs
that do not offer any difficulty, including the proofs
of correctness of our algorithms.

2 Background and Example

Max-plus algebras were studied by Cuninghame-
Green [8] in the framework of operation research.
Cuninghame-Green observed that non-linear equa-
tions can be expressed linearly using an algebra in
which sum and product are defined as maximization
and conventional addition respectively. In this sec-
tion, we give a short introduction to the max-plus
algebra for discrete event systems. Further details
can be found in [3].

Let ¢ = —o0, e = 0, and Z be the union of the set of
integers and {¢}. Let + be the conventional addition
on Z given that, for any element ¢« € 7, a +¢ = ¢.
Define & and ® such that

o for all (a,b) € Z%, a &b = max(a, b)

o forall (a,b) € 7% a@b=a+1b
The & operator has the following properties:

e commutativity, i.e., for all (a,b) € Z?, a® b =
bda



assoclativity, 1.e., Ior all (a,0,¢) € £27,

c=ad(bPc)

\awo)w

idempotency, i.e.,foralla € Z :a P a=a

¢ is the identity element, 1.e., foralla € Z, a ®
e=eha=a

The ® operator has the following properties:

associativity, i.e., for all (a,b,¢) € Z3, (a ©® b) @
c=a®(b®c)

distributivity over &, i.e., for all (a,b,c) € Z3,
a@bdc)=(a@b)d(a®ec)

e ¢ 1s the identity element, i.e., forall a € 7, a ®
eZe®@Ra=a

e ¢ is absorbing with respect to ®, 1.e., for all @ €
Z,aQe=c®a=c¢

The structure (7,4, ®) is a max-plus algebra, also
called a dioid. For example, 12 =2and 1 ®2 = 3.
This concept can be extended to matrices as follows.
If A,B € ZV*N then, for all i and j from 1 to N,

(A D B)ij = a;; b bij, and

N
(A® B);; = @aik ® by
k=1
(ZN*N @ @) is also a dioid, where the identity ele-
ments for @ and ® are, respectively,

€ - € e €
and [ =

In [1, 3], the max-plus algebra has been applied to
the modeling of discrete event systems. The behavior
of a system 1is captured by a special class of Petri nets
called timed event graphs. Petri nets are widely used
as a graphical tool to model distributed processes. A
comprehensive review of their definition and use can
be found in [10]. A Petri net is a bipartite graph in
which vertices are either places or transitions. Edges
may go from transitions to places or from places to
transitions. Initially, places are marked with zero or
more tokens. The presence of tokens in a place in-
dicates that some condition, or state, in the process
is satisfied. Transitions are normally associated with
events. A transition may be activated, or fired, when
all its predecessor places contain at least one token
(i.e., some conditions are met that cause an event to
occur). Upon firing, one token is removed from each
place preceding the transition and one token i1s added
to each of its successors.

In a TEG model, an event sequence corresponds to
the successive firing times of a transition. In [1], Bac-
celli et al. describes a method for calculating all event

sequences 1n the system using max-plus algebra. A
TEG (with N transitions) is represented by a N x N
delay matrix in the (ZV¥*V @ ®) max-plus algebra.
The element A;; of a delay matrix A4 is the time de-
lay associated with the place whose input (output)
transition is 7; (7; respectively). The problem can be
posed as a set of equations

;= @ Aijr; @ vg, where 1 <@ <N,
1<jEN

z; 18 the actual firing time of transition 7;, and wv;
is the earliest time that transition ; may fire. This
system of equations can be written as

x=Ar D,

the least solution of which is A*v [6] where

A*:@Ak.

E>0

A*, called the *-delay matrix of A, gives the maxi-
mum delay between transitions along infinite paths.

In [3], Cofer and Garg show that max-plus alge-
bra and timed event graphs can be used to analyze
the controllability of discrete event systems (DES).
Using the max-plus algebra framework, they define
conditions under which supremal controllers can be
found for any system represented by a TEG. The goal
of this paper is to automate their work by defining
a max-plus algebra for event sequences that have a
finite representation.

a r

Figure 1: Timed event graph of a manufacturing pro-
cess.

Example: Manufacturing Process

Consider the timed event graph of Figure 1 which
represents a manufacturing process. Upon arrival
(represented by transition ¢1), parts are first set-up
(s) in a machine queue, and then worked (w) in or-
der of arrival. Transition f5 represents a part leav-
ing the queue, and transition ¢3 the completion of
a part. Each operation takes a constant amount of
time. However, the inter-arrival time (@) may vary
due to the work floor schedule. Moreover, the ma-
chine reset time (r) is not constant either. We, how-
ever, assume that both a and r ultimately follow pe-
riodic patterns. The delay functions are defined as
follows:



w(l‘) = T4
B z(k)+5 if kisodd
a(z(k)) = { z(k)+7 if kiseven
B zk)+4 ifkmod5=0
r(e(k)) = { z(k)+ 1 otherwise

where k is the k*® occurrence of the event type z.

3 Definition of Signals

We use sequences of natural numbers to model tim-
ing behavior of DES. Each natural number represents
the date at which events, indexed in the set of natu-
ral numbers, of the same type occur. A sequence X
is defined as a function from the set of natural num-
bers, called indices, to the union of the set of natural
numbers and {¢} such that

VE>0: (XK =¢) = (¥j < k: X[j]=e).

A sequence X is periodic if and only if there exist &,C,
and n such that. for all i > n, X[{ 4+ k] = X[{] + C.
For example, the sequence {0,4,7,9,11,13,...} rep-
resents event occurrences that happen at time zero,
four, seven, and every two time units from then on.
This sequence 1s infinite, but it can be represented
by an initial finite sequence {0,4,7}, and an infinite
periodic sequence {9,11,13,...}.

By definition, not all sequences can be modeled
using a finite number of bits. Therefore, we restrict
ourselves to periodic sequences. We view a periodic
sequence as an initial finite sequence (called transi-
tory sequence) and a periodic finite sequence (called
period). Periodic sequences have a finite representa-
tion that we call periodic signals.

Definition 1 Let I be the sel of integers. A signal
is defined as a tuple (T; P) where

T = (t1,ta,...,tn) is a finite list of n > 0 elements
(called transitory steps) in I U {e} s.t.

VO<k<n:(tr=¢)=(Vji<k:tj=¢).

2) P=(p1,p2, ..., Pm) 15 a finite list of m > 0 inte-
gers (called periodic steps) s.t. Zl]zjln pr > 0.

Each t; and p; represents the time elapsed be-
tween occurrences of consecutive indices of a same
type of events. For example, the sequence X =
{0,4,7,9,11,13,.. .}, can be represented by the signal
z = ((0,4,3);(2)). In fact, all periodic sequences can
be represented by a periodic signal and vice versa.

There are many representations of a same sig-
nal. For example, z = ((2,3);(1,3,1,3)) and y =
((2);(3,1)) represent the same signal. For every sig-
nal, there exists a canonical form that can be com-
puted by eliminating any suffix of the transitory se-
quence matching a suffix of the period, and then, find-
ing the minimal representation of the period. In our

example, y 18 the canonical rorm ol x. CLanonizing
a signal can be performed using a O(m + n) algo-
rithm. The canonical form gives us a simple means
to compare two signals. Conversely, it is sometime
convenient (as in our algorithms) to expand the rep-
resentation of two signals so that their transitory se-
quences (periods) have the same number of transi-
tory (periodic respectively) steps. This operations
is called homogenizing two signals and can be per-
formed using an O(m? + n) algorithm.

We now define some notations that will be used in
the next sections. The function T(x) maps a signal
z = (T; P) to its transitory sequence 7. Similarly,
the function P(x) maps a signal z = (T; P) to its
period P. Finally, the slope o(#) of a periodic signal
= ((t1,.. ., tn);(p1, ..., pm)) is defined as o(z) =
%27:1 pi. For example, if = ((0,4,7);(2)), then
T(xz) = (0,4,7), P(z) = (2), and o(x) = 2. Note
that we limit our work to signals with non-negative
slopes. Finally, Z is defined as the union of {¢,¢,.. .}
and the set of periodic signals.

Note, that, in [9], Gaubert defines a similar class of
signals, which he represents using a polynomial form.
The difference between his work and ours is covered
in subsequent sections.

4 Operations on Signals

4.1 Max operation

Definition 2 Given two signals © and y, and their
underlying sequences X and Y, the signal w =
max(z,y), also denoted w = » By, is defined by its
underlying sequence W = max(X,Y), which is de-
fined as the pointwise mazimization of the sequences
X and Y.

We also present an O(m? 4+ n + N) algorithm (where
n = [T(@)| & [T@)], m = |P(2)] & |P()] and N is
defined in Step 3 of the algorithm) to compute the
max of two signals (z and y respectively).

mazimize(r,y):
1 If o(x) = o(y) then T(x & y) =T(x) & 1(y),
and Pz & y) = P(x) & P(y);
2. elsif o(x) < o(y) then marimize(y,z);
3. else /* let S(i,x) = 1y pr,pi € P(z) */
2z = min{S(i, z) —io(x),1 <i<m};
Yu = maX{S(ia y) - iO’(y), 1 <i<m};
N = (21— X[0]+ g + Y 0D /(0 (2) — o ()
X[-1]=0;Y[-1]=0;
fori from 1 to N +n do
T(x &yl = (X[ & Y[])
—(X[i-1e®Y[i-1]);
Pz & y) = P(x);
4. Canonize(x @ y);



1he maximization oI an 1mmfinite number oI signals
does not necessarily result in a periodic signal. The
underlying sequence of the signal y = ((0);(1)) is
Y = {0,1,2,3,4,...}. The set X = {a,0 < k :
vr = (021, Y[i),0 < j < k);(0))} is an infinite
set of periodic signals; but @xEX x corresponds to
the sequence {0,1,3,6,10,15,21,...}, which is not a
periodic sequence.

4.2 Backshift operator

Initial marking in TEGs are modeled using the back-
shift operator. Tokens initially present in a given
place immediately contribute to the enabling of its
output transition, even if the place’s delay is not null.

Definition 3 Let © = (T, P) be a periodic signal in
which T = (t1,ta,...,tn). Then, the backshift opera-
tor 7y is defined as yor = y(2) = ((g,41,t2,. .., tn), P).

In our manufacturing process example, the place with
the delay function a initially contains a token. There-
fore, the actual delay associated with this place is a~.
Let x; denote the occurrence times of event ;. Then,
the manufacturing process is described by the follow-
ing equation:

1 ary 9 9 1 U1
To = S e Yy To D Vo
xr3 9 w 9 xr3 V3

where v1 = v3 = vz = (();(0).

Note that Z is closed under the backshift opera-
tor +*, for all ¢ > 1. The backshift operator also
distributes over the max operator.

4.3 Periodic delay function

This section defines and characterizes a function that
can delay a periodic signal according to another pe-
riodic signal.

Definition 4 - Delay -

Let © = ((t1, ... tn);(p1,-- ., pm)) be a periodic sig-
nal, and 64 be a periodic delay function such that
d=((t], . 1) (P, Pl))-

Let t; (t}) be the first element of T'(x) (T(d) respec-
tively) not equal to <.

Then,

(Pr+ D1 Pm + D)

Pba(w)) =
and, if j > i, T(64(x)) is equal to
(tr, sty ty 1, + 1)

otherwise,

(tla .. 'ati—lati + Z;:] t?ati-l—l +t;'-|-1a .. "tn + t;;/)

lhe complexity o1 the algorithm i1mplementing the
delay operator is O(m? + n) where (m = |P(z)| &
|P(d)] and n = |T(x)| @ |T(d)]) because of the need

to homogenize the input and delay signals.

delay(z,d): y
1. for i from I to n do
if (T(()g[]]_ ) then
if (T(d)[¢] # ) then init := init + T(d)[i];
elsif (T()[7) = =) then T()[] := T()[1);
else T'(y)[¢] 0— T(2)[i] + T(da)[t] + init;
init = 0;
2. P(y) := pointwise addition of P(x) and P(d};
3. Canonize (y);

Note that Z is closed under the operation de-
fined by a periodic delay, and that the composition
of two periodic delay functions is commutative, as-
sociative, and the neutral element is the zero delay
function. However, the composition of a periodic de-
lay function and the backshift operator is, in gen-
eral, not commutative except when the delay is con-
stant. In fact, if d and x are arbitrary periodic signals,

véa(2) = bya(7z).

In our manufacturing process example, our delay
functions can be defined in terms of periodic signals.
The constant delays s and w can be expressed with
((1); () and ((4); () respectively. The periodic de-
lays @ and r can be represented by ((7); (—2;2)) and
(0);(4,-3,0,0,0)).

Our periodic delay function should not be confused
with the ® operator in [1, 9], which is defined as the
The effect of the
sup-convolution of an input signal and a delay signal
are not easily predictable. For example, delaying odd-

sup-convolution of two sequences.

indexed events of a signal by seven and even-indexed
events by five (as in the a delay function in our manu-
facturing process example), cannot be expressed with
the ® operator.

5 Closure Operations

The least solution of + = Ax @ v i1s A*v, where
A* = @50 A [1]. The next two sections describe
algorithms to compute A*.

5.1 Periodic *-delay function
Definition 5 A periodic *-delay function (dy)* is
defined by a periodic delay signal d,where the slope
of d is null, as (dv)* = @, o(8a7)".

To show the completeness of the *-delay function in
Z, we need to prove that @, ,(647)" is equal to a



nnite maximization. In the rest oI thls section, we
assume that the periods of the periodic delay signal
and the input periodic signals are homogeneous and
contain m steps. We also define the maximum index
of the transitory pattern of the input signal to be n.
Due to space limitation, we only outline the major
steps of the proof.

The first step of the proof consists of showing that,
for any signal z, @, ,(8a7)"(z) can be re-written
as the maximization over an infinite set of signals
that are rooted at time instants corresponding to the
elements of X (the underlying sequence of ). Thus,
we want to show that

D6a7)* (x) = P+ .

E>0 E>0

where z; = y*((X[k]); (D[k +1],..., D[k +m])) and
D 1s the underlying sequence of the delay signal d.
For example, if x = ((0);(2)) and d = (();(1,-1)),
then @, (6a7)*(x) corresponds to the maximiza-
tion of the signals corresponding to the following se-
quences:

{0,1,3,5,7,9,11,.. .}
@ 1£,0,2,3,6,7,10,..}
& d£,6,1,2,4,6,8,...}
& {e,6,61,3,4,7,...}
S

which can be re-written as

{0,0,1,1,2,2,3, ..
{e,1,2,2,3,3,4, ..
{£,¢,3,3,4,4)5, ..

S
S
& {2,665,6,6,7,...
S

The second part of the proof is simply a mat-
ter of comparing the slopes of the z3’s to the slope
of #. Observe that the z;’s have the same slope
(1/m 3%, Dlk+1]). Using that fact, it is quite easy
to show that, in any case, @k>0'ykxk can be com-
puted using, at most, the first (n + 2m) zj signals.
Therefore, it shows that (dvy)*(x) is the maximiza-
tion of a finite number of signals. We now give an
algorithm to compute such quantity.

*-delay (z,d): y
1. Compute o(x;) =1/m3 /L | D[i];
2. if (o(x;) > o(x)) then
v = @iy wr;
3. else T(z) := T(GBZ%}ZH Ty );
P(Z) = P(@k:n+mﬁ|—1 xk);
y := Mazimize(2,D,_, xr);
4. Canonize (y);

lhe complexity of the algorithm lies 1n »leps 2 and
3, each of which is in O((n +m)(m? +n+ N)) where
m?4+n-+ N represents the cost of maximizing two sig-
nals. Therefore, the complexity of the *-delay func-
tion is O((n +m)(m? + n+ N)).

5.2 Closure matrices of signals

Our algorithm to compute the *-delay matrix of a
matrix representing a TEG is based on the algorithm
developed in [9] and described by the following for-
mula:

A?j = (1)

@ P (e d @ ®c+).

PEP; CeA(p)ceC

A is a matrix representing a system and G(A) is the
graph structure of the Petri net associated with ma-
trix A. P;; is the set of elementary paths from j to
iin G(A), and A(p) is the set of elementary circuits
accessible from a path p. A circuit C' is said to be
accessible from a path p if C'U {p} is a connected
subgraph of G(A).

We cannot directly apply Gaubert’s formula be-
cause it assumes that ® is commutative, and, in our
max-plus algebra, the delay function (which corre-
sponds to ®) is not commutative. We have to alter
Gaubert’s formula by taking into account the position
of the elementary circuits in the considered elemen-
tary paths. Thus, after rearranging terms, Gaubert’s
formula becomes

D

PEPi;,CEA(p)

* —
Ay =

(cFaspciapic) .. .c:lam]'c;f)(Q)

where each elementary path p € P;; can be written
as a;parl ... am; and the cf, ¢, cf,...ch,, c}‘ are the
transitive closures of the delays in elementary circuits

containing transitions 7;, T, 71, . . . T, 75 .

Let us illustrate our formula by computing A%; in
our manufacturing process example. This element of
A* corresponds to the closure of all paths from ¢
to t3. There i1s only one elementary path from #; to
t3, which means that Ps; = {ws}. Along this path,
there are two distinct elementary circuits, which gives
us A(ws) = {{wry}, {ay}, {wry,ay}}. Therefore,

Az = (wry) ws @ ws(ay)” & (wry) ws(ay)”
= (wry) ws(ay)”

Using the same technique, we can calculate each ele-
ment of A*. This leads to

(ay)” € €
A* = (ryw)*s(ay)* (ryw)*  (ryw)*ry |,
(wry) ws(ay)”  (wry)'w  (wry)”

which corresponds to the matrix computing by Cofer

and Garg.



Moreover, 1t y1elds

r3 =

(l

L e N e N
g
3
2
p—
*
g
%
VoS
VY
=)
p—
T

VoS
VoS
ot
ot
-1
p—
VoS
ot
=~
o8]

,5,5,6,5,8,5,6))]

which corresponds to the following infinite periodic
sequence:

v = {5,10,17,22,29,37,42,47,53,58,66,71,77,.. .}

Even though delay matrices can be rather sparse,
*_delay matrices are usually very dense. In [2], we de-
fine composition/decomposition techniques that do
not require the construction of entire *-delay ma-
trices. The first composition technique, called se-
quential composition, leads to the decomposition of
a graph based on its strongly connected components
(SCCs). The second composition technique, called
synchronization, divides a graph along its elementary
circuits.

6 Conclusion

In this paper, we have defined a composable max-
plus algebra of periodic signals that can represent the
timing of events in real-time discrete event systems.
A signal is a finite representation of infinite event
sequences. We defined and analyzed the complexity
of several algorithms that implement synchronization
and delay functions on signals as well as the closures
of transition delay matrices. Our algebra constitutes
an implementation of the max-plus algebra of Cofer
and Garg [3, 4], which can compute supremal con-
trollers for real-time discrete event systems.
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