Detecting Temporal Logic Predicates on the Happened-BeferModel

Alper Sen and Vijay K. Garg
Department of Electrical and Computer Engineering
The University of Texas at Austin
Austin, TX, 78712, USA
{sen,garj@ece.utexas.edu

Abstract fault-tolerance. On detecting a violation of a safety prop-
erty like a deadlock, one of the processes must be aborted

Detection of a global predicate is a fundamental problem and restarted.
in distributed computing. In this paper we describe new The problem of deciding whether a happened-before
predicate detection algorithms for certain temporal logic model [15] of a distributed computation satisfies a global
predicates. We use a temporal logic, CTL, for specifying predicate (property), referred to as theedicate detection
properties of a distributed computation and interpret it on problem, is the main focus of this paper.
a finite lattice of global states. We present solutions to In distributed programs no process can determine the se-
the predicate detection of linear and observer-independen quence of global states the system passed. This makes it dif-
predicates undeEG and AG operators of CTL. For lin- ficult to check whether a global predicate held. Another ob-
ear predicates we develop polynomial-time predicate detec stacle in detection of global predicates is $itate explosion
tion algorithms which exploit the structure of finite dibiuk problem—the set of possible global states of a distributed
tive lattices. For observer-independent predicates we@ro program withn individual processes can be of size expo-
that predicate detection is NP-complete unB&k operator ~ nential inn. A variety of strategies for ameliorating the
and co-NP-complete undexG operator. We also present state explosion problem, including symbolic model check-
polynomial-time algorithms for a CTL operator called un- ing and partial-order model checking have been explored
til, for which such algorithms did not exist. Finally, our [17,12].
work unifies many earlier results in predicate detectionina Qyr approach to predicate detection is based on exploit-
single framework. ing the structure of the predicate [10]. This approach, in-
stead of building the lattice of global states (global state
space) for the distributed computation, directly uses the
computation to detect if the predicate is satisfied in a dloba
state. Some examples of the predicates for which the pred-
icate detection can be solved efficiently amonjunctive

Correct distributed programs are difficult to write. These [10, 13], disjunctive[10], stable[2], observer-independent
programs often contain bugs which are hard to detect with- [3, 4], linear [4], andregular [9, 18] predicates.
out some ki_nd_of automatic verification. Debugging is & = o rwork is different frormodel checkingg, 14], which
process of finding such bugs. A programmer upon 0bServ-cpecks that a predicate is satisfied for all computations of a
ing a certain distributed computation for bugs can check program. We check that a predicate is satisfied fsingle
whether the observed computation sqtisfies some eXpeCtegomputation of a program since our purpose is to develop
property. For example, when debugging a distributed mu- 544rithms for fault-tolerance and debugging of distréiit
tual exclusion algorithm, it is useful to monitor the sys- programs where a single execution trace of the program is
tem to detect concurrent accesses to the shared resource§,carved. Even if model checking algorithms are used on
A system that performs leader election may be monitored ; ging1e computation with a finite lattice as in our case, the

to ensure that processes agree on th.e current leader. It IRomplexity of detecting a predicate would be in general pro-
also important to be able to observe distributed systems forportional to the size of the lattice which is still exponen-

*supported in part by the NSF Grants ECS-9907213, CCR-9%8822 tial in the number .Of processes (state-gxplosmn p.rOblem)’
Texas Education Board Grant ARP-320, an Engineering Fdiomi&el- whereas our algorlthms .have polynomial complexny.. The
lowship, and an IBM grant exponential complexity in the case of model checking is

1. Introduction

due to the fact that model checking algorithms use reacha-

Table 1. Predicate Detection Algorithms

bility analysis (which performs fixpoint iterations thatrge

erates a sequence of global states or formulas correspongd- Predicate Detection Algorithm

ing to global states), whereas we work on the computatior P EF(p) | AF(p) EG(p) AG(p)

itself without explicitly generating all global states. -Fi cqruunctllve [10] [11] [10] [11]

nally, we work on specific predicate classes as mentioned_disiunctive | [11] | [10] [11] [10]

above, whereas model checking in general deals with arbj-___Stable [2] [31 trivial trivial

trary predicates. linear [4] open th!s paper th!s paper
The temporal operators under which predicate detection OPserver- | [4,3] | [4,3] | this paper this paper

algorithms for a distributed computation have been dis{_Ndependent

cussed in the literature argpossibly (EF) [6, 10, 3, 9], regular | [9,18] | open | [9, 18] [9, 18]

definitely (AF) [6, 11, 3, 9], controllable (EG) [20, 9], arbitrary (4] [20] (20] [4]

andinvariant (AG) [6, 10, 3, 9].

We integrate the above mentioned operators under a . . . L .
g P . A brief overview of predicate classes is given in Sec-

well-known temporal logic CTL [8] as it is done in model . . 2
checking. Our distributed computation model leads to a _tlon 4. We present algorithms for detecting linear pred-

o L . icates undercontrollable and invariant operators in Sec-
global state space which is a finite distributive lattice. We tion 5. Section 6 has NP-completeness results for observer-
interpret CTL on this lattice structure and use the properti ’ P

of the structure itself which ultimately helps in obtaining In:;grenn(:'? rg p;;fra;ensd Zh? :|eff:;1?~::soggéogzlsE:'ic:gg;e
efficient predicate detection algorithms. u untit-op ur aigori : !

. : . . Section 7. Finally, some concluding remarks are given in
We present solutions to the predicate detection of linear :
. . Section 8.
and observer-independent predicates ucdeatrollableand
invariant operators. A linear predicate [4] is such that the
set of global states that satisfy a linear predicate forms an2. Model
inf-semilattice of the lattice of global states. Linear glire

cates include several useful predicate classes like conjun \we assume a loosely-coupled message-passing asyn-
tive predicates, regular predicates, monotonic chanm®eHpr - chronous system without any shared memory or a global
icates and some relational predicates. Charron-Bost et alc|ock. A distributed progranconsists ofr sequential pro-
[3] introduced observer-independent predicates to captur cesses denoted @, P, . . ., P, communicating via asyn-
the class of predicates for which the detectiorpossibly chronous messages. In this paper, we are concerned with
anddefinitelyare equivalent. Observer-independent pred- 5 singlecomputation(executio of a distributed program.
icates |r_10Iude p_redmate classes like stable predicatés an\ye assume that no messages are altered or spuriously intro-
disjunctive predicates. duced. We do not make any assumptions about FIFO nature
A temporal operator that we use in CTL umtil (U). of channels.
This operator helps in detecting properties where a condi- The execution of a process in a computation can be
tion has to hold until another condition eventually holds. viewed as a sequence of events with events across pro-
We present two polynomial algorithms for detecting con- cesses ordered by Lamportisppened-beforeslation, —
junctive, disjunctive and linear predicates under CTL tem- [15]. We use lowercase lettersand f to represent events.
poral operatountil. Efficient algorithms for this operator Thehappened-beforelation between any two eventsind
did not exist before. A formul&[p U ¢] (resp. A[p U ¢] f can be formally stated as the smallest relation such that
) intuitively means that for some sequence (resp. all se-¢ — f if and only if e occurs beforef in the same process,
quences) of global states starting from the initial stata of or ¢ is a send of a message afids a receive of that mes-
computation and ending at the final state, there exists an ini sage, or there exists an evgrguch that happened-before
tial prefix of the sequence such thaholds at the last state ; andg happened-beforg. We represent the set of events
of the prefix and holds at all other global states along the as the union of events from each proceBs= U E;, for
prefix. A mutual exclusion predicate like “processes are in eachl < i < n. We define alistributed computatioas the
trying state before getting to critical state” can be spedifi partially ordered set consisting of the set of events togyeth
asAltry; U critical;] . with the happened-before relation and denote it By—).
Table 1 lists the predicate detection algorithms for the We define aonsistent cubf a computatiof £, —) as a
classes of predicates mentioned above. subsetG C Esuchthatf €e GAe — f=e€ G. Weuse
The remainder of this paper is organized as follows: Sec- uppercase letter&, H, J, and K to represent consistent
tion 2 discusses the model we use to represent distributectuts. A consistent cut captures the notion of a reachable
programs. CTL syntax and semantics is given in Section global state. We use consistent cut and global state inter-

changeably.

We denote the set of consistent cuts of any distributed
computation F, —) by C(FE). Itis well known that the set
of consistent cuts of any distributed computatigh, —)
forms adistributive lattice under the relatio [16, 9]. We
denote this lattice by, = (C(E),C). For any partially
ordered set, we uge andr to denote join and meet opera-
tors. Note that the join (resp. meet) of two consistent cuts
correspond to their union (resp. intersection).

, G, of consistent cuts such th&t) G
Giv> Gipq for0 <i < k, (iii) Gy |= ¢, and(i
forall 0 <i < k.
e G E E[pU (| iff for some maximal consistent cut
sequence that starts frol@ there exists a finite prefix
Go, ..., Gy of consistent cuts such thét) Gy = G, (i7)
G;> Gipq for0 <i < k, (ii1) G = ¢, and(iv) G; E p
forall 0 <i < k.

We defineL |= pifandonlyif L,§ = p. * We use the

= @G, (i7)
v)Gi = p

We denote the set of maximal (with respect to happened-following abbreviations in writing CTL formulas:

before relation) elements of a consistent oGt by
frontier(G). We definesuccessorf a cut by a rela-
tion> C C(E) x C(E) such thatG » H if and only if
H = G U {e} for somee € E such that ¢ G. A maximal
consistent cut sequenc, G4, ..., G, of (C(E), C) that
starts fromG satisfies thati; = G, G; = E and for each
0 <i < l,G;>Giy1. Note thatf) denotes thanitial cut of a
computation and” denotes thénal cutof a computation.

3. CTL and Predicate Detection

In this section we first give the syntax and the semantics
for the subset of the temporal logic CTL that we use. We
compare the logic we use with the logics used in related
work. Finally we define predicate detection problemin CTL
context.

Propositional temporal logics use a finite set of atomic
propositions4 P, each one of which represents some prop-
erty of the global state. A labeling function: C(E) —
24P assigns to each global state the set of predicates fro
AP that hold in it.

The formal syntax of the subset of CTL that we use in
this paper is given below.

e Every atomic propositionp € AP is a CTL formula.
e If p and ¢ are CTL formulas, then so arep,p A
¢, Alp U q], andE[p U ¢|.

The symbols\ and— have their usual meanings. There
are two path quantifiersA denotedor all maximal consis-
tent cut sequencedE denotegor some maximal consis-
tent cut sequencdJ is theuntil temporal operator.

Given a latticel. = (C'(E), C), the formulas of CTL are
interpreted over the consistent cutsiiF). Letp andq be
CTL formulas and~ be a consistent cut ii(E). Then, the
satisfaction relationL, G |= p means that predicajeholds
at consistent cuff in lattice L = (C(E), C) and is defined
inductively below. We denot& = p as a short form for
L,G = p, whenL is clear from the context.

e G = apiff ap € A(G) for an atomic propositionp.

e G = —piff G £~ p.

e G EpAgqiff G l=pandG E q.

e G =pVyiffeitherG EporG [q.

e G = AlpUgq] iff for all maximal consistent cut
sequences that start froi# there exists a finite prefix

e AF(p) = Aftrue U p] intuitively means thap is true

in some consistent cut along every finite sequence starting
from () and ending aF; that is,definitely: p

e EF(p) = E[true U p] intuitively means thap is true

in some consistent cut along some finite sequence starting
from () and ending aF; that is,possibly: p

e EG(p) = —-AF(-p) intuitively means thaip is true

on every consistent cut along some finite sequence starting
from () and ending aF; that is,controllable: p

e AG(p) = —EF(—p) intuitively means thap is true on
every consistent cut along every finite sequence starting
from () and ending aF; that is,invariant: p.

There have been other attempts to unify the predicate
detection problem, like RCL [21] and ENF [5]. In these
frameworks one can specify sequences of weak conjunctive
predicates which are easily expressible in CTL; since CTL
is more expressive due to temporal operators. Babaoglu et
al. [1] have an automata oriented framework for detect-
ing behavioral patterns with exponential-time algorithms
whereas we have a temporal logic based framework with

mpolynomial-time algorithms.

The predicate detectioproblem is to decide whether a
happened before model of a distributed computation satis-
fies a predicate.

4. Predicate Classes

Our approach to predicate detection is based on exploit-
ing the structure of the predicate. Efficient predicate de-
tection algorithms have been designed for CTL operators
EF(p), AF(p), EG(p), and AG(p), whenp belongs to
a specific predicate class. We first give definitions of such
classes and next present their relationship to each other.

We define a predicate to bel@cal predicateif its truth
value depends only on the state of a single process. For ex-
ample, “ the value of on processis 2" is a local predicate.

A predicatep is said to beconjunctive(resp.disjunctive if

it can be written as a conjunction (resp. disjunction) oflloc
predicates. Atable[2] predicatep is such that the predicate
remains true once it becomes true. A predigate said to

INote that a distributed program is modeled by a set of paotidér
sets (computations). In that case, a distributed progragatisfies a CTL
formulap if and only if . |= p for eachL in P.

beobserver-independef8, 4] if AF (p) <= EF (p) that
is, if the predicate holds in some observation then it holds
in all observations. Note that if predicgbeholds initially

If EG(p) is satisfied in the lattice then the algorithm returns
true, and vice-versa.

then it is an observer-independent predicate. We say tha
a predicatep is regular [9, 18] if the set of consistent cuts
that satisfy the predicate forms a sublattice of the latbite
consistent cuts. Equivalently, if two consistent cutss$ati

a regular predicate then the cuts given by their set intersec
tion and set union will also satisfy the predicate.lidear

[4] predicate is such that the set of consistent cuts that sat
isfy the predicate forms an inf-semilattice of the lattide o
consistent cuts.

We usel, to denote the least (initial) consistent cut that
satisfies predicatg, if the least consistent cut exists. Note
that, I, exists ifp is a conjunctive, regular, or linear predi-
cate.

In this paper, we use a fragment of CTL in which for-
mulas are in one of the following formsAAF (p), EF(p),
EG(p), AG(p), E[p U q], andAp U q], wherep andqg
are non-temporal predicates from the classes of predicateg
conjunctive, disjunctive, observer-independent, stalirie

ear, and regular. We say that a predicateds-temporal
if it does not contain temporal operators suchAB, EF,
EG, AG, EU, andAU. In other words, we do not con-
sider nested temporal predicates in this paper.

Note that linear predicates include regular predicates and
regular predicates include conjunctive predicates. iryil
observer-independent predicates include stable andhdisju
tive predicates. We present formal proofs of these relation
in [19].

5. Detecting Linear Predicates

Linear predicates include several useful predicate ctasse
like conjunctive predicates, regular predicates, monigton

[Algorithm A1

Input: ((E,—),p) pis alinear predicate

Output: (E,—) satisfiesEG (p) or not

Step 1. Let¥ be the final cut of £, —)
If W does not satisfy then return false

Step2. while W # initial cutdo

Step 3. Le) ={GeC(E)|GEpANG>W}
be the set of predecessorsldf that satisfyp

Step 4. IfQ is empty then return false

Step 5. else lell” be an arbitrary element frof

Step6. endwhile

Step 7. If the initial cut satisfigsthen return true,
else return false

Algorithm A2

Input: ((E,—),p) pis alinear predicate

Output: (E,—) satisfiesAG(p) or not

Step 1. Let = M(L)U{E}

Step 2. If any consistent cut i does not satisfy
then return false, else return true

Figure 1. Algorithms to detect
AG(p) when pis linear

EG(p) and

Next we prove the correctness of Algorithm Al using
the following lemma which is a simple observation of the
lattice structure of distributed computations.

Lemma 1 ([19]) Given a finite distributive latticel.
(C(E),C) for a computation(E, —) and two consistent
cutsG, H € C(F) such thatG > H and another consistent
cutJ € C(FE) suchthat/ C H theneitheGn.J) = J or
(GnJ)sJ.

channel predicates and some relational predicates. Garg

et al. [4] introduced efficient algorithms for detecting-lin
ear predicates und@F operator. In this section we intro-
duce efficient algorithms for detecting linear predicates u
derEG and AG operators. Algorithms for detecting sub-

Theorem 2 Algorithm Al detectEG(p) for p linear.

Proof: If the algorithm returns true then it is clear that
EG(p) holds. Now we prove that iEG(p) holds then
algorithm returns true. SincEG (p) holds, there exists a

classes of linear predicates under such CTL operators aresequence from the final cut to the initial cut along whijch

shown in Table 1.
Our algorithm for detecting linear predicates untida

holds. We prove by induction on the length of this sequence,
j that if EG(p) holds then the algorithm returns true.

operator finds a sequence of consistent cuts starting frome Base casej(= 1) There is only a single sequengeE

the final cut to the initial cut such that every cut in this se-
guence satisfies the predicate, if such a sequence exists. A
gorithm Al of Fig. 1 displays our algorithm. Starting from
the final cut we move towards the initial cut moving one cut
at a time. The next consistent cut to explore is determined

therefore trivial.

l¢ Induction step { = &k + 1) Assuming that the asser-
tion is true up toj k we prove that it holds foj =

k + 1. If EG(p) is true then there exists a sequence

Go = 0,...,Gy,Gry1 = E that satisfies the predicate.

based on choosing one of the consistent cuts that precedet in Step 5 of the algorithnd7, is chosen then we are done

the current consistent cut in the computation and that-satis
fies the predicate. We prove that it does not matter which
one of these consistent cuts is chosen as long as one exist

else let the consistent cut chosen by the algorithm in this
step beH # Gj. We know thatH |= p from Step 3.
¢ M G}, exists sincel is a finite distributive lattice. From

Lemma 1,(H N Gy) = Gy (in which case we are done) or
(H N Gy) » G hence the length of the sequence from the
initial cut to H N G, is < k therefore the induction hypoth-
esis applies.

Complexity of the algorithm: The complexity of find-
ing the next consistent cutd(n) since there can be at most

n preceding cuts of a consistent cut. A consistent cut se-

guence in the lattice can be of at m@&t length since there
are|E| events in the computation therefore the complexity
of the while loop isO(]E|). The total complexity of the
algorithm isO(n|E|), wheren is the number of processes
and F is the set of events. This result applies to regular
predicates as well and improves thén?| E|) complexity

in [9].

For detecting linear predicates und&G operator we
make use of Birkhoff's representation theorem for finite
distributive lattices. This theorem uses the notion of meet
irreducible elements of a lattice.

Definition 1 (meet-irreducible element [7]) An el-
ementz € L is meet-irreducible ifz # FE and
Vab e L :z =aNb = (z = a)V(z = D).

Dually, an elemeny € L is join-irreducible ify # () and
Va,be L:y=alb= (y=a)V (y =b).

In other words;: cannot be further decomposed into the

meet of other elements in the lattice, just as prime numbers

cannot be further factored into the product of other natural

numbers. For example, the meet-irreducible elements of the

lattice in Fig. 2(b), are shown in filled circles. Pictoriall

in a finite distributive lattice an element is meet-irredlei

iff it has exactly one upper cover, that is, it has exactly one
outgoing edge. We denote the set of all meet-irreducible el-
ements of a lattic& by M(L). We use meet-irreducibility

to provide us with a kind of prime factorization for finite
distributive lattices. We call a subsgtof a posetP anup-
setif s € SAs <t =t € Sanddenote by the set of
up-sets of a poset.

Theorem 3 (Birkhoff [7]) LetL be afinite distributive lat-
tice. Then the mapyf : L — U(M(L)) defined by
fla) = {z € M(L) | a < z} is anisomorphism of onto
U(M(L)). Dually, let P be a finite poset. Then the map
g: P — M(U(P)) defined byy(a) = {r € P|a< z}is
an isomorphism of onto M (U(P)).

Birkhoff’s theorem says that there is a one-to-one cor-

of a finite distributive lattice (except for the final cut) can
be defined as meet of a subset of meet-irreducible elements.
The following is a corollary of Theorem 3.

Corollary 4 ([7]) Leta be any elementin a distributive lat-
tice L. Thena =[1{z € M(L) | a C z}.

For example, in the lattice shown in Fig. 2
[{E\, Ey, Fs, F3},Y =[] {Fs, F3}, and similarly for
the other elements.

Birkhoff’s theorem and the corollary is useful in com-
putational sense as well because the set of meet-irre@ucibl
elements of a lattice is generally exponentially smallanth
the size of the lattice itself.

. : denotes meet-irreducible elements

(b)

Figure 2. A computation (a) and its lattice (b)

We present an algorithm to detect linear predicates un-
der AG operator in Fig. 1. Intuitively, algorithm A2 says
that, to detect a linear predicate undefs operator it is
sufficient and necessary to check whether the predicate is
satisfied at the meet-irreducible elements and the final cut
of the lattice. This follows from results above, that is,cg&in
p is linear, if p holds at meet-irreducible elements then it
holds at their meets. From corollary 4, every element in the
lattice (except for the final cut) can be defined as the meet
of a subset of meet-irreducible elements.

Complexity of the algorithm: The main complexity
comes from finding the set of meet-irreducible elements.

respondence between a finite poset and a finite distributiveGarg et al. [9] has af®)(n?|E|) algorithm to compute the

lattice. Given a finite distributive lattice, we can recotfes

list of join-irreducible elements. The same algorithm can b

poset by focusing on its meet-irreducible elements. Givenused for meet-irreducible elements as well, only this time
a finite poset, we get the finite distributive lattice by con- we apply their algorithm backwards on the computation or
sidering its set of up-sets. Informally, every lattice elarh with all the edges in the computation reversed.

We can use algorithms above for detectjpgst-linear

then for each variable, Z,, iN p, We assign a separate

predicates defined in [4]. Post-linear predicates are suchprocess with true and false states (Fig. 3 (b)). We define

that the set of consistent cuts that satisfy a post-linestipr
cate forms a sup-semilattice of the lattice of consistets.cu
Algorithm Al can be modified so that it starts from the ini-
tial cut and moves towards the final cut. The next consis-
tent cut to move is determined based on finding one of the
consistent cuts that follows the current consistent cuthén t

a process for an extra boolean variablg,; which starts
true, and ends at a false state. We defihe- p V x,41.
Similar to the proof of above theorem, it is clear thats
observer-independent since it is satisfied at the initatlest
We then applyAG algorithm to detect invariance @?. If
the algorithm returns true, then all global sequencesfgatis

computation and satisfies the predicate; again it does nothe predicate and all global states with 1, = false will
matter which one of these consistent cuts is chosen as londnave satisfying assignments for the variablegofCon-

as one exists. Algorithm A2 can be modified such that in

Step 1 instead of using meet-irreducible elements and thequences will satisfy.

final cut, the new algorithm uses the join-irreducible ele-
ments and the initial cut.

6. Detecting observer-independent predicates

It was shown in [4] and [20] that detecting an arbi-
trary predicate is NP-complete undBF and EG opera-
tors. In this section we prove that detecting an observer-
independent predicate is NP-complete unB€& operator
and co-NP-complete und&G operator.

Theorem 5 Given a distributed computation, detecting an
observer-independent predicateunder EG operator is
NP-complete.

Proof: The proof of the theorem is very similar to the proof
for NP-completeness of an arbitrary predicate unBé€x
operator [20]. The problem is in NP because it takes poly-
nomial time to check that a candidate global sequence of
consistent cuts is valid and that it satisfies the predipate
To show that it is NP-hard, we reduce Satisfiability to this
problem. If p is the boolean expression in Satisfiability,
then for each variable,, ..., z,, in p, we assign a sepa-
rate process with two states, true and false (Fig. 3 (a)). We
define a process for an extra boolean variahjg.; which

versely, ifp is a tautology, then all global states in all se-
]

false false

true
L . 4 —

X g

true
X2

false

N8

- false

oo false true
\ m

false

true true false

Xmi1@———>@

fa'S_E—'

(a) (b)

Figure 3. Detecting an observer-independent
predicate p under (a) EG is NP-complete (b)
AG is co-NP-complete

Although predicate detection of observer-independent
predicates unddt G and AG operators is intractable, sub-
classes of this predicate class like disjunctive and stable
predicates have polynomial detection algorithms (cf. &abl
1).

starts true, goes through a false state, and ends true again.

We defineP = pV z,,41. Itis clear thatP is observer-
independent since it is satisfied at the initial state. Then w
applyEG algorithm to detect predicat®. If there exists a
global sequence that satisfiB€& (P), then the global state
with z,,+1 = false will have a satisfying assignment for
the variables op. Conversely, ifp is satisfiable, then there
exists a satisfying global sequence.]

Theorem 6 Given a distributed computation, detecting an
observer-independent predicateunder AG operator is
co-NP-complete.

Proof: The problem is in co-NP because it takes polyno-

7. Detecting predicates with Until operator

El[p U ¢q] (EU) andA[p U ¢| (AU) predicates aid in
detecting conditions where a condition has to hold until an-
other condition eventually holds. See Fig. 4 for an example
computation for detectingi[p U ¢] where the predicate in
guestion is “there exists an observation such that variable
of processPs is less than 6 and variableof processP; is
less than 4ntil channels are empty and variablef pro-
cessP; is greater than 1”. Each event in the computation
is labeled with the value of the respective variable imme-
diately after the event is executed. The paths in the lattice

mial time to check that a candidate consistent cut satisfiesstarting from the initial cut with patterned circles leaglio

the negation of the predicate To show that it is co-NP-
hard, we reduce Tautology, a co-NP-complete problem, to
this problem. Ifp is the boolean expression in Tautology,

cuts with filled circles satisfy the predicate. It can also be
observed that the first part of the predicatgis a conjunc-
tive predicate and the second pattis a linear predicate.

P, & .ez If we apply the theorem to the computation in Fig. 4 it
is observed that there is a sequence of consistent cuts which
f satisfies the theorem, thatlis{ f1}, {e1, f1}, {e1, fo, f1},
y=4 {e1, f2, f1,91} wherel, = {es, f2, f1,91}. Out of a pos-
9 sible 7 paths which start from the initial cut and satisfy the
3 o predicate it is enough to consider only the ones that lead to
I,, of which there are only 2 in this case.

We use Theorem 7 to obtain an algorithm to detect
@ (& & 01,0} E[p U g] asinFig. 52

Initially x=0, y=0, z=0

Algorithm A3

Input: ((E,—),p,q) pis conjunctivey is linear
Output: (E, —) satisfiesE[p U g] or not
Step 1. Find,, the least consistent cut that satisfies
Step 2. Check iEG (p) is satisfied in anyE’, —)
such thate’ = I, — {e}, e € frontier(I).
If the result is positive then return true,
else return false.

@ : denotes consistent cuts where (z<6 and x>4) holds
@ : denotes consistent cuts where (channels are empty and x>1) hold Figure 5. Detection a|gorithm for E[p U q]
(b)

Complexity of the algorithm: Whenp is a conjunctive
Figure 4. A computation (a) and its lattice (b) predicate, the algorithm presented in Chase et al. [4] for
linear predicates is applicable in Step 1. The complexity
of the Chase et al. algorithm depends upon the complex-
ity of determining an event to advance a given consistent
cut G. In this paper, we assume that the complexity of
determining the required event {3(n) and therefore the

Itis clear that this is very inefficient due to both state expl ~ cOMPlexity of Step 1 ig)(n|E]). In Step 2, the optimal
sion and exponential number of consistent cut sequences ilgorithm presented in [18] for generating a slice of a con-

the number of events. Theorem 7 shows a way to find suchjunCtive predicate is applicable. The cqmplexity of this_ is
a consistent cut sequence in a more efficient manner. O(|E|) and there are at most gomputatlons generated in
Step 2. Therefore the complexity of Step Zign|E|). The

Theorem 7 ([19]) Given a finite distributive lattice ©Verall complexity of the algorithm i®(n| £1).
L = (C(E), C) for a computation E, —), a conjunctive We use the equalitA[p U ¢ <= —(EG(—q) V
predicatep, and a linear predicate; L = E[p U ¢] if and E[-¢ U (-p A —q)]) to detect predicates und&U op-
only if there exists a finite sequenkg . .. K; of consistent erator. This equality gives a representatiomAdd operator
cuts such that in terms ofEU andEG operators. When predicatgsand
(i) Ko =0, (ii) K;> Ky for 0 <i < j, q are disjunctive predicates we can use the algorithm de-
(iii) K; = 1, wherel, is the least consistent cut that veloped forEU since(—q) is a conjunctive predicate and
satisfies predicate, and(iv) K; =pforall 0 <i <j. (=p A —q) is a linear predicate. Similarly we can use the
algorithm presented in [18] for detecting conjunctive pred
Intuitively, Theorem 7 says that whenis conjunctive cates undeEG operator to detedEG (—g). The complex-
andg is linear, in detectingg[p U ¢, it is necessary and jty of this algorithm isO(|E|). The overall complexity of

sufficient to check for the existence of a sequence of consis-A [, U ¢] algorithm is therefor€ (n|E|) + O(| E|) which
tent cuts starting from the initial consistent cut to the-con s O(n|E|)
sistent cutl, wherep holds along the sequence untiholds
in I,. This greatly simplifies the task of detectififp U ¢]
because otherwise we would have to check for the existence ?Note also that predicatgin Theorem 7 actually could be weaker than
of a sequence of consistent cuts starting from the initiakco 2 'H'”Ie?;?fe_d('gat‘i ‘z)he: 't(‘(’r]"ych?f) t/‘\’ (S?t;i%t;e propéray t

sistent cut to “some” consistent ofitwherep holds along which intuitively means that there exists a least consistatithat satis-
the sequence unijl holds inG. fies predicatep.

In detectingE[p U ¢, a lattice construction based ap-
proach would, in the worst case, have to check all the con-
sistent cut sequences wherbolds until eventually holds.

8. Conclusions and Future work

Detection of a global predicate is a fundamental problem
in distributed computing. This problem arises in many con-
texts such as testing and debugging of distributed programs
Our focus in this paper has been on developing and unifying
predicate detection algorithms using a well-known tempo-
ral logic CTL on the happened-before model. CTL unifies
known predicate detection operators by enabling their ex-
pressibility with the operators of the logic. We solved pred
cate detection of linear and observer-independent prestica
undercontrollable and invariant operators. We presented
polynomial-time algorithms for detecting linear prediest

(8]

9]

[10]

[11]

under these operators. These results also improve previous

ones for regular predicates. We also proved that detecting
observer-independent predicates uncemtrollable opera-

tor is NP-complete and und@wariant operator is co-NP-
complete. We have used a temporal operator in CTL, called
until which characterizes a class of predicates for which ef-
ficient predicate detection algorithms did not exist. Weehav
determined the necessary and sufficient conditions for solv
ing detection ofintil predicates for conjunctive, disjunctive,
and linear predicates. We are planning on developing a de-
bugging environment for the happened-before model mak-
ing use of the algorithms presented here. Also an open prob-
lem is to find polynomial-time algorithms for detecting reg-
ular and linear predicates undAfF operator. Another area

of future work will be to develop efficient on-line versions
of our algorithms.

References

[1] O. Babaoglu and M. Raynal. Specification and verifiaatio
of dynamic properties in distributed computatiod®urnal
of Parallel and Distributed Computing@8:173-185, 1995.

[2] K. M. Chandy and L. Lamport. Distributed snapshots: De-
termining global states of distributed systerdsCM Trans-
actions on Computer Systen3%1):63—75, Feb. 1985.

[3] B. Charron-Bost, C. Delporte-Gallet, and H. Fauconnier
Local and temporal predicates in distributed systeAGM
Transactions on Programming Languages and Systems
17(1):157-179, Jan 1995.

[4] C. Chase and V. K. Garg. Detection of global predicates:
Techniques and their limitationsDistributed Computing
11(4):191-201, 1998.

[5] H. Chiou and W. Korfhage. ENF event predicate detection i
distributed systems. IRrinciples of Distributed Computing
pages 91-100, Los Angeles, California, Aug. 1994.

[6] R. Cooper and K. Marzullo. Consistent detection of globa
predicates. IrProc. of the Workshop on Parallel and Dis-
tributed Debuggingpages 163-173, Santa Cruz, CA, May
1991. ACM/ONR.

[7] B. A. Davey and H. A. Priestley.Introduction to Lattices
and Order Cambridge University Press, Cambridge, UK,
1990.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

E. M. Clarke and E. A. Emerson. Design and Synthesis of
Synchronization Skeletons using Branching Time Temporal
Logic. InProc. of the Workshop on Logics of Progranasl-
ume 131 ofLecture Notes in Computer Sciendorktown
Heights, New York, May 1981.

V. K. Garg and N. Mittal. On slicing a distributed com-
putation. InProc. of thel5'” International Conference on
Distributed Computing Systems (ICDC®pges 322-329,
Phoenix, Arizona, 2001.

V. K. Garg and B. Waldecker. Detection of weak unstable
predicates in distributed program3$EEE Transactions on
Parallel and Distributed System5(3):299-307, Mar. 1994.
V. K. Garg and B. Waldecker. Detection of strong unsta-
ble predicates in distributed programi=EE Transactions
on Parallel and Distributed Systen&12):1323-1333, Dec.
1996.

P. Godefroid and P. Wolper. A partial approach to model
checking. InProceedings of the 6th IEEE Symposium on
Logic in Computer Sciencpages 406—-415, 1991.

M. Hurfin, M. Mizuno, M. Raynal, and M. Singhal. Effi-
cient distributed detection of conjunction of local preatis.
Technical Report 2731, IRISA, Rennes, France, Nov. 1995.
J. P. Queille and J. Sifakis. Specification and verifaabf
concurrent systems in CESAR. Rroc. of the Fifth Inter-
national Symposium in Programmingplume 137 oLNCS
pages 337-351, New York, 1982. Springer-Verlag.

L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM
21(7):558-565, July 1978.

F. Mattern. Virtual time and global states of distriedt
systems. IrParallel and Distributed Algorithms: Proc. of
the International Workshop on Parallel and Distributed Al-
gorithms pages 215-226. Elsevier Science Publishers B.V.
(North-Holland), 1989.

K. L. McMillan. Symbolic Model CheckingKluwer Aca-
demic Publishers, 1993.

N. Mittal and V. K. Garg. Computation slicing: Technigi
and theory. Inin Proc. of the15'” International Sympo-
sium on Distributed Computing (DISQ)ages 78-92, Lis-
bon, Portugal, 2001.

A. Sen and V. K. Garg. Detecting temporal logic
predicates on the happened-before model. Techni-
cal Report TR-PDS-2001-003, PDSL, ECE Dept.
Univ. of Texas at Austin, 2001. Available at
http://www.ece.utexas.edu/"sen/publications/TR-PDS-
2001-003.ps.gz.

A. Tarafdar and V. K. Garg. Predicate control for active
debugging of distributed programs. In Proc. of the 9th
Symposium on Parallel and Distributed Processing (SRDP)
Orlando, 1998.

A. I. Tomlinson and V. K. Garg. Observation of software
for distributed systems with RCL. IRroc. of 15th Confer-
ence on the Foundations of Software Technology & Theoret-
ical Computer Sciencé&pringer Verlag, Dec. 1995. Lecture
Notes in Computer Science.

