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Abstract

Detection of a global predicate is a fundamental problem
in distributed computing. In this paper we describe new
predicate detection algorithms for certain temporal logic
predicates. We use a temporal logic, CTL, for specifying
properties of a distributed computation and interpret it on
a finite lattice of global states. We present solutions to
the predicate detection of linear and observer-independent
predicates underEG andAG operators of CTL. For lin-
ear predicates we develop polynomial-time predicate detec-
tion algorithms which exploit the structure of finite distribu-
tive lattices. For observer-independent predicates we prove
that predicate detection is NP-complete underEG operator
and co-NP-complete underAG operator. We also present
polynomial-time algorithms for a CTL operator called un-
til , for which such algorithms did not exist. Finally, our
work unifies many earlier results in predicate detection in a
single framework.

1. Introduction

Correct distributed programs are difficult to write. These
programs often contain bugs which are hard to detect with-
out some kind of automatic verification. Debugging is a
process of finding such bugs. A programmer upon observ-
ing a certain distributed computation for bugs can check
whether the observed computation satisfies some expected
property. For example, when debugging a distributed mu-
tual exclusion algorithm, it is useful to monitor the sys-
tem to detect concurrent accesses to the shared resources.
A system that performs leader election may be monitored
to ensure that processes agree on the current leader. It is
also important to be able to observe distributed systems for�supported in part by the NSF Grants ECS-9907213, CCR-9988225,
Texas Education Board Grant ARP-320, an Engineering Foundation Fel-
lowship, and an IBM grant

fault-tolerance. On detecting a violation of a safety prop-
erty like a deadlock, one of the processes must be aborted
and restarted.

The problem of deciding whether a happened-before
model [15] of a distributed computation satisfies a global
predicate (property), referred to as thepredicate detection
problem, is the main focus of this paper.

In distributed programs no process can determine the se-
quence of global states the system passed. This makes it dif-
ficult to check whether a global predicate held. Another ob-
stacle in detection of global predicates is thestate explosion
problem—the set of possible global states of a distributed
program withn individual processes can be of size expo-
nential inn. A variety of strategies for ameliorating the
state explosion problem, including symbolic model check-
ing and partial-order model checking have been explored
[17, 12].

Our approach to predicate detection is based on exploit-
ing the structure of the predicate [10]. This approach, in-
stead of building the lattice of global states (global state
space) for the distributed computation, directly uses the
computation to detect if the predicate is satisfied in a global
state. Some examples of the predicates for which the pred-
icate detection can be solved efficiently are:conjunctive
[10, 13],disjunctive[10], stable[2], observer-independent
[3, 4], linear [4], andregular [9, 18] predicates.

Our work is different frommodel checking[8, 14], which
checks that a predicate is satisfied for all computations of a
program. We check that a predicate is satisfied for asingle
computation of a program since our purpose is to develop
algorithms for fault-tolerance and debugging of distributed
programs where a single execution trace of the program is
observed. Even if model checking algorithms are used on
a single computation with a finite lattice as in our case, the
complexity of detecting a predicate would be in general pro-
portional to the size of the lattice which is still exponen-
tial in the number of processes (state-explosion problem),
whereas our algorithms have polynomial complexity. The
exponential complexity in the case of model checking is



due to the fact that model checking algorithms use reacha-
bility analysis (which performs fixpoint iterations that gen-
erates a sequence of global states or formulas correspond-
ing to global states), whereas we work on the computation
itself without explicitly generating all global states. Fi-
nally, we work on specific predicate classes as mentioned
above, whereas model checking in general deals with arbi-
trary predicates.

The temporal operators under which predicate detection
algorithms for a distributed computation have been dis-
cussed in the literature are:possibly(EF) [6, 10, 3, 9],
definitely(AF) [6, 11, 3, 9], controllable (EG) [20, 9],
andinvariant (AG) [6, 10, 3, 9].

We integrate the above mentioned operators under a
well-known temporal logic CTL [8] as it is done in model
checking. Our distributed computation model leads to a
global state space which is a finite distributive lattice. We
interpret CTL on this lattice structure and use the properties
of the structure itself which ultimately helps in obtaining
efficient predicate detection algorithms.

We present solutions to the predicate detection of linear
and observer-independent predicates undercontrollableand
invariant operators. A linear predicate [4] is such that the
set of global states that satisfy a linear predicate forms an
inf-semilattice of the lattice of global states. Linear predi-
cates include several useful predicate classes like conjunc-
tive predicates, regular predicates, monotonic channel pred-
icates and some relational predicates. Charron-Bost et al.
[3] introduced observer-independent predicates to capture
the class of predicates for which the detection ofpossibly
anddefinitelyare equivalent. Observer-independent pred-
icates include predicate classes like stable predicates and
disjunctive predicates.

A temporal operator that we use in CTL isuntil (U).
This operator helps in detecting properties where a condi-
tion has to hold until another condition eventually holds.
We present two polynomial algorithms for detecting con-
junctive, disjunctive and linear predicates under CTL tem-
poral operatoruntil. Efficient algorithms for this operator
did not exist before. A formulaE[p U q℄ (resp.A[p U q℄
) intuitively means that for some sequence (resp. all se-
quences) of global states starting from the initial state ofa
computation and ending at the final state, there exists an ini-
tial prefix of the sequence such thatq holds at the last state
of the prefix andp holds at all other global states along the
prefix. A mutual exclusion predicate like “processes are in
trying state before getting to critical state” can be specified
asA[tryi U ritiali℄ .

Table 1 lists the predicate detection algorithms for the
classes of predicates mentioned above.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses the model we use to represent distributed
programs. CTL syntax and semantics is given in Section

Table 1. Predicate Detection Algorithms
Predicate Detection Algorithmp EF(p) AF(p) EG(p) AG(p)

conjunctive [10] [11] [10] [11]
disjunctive [11] [10] [11] [10]

stable [2] [3] trivial trivial
linear [4] open this paper this paper

observer- [4, 3] [4, 3] this paper this paper
independent

regular [9, 18] open [9, 18] [9, 18]
arbitrary [4] [20] [20] [4]

3. A brief overview of predicate classes is given in Sec-
tion 4. We present algorithms for detecting linear pred-
icates undercontrollable and invariant operators in Sec-
tion 5. Section 6 has NP-completeness results for observer-
independent predicates. The detection of global predicates
underuntil operator and our algorithms are described in
Section 7. Finally, some concluding remarks are given in
Section 8.

2. Model

We assume a loosely-coupled message-passing asyn-
chronous system without any shared memory or a global
clock. A distributed programconsists ofn sequential pro-
cesses denoted byP1; P2; : : : ; Pn communicating via asyn-
chronous messages. In this paper, we are concerned with
a singlecomputation(execution) of a distributed program.
We assume that no messages are altered or spuriously intro-
duced. We do not make any assumptions about FIFO nature
of channels.

The execution of a process in a computation can be
viewed as a sequence of events with events across pro-
cesses ordered by Lamport’shappened-beforerelation,!
[15]. We use lowercase letterse andf to represent events.
Thehappened-beforerelation between any two eventse andf can be formally stated as the smallest relation such thate! f if and only if e occurs beforef in the same process,
or e is a send of a message andf is a receive of that mes-
sage, or there exists an eventg such thate happened-beforeg andg happened-beforef . We represent the set of events
as the union of events from each process,E = SEi, for
each1 � i � n. We define adistributed computationas the
partially ordered set consisting of the set of events together
with the happened-before relation and denote it by(E;!).

We define aconsistent cutof a computation(E;!) as a
subsetG � E such thatf 2 G ^ e! f ) e 2 G. We use
uppercase lettersG, H , J , andK to represent consistent
cuts. A consistent cut captures the notion of a reachable
global state. We use consistent cut and global state inter-



changeably.
We denote the set of consistent cuts of any distributed

computation(E;!) byC(E). It is well known that the set
of consistent cuts of any distributed computation(E;!)
forms adistributive lattice, under the relation� [16, 9]. We
denote this lattice byL = (C(E);�). For any partially
ordered set, we uset andu to denote join and meet opera-
tors. Note that the join (resp. meet) of two consistent cuts
correspond to their union (resp. intersection).

We denote the set of maximal (with respect to happened-
before relation) elements of a consistent cutG byfrontier(G). We definesuccessorof a cut by a rela-
tion . � C(E) � C(E) such thatG . H if and only ifH = G [ feg for somee 2 E such thate 62 G. A maximal
consistent cut sequenceG0; G1; : : : ; Gl of (C(E);�) that
starts fromG satisfies thatG0 = G, Gl = E and for each0 � i < l,Gi.Gi+1. Note that,; denotes theinitial cut of a
computation andE denotes thefinal cutof a computation.

3. CTL and Predicate Detection

In this section we first give the syntax and the semantics
for the subset of the temporal logic CTL that we use. We
compare the logic we use with the logics used in related
work. Finally we define predicate detection problem in CTL
context.

Propositional temporal logics use a finite set of atomic
propositionsAP , each one of which represents some prop-
erty of the global state. A labeling function� : C(E) !2AP assigns to each global state the set of predicates fromAP that hold in it.

The formal syntax of the subset of CTL that we use in
this paper is given below.� Every atomic propositionap 2 AP is a CTL formula.� If p and q are CTL formulas, then so are:p; p ^q;A[p U q℄, andE[p U q℄.

The symbolŝ and: have their usual meanings. There
are two path quantifiers:A denotesfor all maximal consis-
tent cut sequencesandE denotesfor some maximal consis-
tent cut sequence. U is theuntil temporal operator.

Given a latticeL = (C(E);�), the formulas of CTL are
interpreted over the consistent cuts inC(E). Letp andq be
CTL formulas andG be a consistent cut inC(E). Then, the
satisfaction relation,L;G j= p means that predicatep holds
at consistent cutG in latticeL = (C(E);�) and is defined
inductively below. We denoteG j= p as a short form forL;G j= p, whenL is clear from the context.� G j= ap iff ap 2 �(G) for an atomic propositionap.� G j= :p iff G 6j= p.� G j= p ^ q iff G j= p andG j= q.� G j= p _ q iff eitherG j= p orG j= q.� G j= A[p U q℄ iff for all maximal consistent cut
sequences that start fromG there exists a finite prefix

G0; : : : ; Gk of consistent cuts such that(i) G0 = G, (ii)Gi . Gi+1 for 0 � i < k, (iii) Gk j= q, and(iv) Gi j= p
for all 0 � i < k.� G j= E[p U q℄ iff for some maximal consistent cut
sequence that starts fromG there exists a finite prefixG0; : : : ; Gk of consistent cuts such that(i) G0 = G, (ii)Gi . Gi+1 for 0 � i < k, (iii) Gk j= q, and(iv) Gi j= p
for all 0 � i < k.

We defineL j= p if and only if L; ; j= p. 1 We use the
following abbreviations in writing CTL formulas:� AF(p) � A[true U p℄ intuitively means thatp is true
in some consistent cut along every finite sequence starting
from ; and ending atE; that is,definitely: p.� EF(p) � E[true U p℄ intuitively means thatp is true
in some consistent cut along some finite sequence starting
from ; and ending atE; that is,possibly: p.� EG(p) � :AF(:p) intuitively means thatp is true
on every consistent cut along some finite sequence starting
from ; and ending atE; that is,controllable: p.� AG(p) � :EF(:p) intuitively means thatp is true on
every consistent cut along every finite sequence starting
from ; and ending atE; that is,invariant: p.

There have been other attempts to unify the predicate
detection problem, like RCL [21] and ENF [5]. In these
frameworks one can specify sequences of weak conjunctive
predicates which are easily expressible in CTL; since CTL
is more expressive due to temporal operators. Babaoglu et
al. [1] have an automata oriented framework for detect-
ing behavioral patterns with exponential-time algorithms,
whereas we have a temporal logic based framework with
polynomial-time algorithms.

The predicate detectionproblem is to decide whether a
happened before model of a distributed computation satis-
fies a predicate.

4. Predicate Classes

Our approach to predicate detection is based on exploit-
ing the structure of the predicate. Efficient predicate de-
tection algorithms have been designed for CTL operatorsEF(p), AF(p), EG(p), andAG(p), whenp belongs to
a specific predicate class. We first give definitions of such
classes and next present their relationship to each other.

We define a predicate to be alocal predicateif its truth
value depends only on the state of a single process. For ex-
ample, “ the value ofx on processi is 2” is a local predicate.
A predicatep is said to beconjunctive(resp.disjunctive) if
it can be written as a conjunction (resp. disjunction) of local
predicates. Astable[2] predicatep is such that the predicate
remains true once it becomes true. A predicatep is said to

1Note that a distributed program is modeled by a set of partialorder
sets (computations). In that case, a distributed programP satisfies a CTL
formulap if and only ifL j= p for eachL in P .



beobserver-independent[3, 4] if AF (p)() EF (p) that
is, if the predicate holds in some observation then it holds
in all observations. Note that if predicatep holds initially
then it is an observer-independent predicate. We say that
a predicatep is regular [9, 18] if the set of consistent cuts
that satisfy the predicate forms a sublattice of the latticeof
consistent cuts. Equivalently, if two consistent cuts satisfy
a regular predicate then the cuts given by their set intersec-
tion and set union will also satisfy the predicate. Alinear
[4] predicate is such that the set of consistent cuts that sat-
isfy the predicate forms an inf-semilattice of the lattice of
consistent cuts.

We useIp to denote the least (initial) consistent cut that
satisfies predicatep, if the least consistent cut exists. Note
that,Ip exists ifp is a conjunctive, regular, or linear predi-
cate.

In this paper, we use a fragment of CTL in which for-
mulas are in one of the following forms:AF(p), EF(p),EG(p), AG(p), E[p U q℄, andA[p U q℄, wherep andq
are non-temporal predicates from the classes of predicates;
conjunctive, disjunctive, observer-independent, stable, lin-
ear, and regular. We say that a predicate isnon-temporal
if it does not contain temporal operators such asAF, EF,EG, AG, EU, andAU. In other words, we do not con-
sider nested temporal predicates in this paper.

Note that linear predicates include regular predicates and
regular predicates include conjunctive predicates. Similarly,
observer-independent predicates include stable and disjunc-
tive predicates. We present formal proofs of these relations
in [19].

5. Detecting Linear Predicates

Linear predicates include several useful predicate classes
like conjunctive predicates, regular predicates, monotonic
channel predicates and some relational predicates. Garg
et al. [4] introduced efficient algorithms for detecting lin-
ear predicates underEF operator. In this section we intro-
duce efficient algorithms for detecting linear predicates un-
derEG andAG operators. Algorithms for detecting sub-
classes of linear predicates under such CTL operators are
shown in Table 1.

Our algorithm for detecting linear predicates underEG
operator finds a sequence of consistent cuts starting from
the final cut to the initial cut such that every cut in this se-
quence satisfies the predicate, if such a sequence exists. Al-
gorithm A1 of Fig. 1 displays our algorithm. Starting from
the final cut we move towards the initial cut moving one cut
at a time. The next consistent cut to explore is determined
based on choosing one of the consistent cuts that precedes
the current consistent cut in the computation and that satis-
fies the predicate. We prove that it does not matter which
one of these consistent cuts is chosen as long as one exists.

If EG(p) is satisfied in the lattice then the algorithm returns
true, and vice-versa.

Algorithm A1

Input: ((E;!); p) p is a linear predicate
Output: (E;!) satisfiesEG(p) or not
Step 1. LetW be the final cut of(E;!)

If W does not satisfyp then return false
Step 2. while W 6= initial cut do
Step 3. LetQ = fG 2 C(E) j G j= p ^G .Wg

be the set of predecessors ofW that satisfyp
Step 4. IfQ is empty then return false
Step 5. else letW be an arbitrary element fromQ
Step 6. endwhile
Step 7. If the initial cut satisfiesp then return true,

else return false

Algorithm A2
Input: ((E;!); p) p is a linear predicate
Output: (E;!) satisfiesAG(p) or not
Step 1. LetV =M(L) [ fEg
Step 2. If any consistent cut inV does not satisfyp

then return false, else return true

Figure 1. Algorithms to detect EG(p) andAG(p) when p is linear

Next we prove the correctness of Algorithm A1 using
the following lemma which is a simple observation of the
lattice structure of distributed computations.

Lemma 1 ([19]) Given a finite distributive latticeL =(C(E);�) for a computation(E;!) and two consistent
cutsG;H 2 C(E) such thatG .H and another consistent
cutJ 2 C(E) such thatJ � H then either(GuJ) = J or(G u J) . J .

Theorem 2 Algorithm A1 detectsEG(p) for p linear.
Proof: If the algorithm returns true then it is clear thatEG(p) holds. Now we prove that ifEG(p) holds then
algorithm returns true. SinceEG(p) holds, there exists a
sequence from the final cut to the initial cut along whichp
holds. We prove by induction on the length of this sequence,j that ifEG(p) holds then the algorithm returns true.� Base case (j = 1) There is only a single sequence;; E
therefore trivial.� Induction step (j = k + 1) Assuming that the asser-
tion is true up toj = k we prove that it holds forj =k + 1. If EG(p) is true then there exists a sequenceG0 = ;; : : : ; Gk; Gk+1 = E that satisfies the predicate.
If in Step 5 of the algorithmGk is chosen then we are done
else let the consistent cut chosen by the algorithm in this
step beH 6= Gk. We know thatH j= p from Step 3.H u Gk exists sinceL is a finite distributive lattice. From



Lemma 1,(H uGk) = Gk (in which case we are done) or(H u Gk) . Gk hence the length of the sequence from the
initial cut toH uGk is< k therefore the induction hypoth-
esis applies.

Complexity of the algorithm: The complexity of find-
ing the next consistent cut isO(n) since there can be at mostn preceding cuts of a consistent cut. A consistent cut se-
quence in the lattice can be of at mostjEj length since there
arejEj events in the computation therefore the complexity
of the while loop isO(jEj). The total complexity of the
algorithm isO(njEj), wheren is the number of processes
andE is the set of events. This result applies to regular
predicates as well and improves theO(n2jEj) complexity
in [9].

For detecting linear predicates underAG operator we
make use of Birkhoff’s representation theorem for finite
distributive lattices. This theorem uses the notion of meet-
irreducible elements of a lattice.

Definition 1 (meet-irreducible element [7]) An el-
ement x 2 L is meet-irreducible ifx 6= E and8 a; b 2 L : x = a u b ) (x = a) _ (x = b).
Dually, an elementy 2 L is join-irreducible ify 6= ; and8 a; b 2 L : y = a t b) (y = a) _ (y = b).

In other words,x cannot be further decomposed into the
meet of other elements in the lattice, just as prime numbers
cannot be further factored into the product of other natural
numbers. For example, the meet-irreducible elements of the
lattice in Fig. 2(b), are shown in filled circles. Pictorially,
in a finite distributive lattice an element is meet-irreducible
iff it has exactly one upper cover, that is, it has exactly one
outgoing edge. We denote the set of all meet-irreducible el-
ements of a latticeL byM(L). We use meet-irreducibility
to provide us with a kind of prime factorization for finite
distributive lattices. We call a subsetS of a posetP anup-
set if s 2 S ^ s < t ) t 2 S and denote byU the set of
up-sets of a poset.

Theorem 3 (Birkhoff [7]) LetL be a finite distributive lat-
tice. Then the mapf : L ! U(M(L)) defined byf(a) = fx 2 M(L) j a � xg is an isomorphism ofL ontoU(M(L)). Dually, letP be a finite poset. Then the mapg : P !M(U(P )) defined byg(a) = fx 2 P j a � xg is
an isomorphism ofP ontoM(U(P )).

Birkhoff’s theorem says that there is a one-to-one cor-
respondence between a finite poset and a finite distributive
lattice. Given a finite distributive lattice, we can recoverthe
poset by focusing on its meet-irreducible elements. Given
a finite poset, we get the finite distributive lattice by con-
sidering its set of up-sets. Informally, every lattice element

of a finite distributive lattice (except for the final cut) can
be defined as meet of a subset of meet-irreducible elements.
The following is a corollary of Theorem 3.

Corollary 4 ([7]) Leta be any element in a distributive lat-
ticeL. Thena = fx 2M(L) j a � xg.
For example, in the lattice shown in Fig. 2,X =fE1; E2; E3; F3g; Y = fE3; F3g, and similarly for
the other elements.

Birkhoff’s theorem and the corollary is useful in com-
putational sense as well because the set of meet-irreducible
elements of a lattice is generally exponentially smaller than
the size of the lattice itself.
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Figure 2. A computation (a) and its lattice (b)

We present an algorithm to detect linear predicates un-
derAG operator in Fig. 1. Intuitively, algorithm A2 says
that, to detect a linear predicate underAG operator it is
sufficient and necessary to check whether the predicate is
satisfied at the meet-irreducible elements and the final cut
of the lattice. This follows from results above, that is, sincep is linear, if p holds at meet-irreducible elements then it
holds at their meets. From corollary 4, every element in the
lattice (except for the final cut) can be defined as the meet
of a subset of meet-irreducible elements.

Complexity of the algorithm: The main complexity
comes from finding the set of meet-irreducible elements.
Garg et al. [9] has anO(n2jEj) algorithm to compute the
list of join-irreducible elements. The same algorithm can be
used for meet-irreducible elements as well, only this time
we apply their algorithm backwards on the computation or
with all the edges in the computation reversed.



We can use algorithms above for detectingpost-linear
predicates defined in [4]. Post-linear predicates are such
that the set of consistent cuts that satisfy a post-linear predi-
cate forms a sup-semilattice of the lattice of consistent cuts.
Algorithm A1 can be modified so that it starts from the ini-
tial cut and moves towards the final cut. The next consis-
tent cut to move is determined based on finding one of the
consistent cuts that follows the current consistent cut in the
computation and satisfies the predicate; again it does not
matter which one of these consistent cuts is chosen as long
as one exists. Algorithm A2 can be modified such that in
Step 1 instead of using meet-irreducible elements and the
final cut, the new algorithm uses the join-irreducible ele-
ments and the initial cut.

6. Detecting observer-independent predicates

It was shown in [4] and [20] that detecting an arbi-
trary predicate is NP-complete underEF andEG opera-
tors. In this section we prove that detecting an observer-
independent predicate is NP-complete underEG operator
and co-NP-complete underAG operator.

Theorem 5 Given a distributed computation, detecting an
observer-independent predicatep underEG operator is
NP-complete.
Proof: The proof of the theorem is very similar to the proof
for NP-completeness of an arbitrary predicate underEG
operator [20]. The problem is in NP because it takes poly-
nomial time to check that a candidate global sequence of
consistent cuts is valid and that it satisfies the predicatep.
To show that it is NP-hard, we reduce Satisfiability to this
problem. If p is the boolean expression in Satisfiability,
then for each variablex1; : : : ; xm in p, we assign a sepa-
rate process with two states, true and false (Fig. 3 (a)). We
define a process for an extra boolean variablexm+1 which
starts true, goes through a false state, and ends true again.
We defineP = p _ xm+1. It is clear thatP is observer-
independent since it is satisfied at the initial state. Then we
applyEG algorithm to detect predicateP . If there exists a
global sequence that satisfiesEG(P ), then the global state
with xm+1 = false will have a satisfying assignment for
the variables ofp. Conversely, ifp is satisfiable, then there
exists a satisfying global sequence.

Theorem 6 Given a distributed computation, detecting an
observer-independent predicatep underAG operator is
co-NP-complete.
Proof: The problem is in co-NP because it takes polyno-
mial time to check that a candidate consistent cut satisfies
the negation of the predicatep. To show that it is co-NP-
hard, we reduce Tautology, a co-NP-complete problem, to
this problem. Ifp is the boolean expression in Tautology,

then for each variablex1; : : : ; xm in p, we assign a separate
process with true and false states (Fig. 3 (b)). We define
a process for an extra boolean variablexm+1 which starts
true, and ends at a false state. We defineP = p _ xm+1.
Similar to the proof of above theorem, it is clear thatP is
observer-independent since it is satisfied at the initial state.
We then applyAG algorithm to detect invariance ofP . If
the algorithm returns true, then all global sequences satisfy
the predicate and all global states withxm+1 = false will
have satisfying assignments for the variables ofp. Con-
versely, if p is a tautology, then all global states in all se-
quences will satisfyp.
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Figure 3. Detecting an observer-independent
predicate p under (a) EG is NP-complete (b)AG is co-NP-complete

Although predicate detection of observer-independent
predicates underEG andAG operators is intractable, sub-
classes of this predicate class like disjunctive and stable
predicates have polynomial detection algorithms (cf. Table
1).

7. Detecting predicates with Until operatorE[p U q℄ (EU) andA[p U q℄ (AU) predicates aid in
detecting conditions where a condition has to hold until an-
other condition eventually holds. See Fig. 4 for an example
computation for detectingE[p U q℄ where the predicate in
question is “there exists an observation such that variablez
of processP3 is less than 6 and variablex of processP1 is
less than 4until channels are empty and variablex of pro-
cessP1 is greater than 1”. Each event in the computation
is labeled with the value of the respective variable imme-
diately after the event is executed. The paths in the lattice
starting from the initial cut with patterned circles leading to
cuts with filled circles satisfy the predicate. It can also be
observed that the first part of the predicate,p, is a conjunc-
tive predicate and the second part,q, is a linear predicate.
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Figure 4. A computation (a) and its lattice (b)

In detectingE[p U q℄, a lattice construction based ap-
proach would, in the worst case, have to check all the con-
sistent cut sequences wherep holds until eventuallyq holds.
It is clear that this is very inefficient due to both state explo-
sion and exponential number of consistent cut sequences in
the number of events. Theorem 7 shows a way to find such
a consistent cut sequence in a more efficient manner.

Theorem 7 ([19]) Given a finite distributive latticeL = (C(E);�) for a computation(E;!), a conjunctive
predicatep, and a linear predicateq; L j= E[p U q℄ if and
only if there exists a finite sequenceK0 : : :Kj of consistent
cuts such that(i)K0 = ;, (ii)Ki . Ki+1 for 0 � i < j,(iii)Kj = Iq whereIq is the least consistent cut that

satisfies predicateq, and(iv)Ki j= p for all 0 � i < j.
Intuitively, Theorem 7 says that whenp is conjunctive

andq is linear, in detectingE[p U q℄, it is necessary and
sufficient to check for the existence of a sequence of consis-
tent cuts starting from the initial consistent cut to the con-
sistent cutIq wherep holds along the sequence untilq holds
in Iq . This greatly simplifies the task of detectingE[p U q℄
because otherwise we would have to check for the existence
of a sequence of consistent cuts starting from the initial con-
sistent cut to “some” consistent cutG wherep holds along
the sequence untilq holds inG.

If we apply the theorem to the computation in Fig. 4 it
is observed that there is a sequence of consistent cuts which
satisfies the theorem, that is;, ff1g, fe1; f1g, fe1; f2; f1g,fe1; f2; f1; g1g whereIq = fe1; f2; f1; g1g. Out of a pos-
sible 7 paths which start from the initial cut and satisfy the
predicate it is enough to consider only the ones that lead toIq , of which there are only 2 in this case.

We use Theorem 7 to obtain an algorithm to detectE[p U q℄ as in Fig. 5.2

Algorithm A3

Input: ((E;!); p; q) p is conjunctive,q is linear
Output: (E;!) satisfiesE[p U q℄ or not
Step 1. FindIq, the least consistent cut that satisfiesq.
Step 2. Check ifEG(p) is satisfied in any(E0;!)

such thatE0 = Iq � feg; e 2 frontier(Iq).
If the result is positive then return true,
else return false.

Figure 5. Detection algorithm for E[p U q℄
Complexity of the algorithm: Whenp is a conjunctive

predicate, the algorithm presented in Chase et al. [4] for
linear predicates is applicable in Step 1. The complexity
of the Chase et al. algorithm depends upon the complex-
ity of determining an event to advance a given consistent
cut G. In this paper, we assume that the complexity of
determining the required event isO(n) and therefore the
complexity of Step 1 isO(njEj). In Step 2, the optimal
algorithm presented in [18] for generating a slice of a con-
junctive predicate is applicable. The complexity of this isO(jEj) and there are at mostn computations generated in
Step 2. Therefore the complexity of Step 2 isO(njEj). The
overall complexity of the algorithm isO(njEj).

We use the equalityA[p U q℄ () :(EG(:q) _E[:q U (:p ^ :q)℄) to detect predicates underAU op-
erator. This equality gives a representation ofAU operator
in terms ofEU andEG operators. When predicatesp andq are disjunctive predicates we can use the algorithm de-
veloped forEU since(:q) is a conjunctive predicate and(:p ^ :q) is a linear predicate. Similarly we can use the
algorithm presented in [18] for detecting conjunctive predi-
cates underEG operator to detectEG(:q). The complex-
ity of this algorithm isO(jEj). The overall complexity ofA[p U q℄ algorithm is thereforeO(njEj) + O(jEj) which
isO(njEj).

2Note also that predicateq in Theorem 7 actually could be weaker than
a linear predicate where it only has to satisfy the property that9J : 8G : (G j= p) ) ((J � G) ^ (J j= p))

which intuitively means that there exists a least consistent cut that satis-
fies predicatep.



8. Conclusions and Future work

Detection of a global predicate is a fundamental problem
in distributed computing. This problem arises in many con-
texts such as testing and debugging of distributed programs.
Our focus in this paper has been on developing and unifying
predicate detection algorithms using a well-known tempo-
ral logic CTL on the happened-before model. CTL unifies
known predicate detection operators by enabling their ex-
pressibility with the operators of the logic. We solved predi-
cate detection of linear and observer-independentpredicates
undercontrollableand invariant operators. We presented
polynomial-time algorithms for detecting linear predicates
under these operators. These results also improve previous
ones for regular predicates. We also proved that detecting
observer-independent predicates undercontrollableopera-
tor is NP-complete and underinvariant operator is co-NP-
complete. We have used a temporal operator in CTL, called
until which characterizes a class of predicates for which ef-
ficient predicate detection algorithms did not exist. We have
determined the necessary and sufficient conditions for solv-
ing detection ofuntil predicates for conjunctive, disjunctive,
and linear predicates. We are planning on developing a de-
bugging environment for the happened-before model mak-
ing use of the algorithms presented here. Also an open prob-
lem is to find polynomial-time algorithms for detecting reg-
ular and linear predicates underAF operator. Another area
of future work will be to develop efficient on-line versions
of our algorithms.
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