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Abstract. Given a distributed computation and a global predicate, predicate detection is
concerned with determining whether there exists at least one consistent cut (or global state)
of the computation that satisfies the predicate. On the other hand, computation slicing
involves computing the smallest subcomputation—with the least number of consistent cuts—
that contains all consistent cuts of the computation satisfying the predicate. In this paper,
we study the relationship between the above two problems and show that they are actually
equivalent. Specifically, given an algorithm to detect a predicate, we derive an algorithm to
compute the slice for the predicate. The time-complexity of our slicing algorithm is O(n|E|)
times the time-complexity of the detection algorithm, where n is the number of processes and
E is the set of events. We discuss how the “equivalence” result of this paper can be utilized
to derive a more efficient algorithm for solving the general predicate detection problem.
Slicing algorithms described in our earlier papers are all off-line in nature. In this paper,
we give an efficient on-line algorithm for computing the slice for a predicate that can be
detected efficiently. The amortized time-complexity of the algorithm is O(n(c+ n)) times
the time-complexity of the detection algorithm, where c is the average concurrency in the
computation.

Key words: analyzing distributed computations, computation slicing, predicate detection,
global property evaluation, testing and debugging, software fault tolerance, on-line algorithm

1 Introduction

Writing correct distributed programs is a non-trivial task. Not surprisingly, distributed
systems are particularly vulnerable to software faults. Testing and debugging is an effective
way of improving the dependability of a software prior to its deployment. Software bugs
that do persist after extensive testing and debugging have to be tolerated at runtime to
ensure that the system continues to operate properly. Detecting a fault in an execution of
a distributed system (e.g., violation of mutual exclusion) is a fundamental problem that
arises during testing and debugging as well as software fault tolerance.
In this paper, we focus on detecting those faults that can be expressed as predicates

on variables of processes. For example, “no process has the token” can be written as
no token1 ∧no token2 ∧ · · · ∧no tokenn, where no tokeni denotes the absence of token on
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process pi. This gives rise to the predicate detection problem which involves determining
whether there exists a consistent cut (or global state) of a distributed computation that
satisfies given global predicate. (This problem is also referred to as detecting a predicate
under possibly modality in the literature.) For example, a programmer debugging an im-
plementation of a distributed mutual exclusion algorithm may want to test whether a
given execution of the system contains a global state for which two or more processes are
in their critical sections.

Detecting a predicate in a distributed computation is a hard problem in general [17,
8]. The reason is the combinatorial explosion in the number of possible consistent cuts.
Given n processes each executing at most k events, the number of possible consistent cuts
in the computation could be as large as O(kn). Finding a consistent cut that satisfies the
given predicate may, therefore, require looking at a large number of consistent cuts. Many
approaches to predicate detection exploit the structure of the predicate—by imposing
restrictions—to evaluate its value efficiently for a given computation. Polynomial-time
algorithms have been developed for several useful classes of predicates (e.g., conjunctive
predicates [8], relational predicates [4] and so on).

In our earlier papers [9, 13], we introduce the notion of computation slice. Intuitively,
slice is a concise representation of consistent cuts satisfying a certain condition. The slice
of a computation with respect to a predicate is the directed graph with the least number of
consistent cuts that contains all consistent cuts of the computation for which the predicate
evaluates to true. Slicing can be used to throw away the extraneous global states of the
computation in an efficient manner, and focus on only those that are currently relevant for
our purpose. The number of consistent cuts of the slice is much smaller than those of the
computation. Therefore, in order to detect a fault, rather than searching the state-space
of the computation, it is much more efficient to search the state-space of the slice. We also
identify a class of predicates, called regular predicates, for which the slice is lean [9, 13].
That is, the slice for a regular predicate contains precisely those consistent cuts for which
the predicate evaluates to true.

As an illustration, suppose we want to detect the predicate (x1 ∗ x2 + x3 < 5) ∧(x1 >
1) ∧ (x3 6 3) in the computation shown in Fig. 1(a). The computation consists of three
processes p1, p2 and p3 hosting integer variables x1, x2 and x3, respectively. The events
are represented by circles. Each event is labeled with the value of the respective variable
immediately after the event is executed. For example, the value of variable x1 immediately
after executing the event c is 2. The first event on each process (namely a on p1, q on
p2 and u on p3) “initializes” the state of the process and every consistent cut contains
these initial events. Without computation slicing, we are forced to examine all consistent
cuts of the computation, thirty in total, to ascertain whether some consistent cut satisfies
the predicate. Alternatively, we can compute the slice of the computation with respect
to the predicate (x1 > 1) ∧ (x3 6 3) as follows. Immediately after executing b, the value
of x1 becomes −1 which does not satisfy x1 > 1. To reach a consistent cut satisfying
x1 > 1, c has to be executed. In other words, any consistent cut in which only b has
been executed but not c is of no interest to us and can be ignored. The slice is shown
in Fig. 1(b). It is modeled by a partial order on a set of meta-events; each meta-event
consists of one or more “primitive” events. A consistent cut of the slice either contains
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Fig. 1. (a) A computation and (b) its slice with respect to (x1 > 1) ∧ (x3 6 3).

all the events in a meta-event or none of them. (Intuitively, any consistent cut of the
computation that contains only a partial set of events in a meta-event is of no relevance
to us.) Moreover, a meta-event “belongs” to a consistent cut only if all its incoming
neighbours are also contained in the cut. We can now restrict our search to the consistent
cuts of the slice which are only six in number, namely {a, q, r, u, v}, {a, q, r, u, v, b, c},
{a, q, r, u, v, w}, {a, q, r, u, v, b, c, w}, {a, q, r, u, v, w, s} and {a, q, r, u, v, b, c, w, s}. The slice
has much fewer consistent cuts than the computation itself—exponentially smaller in many
cases—resulting in substantial savings.

The predicate detection problem is only concerned with determining whether there
exists at least one consistent cut of the computation that satisfies the given predicate.
Computation slicing, on the other hand, is concerned with computing (a succinct repre-
sentation of) all consistent cuts of the computation for which the given predicate evaluates
to true. Clearly, detecting a predicate is no harder than computing its slice in the sense
that the predicate detection problem can be easily solved given the slice for the predicate
(it suffices to test for the emptiness of the slice). In this paper, we prove a somewhat
surprising result that detecting a predicate is no easier than computing its slice. In other
words, given an algorithm A for detecting a predicate b, there exists an algorithm B for
computing the slice for b such that the time-complexity of B is at most O(n|E|) times the
time-complexity of A, where n is the number of processes and E is the set of events. As a
corollary, it can be derived that there exists a polynomial-time algorithm for detecting a
predicate if and only if there exists a polynomial-time algorithm for computing its slice.

At first glance, it may seem that we are not any better off than we were before. After
all, if predicate detection is “equivalent” to computation slicing, then how can slicing be
used to improve the complexity of predicate detection? Indeed, slicing can be used to
facilitate predicate detection as illustrated by the following example. Consider a predicate
b that is a conjunction of two clauses b1 and b2. Now, assume that b1 is such that it can
be detected efficiently but b2 has no structural property that can be exploited for efficient
detection. An efficient algorithm for locating some consistent cut satisfying b1 cannot
guarantee that the cut also satisfies b2. Therefore, to detect b, without computation slicing,
we are forced to use techniques such as breadth first search [5], depth first search [1], and
partial-order methods (a model-checking technique) [18], which do not take advantage of
the fact that b1 can be detected efficiently. With computation slicing, however, we can
first compute the slice for b1. If only a small fraction of consistent cuts satisfy b1, then
instead of detecting b in the computation, it is much more efficient to detect b in the
slice. Therefore by spending only polynomial amount of time in computing the slice we
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can throw away exponential number of consistent cuts, thereby obtaining an exponential
speedup overall. In fact, our experimental results indicate that slicing can indeed lead to
an exponential improvement over existing techniques for predicate detection in terms of
time and space [14]. Consequently, the result of this paper, rather than diminishing the
benefits of computation slicing, actually enhances them by greatly expanding the class of
predicates for which the slice can be computed efficiently.

Note that other techniques for reducing the time-complexity [18] and/or the space-
complexity [1] of predicate detection are orthogonal to slicing, and as such can be used in
conjunction with slicing. Slicing can also be employed to reduce the search-space for de-
tecting a predicate under other modalities including definitely, invariant and controllable
[5, 13, 8] and their nestings, which generates a subset of temporal logic [16]. Other applica-
tions include tool for debugging a distributed program and a more effective visualization
of a distributed computation using event abstraction [10]. For instance, a programmer can
use slicing to focus his attention on only faulty consistent cuts of a computation, which
may provide a valuable insight into the bug that caused the fault. An examination of the
structure of the slice may be used to locate potentially problematic events.

Although in this paper our focus is on distributed systems, slicing has applications in
other areas as well, such as combinatorics [7]. A combinatorial problem usually requires
counting or enumerating structures that satisfy a given property. In [7], we cast the com-
binatorial problem as a distributed computation such that there is a bijection between
the combinatorial structures satisfying a property b and the consistent cuts that satisfy a
property equivalent to b. We then apply results in slicing a computation with respect to a
predicate to obtain a slice consisting of only those consistent cuts that satisfy the desired
property. This gives us an efficient algorithm to count or enumerate structures that satisfy
b when the total set of structures is large but the set of structures satisfying b is small.
Several applications of slicing for analyzing problems in integer partitions, set families,
and the set of permutations are given in [7].

The algorithms described in our earlier papers [9, 13, 15] for computing a slice are all
off-line in nature; they assume that the entire set of events is available a priori. While this
is quite adequate for applications such as testing and debugging, for other applications
such as software fault tolerance, it is desirable that the slice be computed incrementally in
an on-line manner; as and when a new event is generated, the current slice is updated to
reflect its arrival. The reason is that for software fault tolerance, it is important to detect
the fault as early as possible before it can cause any severe damage. If the slice is computed
only after a certain number of events have been collected and then analyzed for the presence
of a faulty consistent cut, it may be too late for any meaningful recovery. At the same
time, whenever an event arrives, the cost of incrementally updating the slice should be less
than the cost of recomputing the slice from scratch using an off-line algorithm. The on-line
algorithm is also useful when slicing is used to visualize a computation in progress. For
instance, when debugging an implementation of distributed mutual exclusion algorithm,
the programmer may want to “look” at only those consistent cuts that violate mutual
exclusion. In this paper, we give an efficient incremental algorithm to compute the slice
for a predicate given an efficient algorithm to detect the predicate. The amortized time-
complexity of the algorithm is O(n(c + n)) times the time-complexity of the detection
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algorithm, where c is the average concurrency in the computation. We define average
concurrency in the computation to be the ratio of the number of concurrent pairs to the
number of events.
To summarize, in this paper, we prove that the problem of detecting a predicate in a

computation is equivalent to the problem of computing the slice for the predicate (Sect. 4).
Additionally, we give an efficient on-line algorithm for computing the slice for a predicate
that can be detected efficiently (Sect. 5). Section 2 describes the system model and notation
used in this paper. Section 3 contains background on computation slicing necessary to
understand the rest of the paper. Due to the lack of space, the proofs of all lemmas and
theorems have been moved to the appendix.

2 Model and Notation

We assume a loosely-coupled system consisting of n processes denoted by P = {p1, p2, . . . , pn}
communicating via asynchronous messages. We do not assume any shared memory or
global clock.
Traditionally, a distributed computation is modeled as a partial order on a set of events

[11]. In this paper we relax the restriction that the order on events must be a partial order.
More precisely, we use directed graphs to model distributed computations as well as slices.
Directed graphs allow us to handle both of them in a uniform and convenient manner.
Given a directed graph G, let V(G) and E(G) denote its set of vertices and edges,

respectively. A subset of vertices of a directed graph forms a consistent cut if the subset
contains a vertex only if it also contains all its incoming neighbours. Formally,

C is a consistent cut of G , 〈∀e, f ∈ V(G) : (e, f) ∈ E(G) : f ∈ C ⇒ e ∈ C〉

Observe that a consistent cut either contains all vertices in a strongly connected com-
ponent or none of them. Let C(G) denote the set of consistent cuts of a directed graph G.
Observe that the empty set ∅ and the set of vertices V(G) trivially belong to C(G). We
call them trivial consistent cuts. Also, let P(G) denote the set of pairs of vertices (u, v)
such that there is a path from u to v in G. We assume that every vertex has a path to
itself.
A distributed computation (or simply a computation) 〈E,→〉 is a directed graph with

vertices as the set of events E and edges as→. To limit our attention to only those consis-
tent cuts that can actually occur during an execution, we assume that P(〈E,→〉) contains
at least the Lamport’s happened-before relation [11]. A distributed computation in our
model can contain cycles. This is because whereas a computation in the traditional or
happened-before model captures the observable order of execution of events, a computa-
tion in our model captures the set of possible consistent cuts. Intuitively, each strongly
connected component of a computation constitutes a meta-event.
Let proc(e) denote the process on which event e occurs. The predecessor and successor

events of e on proc(e) are denoted by pred(e) and succ(e), respectively, if they exist. When
two events e and f occurred on the same process and e occurred before f in real-time,

then we write e
P

→ f , and let
P

→ be the reflexive closure of
P

→. We assume the presence of
fictitious initial and final events on each process. The initial event on process pi, denoted
by ⊥i, occurs before any other event on pi. Likewise, the final event on process pi, denoted
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by >i, occurs after all other events on pi. For convenience, let ⊥ and > denote the set
of all initial events and final events, respectively. We assume that all initial events belong
to the same strongly connected component. Similarly, all final events belong to the same
strongly connected component. This ensures that any non-trivial consistent cut will contain
all initial events and none of the final events. Thus, every consistent cut of a computation
in the traditional model is a non-trivial consistent cut of the corresponding computation
in our model and vice versa. Only non-trivial consistent cuts are of interest to us.

A global predicate (or simply a predicate) is a boolean-valued function on variables of
processes. Given a consistent cut, a predicate is evaluated with respect to the values of
variables resulting after executing all events in the cut. If a predicate b evaluates to true
for a consistent cut C, we say that “C satisfies b”. We leave the predicate undefined for
the trivial consistent cuts. A global predicate is local if it depends on variables of a single
process.

Example 1. Consider the computation depicted in Fig. 2(a). It has three processes, namely
p1, p2 and p3. The events e1, f1 and g1 are the initial events, and the events e4, f4 and g4
are the final events of the computation. The cut A = {e1, e2, e3, e4, f1, g1} is not consistent
because g4 → e4 and e4 ∈ A but g4 6∈ A. The cut {e1, e2, f1, f2, g1} is consistent. The
events e1, f1 and g1 belong to the same strongly connected component or meta-event.
Processes p1, p2 and p3 host integer variables x, y and z, respectively. The predicate x 6 1
is local whereas the predicate x + y 6 z is not. The consistent cut {e1, f1, g1} satisfies
x+ y 6 z but the consistent cut {e1, e2, f1, f2, g1} does not. 2

3 Background

The notion of computation slice is based on the Birkhoff’s Representation Theorem for
Finite Distributive Lattices [6] which we describe next.

3.1 Birkhoff’s Theorem

We first describe some concepts needed to understand the theorem. A lattice is called
distributive if its meet operator distributes over its join operator [6]. An element of a
lattice is called join-irreducible if (1) it is not the least element of the lattice, and (2)
it cannot be expressed as join of two distinct elements (of the lattice), both different
from itself [6]. Let L be a lattice and J I(L) be the set of its join-irreducible elements.
In case L is a distributive lattice, it satisfies an important property that every element
in L can be expressed as join of some subset of elements in J I(L) and vice versa [6,
Birkhoff’s Theorem]. In other words, J I(L) completely characterizes L. This is significant
because |J I(L)| is generally much smaller—exponentially in many cases—than |L|. Hence
if some computation on L can instead be performed on J I(L), we obtain a significant
computational advantage.

Consider a computation 〈E,→〉 and let C(E) denote the set of its consistent cuts. It
can be proved that C(E) forms a distributive lattice under the relation ⊆; its join and meet
operators correspond to set union (∪) and set intersection (∩), respectively [12]. We show
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Fig. 2. (a) A computation, (b) the lattice of its consistent cuts, (c) the smallest sublattice that contains all
consistent cuts satisfying the predicate x+y−z 6 1, and (d) the poset induced on the set of join-irreducible
elements of the sublattice.

that the set C(E) satisfies no additional structural property [9, 13]. Further, the set of join-
irreducible elements of C(E) is isomorphic to the set of strongly connected components of
〈E,→〉 [9, 13].

Example 2. Consider the computation shown in Fig. 2(a). The (distributive) lattice spanned
by its set of consistent cuts is shown in Fig. 2(b). Each consistent cut is labeled with the
number of events that have to be executed on each process to reach the cut. The join-
irreducible elements of the lattice have been drawn with thick boundaries. (They have
exactly one incoming edge in the Hasse diagram.) The lattice has eight join-irreducible
elements which is same as the number of strongly connected components of the computa-
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tion. It can be verified that every consistent cut of the computation can be written as the
join of some subset of these eight join-irreducible elements and vice versa. For instance, R
(in Fig. 2(b)) can be expressed as the join of U and V . 2

Now, consider a subset D ⊆ C(E). We say that D forms a sublattice of C(E) if D is
closed under set union and set intersection. That is, given two consistent cuts from D, the
consistent cuts obtained by their set union and set intersection also belong to D. It can be
proved that any sublattice of a distributive lattice is also a distributive lattice [6]. Thus if
D is a sublattice of C(E), then, using Birkhoff’s Theorem, J I(D) completely characterizes
D. This forms the basis for the notion of computation slice.

3.2 Computation Slice

Roughly speaking, a computation slice (or simply a slice) is a concise representation of
all those consistent cuts of the computation that satisfy the predicate. For a computation
〈E,→〉 and a predicate b, let C(E) denote the set of consistent cuts of 〈E,→〉 and, further,
let Cb(E) ⊆ C(E) be the subset of those consistent cuts that that satisfy b. Also, let Sb(E)
denote the set of graphs on vertices E that contain Cb(E). That is,

Sb(E) , {G | V(G) = E and Cb(E) ⊆ C(G) }

We now formally define the notion of slice.

Definition 1 (slice [13]). A slice of a computation with respect to a predicate is a directed
graph with the least number of consistent cuts that contains all consistent cuts of the
given computation for which the predicate evaluates to true. Formally, given a computation
〈E,→〉 and a predicate b,

G is a slice of 〈E,→〉 for b , 〈∀H : H ∈ Sb(E) : |C(G)| 6 |C(H)|〉

We denote the slice of a computation 〈E,→〉 with respect to a predicate b by slice(〈E,→〉, b).
We prove in [13] that the slice exists and is uniquely defined for all predicates. The slice is
unique in the sense that for all graphs that fulfill the condition stated in the above defini-
tion, not only their number of consistent cuts same but the consistent cuts themselves are
identical. Moreover, they also have identical meta-events. The main idea behind the proof
is as follows. Consider a computation 〈E,→〉 and a predicate b. We show that there exists
a unique subset D ⊆ C(E) satisfying the following conditions. First, D contains Cb(E), that
is, Cb(E) ⊆ D. Second, D forms a sublattice of C(E). Last, among all sublattices that fulfill
the first two conditions, D is the smallest one. From Birkhoff’s Theorem, J I(D), the set
of join-irreducible elements of D, completely characterizes D. We call the partially ordered
set (or poset) induced on the elements of J I(D) by the relation ⊆ as the slice of 〈E,→〉
with respect to b. Each join-irreducible element gives rise to a meta-event. Alternatively,
the slice can also be represented by a directed graph drawn on the set of events E such that
its set of consistent cuts is given by D. Such a graph can be obtained by simply forming a
strongly connected component out of each meta-event. Whereas the poset representation
of a slice—given by a partial order on the set of meta-events (e.g., Fig. 1(b))—is better
for presentation purposes, the graph representation—given by a directed graph on the set
of events (e.g., Fig. 2(d))—is more suited for slicing algorithms.
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Example 3. Consider the lattice of consistent cuts depicted in Fig. 2(b). The consistent
cuts that satisfy the predicate x + y − z 6 1 have been shaded in the figure. Figure 2(c)
depicts the smallest sublattice that contains these consistent cuts. The consistent cuts P
and Q do not satisfy the predicate but have been included to complete the sublattice.
The join-irreducible elements of the sublattice have been drawn with thick boundaries.
There are, in total, seven join-irreducible elements, namely T , U , V , W , X, Y and Z.
Figure 2(d) portrays the partial order induced on the set J = {T,U, V,W,X, Y, Z}. There
is a one-to-one correspondence between the set of join-irreducible elements and the set of
strongly connected components of the graph shown in Fig. 2(d). It can be verified that
every consistent cut in the sublattice can be expressed as join of some subset of J and,
furthermore, the join of every subset of J is a consistent cut of the sublattice. ut

Every slice derived from the computation 〈E,→〉 has the trivial consistent cuts (∅ and
E) among its set of consistent cuts. A slice is empty if it has no non-trivial consistent
cuts [13]. In the rest of the paper, unless otherwise stated, a consistent cut refers to a
non-trivial consistent cut.
In our earlier papers, we give efficient algorithms for computing the slice for many

classes of predicates [9, 13, 14, 16]. We also how to compose two slices efficiently [13], using
which we devise an efficient algorithm for computing an “approximate” slice for a very
broad class of predicates that are otherwise NP-complete to detect [13, 14].

4 The Two Problems

In this section, we study the relationship between the following two problems in distributed
systems.

Containing Cut (CONTC) Given a directed graph G and a predicate b, is there a con-
sistent cut of G that satisfies b?

Computing Slice (COMPS) Given a directed graph G and a predicate b, compute the
slice of G with respect to b.

Two problems are said to be equivalent if given an algorithm A for solving one, we can
derive an algorithm B for solving the other such that the time-complexity of B is within
a polynomial factor of the time-complexity of A, and vice versa.

4.1 The Main Result: COMPS ∼= CONTC

In this section, we prove that the problem of computing a succinct representation of all
consistent cuts satisfying a predicate is equivalent the problem of determining whether
there exists at least one consistent cut satisfying the predicate. From the definition of
slice, clearly, it follows that the slice for a directed graph with respect to a predicate (not
necessarily regular [9]) is non-empty if and only if the graph contains a consistent cut that
satisfies the predicate. Formally,

CONTC(G, b) ≡ slice(G, b) is non-empty

Therefore COMPS is at least as hard as CONTC. We now prove the converse. Consider a
directed graph G and a predicate b. Now, G and slice(G, b) are directed graphs on identical
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Input: (1) a directed graph G, (2) a predicate b, and
(3) an algorithm to evaluate CONTC(H, b) for an arbitrary directed graph H

Output: the slice of G with respect to b

1 K := G;
2 for every pair of events (e, f) do

3 if not(CONTC(Ĝ[e, f ], b)) then
4 add an edge from e to f in K; // set K to K[e, f ]

endif;
endfor;

5 output K;

Fig. 3. An algorithm to solve COMPS using an algorithm to solve CONTC.

sets of vertices. However, more pairs of vertices are “connected” in slice(G, b) than in G.
In the next lemma, we give a complete characterization of the pairs of vertices that are
“connected” in slice(G, b). Let G[e, f ] denote the directed graph obtained by adding an
edge from e to f in G.

Lemma 1. There is a path from an event e to an event f in slice(G, b) if and only if no
consistent cut in C(G) \ C(G[e, f ]) satisfies b.

Lemma 1 is useful provided it is possible to ascertain efficiently whether some consistent
cut in C(G) \ C(G[e, f ]) satisfies b. To that end, we show that the set C(G) \ C(G[e, f ])
actually forms a sublattice and therefore can be captured faithfully using a directed graph.
Let Ĝ[e, f ] denote the directed graph obtained by adding an edge from f to ⊥1 and an
edge from >1 to e. It suffices to show the following:

Lemma 2. C(Ĝ[e, f ]) \ {∅, E} = C(G) \ C(G[e, f ])

An example illustrating the Lemma 1 and Lemma 2 can be found in Appendix C.
Combining the two lemmas, we obtain the following:

Theorem 1. There is a path from an event e to an event f in slice(G, b) if and only if

no consistent cut in Ĝ[e, f ] satisfies b, that is, CONTC(Ĝ[e, f ], b) evaluates to false.

Figure 3 depicts the algorithm for solving COMPS using an algorithm that solves
CONTC. The algorithm constructs a directed graph that is transitively closed.

Theorem 2. The time-complexity of the algorithm for solving COMPS in Fig. 3 is O(|E|2T ),
where E is the set of events and O(T ) is the worst-case time-complexity of solving CONTC.

In order to reduce the time-complexity of the algorithm, we construct a graph that is
not transitively closed but whose set of consistent cuts is the same as that of the slice. Such
a graph is called the skeletal representation of a slice [13]. For an event e, let Fb(e) denote
a vector of events; the ith entry of the vector refers to the earliest event f on process pi

such that there is a path from e to f in the slice [13]. (We assume that every event has
a path to itself.) We now construct a graph with the following edges. First, there is an
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Input: (1) a directed graph G, (2) a predicate b, (3) a process px, and
(4) an algorithm to evaluate CONTC(H, b) for an arbitrary directed graph H

Output: Fb(e) for all events e on px

1 for each process pi do // compute Fb(e)[i] for all events e on px

2 f := ⊥i;

3 for each event e on px do // visited in the order given by
P
→

4 while CONTC(Ĝ[e, f ], b) do
f := succ(f); // advance to the next event on pi

endwhile;
5 Fb(e)[i] := f ;

endfor;
endfor;

Fig. 4. An algorithm to compute Fb(e) for all events e on process px.

edge from an event to its successor, if it exists. Second, there is an edge from an event
e to every event in Fb(e). We show in [13] that the graph so obtained has the same set
of consistent cuts as the slice. Further, it has only O(n|E|) edges, where n is the number
of processes. It is easy to verify that Fb is order-preserving which means that if e → f

then Fb(e)[i]
P

→ Fb(f)[i] for each process pi [13]. Consequently, it is possible to compute
Fb(e)[i] for all events e on a single process by scanning the computation once from left
to right. The algorithm is presented in Fig. 4. The following theorem establishes that the
time-complexity of the algorithm is O(n|E|T ).

Theorem 3. The time-complexity of the algorithm for computing Fb(e) for all events e
in Fig. 4 is O(n|E|T ), where n is the number of processes, E is the set of events and O(T )
is the worst-case time-complexity of solving CONTC.

4.2 Applications of the Result

Predicate detection is an important problem in distributed systems. Efficient detection
algorithms have been developed for several useful classes of predicates. Examples include
stable predicates [2], observer-independent predicates [3], conjunctive predicates [8], linear
predicates [8], relational predicates [4], and their complements such as co-stable predicates
and co-linear predicates [15]. In our earlier papers, we give efficient algorithms for com-
puting the slice for regular predicates [9], co-regular predicates [13], linear predicates and
k-local predicates for constant k [14]. Using the result of this paper, it is now possible
to compute the slice efficiently for many more classes of predicates including stable and
co-stable predicates, observer independent predicates, co-linear predicates, and relational
predicates. For instance, an observer independent predicate can be detected in O(n|E|)
time using the algorithm presented in [3]. This implies that its slice can be computed in
O(n2|E|2) time using the algorithm given in Sect. 4.1. It is possible that a faster and more
efficient slicing algorithm exists for an observer-independent predicate, which perhaps ex-
ploits the specific properties of the class of observer-independent predicates. Our result is
still useful because it gives a ready-made algorithm for computing the slice.

11
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Fig. 5. (a) A computation and (b) its slice with respect to x1 + x2 + x3 6 3.

Example 4. Consider the computation shown in Fig. 5(a). Suppose we wish to know
whether the computation contains a consistent cut that satisfies the predicate (x1 + x2 +
x3 6 3) ∧ (x1 ∗ x3 > 1). The first clause belongs to the class of relational predicates
and therefore can be detected efficiently [4]. The slice of the computation with respect to
x1 + x2 + x3 6 3 is shown in Fig. 5(b). The slice contains four consistent cuts whereas
the computation contains twenty-one. Hence it is more efficient to look for the required
consistent cut in the slice. ut

Since the problem of predicate detection is NP-complete in general [17, 8], the problem
of computing the slice is also NP-complete. For such predicates, we can compute an ap-
proximate slice; an approximate slice may be bigger than the actual slice but much smaller
than the computation itself. Using our algorithms for composing slices in [13] and the re-
sult of this paper, it is now possible to compute an approximate slice in polynomial-time
for a predicate composed from “efficiently detectable” predicates using ∧ and ∨ operators.
An example of such a predicate is (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ · · · ∧ (xn−1 ∨ xn), where xi is a
boolean variable on process pi. This is significant because our experimental results show
that slicing can lead to an exponential improvement over existing techniques for predicate
detection in terms of time and space [14].

5 An On-Line Algorithm for Computing the Slice

In this section, we present an on-line algorithm for computing the slice for a predicate
for which the slice can indeed be computed efficiently in an off-line manner. Our on-line
slicing algorithm is basically derived from the off-line algorithm for computing the slice
described in Fig. 4. On generation of a new event in the system, our on-line algorithm
updates the current slice to reflect the arrival of the new event.
Before discussing the algorithm, we state our assumptions and describe some notation.

We assume that a newly arrived event is “enabled” in the sense that all events that
happened-before it have already arrived and been incorporated into the slice. This can be
achieved by buffering the new event—in case it is not “enabled”—and processing it later
when it becomes “enabled”. Whether an event is “enabled” can be determined efficiently
by examining its Fidge/Mattern’s vector timestamp.
Initially, the computation consists of only the fictitious—initial and final—events. Let

the kth arriving event, k > 1, be denoted by e(k), and letG(k) denote the resulting computa-
tion. Sometimes we represent the computation more explicitly using 〈E(k),→〉 whenever
necessary, where E(k) denote the set of events and → denote the set of edges in G(k).
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Without loss of generality, assume that G(k) is a transitively closed graph and thus→ is a
transitive relation. Note that → on the set of non-fictitious events defines the Lamport’s
happened-before relation. Clearly, every non-trivial consistent cut of G(k−1) is a consistent
cut of G(k) as well. Furthermore, every consistent cut of G(k) that is not a consistent cut
of G(k−1) contains e(k).
The on-line algorithm, whenever a new event arrives, computes the new slice by up-

dating Fb(e) for each event e. We use Fb
(k) to refer to the value of Fb for the computation

G(k). Now, in order to incorporate an event into the slice, we may have to recompute
the entry Fb(e)[i] for each event e and every process pi. First, we show that the new
value for an entry cannot move “backward” in the space-time diagram. Let pik

denote
the process on which the event e(k) occurred. An event e ∈ E(k−1) is said to be a critical

event if F
(k−1)
b

(e)[ik] = >ik
. Intuitively, no nonfinal event on pik

is reachable from e in

slice(G(k−1), b). This may change, however, on arrival of e(k) because e(k) is an event on
pik
. Let critical(k) denote the set of all events in E(k−1) that are critical with respect to

e(k). Formally,

Lemma 3. Given an event e ∈ E(k−1) and a process pi,

(i 6= ik) ∨ (e /∈ critical(k))⇒ F
(k−1)
b

(e)[i]
P

→ F
(k)
b
(e)[i] (1)

(i = ik) ∧ (e ∈ critical(k))⇒ F
(k)
b
(e)[i] ∈ {e(k),>i} (2)

Lemma 3 may greatly restrict the amount of work that needs to be done in order to
recompute Fb. In particular, to determine the new value of Fb(e)[i] for an event e and a
process pi, rather than starting the scan from ⊥i, we can instead start the scan from the
old value of Fb(e)[i]. The next lemma specifies the conditions under which either Fb(e)[i]
will not change or can be determined cheaply.

Lemma 4. Given an event e ∈ E(k−1) and a process pi,

(e→ e(k)) ∧
(
(i 6= ik) ∨ (e /∈ critical(k))

)
⇒ F

(k−1)
b

(e)[i] = F
(k)
b
(e)[i] (1)

(e→ e(k)) ∧
(
(i = ik) ∧ (e ∈ critical(k))

)
⇒ F

(k)
b
(e)[i] = e(k) (2)

Lemma 4 implies that Fb needs to be (re)computed only for the following events in
E(k). First, for the newly arrived event e(k). Second, for those events in E(k−1) that did
not happen-before e(k). It turns out that Fb for the newly arrived event can be determined
rather easily. Specifically,

Lemma 5. Given a process pi,

i 6= ik ⇒ F
(k)
b
(e(k))[i] = F

(k−1)
b

(>ik
)[i] (1)

i = ik ⇒ F
(k)
b
(e(k))[i] = min{e(k), F

(k−1)
b

(>ik
)[i]} (2)

Figure 6 shows the algorithm to update the slice on arrival of a new event. We now
analyze the time-complexity of the algorithm. For a set of events X, let Xi denote the
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Input: (1) a computation G(k) = 〈E(k),→〉, (2) a predicate b,

(3) for each event e ∈ E(k−1), Fb(e) currently set to F
(k−1)
b

(e), and
(4) an algorithm to evaluate CONTC(H, b) for an arbitrary directed graph H

Output: for each event e ∈ E(k), Fb(e) now set to F
(k)
b
(e)

1 Fb(e
(k)) := Fb(>ik

); // compute Fb for the new event

2 for each event e in E(k) do

3 if Fb(e)[ik] = >ik
then Fb(e)[ik] := e(k); endif; // is e a critical event?

endfor;

4 for each process px do
5 for each process pi do

6 let e be the earliest event on px such that e 6→ e(k);
7 f := Fb(pred(e))[i];
8 done := false;
9 while not(done) do
10 f := max{f, Fb(e)[i]}; // Fb is order-preserving and Lemma 3

11 while (f 6= >i) and CONTC(Ĝ(k)[e, f ], b) do
12 f := succ(f); // advance to the next event on pi

endwhile;
13 Fb(e)[i] := f ;
14 if e = >x then done := true;
15 else e := succ(e); // advance to the next event on px

endif;
endwhile;

endfor;
endfor;

Fig. 6. An on-line algorithm to update Fb(e) for all events e on arrival of a new event.

subset of those events that occurred on process pi. Note that for an event e in E
(k−1),

if e(k) → e then e ∈ >; otherwise, when e was incorporated into the slice, it was not
“enabled”—a contradiction. As a result, events in E(k−1) that did not happen-before e(k)

consists of either those events that are concurrent with e(k) or the final events. Now, let
C(k) contain those events from E(k) that are concurrent with e(k). It can be verified that,
given processes pi and px, the number of times an instance of CONTC is invoked at line 11

is given by O(|E
(k)
i
| + |C

(k)
x |). This is because between two consecutive invocations of

CONTC, either e or f advances to its next event. Further, whereas e, if different from
>x, is constrained to be concurrent with e

(k), there is no such constraint on f . Summing
over all possible values for i and x, CONTC is invoked O(n|E(k)|) times. This gives us a
time-complexity of O(n|E|T ) for updating the slice, which is same as that of computing
the slice from scratch. (Note that the earliest event on a process that did not happen-
before e(k)—at line 6—can be determined in O(1) time using the Fidge/Mattern’s vector
timestamp.)
In order to reduce the time complexity further, we proceed as follows. Suppose, at

line 11, CONTC(Ĝ(k)[e, f ], b) evaluates to true and f → e(k). It can be shown that

CONTC(Ĝ(k)[e, g], b) will also evaluate to true for all events g such that g → e(k). For-
mally,
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12a if f → e(k) then

12b set f to the earliest event on pi such that f 6→ e(k);
12c else f := succ(f);

endif;

Fig. 7. Improving the time-complexity of the algorithm in Fig. 6.

Lemma 6. Consider an event e ∈ E(k−1) and a process pi. Further, let f be an event on

pi with f → e(k) such that F
(k−1)
b

(e)[i]
P

→ f . Then,

(CONTC(Ĝ(k)[e, f ], b) evaluates to true)∧(g → e(k)) ⇒ CONTC(Ĝ(k)[e, g], b) evaluates to true

Therefore, when the condition of the while loop at line 11 evaluates to true and f →
e(k), rather than advancing f to succ(f), we can advance f directly to the earliest event
on pi that did not happen-before e

(k). This reduces the number of times an instance of

CONTC is evaluated to O(|C
(k)
i
| + |C

(k)
x | + 1). The modification is described in Fig. 7.

Now, summing over all possible values for i and x, when e(k) arrives, CONTC needs to
be invoked O(n|C(k)| + n2) times to update the slice. Next, summing over the arrival of
|E| events, the total number of times CONTC is invoked is given by O(n|C| + n2|E|),
where C is the set of concurrent pairs of events in the computation. Assuming that the
time-complexity of solving CONTC increases with the number of events, the overall time-
complexity is given by O(n|C|T+n2|E|T ), where O(T ) is the worst-case time-complexity of
solving CONTC for a computation consisting of |E| events. Note that the time-complexity
of executing lines 1-3, over |E| events, is given by O(|E|2), which can be ignored assuming
that T = Ω(|E|). Finally, the amortized time-complexity for updating the slice once—on
arrival of an event—is given by O(n(c + n)T ), where c = |C|/|E| denotes the average
concurrency in the computation. Formally,

Theorem 4. The time-complexity of the algorithm to update the slice on arrival of a new
event, described in Fig. 6 and Fig. 7, amortized over |E| events, is O(n(c + n)T ), where
n is the number of processes, c is the average concurrency in the computation and O(T )
is the worst-case time-complexity of solving CONTC for a computation consisting of |E|
events.

In case c is low, say O(n), the on-line algorithm has an amortized time-complexity of
O(n2T ). In this case, therefore, rather than computing the slice from scratch whenever
an event arrives, it is much faster to update it using the incremental algorithm. The (on-
line) algorithm in this section only assumes that the predicate can be detected efficiently;
no other assumption is made about the structure of the predicate. For a special class of
predicates, however, namely regular predicates [9], we have developed a much faster O(n2)
amortized time-complexity algorithm to compute the slice in an on-line manner.

6 Conclusion

In this paper, we show the equivalence of two important problems in distributed systems,
namely predicate detection and computation slicing. We also give an efficient algorithm
to compute the slice for a large class of predicate in an incremental manner.
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A Skeletal Representation of a Slice

In general, there can be multiple directed graphs with the same set of consistent cuts.
Therefore more than one graph may constitute a valid representation of the given slice.
The following lemma states that all such graphs are in fact related.

Lemma A-1 ([13]). Consider directed graphs G and H on the same set of vertices. Then,

P(G) ⊆ P(H) ≡ C(G) ⊇ C(H)

which in turn implies that:

Lemma A-2 ([13]). Consider directed graphs G and H on the same set of vertices. Then,

P(G) = P(H) ≡ C(G) = C(H)

In other words, two directed graphs G and H, on identical sets of vertices, are cut-
equivalent (that is, C(G) = C(H)) if and only if they are path-equivalent (that is, P(G) =
P(H)). We consider a special directed graph to capture a slice, called the skeletal rep-
resentation of a slice [13]. Let Fb(e) be a vector of events, where the i

th entry in the
vector denotes the earliest event on process pi reachable from e in the slice. The skeletal
representation of a slice has the following edges:

1. for each event e 6∈ >, there is an edge from e to succ(e), and
2. for each event e and process pi, there is an edge from e to Fb(e)[i].

An advantage of the skeletal representation is that it has O(|E|) vertices and only
O(n|E|) edges, where n is the number of processes and E is the set of events, and hence
generally leads to more efficient algorithms involving slices.
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B Omitted Proofs

Proof (for Lemma 1). We have,

there is a path from e to f in slice(G, b)

≡ { definition of slice(G, b) }

(there is a path from e to f in slice(G, b)) ∧
(
C(slice(G, b)) ⊆ C(G)

)

≡ { from Lemma A-1, C(slice(G, b)) ⊆ C(G) ≡ P(G) ⊆ P(slice(G, b)) }

(there is a path from e to f in slice(G, b)) ∧
(
P(G) ⊆ P(slice(G, b))

)

≡ { definition of G[e, f ] }

P(G[e, f ]) ⊆ P(slice(G, b))

≡ { from Lemma A-1 }

C(slice(G, b)) ⊆ C(G[e, f ])

≡ { C(slice(G, b)) contains all consistent cuts of C(G) satisfying b }

no consistent cut in C(G) \ C(G[e, f ]) satisfies b

This establishes the lemma. ut

Proof (for Lemma 2). Consider a non-trivial consistent cut C in C(G). It suffices to show

that C ∈ C(Ĝ[e, f ]) ≡ C 6∈ C(G[e, f ]).

(⇒) We need to prove that C ∈ C(Ĝ[e, f ]) ⇒ C 6∈ C(G[e, f ]). Intuitively, it means

that G[e, f ] and Ĝ[e, f ] do not have any common non-trivial consistent cut. Equivalently,

C(G[e, f ]) ∩ C(Ĝ[e, f ]) = {∅, E}. We have,

C ∈ C(Ĝ[e, f ])

⇒ { definition of Ĝ[e, f ] }

(f ∈ C) ∧ (e 6∈ C)

⇒ { definition of G[e, f ] }

C 6∈ C(G[e, f ])

(⇐) We need to prove that C 6∈ C(G[e, f ]) ⇒ C ∈ C(Ĝ[e, f ]). Intuitively, it means that
every non-trivial consistent cut of G is either a consistent cut of G[e, f ] or a consistent cut

of Ĝ[e, f ]. Equivalently, C(G[e, f ])∪C(Ĝ[e, f ]) = C(G). The proof consists of two steps. In
the first step, we show that if C is not a consistent cut of G[e, f ], then it is the case that
e 6∈ C and f ∈ C. Assume that C 6∈ C(G[e, f ]). Therefore there exist events u and v such

18



that there is a path from u to v in G[e, f ], u 6∈ C and v ∈ C. Since C is a consistent cut
of G, there is no path from u to v in G. That is, (u, v) ∈ P(G[e, f ]) but (u, v) 6∈ P(G).
Thus every path from u to v in G[e, f ] contains the edge (e, f)—possibly more than once.
This implies that (u, e) ∈ P(G) and (f, v) ∈ P(G). Since (u, e) ∈ P(G) and u 6∈ C, e 6∈ C.
Similarly, since (f, v) ∈ P(G) and v ∈ C, f ∈ C. Therefore e 6∈ C and f ∈ C.

In the second step, we show that if C is not a consistent cut of Ĝ[e, f ], then it is the

case that (e ∈ C)∨ (f 6∈ C). Assume that C 6∈ C(Ĝ[e, f ]). Hence there exist events x and y

such that there is a path from x to y in Ĝ[e, f ], x 6∈ C and y ∈ C. Since C is a consistent

cut of G, there is no path from x to y in G. That is, (x, y) ∈ P(Ĝ[e, f ]) but (x, y) 6∈ P(G).

Thus every path from x to y in Ĝ[e, f ] involves the edge (f,⊥1) or the edge (>1, e) or

both. Consider any path from x to y in Ĝ[e, f ]. In case the first edge to appear in the
path—out of the two edges—is (f,⊥1), there is a path from x to f in G which implies
that f 6∈ C. Also, if the last edge to appear in the path—out of the two edges—is (>1, e),
then there is path from e to y in G which implies that e ∈ C. If neither of the case holds,
then the first edge to appear in the path is (>1, e) and the last edge to appear in the path
is (f,⊥1). It can be verified that, in this case, there is a path from e to f in G implying
that f ∈ C ⇒ e ∈ C, or, equivalently, (e ∈ C) ∨ (f 6∈ C). In any case, (e ∈ C) ∨ (f 6∈ C)
holds—a logical negation of what we obtained in the first step.
Combining the two steps, it can be inferred that it cannot be the case that C is neither

a consistent cut of G[e, f ] nor a consistent cut of Ĝ[e, f ]. This establishes the lemma. ut

Proof (for Theorem 2). The initialization at line 1 requires O(|E|2) time, where E is the
set of events, because G has |E| vertices and therefore O(|E|2) edges. The for loop at
line 2 executes |E|2 times. Each iteration of the for loop requires solving an instance of
CONTC. The construction of the particular instance of CONTC involves adding two edges
to G, and therefore can be done in O(1) time. Depending on the result of the if statement
at line 3, an edge may be required to be added to K at line 4, which can be done in
O(1) time. At the end of the iteration, the two edges that were added to G have to be
deleted. The deletion can be accomplished in O(1) time by maintaining pointers to the
two edges if using adjacency list representation. The overall time-complexity of the for
loop is O(|E|2T ), which is also the time-complexity of the algorithm. ut

Proof (for Theorem 3). Note that the while loop at line 4 terminates in at most |Ei|+ |Ex|
iterations, where Ei and Ex denote the set of events on processes pi and px, respectively.
This is because between two consecutive iterations of the while loop, either e or f advances
to its next event. Also, the directed graph Ĝ[e, f ] when f = >i has an edge from the final

event >i to the initial event ⊥1 implying that Ĝ[e,>i] has no non-trivial consistent cut.

Therefore CONTC(Ĝ[e, f ], b) when f = >i will, trivially, evaluate to false. This gives a
time-complexity of O((|Ei|+ |Ex|)T ) for the inner for loop at line 3. Hence, summing over
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all possible values for i, the time-complexity of the outer for loop at line 1 is O((|E| +
n|Ex|) T ). This implies that the overall time-complexity of computing Fb(e) for all events
e on all processes is O(n|E|T ). ut

Proof (for Lemma 3). First, consider an event f ∈ E(k−1) on process pi. We have,

f
P

→ F
(k−1)
b

(e)[i]

≡ { F
(k−1)
b

(e)[i] is the earliest event on pi reachable from e in slice(G(k−1), b) }

(e, f) /∈ P(slice(G(k−1), b))

≡ { f ∈ E(k−1) and using Theorem 1 }

〈∃ C : C is a consistent cut of Ĝ(k−1)[e, f ] : C satisfies b〉

≡ { definition of Ĝ(k−1)[e, f ] }

〈∃ C : C is a consistent cut of G(k−1) : (f ∈ C) ∧ (e /∈ C) ∧ (C satisfies b)〉

⇒ { every non-trivial consistent cut of G(k−1) is a consistent cut of G(k) }

〈∃ C : C is a consistent cut of G(k) : (f ∈ C) ∧ (e /∈ C) ∧ (C satisfies b)〉

≡ { definition of Ĝ(k)[e, f ] }

〈∃ C : C is a consistent cut of Ĝ(k)[e, f ] : C satisfies b〉

≡ { using Theorem 1 }

(e, f) /∈ P(slice(G(k), b))

≡ { F
(k)
b
(e)[i] is the earliest event on pi reachable from e in slice(G(k), b) }

f
P

→ F
(k)
b
(e)[i]

In other words, whenever f ∈ E(k−1), f
P

→ F
(k−1)
b

(e)[i] implies that f
P

→ F
(k)
b
(e)[i]. Now,

we prove the two implications.

(1) Consider an event f ∈ E(k) on process pi. Suppose f
P

→ F
(k−1)
b

(e)[i]. In case i is

different from ik, f is different from e(k) and therefore f ∈ E(k−1). On the other hand,

if e /∈ critical(k), then F
(k−1)
b

(e)[i]
P

→ e(k) and therefore f ∈ E(k−1). In either case,

f ∈ E(k−1). Using the above result, f
P

→ F
(k)
b
(e)[i]. In other words, whenever f ∈ E(k),

f
P

→ F
(k−1)
b

(e)[i] implies that f
P

→ F
(k)
b
(e)[i]. This, in turn, means that F

(k−1)
b

(e)[i]
P

→

F
(k)
b
(e)[i].

(2) Consider an event f ∈ E(k) on process pi, where i = ik. Suppose f
P

→ e(k). Clearly,

f ∈ E(k−1). Further, in case e is a critical event, f
P

→ F
(k−1)
b

(e)[i]. Using the above result,

f
P

→ F
(k)
b
(e)[i]. In other words, whenever f ∈ E(k), f

P

→ e(k) implies that f
P

→ F
(k)
b
(e)[i].

This, in turn, means that e(k) P

→ F
(k)
b
(e)[i]. ut
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Proof (for Lemma 4). (1) From Lemma 3, F
(k−1)
b

(e)[i]
P

→ F
(k)
b
(e)[i]. Assume, on the

contrary, that F
(k−1)
b

(e)[i]
P

→ F
(k)
b
(e)[i]. For convenience, let f = F

(k−1)
b

(e)[i]. We have,

f
P

→ F
(k)
b
(e)[i]

≡ { F
(k)
b
(e)[i] is the earliest event on pi reachable from e in slice(G(k), b) }

(e, f) /∈ P(slice(G(k), b))

≡ { using Theorem 1 }

〈∃ C : C is a consistent cut of Ĝ(k)[e, f ] : C satisfies b〉

≡ { definition of Ĝ(k)[e, f ] }

〈∃ C : C is a consistent cut of G(k) : (f ∈ C) ∧ (e /∈ C) ∧ (C satisfies b)〉

⇒ { e→ e(k) }

〈∃ C : C is a consistent cut of G(k) : (f ∈ C) ∧ (e /∈ C) ∧ (C satisfies b) ∧ (e(k) /∈ C)〉

≡ { a consistent cut of G(k) that does not contain e(k) is a consistent cut of G(k−1) }

〈∃ C : C is a consistent cut of G(k−1) : (f ∈ C) ∧ (e /∈ C) ∧ (C satisfies b) ∧ (e(k) /∈ C)〉

≡ { e(k) is not an event in G(k−1) }

〈∃ C : C is a consistent cut of G(k−1) : (f ∈ C) ∧ (e /∈ C) ∧ (C satisfies b)〉

≡ { definition of Ĝ(k−1)[e, f ] }

〈∃ C : C is a consistent cut of Ĝ(k−1)[e, f ] : C satisfies b〉

≡ { using Theorem 1 }

(e, f) /∈ P(slice(G(k−1), b))

⇒ { f is F
(k−1)
b

(e)[i] }

a contradiction

Therefore F
(k−1)
b

(e)[i] = F
(k)
b
(e)[i].

(2) Note that C(slice(G(k), b)) ⊆ C(G(k)). In case e → e(k), there is a path from e to e(k)

in G(k). Thus, from Lemma A-1, there is a path from e to e(k) in slice(G(k), b) as well.

Consequently, F
(k)
b
(e)[i]

P

→ e(k). From Lemma 3, F
(k)
b
(e)[i] is either e(k) or >i. This, in

turn, implies that F
(k)
b
(e)[i] is e(k). ut

Proof (for Lemma 5). Consider an event f ∈ E(k) with f 6= e(k). We have,
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〈∃ C : C is a consistent cut of Ĝ(k)[e(k), f ] : C satisfies b〉

≡ { definition of Ĝ(k)[e(k), f ] }

〈∃ C : C is a consistent cut of G(k) : (f ∈ C) ∧ (e(k) /∈ C) ∧ (C satisfies b)〉

≡ { a consistent cut of G(k) that does not contain e(k) is a consistent cut of G(k−1) }

〈∃ C : C is a consistent cut of G(k−1) : (f ∈ C) ∧ (e(k) /∈ C) ∧ (C satisfies b)〉

≡ { e(k) is not an event in G(k−1) }

〈∃ C : C is a consistent cut of G(k−1) : (f ∈ C) ∧ (C satisfies b)〉

≡ { definition of Ĝ(k−1)[>ik
, f ] }

〈∃ C : C is a consistent cut of Ĝ(k−1)[>ik
, f ] : C satisfies b〉

(1) Clearly, using the above result and Theorem 1, F
(k)
b
(e(k)) = F

(k−1)
b

(>ik
)[i].

(2) In case F
(k−1)
b

(>ik
)[i] is different from >ik

, using the above result and Theorem 1,

F
(k)
b
(e(k)) = F

(k−1)
b

(>ik
)[i]. On the other hand, if F

(k−1)
b

(>ik
)[i] = >ik

, then CONTC(Ĝ(k)[e(k), e(k)], b)

evaluates to false and therefore F
(k)
b
(e(k))[i] = e(k). ut

Proof (for Lemma 6). Since f
P

→ e(k), f ∈ E(k−1). Further, F
(k−1)
b

(e)[i]
P

→ f . From

Theorem 1, CONTC(Ĝ(k−1)[e, f ], b) evaluates to false. Equivalently, there is no consistent

cut of Ĝ(k−1)[e, f ] that satisfies b. However, CONTC(Ĝ(k)[e, f ], b) evaluates to true. This

implies that there exists a consistent cut of Ĝ(k)[e, f ], say C, that satisfies b. In other words,
C is a consistent cut of G(k), f ∈ C, e /∈ C and C satisfies b. Clearly, e(k) ∈ C; otherwise,
C is a consistent cut of Ĝ(k−1)[e, f ] that satisfies b—a contradiction. Since g → e(k), C

also contains g. Therefore CONTC(Ĝ(k)[e, g], b) also evaluates to true. ut

22



C An Illustration of Lemma 1 and Lemma 2

(a)

(b) (c)

: consistent cut

: consistent cut that satisfies the predicate

{e3, f1}

{e3, f2}

{e2, f1}

{e2, f2}

{e1, f2}

{e2, f3}

{e3, f3}

{e1, f1}

p1

p2

f4

e4e3e2e1

f1 f2 f3

p1

p2

f4

e4e3e2e1

f1 f2 f3

Fig. 8. (a) A directed graph G, (b) slice(G, b), where b is the predicate “all channels are empty”, and
(c) the set of non-trivial consistent cuts of H.

Example 5. Consider the directed graph G shown in Fig. 8(a). In the graph, e1 and f1 are
the initial events, whereas e4 and f4 are the final events. Figure 8(b) depicts slice(G, b),
where b is the predicate “all channels are empty”. The slice is obtained by adding the
edge from f3 to e2 because, for all channels to be empty, send and receive events of the
same message have to be executed atomically. The set of non-trivial consistent cuts of
G are shown in Fig. 8(c). The cuts for which all channels are empty have been shaded.

Now, consider directed graphs G[e3, e2] and Ĝ[e3, e2] shown in Fig. 9(a) and Fig. 9(c),
respectively. Their sets of consistent cuts (excluding trivial consistent cuts) are shown in
Fig. 9(b) and Fig. 9(d), respectively. As expected, the two sets satisfy Lemma 2. Also,

since there is no path from e3 to e2 in slice(G, b), Ĝ[e3, e2] contains a consistent cut that
satisfies b. Figure 10 illustrates the case when the edge (f3, e3) is such that slice(G, b)
contains a path from f3 to e3. ut
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(a)

(d)(b)

(c)

{e2, f3}

{e2, f2}
{e3, f2}

{e1, f1}

{e3, f1}

{e3, f3}

{e1, f2}

{e2, f1}

e3e2e1

f1 f2 f3

p1

p2

f4

e4e3e2e1

f1 f2 f3

e4

f4

p2

p1

Fig. 9. (a) The directed graph G[e3, e2], where there is no path from e3 to e2 in slice(G, b), (b) the set

of non-trivial consistent cuts of G[e3, e2], (c) the directed graph Ĝ[e3, e2], and (d) the set of non-trivial

consistent cuts of Ĝ[e3, e2].

(a)

(b)

(d)

(c)

{e3, f1}

{e3, f2}

{e3, f3}

{e1, f2}{e2, f1}

{e2, f3}

{e1, f1}

{e2, f2}

f4

e4e2e1

f1 f2 f3

e3

p2

p1

p2

f4

e4e3e2e1

f1 f2 f3

p1

Fig. 10. (a) The directed graph G[f3, e3], where there is a path from f3 to e3 in slice(G, b), (b) the set

of non-trivial consistent cuts of G[f3, e3], (c) the directed graph Ĝ[f3, e3], and (d) the set of non-trivial

consistent cuts of Ĝ[f3, e3].
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