
Automatic-Signal Monitors with Multi-Object Synchronization

Wei-Lun Hung and Vijay K. Garg
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, TX 78712-1084, USA

wlhung@utexas.edu, garg@ece.utexas.edu

Abstract—Current monitor based systems have many dis-
advantages for multi object operations. They require the
programmers to (1) manually determine the order of locking
operations, (2) manually determine the points of execution
where threads should signal other threads, (3) use global locks
or perform busy waiting for operations that depend upon a
condition that spans multiple objects. Transactional memory
systems eliminate the need for explicit locks, but do not support
conditional synchronization. They also require the ability to
rollback transactions. In this paper, we propose new monitor
based methods that provide automatic signaling for global
conditions that span multiple objects.

Our system provides automatic notification for global con-
ditions. Assuming that the global condition is a Boolean
expression of local predicates, our method allows efficient
monitoring of the conditions without any need for global locks.
Furthermore, our system solves the compositionally problem
of monitor systems without requiring global locks. We have
implemented our constructs on top of Java and have evaluated
their overhead. Our results show that on most of the multi-
object problems, not only our code is simpler but also faster
than Java’s reentrant-lock as well as the Deuce transactional
memory system.

Keywords-automatic signal, implicit signal, monitor, synchro-
nization, concurrency, parallel

I. INTRODUCTION

Multi-core processors are now widely available but paral-
lel programming on these processors is still challenging due
to bugs resulting from concurrency and synchronization. The
complex synchronization mechanisms and the nondetermin-
istic nature of threads limit productivity of programmers. For
example, synchronization on global conditions – conditions
that span multiple objects – currently either requires complex
code by the programmer, or use of a global lock. No current
parallel programming paradigm provides simple constructs
with efficient performance for multi-object synchronization.
For example, transactional memory based systems support
multi-object operations but do not support conditional wait-
ing constructs [1], [2]. The thread itself needs to recheck ev-
ery time there is an update of the variables in the transaction.
If there are multiple threads waiting on that condition, then
each one of them will recheck the condition. Our focus is on
efficient detection and signaling exactly one thread. In this
paper, we propose and describe an implementation of simple
constructs for global conditional synchronization in monitor-

based systems to improve the productivity of programmers
and the performance of the system.

Many applications require certain action to be taken
only if a condition that spans multiple objects is true.
We call such a condition, a global condition or a global
predicate. Suppose that there are two queues Q1 and Q2
in a system such that they are initially empty and a thread
can continue its execution only when one of the queues be-
comes nonempty. Here, the condition (!Q1.isEmpty()
|| !Q2.isEmpty()) is a global predicate. Waiting for
such a global predicate to become true without continual
evaluation is hard in current systems. If a thread waits
on a condition queue associated with Q1, then Q2 may
become nonempty and vice-versa. In this example, we
would like the thread to be notified when either of the
queues becomes nonempty. Since a thread can sleep either
in the condition queue associated with Q1 or with Q2,
it is impossible to solve this problem using just local
locks in current monitor-based programming systems. The
current monitor systems would either require a global lock
for both queues, or require that the Queue class contain
a nonblocking method isEmpty(), and then check the
conditions of both the queues continually. For this example,
we support a construct waituntil(!Q1.isEmpty()
|| !Q2.isEmpty()), which requires the system to wake
the thread up whenever the global condition becomes true.
We give an efficient implementation of this construct.

To enable global conditional synchronization, our sys-
tem provides multisynch construct with monitor objects
for multi-object synchronization. Our system automatically
guarantees atomicity for the multisynch statement. Fur-
thermore, our multisynch constructs also avoid deadlock.
Fig. 1 shows the deadlock-free implementation for dining
philosophers problem by using our multisynch construct
with monitor objects as parameters. Programmers can access
monitor objects in any order without deadlock.

Our system addresses another important problem with
current mechanisms for synchronization called the compo-
sitionality problem [3]. Continuing with the example of
two queues, suppose that the programmer wants to delete
an item x from any of the nonempty queues Q1 or Q2.
Each of the queues is a monitor object and provides a
blocking method call take() that returns an item from

1 public void eat() {
2 multisynch(leftFork, rightFork) {
3 leftFork.pick();
4 rightFork.pick();
5 System.out.println("Philosopher is eating");
6 leftFork.put();
7 rightFork.put();
8 }
9 }

Figure 1: The Code Snippet of Dining Philosophers Problem

the queue. Since the programmer does not know in advance
which queue is going to be nonempty, any method call
Q1.take() or Q2.take() may result in thread blocking
even though the other queue has an item available. An
ad hoc way to implement this functionality is by using a
global lock and a nonblocking implementation of take. In
our system, we provide a construct called OR that executes
exactly one of its operand tasks. For this example, the
programmer can use the construct as (x = Q1.take())
OR (x = Q2.take()). This OR construct is a blocking
mechanism that takes multiple blocking methods as its
argument and executes exactly one of them whenever the
enabling condition of one of the monitor becomes true.

In our system, we introduce an automatic-signal moni-
tor with multi-object synchronization. Every method of a
monitor is a critical section. If programmers need a critical
section across multiple monitor objects, they can use the
multisynch statement, which takes those monitor objects
as parameters. Our system ensures that the operations in
the statement are executed in a mutually exclusive fashion
without any deadlock. If a thread has to wait (block) for
a certain condition to become true, programmers can use
the waituntil(P) statement with the condition as an
argument. The thread waits if the condition is false and
our system will signal it automatically when the condi-
tion has become true. Furthermore, the condition of a
waituntil(P) statement can be global and involve mul-
tiple monitors. AutoSynch [4] has similar constructs for
automatic signaling; however, it does not consider synchro-
nization among multiple monitors. This paper focuses on
multi-object synchronization.

Our framework provides the following constructs for
writing monitor-based programs:

1) multisynch: a statement for multi-object syn-
chronization. The statement is similar to Java’s
synchronized statement, but it can take an arbitrary
number of monitors as argument.

2) waituntil(P): a statement for conditional waits and
notifications. The statement requires a Boolean predi-
cate as an argument. The predicate can span multiple
monitor objects. This statement can be in any monitor
method or any multisynch statement.

1 monitor class BoundedQueue {
2 Object[] items;
3 int putPtr, takePtr, count;
4 public BoundedQueue(int n) {
5 items = new Object[n];
6 putPtr = takePtr = count = 0;
7 }
8 public void put(Object item) {
9 waituntil(count < items.length);

10 items[putPtr++] = item;
11 putPtr %= items.length;
12 ++count;
13 }
14 public static void takeAndPut(
15 BoundedQueue srcQ, BoundedQueue destQ) {
16 multisynch(srcQ, destQ) {
17 waituntil(!srcQ.isEmpty() && !destQ.isFull());
18 destQ.put(srcQ.take());
19 }
20 }
21 public static void putInAQueue(BoundedQueue Q1,
22 BoundedQueue Q2, Object item) {
23 Q1.put(item) OR Q2.put(item);
24 }
25 public static Object putInAnyQueue(
26 BoundedQueue[] queues, Object item) {
27 selectone(int i = 0; i < buffs.length; ++i;
28 queues[i].put(item));
29 }
30 }

Figure 2: The Bounded Queue Example

3) OR/AND/selectone/selectall: operators for
logical composition of monitor guarded methods. The
order of operations is defined based on the evaluation
of the pre-conditions (of operand guarded monitor
methods) at runtime.

Fig. 2 shows the bounded queue implementation that
demonstrates the actual usage of waituntil(P) state-
ment, the multisynch statement, and our composition
constructs. In this example, producers put an item into a
shared queue, while consumers take an item out of the
queue. We do not show the take method since its imple-
mentation is similar to put. We use monitor modifier to
indicate that the class is a monitor as in line 1. A monitor
class provides mutually exclusive access to its member
methods. The takeAndPut method enables a thread to
atomically take an item from srcQ and put the item in
destQ. In this method, we use multisynch statement
in line 16 so that all operations on both the queues in the
scope of the multisynch statement are done under mutual
exclusion. Furthermore, we need global conditional synchro-
nization – a thread must wait when queue srcQ is empty or
queue destQ is full. We use waituntil(P) in line 17
for global conditional synchronization. For putInAQueue,
we use the OR construct so that a producer is able to put
an item in Q1 or Q2 depending on whichever queue is not
full. A producer can put an item in any of the queues from

an array of queues by using the selectone statement.
As another example, consider a pizza store with two types

of threads: cooks and suppliers. The cooks loop forever, first
waiting for ingredients, and then making a pizza. The cooks
may require different ingredients to make different types of
pizza. The suppliers also loop forever, producing ingredients
when they are insufficient. Since traditional monitor ap-
proaches do not support global conditional synchronization,
they would rely on a coarse-grained lock and condition
variables to achieve this goal. However, using a coarse-
grained lock limits the parallelism since cooks requiring
different ingredients would not be able to make their pizzas
concurrently. By using our approach, every ingredient can
be considered as a monitor object and there is no need
for a coarse-grained lock. Fig. 3 demonstrates the code
snippet for this problem using our constructs. A cook thread
waits till it has enough quantity of each of the resources
it needs. This is achieved by using the global predicate in
waituntil(P) statement. Each of the ingredients, cheese,
tomato and pepperoni, is a different monitor object and the
entire operation is done under multisynch to guarantee
atomicity.

1 multisynch(cheese, tomato, pepperoni) {
2 waituntil(cheese.quantity()>= 6 &&
3 tomato.quantity()>= 3 &&
4 pepperoni.quantity()>= 5);
5 cheese.consume(6);
6 tomato.consume(3);
7 pepperoni.consume(5);
8 }

Figure 3: The Code Snippet of Pizza Store Problem

Thus, our multi-object synchronization monitor provides
an alternative parallel programming paradigm to the tra-
ditional monitors and transactional memory systems. Our
experimental results show that our approach is efficient as
well as scalable in synchronization problems that involve
global conditions. We believe that our research can comple-
ment current parallel programming paradigms and fill the
gap between the traditional monitors and the transactional
memory systems. Although our discussion on automatic
notification has been from the perspective of monitors,
it is equally applicable to transactional memory [5]–[7].
Techniques implemented in multi-object synchronization can
also be used for conditional synchronization in transactional
memory.

This paper is organized as follows. The related work
is discussed in Section II. Section III discusses mutual
exclusion among multiple objects. Section IV presents effi-
cient algorithms for global condition notification. The logical
composition operators are shown in Section V. The proposed
methods are then evaluated with experiments in Section VI.
Section VII gives the concluding remarks.

II. RELATED WORK

Java and C++ use conditional variables with explicit
notification for conditional synchronization. Programmers
need to explicitly use signal or signalAll to wake
a thread waiting on a condition variable. Using the wrong
notification (signal versus signalAll), or forgetting to
do the notification are frequent sources of bugs in parallel
programs. In AutoSynch [4], there is no notion of condition
variables and it is the responsibility of the system to auto-
matically signal appropriate threads. However, AutoSynch,
and indeed all traditional monitor approaches [8], [9], can
deal only with conditions local to a single monitor object.
They cannot handle complex conditional synchronizations
that involve multiple monitor objects.

Transactional memory based systems also cannot handle
global conditional synchronization easily. The C++ transac-
tional memory constructs specification proposal [10](Section
7.11) points out that there is still no solution to support con-
ditional synchronization in transactional memory because
no monitor can be passed to the condition variable in an
atomic block. In transactional memory implementations [1],
[2], the thread itself needs to recheck every time there is
an update of the variables in the transaction. If there are
multiple threads waiting on that condition, then each one
of them will recheck the condition. Implementations such
as [11] use global lock based solutions for waiting and
thus limit parallelism. Using transaction-friendly condition
variables is proposed in [12], [13], in which programmers
need to declare additional condition variables and explicitly
wait/signal on those variables. This approach, however,
brings back all the hazards of explicit signaling.

III. MULTI-OBJECT MUTUAL EXCLUSION

It is the responsibility of our system to ensure mu-
tual exclusion without deadlock for multiple monitor ob-
jects of multisynch statements. Programmers use a
multisynch statement to specify which monitors should
be synchronized. The parameters of multisynch can be
a sequence of an arbitrary number of monitor objects in any
arbitrary order as shown in line 1 of Fig. 3. If an array of
monitor objects is a parameter of a multisynch statement,
the system ensures mutual exclusion for all elements of the
array.

Assuming that all threads acquire locks only using
multisynch statement and that there are no nested
multisynch statements, the system ensures that there is
no deadlock due to inconsistent locking order. Deadlocks
occur when two (or multiple) threads acquire locks on the
same monitors but in different order. One well-known way
to prevent deadlock is to ensure that all threads acquire locks
in a consistent order in the entire system [14]. However, it is
not always obvious for programmers to identify inconsistent
lock ordering. Our system minimizes the risks of deadlocks
by removing the burden of ensuring consistent lock ordering

from the programmer. It acquires locks according to the
order of unique ids of all monitors.

We note here that all these techniques are well known
and C++ 11 also provides std::lock() for multiple
mutex objects [15]; the main contribution of this paper is in
mechanisms for detecting global conditions on these objects
that requires implementation of multisynch.

IV. EFFICIENT AUTOMATIC NOTIFICATION OF GLOBAL
CONDITIONS

We first show that techniques developed for automatic
signaling for local conditions (such as in AutoSynch) cannot
be simply extended for global conditions. In AutoSynch,
when a thread exits a monitor or goes into waiting state, it
checks whether there is some thread waiting on a condition
that has become true. If at least one such waiting thread
exists, it signals that thread. The predicate evaluation is
crucial in deciding which thread should be signaled. To avoid
unnecessary context switches, AutoSynch computes closure
of the predicate with respect to local variables of waiting
threads so that any thread can evaluate the predicate. Since
these variables do not change while the thread is waiting,
the closure of the predicate is exact. Although this technique
works on conditions based on a single monitor, it does not
work for global conditions in Java without assuming global
locks.

In the Java memory model, every thread can be consid-
ered as running on a different CPU. Because CPUs hold
registers that cannot be directly accessed by other CPUs,
one thread does not know about values being manipulated
by another thread in such a model. Hence, the evaluation of
a global predicate by the thread T holding the lock on one
monitor object can be wrong because T may not observe
some concurrent updates of the predicate by other threads.
For example, suppose that a thread T1 is waiting for the
predicate (!Q2.isEmpty() && !Q3.isEmpty()) to
become true. Then, two threads T2 and T3 concurrently
execute Q2.put(x) and Q3.put(y), respectively. Before
leaving monitor Q2, T2 evaluates the global predicate as
false because T2 cannot observe that !Q3.isEmpty() has
become true since the update occurs only on the register of
T3 and T2 does not acquire the lock of Q3 before evaluation.
Therefore, T2 does not signal T1. Similarly, T3 does not
signal T1. In this case, T1 is still waiting while the predicate
(!Q2.isEmpty() && !Q3.isEmpty()) has become
true. A global predicate can be evaluated correctly only if a
thread acquires locks for all monitors related to the predicate.
However, acquiring all locks of its monitors is expensive
because other threads that want to access those monitors are
forced to wait. A wrong predicate evaluation, on the other
hand, may introduce a deadlock because the system may
miss signaling a thread waiting on a global condition that
has become true. To ensure correctness, our system must
provide the following no-missed-signal property.

Definition 1 (No-Missed-Signal Property). If threads wait
on a global condition that has become true, then at least
one thread waiting on the condition is signaled.

We do not require all threads to be signaled, just one.
Whenever that thread exits the monitor, it will wake up
another thread so long as the global condition stays true. We
also note that since Java treats signals as hints, it is okay
from the correctness perspective for the system to send a
signal even if the global predicate is false. The thread that
wakes up would reevaluate the global condition. Hence, one
naive strategy is that threads waiting on global conditions
are always signaled. However, this naive approach decreases
overall performance because it introduces redundant context
switches and limits parallelism. The notified threads may
need to go back to waiting state since their conditions are
still false. Furthermore, other threads cannot access monitors
because notified threads acquire monitors related to their
predicates. Missing signals introduces deadlocks while false
signals decrease overall performance. In this section, we
discuss two approaches to efficiently detect global predicates
that avoid missed signals and reduce false signals.

A. Preliminaries

A global predicate is a global Boolean condition
involving a set of monitor objects. For example, the
condition (!Q1.isEmpty() || !Q2.isEmpty())
|| (Q1.size() > Q2.size()) is a global condition
involving two monitor objects, Q1 and Q2. We call
(!Q1.isEmpty()) and (!Q2.isEmpty()) local
predicates because they involve only one monitor object.
The condition (Q1.size() > Q2.size()) is a
complex predicate because it involves both Q1 and Q2. We
first discuss global predicates that are Boolean expression
of local predicates. The case of global predicates involving
complex predicates is discussed in Sec. IV-D.

A global predicate can be represented by P : X → B,
involving a set of monitor objects, M = {M1, . . . ,Mn},
where X is the space spanned by the variables ~x = (x1, . . . ,
xm). Note that, X = ∪ni=1Xi, where Xi indicates the set of
variables related to Mi. Each variable represents an atomic
local Boolean expression. For example, the queue Q1 and
its condition Q1.isEmpty() can be represented as M1

and a variable x ∈ X1, and the queue Q2 and its condition
Q2.isEmpty() can be expressed as M2 and a variable y ∈
X2. For any global state of the system, G, the predicate P is
evaluated based on the values of all local predicates in G. We
assume that all predicates in the waituntil(P) statement
are read-only and free from side effects. Any evaluation of
those predicates does not update any variable or change the
state G.

B. Atomic-Variable Approach

A thread cannot evaluate global predicates correctly with-
out acquiring global locks because it cannot observe all con-

current monitor objects updates by different threads. To eval-
uate global predicates precisely, we exploit atomic Boolean
variables, which have set and get methods where a set
call has a happens-before relationship with any subsequent
get call on the same variable. Java provides atomic vari-
bles in the package java.util.concurrent.atomic.
Generally speaking, for any global predicate P , we can de-
rive a predicate P̂ , in which every local Boolean expression
of P is represented by an atomic Boolean variable x̂. If
the Boolean expression is true, then we set x̂ to be true;
otherwise, we set x̂ to be false. For example, the global pred-
icate P = (!Q1.isEmpty() || !Q2.isEmpty())
&& (!Q3.isFull() || !Q4.isFull()) has a cor-
responding P̂ = (ŵ ∨ x̂) ∧ (ŷ ∨ ẑ). Our system can decide
if threads waiting on P should be signaled based on the
evaluation of P̂ . Any thread T that acquires monitor Mi

needs to update P̂ before releasing Mi by setting the
values of atomic Boolean variables related to Mi. After T
updates the variables, it releases monitor Mi, evaluates P̂ ,
and decides whether to signal threads waiting on P . For
example, consider the global predicate (!Q1.isEmpty()
&& !Q2.isEmpty()) || !Q3.isFull()). It has a
corresponding P̂ = (x̂ ∧ ŷ) ∨ ẑ, where every variable is
set as false by a thread waiting on the condition. Suppose
T1 accesses Q1 and determines that !Q1.isEmpty() is
true. Before T1 releases Q1, it updates P̂ by setting x̂ as
true. P̂ is still false since ŷ is false. T1 does not signal any
thread waiting on P . Thread T2 then accesses Q2 and finds
that !Q2.isEmpty() has become true. T2 updates P̂ by
setting ŷ as true and signals a thread waiting on P since P̂
has become true.

Proposition 1 shows our atomic-variable approach main-
tains the no-missed-signal property.

Proposition 1. Our atomic-variable approach provides no-
missed-signal property.

Proof: Suppose there are some threads waiting on a
global predicate P that has become true. P̂ consists of only
atomic variables that establish a happens-before relationship
with any subsequent get call on those variables. Without
loss of generality, suppose thread T is the last thread that
updates P̂ and makes P̂ true. T can evaluate P̂ correctly by
using get calls on atomic variables of P̂ . In our approach,
T signals a thread waiting on P .

C. Critical-Clause Approach

The atomic-variable approach attempts to accurately eval-
uate global predicates. In this section, we discuss another
approach that approximately evaluates local predicates to
decide if threads waiting on global predicates should be
signaled.

In order to efficiently detect global predicates that have
become true, threads waiting on global predicates must
analyze their predicates and keep records before they go

to a waiting state. These records are used to accelerate the
process of detecting which global predicate has become true.
The idea behind the records is that a global predicate is false
because some of its clauses are false. The global predicate
can become true only if those clauses become true. We call
these clauses critical. Our system observes critical clauses
and signals threads waiting on global conditions only when
their critical clauses become true. Critical clauses are defined
next.

Definition 2 (Critical Clause). Given a Boolean predicate
P : X → B, and a state G such that P is false in G, we say
C is a critical clause for P with respect to G if and only if
the following three properties are satisfied.

1) C is also false in G.
2) For any state H , if C is false in H , then P is also false

in H . That is, P ⇒ C.
3) C is a pure disjunction of local predicates.

Informally, these properties mean that notifications based
on C starting from state G will provide no-missed-signal
property. Since C is a pure disjunction of local predicates,
it can be evaluated locally by all the involved monitors. We
call each of the local predicate in the critical clause, a local
critical clause.

As a simple example, consider the predicate P equal
to !Q1.isEmpty() && !Q2.isFull(). Suppose P
is false in some state G. This means that either
Q1.isEmpty() or Q2.isFull(). If Q1 is empty, then
the critical clause C for P is !Q1.isEmpty(). The critical
clause C satisfies all three conditions: (1) C is false in G,
(2) so long as C stays false, P will stay false, and (3) it is
a pure disjunction of local predicates. Therefore, instead of
detecting P , the system simply detects and signals when C
becomes true.

We now describe Algorithm 1 that computes a critical
clause C for a general global predicate P that is false
under the state G. The algorithm is recursive and assumes
that the global predicate can be viewed as an expression
tree with local predicates as the leaves of the tree and the
or and and operators as the internal nodes of the tree.
Because the negation of a local predicate is also local, a
Boolean expression can therefore be written as an expression
made of just disjunctions and conjunctions. Every Boolean
expression of local predicates can be put in this form by
pushing the negation operator to the innermost level by using
De Morgan’s laws.

In Algorithm 1, lines 1-2 take care of the base case.
If P is a local predicate, then it also acts as its critical
clause. Lines 3-5 take care of the case when P is a
conjunction of P1 . . . Pm. Since P is false, one of the
conjuncts, say Pi, must be false and the algorithm returns
computeCritical(Pi, G). Finally, lines 6-7 take care
of the case when P is a disjunction of P1 . . . Pm. In

this case, the algorithm returns the disjunction of each of
computeCritical(Pi, G).

Algorithm 1 computeCritical(P, G)

Input: A global predicate P , the current state G such that P is
false in G

Ensure: Returns a critical clause C
1: if P is local to a monitor Mi then
2: return P
3: if P = ∧m

i=1Pi then
4: ∃Pi, such that Pi is false under G
5: return computeCritical(Pi, G)
6: if P = ∨m

i=1Pi then
7: return ∨m

i=1computeCritical(Pi, G)

Proposition 2. Algorithm 1 returns a critical clause for P
with respect to G.

Proof: We use induction on the depth of the expression
tree for P .
Base case: P is local to a monitor Mi: C equals P from
the algorithm and therefore properties 1 and 2 are trivially
true. Since P is a local predicate, 3 is also true.
Induction case for conjunction: P = ∧mi=1Pi, P is false in
G. Let C = computeCritical(Pi, G) such that Pi is
false in G. We show properties 1, 2, and 3 are satisfied.

1) Since Pi is false in G and Pi has fewer operators, from
induction we get that computeCritical(Pi, G)
is also false in G.

2) Now suppose that C is false in H . Again, by induction,
C is false in H implies Pi is false in H . Therefore, P
is also false in H .

3) Since Pi has fewer operators than P ,
computeCritical (Pi, G) is a pure disjunction
of local predicates by induction.

Induction case for disjunction: P = ∨mi=1Pi, P is false in
G. Let C = ∨mi=1 computeCritical(Pi, G).

1) We show that C is false in G. Since P is false in G, all
Pi are false. Since Pi is false and Pi has fewer operators
than P , computeCritical(Pi, G) is also false
for all i. Hence, their disjunction C is also false.

2) Now suppose that C is false in state H . Since C is a dis-
junction, it implies that ∀i, computeCritical(Pi,
G) is false in H . From induction, we get that ∀i, Pi is
false in H . From the definition of P , we get that P is
false in H .

3) ∀i, computeCritical(Pi, G) is a pure dis-
junction of local predicates. Therefore, C = ∨mi=1

computeCritical (Pi, G) is also a pure dis-
junction of local predicates.

For example, consider the predicate P = (v ∨ w ∨ ¬x ∨
y)∧ (x∨z) in Fig. 4 (which is in conjunctive normal form).
Then, computeCritical(P1, G) returns one of the

disjunctive clauses that is false in G. Assume that (v ∨w ∨
¬x∨y) is false. Based on line 6 in Algorithm 1, we conclude
that the clause (v ∨ w ∨ ¬x ∨ y) is critical. Its set of local
critical clauses are C1 = v ∨ w, C2 = ¬x, and C3 = y.

Consider the predicate Q = (v ∧ w ∧ ¬x) ∨ (¬w ∧ x) ∨
(y∧z) in Fig. 4 (which is in disjunctive normal form). Then
computeCritical(P2, G) returns a disjunctive clause
with one literal from each of the conjunctive clause such that
the literal is false in G. For example, if we find v is false
in the first minterm, ¬w is false in the second minterm, and
z is false in the third minterm, then we derive the critical
clause v ∨¬w ∨ z. Its set of local predicates for the critical
clauses are: D1 = v ∨ ¬w, D2 = false, D3 = false and
D4 = z.

Our system maintains the global predicates, condition
variables, and their critical-clause tables. Fig. 4 shows an
example. The symbol • indicates a condition variable. There
are two predicates P and Q in the system, where v, w ∈ X1,
x ∈ X2, y ∈ X3, and z ∈ X4.

(v ∨ w ∨ ¬x ∨ y)∧(x ∨ z)

(v ∨ w ∨ ¬x ∨ y)

C1 (v ∨ w)

C2 ¬x

C3 y

C4 false

(v∧w∧¬x) ∨ (¬w ∧x) ∨ (y ∧z)

(v ∨ ¬w ∨ z)

D1 (v ∨ ¬w)

D2 false

D3 false

D4 z

X1 = { v , w }, X2 = { x }, X3 = { y }, X4 = { z }

P Q

C D
● ●

Figure 4: The Critical-Clause Example

Every monitor Mi keeps a list of all related global
conditions. Any thread T that acquires the monitor needs
to check if there is any related global condition that has
become true before it releases Mi. For example, consider
the thread T that acquires monitor M1. Before releasing
M1, T checks if it needs to signal threads waiting on P1
in Fig. 4. T looks up the table of P1 and evaluates C1 to
decide whether threads waiting on P should be signaled.
This signaling rule is shown in Algorithm 2.

Algorithm 2 signalGlobalCondition(Mi)
Input: A monitor Mi

Ensure: Signal threads waiting on global conditions with true Ci

1: for each global predicate P related to Mi do
2: if table.get(Mi) is true then
3: signal a thread t waiting on P

Proposition 3. Our critical-clause approach provides no-
missed-signal property.

Proof: Suppose the thread T is the last thread to wait
on a global predicate P that has become true. Since T went

to a waiting state, P must be false at that point of time.
Hence T derived C = ∨ni=1Ci a critical clause where each
Ci is local to Mi using Algorithm 1. Now, since P is true,
∨ni=1Ci must be true by Def. 2. There is one Ci that is true.
Hence, there must exist another thread R after T such that
R changed the state of monitor Mi and made Ci true. R
signals a thread waiting on P according to our signaling
rule.

D. Global Conditions with Complex Predicates

Our approach cannot handle complex predicates because
threads cannot correctly evaluate complex predicates by
acquiring a lock for only one monitor object. For exam-
ple, the predicate Q1.size() > Q2.size() cannot be
evaluated unless both monitor locks of Q1 and Q2 are
acquired. However, if we conservatively assume the complex
condition to be true whenever one of its related monitor
is updated, our approaches can still satisfy the no-missed-
signal property at the risk of false signals. The threads
waiting on the global condition will be signaled after all
other non-complex conditions are met. The notified threads
can correctly evaluate the complex predicate by acquiring
all locks.

V. LOGICAL COMPOSITION OPERATIONS

In addition to the automatic notification of global condi-
tions, our system supports composition of monitor methods.
We support two forms of composition: OR and AND. These
composition operators are applicable to guarded monitor
methods as defined next.

Definition 3 (Guarded Monitor Method). A member
method of a monitor object is called guarded if any
waituntil(P) statement in the method is at the be-
ginning of the method. The Boolean predicate P for
waituntil(P) statement is called the pre-condition of
the method.

A monitor method with no waituntil(P) statement
is also considered as a guarded method in which the pre-
condition P is true.

Both OR and AND have two operands. The OR operation
executes either of the two operand while the AND operation
executes the two operands in any order. The order of
operations is defined based on the evaluation of the pre-
conditions (of operand monitor methods) at runtime. If a
result is required from either of these operator calls, then
programmers can assign the results of the operand meth-
ods to variables, e.g., (x = Q1.take()) OR (x =
Q2.take()), Q1.put(item) AND Q2.put(item).
The select-one and selectall can be considered as
the generalized constructs for OR and AND, respectively.
Both constructs have four arguments, initialization expres-
sion, termination expression, increment expression, and the
guarded function. The first three arguments are identical to

the for-loop, providing a way to iterate over a collection of
monitor objects instead of just two.

We restrict operands of our composition operators
to guarded monitor methods because allowing
waituntil(P) statements in the middle makes it
impossible to guarantee atomicity without rollbacks. Since
our implementation is lock based, a method call cannot be
rolled back (as in transactional memory implementations).
If a middle waituntil(P) statement is false in a method
call, our system cannot abort it and rollback. Note that, this
restriction does not limit the applicability of our system.
Our global condition synchronization still works for a
monitor method has a waituntil(P) in the middle. This
restriction is only for composition operators.

A. Implementation

In our system, there are two phases for each composition
operation, the speculative phase and the synchronized phase.
In the speculative phase, our system tries to iterate over
a set of operands and check if they can be executed until
the composition operation is completed or no operand is
executable. If the operation is not completed, we go to the
synchronized phase. In this phase, we need to acquire the
locks of all operands. Those locks are acquired according to
their ids just as in the multisynch statement. The details
of our implementations are shown next. Note that, OR and
selectone have the same implementation while AND and
selectall have the same implementation.

We use two helper methods as shown in Algorithm 3
and 4, where the set of operands (guarded monitor
methods) is denoted as O. The executeOneOperand
is a nonblocking method that iteratively checks and
executes if there is some executable operand. The
createExecutablePredicate method generates the
disjunction of the set of pre-conditions of operands. If the
generated global predicate is true, then one of the operands
has become executable.

Algorithm 3 executeOneOperand(O)

Input: A set of operands O
Ensure: Execute an executable operand and return it or return null

1: ret := null
2: for each operand o ∈ O do
3: if o.tryLock() then
4: if o.pre_condition is true then
5: execute o
6: ret := o
7: o.unLock()
8: return ret

Algorithm 5 shows the implementation for
selectone and OR operators. Our system invokes
the executeOneOperand method in the speculative
phase. If there is an executable operand, our system executes
it and returns. Otherwise, it goes to the synchronization

Algorithm 4 createExecutablePredicate(O)

Input: A set of operands O
Ensure: Return P indicating some operand is executable

1: P := false
2: for each operand o ∈ O do
3: P := P ∨ o.pre_condition
4: return P

phase. We derive a global predicate P by invoking the
createExecutablePredicate method. Then we
acquire all locks of operands and wait on the global
predicate. Once the predicate becomes true, we can find an
executable operand and execute it.

Algorithm 5 orComposition(O)

Input: A set of operands O . Speculative Phase
1: if executeOneOperand(O) 6= null then
2: return . Synchronized Phase
3: P := createExecutablePredicate(O)
4: lockOperands(O)
5: waituntil(P)
6: executeOneOperand(O)
7: unlockOperands(O)

Algorithm 6 andComposition(O)

Input: A set of operands O
1: repeat . Speculative Phase
2: o :=executeOneOperand(O)
3: O := O − o
4: until O = ∅ or o = null
5: if O = ∅ then return . Synchronized Phase
6: repeat
7: P := createExecutablePredicate(O)
8: lockOperands(O)
9: waituntil(P)

10: for each o ∈ O such that o.pre condition is true do
11: execute o
12: o.unlock()
13: O := O − o
14: unlockOperands(O)
15: until O = ∅

The implementations for our AND and selectall are
shown in Algorithm 6. It is similar to the implementation of
OR and selectone.

VI. EVALUATION

In this section, we study the throughputs of global condi-
tion problems among different implementations. We denote
the implementations with the following notation: GL: using
coarse-grained locking with Java’s ReentrantLock, TM:
using DeuceSTM transactional memory [16], [17], AS: using
an automatic signaling approach in which threads waiting
on a global condition are always signaled by a thread
releasing a monitor related to the condition, AV: using our

atomic-variable approach, and CC: using our critical-clause
approach. Table I summarized the notations we used.

All the experiments are conducted on a machine with four
Intel Xeon E7-4850 10-core CPUs (total 80 hyper-threads),
running at 2 GHz with 32 KB L1, 256 KB L2, and 24
MB LLC, respectively. Compilation and execution both are
performed with Oracle Java 1.7 (64-bit VM).

For every experiment, we ran the program 17 times, and
report the mean value of 15 runs after discarding the highest
and lowest values.

A. Application and Examples

We show global conditional synchronization problems
across multiple objects. We focus on applications that in-
volve global conditions or composition operations of moni-
tors. Traditional monitor may solve these problems by using
a coarse-grained lock.

The first application is the atomic takeAndPut method
as shown in Fig. 2, in which a thread atomically takes
an item from srcQ and puts the item in destQ. Since
srcQ and destQ are different monitor objects, this problem
involves the global condition.

The second problem is the piazza store problem as shown
in Fig. 3, where cooks may require different ingredients to
make different types of pizza so that the global predicate is
needed to solve this problem.

The third problem is multicast channels communication
problem. Consider a web service, a server needs to handle
numerous requests from clients. Suppose the server uses a
queue for each client to keep its requests. The server has
to fulfill clients’ requests as efficiently as possible but does
not care about the order of requests. Fig. 5 demonstrates
the implementation by using our constructs. We can use
our composition construct selectone to take a message
among queues, indicating the request queues of clients.
Another way to implement it is by using concurrent queues;
however, the server needs to busy wait and check if there
is any message in queues with this implementation. If we
want to avoid busy waiting, we need to use a coarse-grained
lock and conditional variables.

1 while (true) {
2 Message msg;
3 selectone(int i = 0; i < queues.length; ++i;
4 msg = queues[i].take());
5 handleMessage(msg);
6 }

Figure 5: The Code Snippet of Multicast Channels Commu-
nication

B. Results

Fig. 6 demonstrates the results for the threads that atomi-
cally take an item from a queue and put that item in another

notation GL TM AS AV CC
implementation coarse-grained locking transactional memory always signaling atomic-variable critical-clause

Table I: Notations for different implementations

queue. There are 80 queues with 2048 buffer size. Every
thread randomly selects a source queue and a destination
queue every time. As can be seen, all three automatic sig-
naling approaches outperform coarse-grained approach. The
reason is that the coarse-grained approach limits parallelism
since every thread needs to acquire the same coarse-grained
lock to perform operations. Transactional memory approach
is inefficient since it does not have efficient constructs for
conditional synchronization problems. Note that, the AS
approach is more efficient than AV and CC. The reason is that
the buffer size is huge in this experimental setup so that the
global synchronization condition is true in the most of the
cases. Therefore, the AS approach does not introduce many
false signals. Furthermore, AS does not have any overhead
on predicate evaluations for signaling threads.

0

200

400

600

800

1000

1200

1400

20 40 60 80

T
hr

ou
gh

pu
t

(K
op

s/
se

c)

Threads

AS
AV
CC
GL
TM

Figure 6: Throughput for Atomic Take and Put

Fig. 7 plots the results for the pizza store problem in
which we have 15 ingredients and 15 different types of
pizza. Each cook thread randomly makes one type of pizza
at any given time. As can be seen, both atomic-variable
and critical-clause approaches significantly outperform the
coarse-grained approach in all runs. The reason is that cooks
can concurrently make different types of pizzas that have no
identical ingredient; however, coarse-grained lock approach
limits parallelism since every cook needs to acquire the
same coarse-grained lock to make a pizza. Note that, the
AS approach is extremely slow in comparison with AV and
CC. This phenomenon can be explained by Fig. 8 that
depicts the number of false evaluations of threads waiting
on global conditions. The AS approach requires around 2
– 7× higher number of evaluations than AV and CC. In the
AS approach, a thread releasing a monitor related to a global
condition always unconditionally signals a cook waiting on
the condition. Therefore, this approach has a large number

of false signals. Note that, CC has a slightly higher number
of false evaluations than AV while CC slightly outperforms
AV. This can be explained by that AV has higher overhead
to maintain and evaluate predicate than CC.

0

50

100

150

200

250

300

20 40 60 80

T
hr

ou
gh

pu
t

(K
op

s/
se

c)

Threads

AS
AV
CC
GL
TM

Figure 7: Throughput for the Pizza Store Problem

0

20

40

60

80

100

120

140

20 40 60 80

#
Fa

ls
e

E
va

lu
at

io
n

(K
)

Threads

AS
AV
CC

Figure 8: False Evaluation for the Pizza Store Problem

Fig. 9 demonstrates the throughput for multicast channels
communication. We consider a server thread with vary-
ing number of clients, simulated by threads that generate
requests. The goal of this experiment is to evaluate the
performance of our composition operations. AV, CC, and
AS implementations significantly outperform coarse-grained
lock. This result highlights the benefit of composition op-
erations because the coarse-grained lock approach is much
slower than to AV, CC, and AS approach. The reason is
that our composition operations are nonblocking whenever
there is some executable operand. Note that, the software
transactional memory approach performs better than the
coarse-grained lock when the number of threads is low

(less than 32). However, it is still extremely inefficient in
comparison with our approaches.

0

200

400

600

800

1000

1200

20 40 60 80

T
hr

ou
gh

pu
t

(K
op

s/
se

c)

Threads

AS
AV
CC
GL
TM

Figure 9: Throughput for Multicast Channels Communica-
tion

VII. CONCLUSIONS

Writing parallel programs that provide high performance
and scalability is a challenging task for most program-
mers. One of the reason is that there is no simple parallel
programming paradigm that guarantees multi-object mutual
exclusion as well as simple conditional synchronization and
compositionality. Our proposed design of multi-object mon-
itors is a step in the direction of providing such constructs.
We have shown that our proposed framework of multi-object
synchronization monitors provides significant improvement
over traditional lock-based monitors. We believe that with
further research efforts in this direction, and further opti-
mizations in our implementation, our proposed technique
can lead to significant improvements in programmability as
well as performance of shared memory parallel programs.

ACKNOWLEDGMENT

We thank Himanshu Chauhan and Yen-Jung Chang for
many insightful comments to improve this paper.

REFERENCES

[1] T. Harris, S. Marlow, S. L. P. Jones, and M. Herlihy, “Com-
posable memory transactions.” PPOPP, pp. 48–60, 2005.

[2] A. Skyrme and N. Rodriguez, “From Locks to Transactional
Memory: Lessons Learned from Porting a Real-world Appli-
cation,” in The 8th ACM SIGPLAN Workshop on Transac-
tional Computing, Mar. 2013, pp. 1–9.

[3] M. Herlihy and N. Shavit, The Art of Multiprocessor Pro-
gramming. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2008.

[4] W.-L. Hung and V. K. Garg, “AutoSynch: an automatic-signal
monitor based on predicate tagging,” in PLDI ’13: Proceed-
ings of the 2013 ACM SIGPLAN conference on Programming
language design and implementation, 2013, pp. 253–262.

[5] N. Shavit and D. Touitou, “Software transactional memory,”
in PODC ’95: Proceedings of the fourteenth annual ACM
symposium on Principles of distributed computing. ACM
Request Permissions, Aug. 1995.

[6] T. Harris, J. R. Larus, and R. Rajwar, Transactional Memory.
Morgan & Claypool, 2010.

[7] B. Saha, B. Saha, A.-R. Adl-Tabatabai, A.-R. Adl-Tabatabai,
R. L. Hudson, R. L. Hudson, C. C. Minh, C. C. Minh,
B. Hertzberg, and B. Hertzberg, “McRT-STM: a high perfor-
mance software transactional memory system for a multi-core
runtime,” in PPoPP ’06: Proceedings of the eleventh ACM
SIGPLAN symposium on Principles and practice of parallel
programming. ACM Request Permissions, Mar. 2006.

[8] C. A. R. Hoare, “Monitors: An Operating System Structuring
Concept,” Communications of the ACM, vol. 17, no. 10, pp.
549–557, 1974.

[9] P. B. Hansen, “The Programming Language Concurrent Pas-
cal,” IEEE Trans. Softw. Eng., vol. 1, no. 1, pp. 199–207,
1975.

[10] V. Luchangco and M. Wong. (2014, Feb.) Transactional
Memory Support for C++. [Online]. Available: http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3919.pdf

[11] P. Dudnik and M. M. Swift, “Condition Variables and Trans-
actional Memory: Problem or Opportunity?” in The 4th ACM
SIGPLAN Workshop on Transactional Computing, Feb. 2009,
pp. 1–10.

[12] C. Wang, Y. Liu, and M. F. Spear, “Transaction-friendly
condition variables.” SPAA, pp. 198–207, 2014.

[13] C. Wang and M. Spear, “Practical Condition Synchronization
for Transactional Memory,” in Proceedings of the Eleventh
European Conference on Computer Systems. New York,
NY, USA: ACM, 2016, pp. 32:1–32:16.

[14] B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, and
D. Lea, Java concurrency in practice. Addison-Wesley
Professional, 2006.

[15] C. S. Committee. (2011) Working draft, standard for program-
ming language C++ . [Online]. Available: http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf

[16] Y. Afek, G. Korland, and A. Zilberstein, “Lowering STM
Overhead with Static Analysis.” LCPC, pp. 31–45, 2010.

[17] G. Korland, N. Shavit, and P. Felber, “Noninvasive concur-
rency with Java STM,” in MultiProg 2010: Third Workshop
on Programmability Issues for Multi-Core Computers, 2010.

