
Parallel Algorithms for Predicate Detection

Vijay K. Garg
Electrical and Computer Engineering

The University of Texas,
Austin, TX 78712.

Email: garg@ece.utexas.edu

Rohan Garg
Electrical and Computer Engineering

The University of Texas,
Austin, TX 78712.

Email: rohanvgarg@utexas.edu

Abstract—Given a trace of a distributed computation and a
desired predicate, the predicate detection problem is to find
a consistent global state that satisfies the given predicate.
The predicate detection problem has many applications in the
testing and runtime verification of parallel and distributed
systems. We show that many problems related to predicate
detection are in the parallel complexity class NC. Given a
computation on n processes with at most m events per process,
our parallel algorithm to detect a given conjunctive predicate
takes O(logmn) time and O(m3n3 logmn) work. The sequen-
tial algorithm takes O(mn2) time. For data race detection, we
give a parallel algorithm that takes O(logmn logn) time, also
placing that problem in NC. This is the first work, to the best
of our knowledge, that places the parallel complexity of such
predicate detection problems in the class NC.

1. Introduction

Debugging and testing multithreaded software is widely
acknowledged to be a hard task. Sometimes it takes a
programmer days to locate a single bug, especially when
the bug appears in one thread schedule but not in others.
The current debugging and testing method for multithreaded
programs is as follows. The programmer tries the program
with multiple inputs in the hope of finding a faulty exe-
cution. However, the behavior of a multithreaded program
depends not only on the external user input, but also the
thread schedule and the order in which locks are obtained
by the program. It is easy for the testing process to miss
a bug that arises with an alternate schedule. One of the
fundamental problems in debugging these systems is to
check if the user-specified condition exists in any global
state of the system that can be reached by an alternative
thread schedule. This problem, called predicate detection,
takes a concurrent computation (in an online or offline
fashion) and a condition that denotes a bug (for example,
violation of a safety constraint), and outputs a schedule of
threads that exhibits the bug if possible. Predicate detection
is predictive because it generates inferred reachable global
states from the computation; an inferred reachable global
state might not be observed during the execution of the

program, but is possible if the program is executed in a
different thread interleaving.

The technique of predicate detection was introduced by
Cooper and Marzullo [5] and Garg and Waldecker [10]
for distributed debugging. Later, jPredictor [4] applied the
technique to multithreaded programs. Current methods for
predictive predicate detection are based upon modeling a
computation as a poset, a set of events partially ordered by
Lamport’s happened-before relation [17]. A boolean predi-
cate B is true in a computation iff there exists a consistent
global state that satisfies B. The poset model has been
widely used for concurrent and distributed debugging [3],
[4], [7], [11], [18], [23], [27]. The predicate detection prob-
lem has many applications besides the testing of distributed
and concurrent systems. For example, classic problems in
distributed computing such as termination detection, dead-
lock detection, and mutual exclusion can be modeled as
predicate detection. Similarly, classic problems in parallel
computing such as mutual exclusion violation, data races,
and atomicity violation can also be modeled as predicate
detection.

Detection of a general predicate is NP-complete [3]
and therefore researchers have explored special classes of
predicates. In this paper, we present parallel algorithms for
two classes of predicates — conjunctive predicates and data
race predicates. Detection of conjunctive predicates was dis-
cussed by Garg and Waldecker in [11]. Distributed on-line
algorithms for detecting conjunctive predicates were pre-
sented in Garg and Chase [8]. Observer-independent predi-
cates were introduced by Charron-Bost, Delporte-Gallet, and
Fauconnier [1]. Hurfin, Mizuno, Raynal and Singhal [15]
gave a distributed algorithm that does not use any additional
messages for predicate detection. Distributed algorithms for
off-line evaluation of global predicates are also discussed
in Venkatesan and Dathan [28]. Stoller and Schneider [26]
have shown how Cooper and Marzullo’s algorithm can be
integrated with that of Garg and Waldecker’s to detect
conjunction of global predicates.

While there has been extensive work in online and
offline distributed algorithms for conjunctive predicate de-
tection, we are not aware of any work that explores the
parallel complexity of problems in predicate detection. In
this paper, our main result for the parallel complexity of



conjunctive predicate detection is as follows.
Theorem 1. The conjunctive predicate detection problem

on n processes with at most m states can be solved in
O(logmn) time using O(m3n3 logmn) operations on
the common CRCW PRAM.

Applying this result, we show that any boolean expres-
sion B in disjunctive normal form with r disjuncts can
be detected in O(logmn) time using O(rm3n3 logmn)
operations on the CRCW PRAM. We also give an algorithm
to compute the slice of a computation [21] with respect to
any conjunctive boolean predicate in O(logmn) time. A
slice of a computation concisely represents all the consistent
cuts of the computation that satisfies the predicate.

The problem of data race detection has also attracted
wide attention, for example, it has been studied in [19], [22],
[24], [25], [29]. None of these papers explore the parallel
complexity of the problem. Our main result for data race
predicate detection is
Theorem 2. Consider the execution trace on n processes

and q objects with at most m events per process.

1) There exists a parallel algorithm that detects the
data race predicate in O(1) time and O(m2n2)
work using O(m2n2) processors on CREW PRAM.

2) There exists a parallel algorithm that detects
the data race predicate in O(logm) time and
O(mn(n + q) logm) work using O(mn2) proces-
sors on CREW PRAM.

3) There exists a parallel algorithm that detects the
data race predicate in O(logmn log n) time and
O(mnq logmn log n) work on CREW PRAM.

The paper is organized as follows. Section 2 gives our
model of a computation and defines the problem of predicate
detection. Section 3 presents the parallel algorithm for con-
junctive predicates. Section 4 describes three algorithms for
data race detection. Finally, Section 5 gives the conclusions
and future work.

2. Our Model

This section presents the concepts of local and global
predicates. The reader is referred to [12] for more compre-
hensive background material. We assume a loosely-coupled
message-passing system without shared memory or a global
clock. A distributed program consists of a set of n pro-
cesses denoted by P1, P2, ..., Pn communicating solely via
asynchronous messages. We assume that no messages are
lost, altered or spuriously introduced. We do not make any
assumptions about a FIFO nature of the channels. In this
paper, we will be concerned with a single run of a distributed
program.

Each process Pi in that run generates a single execution
trace which is a finite sequence of local states, or simply
states. The state of a process is defined by the values of
all its variables including its program counter. The state
transition occurs in any process due to an internal action,
the send of a message, or the receive of a message. Let S

be the set of all states in the computation. We define the
usual happened-before relation (→) on the states (similar
to Lamport’s happened-before relation between events) as
follows. If state s occurs before t in the same process, then
s→ t. If the event following s is a send of a message and
the event preceding t is the receive of that message, then
s → t. Finally, if there is a state u such that s → u and
u→ t, then s→ t. A computation is simply the poset given
by (S,→).

It is useful to define consistent global states of a compu-
tation. Let s||t denote that states s and t are incomparable,
i.e., s||t ≡ s 6→ t ∧ t 6→ s. States s and t are called
concurrent. A consistent global state G is an array of states
such that G[i] is the state on Pi and G[i]||G[j] for all i, j.
Consistent global states are also referred to as consistent
cuts in the literature. Consistent global states model possible
global states in a parallel or a distributed computation.

We assume that there is a vector clock algorithm [6],
[20] running with the computation which is used to track the
happened-before relation. A vector clock algorithm assigns
a vector s.v to every state s such that s → t iff s.v < t.v.
The vectors s.v and t.v are called the vector clocks at s and
t. Fig. 1 shows an example of an execution trace with vector
clocks.
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Figure 1. State-Based Model of a Distributed Computation

A local predicate is defined as any boolean-valued for-
mula on a local state. For example, the predicate “Pi is
in the critical section” is a local predicate. It only depends
on the state of Pi, and Pi can obviously detect that local
predicate on its own. A global predicate is a boolean-
valued formula on a global state. For example, the predicate
(P1 is in the critical section)∧(P2 is in the critical section)
is a global predicate. It depends upon the states of multiple
processes. Given a computation (S,→), and a boolean pred-
icate B, the predicate detection problem is to determine if
there exists a consistent global state G in the computation
such that B evaluates to true on G.

We discuss two types of predicates in this paper. First,
a global predicate formed only by the conjunction of local
predicates is called a Weak Conjunctive Predicate (WCP)



[11], or simply, a conjunctive predicate. Thus, a global
predicate B is a conjunctive predicate if it can be written
as l1 ∧ l2 ∧ . . . ∧ ln, where each li is a predicate local to
Pi. We restrict our consideration to conjunctive predicates
because any boolean expression of local predicates can be
detected using an algorithm that detects conjunctive predi-
cates as follows. We convert the boolean expression into its
disjunctive normal form. Now each of the disjuncts is a pure
conjunction of local predicates and can be detected using a
conjunctive predicate algorithm.

Second, we discuss data race predicates. A data race
exists when there are two concurrent accesses to a shared
object such that at least one of them is a write. Both of these
classes of predicates model a large number of possible bugs.

3. Detecting Conjunctive Predicates

In this section we describe a parallel algorithm to detect
a conjunctive predicate B = l1 ∧ l2 ∧ . . . ∧ ln. To detect B,
we need to determine if there exists a consistent global state
G such that B is true in G. Note that given a computation
on n processes each with m states, there can be as many as
mn possible consistent global states. Therefore enumerating
and checking the condition B for all consistent global states
is not feasible. Since B is conjunctive, it is easy to show
[11] that B is true iff there exists a set of states s1, s2, ..., sn
such that (1) for all i, si is a state on Pi, (2) for all i, li is
true on si and (3) for all i, j: si‖sj . Our detection algorithm
will either output such local states or guarantee that it is not
possible to find them in the computation. When the global
predicate B is true, there may be multiple G such that B
holds in G. For conjunctive predicates B, it is known that
there is a unique minimum global state G that satisfies B
whenever B is true in a computation [3]. We are interested
in algorithms that return the minimum G that satisfies B
because G corresponds to the smallest counter-example to
programmer’s understanding since B typically represents the
violation of a safety constraint.

Our parallel algorithm is based on the setting where
the execution traces for all processes have been collected
at one process. For example, in the centralized algorithm
for conjunctive predicate detection, one process serves as a
checker and collects the traces. All other processes involved
in detecting the WCP, referred to as application processes,
check for local predicates during the computation. Each pro-
cess Pi also maintains the vector clock algorithm. Whenever
the local predicate of a process becomes true for the first
time since the most recently sent message (or the beginning
of the trace), it generates a debug message containing its
local timestamp vector and sends it to the checker process
[11].

The checker process uses queues of incoming messages
to hold incoming local snapshots from application processes.
We require that messages from an individual process be
received in FIFO order. At the end of the computation,
the checker process has a sequence of local states from
each process where its local predicate is true. We now
describe a sequential and a parallel algorithm to detect B

on these traces. The sequential algorithm is an adaptation
of the algorithm from [11]. We include it here because
it is instrumental in understanding the parallel algorithm.
Moreover, the correctness of the parallel algorithm is shown
by assuming the correctness of the sequential algorithm.

3.1. A Sequential Algorithm

The sequential algorithm in Fig. 2 takes as input n traces
each of size m. The variable states[i][j] stores the vector
clock of jth local state on Pi. In step 1, we create an
array cut that maintains the current global state that is being
checked for consistency. It is initialized with the first local
state at each process. The variable current[i] keeps track
of the index in the trace for that process. In step 2, we give
a color to each of the local states in the cut. The color of
a state is either red or green and indicates whether the state
has been eliminated in the current cut or not. A state is
green only if it is concurrent with all other green states. A
state is red only if it cannot be part of a consistent cut that
satisfies the WCP. In step 2, we mark all local states that
are less than some other local states in the cut as red.

In step 3, we advance on the process which has a red
state. Suppose we get the new state from Pi. The color
of cut[i] is temporarily set to green. It may be necessary
to change some green states to red to preserve the property
that all green states are mutually concurrent. Hence, we must
compare the vector clock of cut[i] to each of the other green
states. Whenever the states are comparable, the smaller of
the two is painted red.

We now discuss the time complexity of the algorithm.
Note that it takes only two comparisons to check whether
two vector clock timestamps are concurrent if we know the
processes that generated these vector clocks [20]. Hence,
the for loop in step 3 requires at most n comparisons. This
for loop is called at most once for each state, and there are
at most mn states. Therefore, at most O(n2m) comparisons
are required by the algorithm.

3.2. The ParallelCut Algorithm

We now consider parallelization of the sequential al-
gorithm. The for loop in the sequential algorithm can be
trivially parallelized; however, the while loop appears to be
inherently sequential. A different approach is required to
exploit parallelism. Our approach is based on computing a
state rejection graph for the trace. The state rejection graph
is a directed graph with all local states as vertices of the
graph. Let state j on process i be denoted as (i, j). The
state rejection graph puts a rejection edge from the state
(i, j) to (i′, j′) if the rejection of state (i, j) as a possible
component of the consistent cut implies that the state (i′, j′)
will also be rejected.

In Fig. 4 we show the state rejection graph of the
computation in Fig. 1. The first state in P1 given be the
vector clock 〈1, 0, 0〉 will be rejected by the sequential al-
gorithm because it happened before 〈1, 1, 1〉. The sequential
algorithm will then move P1 to the second state 〈2, 0, 1〉



function SequentialCut()
Input: states : array[1 . . . n][1 . . .m] of vectorClock;
// sequence of local states given by vector clocks
Output: Consistent Global State as array cut[1 . . . n]

Step 1: Create cut: set of initial states
var cut : array[1 . . . n] of vectorClock;
for i := 1 to n do

current[i] := 1 ;
cut[i] := states[i, current[i]] ;

Step 2: Create color: array[1..n] of {red, green};
var color : array[1 . . . n] of {red, green} initially green
for i := 1 to n do

if ∃j : cut[i]→ cut[j] then
color[i] := red;

Step 3: Advance cut
while (∃i : (color[i] = red)) do

if cut[i] is the last state then
output(”No satisfying Consistent Cut”);

else
current[i] := current[i] + 1; // advance the cut
cut[i] := states[i, current[i]];
cut[i].color := green;
for j := 1 to n do

if (cut[j].color = green) then
if (cut[i].v < cut[j].v) then cut[i].color := red;
if (cut[j].v < cut[i].v) then cut[j].color := red;

endfor
endwhile;

return ConsistentCut := cut ;

Figure 2. Sequential Conjunctive Predicate Detection Algorithm.

(successor of the first state in P1). However, this would
imply that the state 〈0, 0, 1〉 will be rejected because 〈0, 0, 1〉
happened before 〈2, 0, 1〉. Hence, there is a rejection edge
from 〈1, 0, 0〉 to 〈0, 0, 1〉. Similarly, the rejection of 〈0, 0, 1〉
implies that P3 will move to 〈1, 1, 2〉. However, that move
will result in rejection of the state 〈1, 1, 0〉. Therefore, we
put a rejection edge from 〈0, 0, 1〉 to 〈1, 1, 0〉. Finally, the
rejection of 〈1, 1, 0〉 will result in P2 moving to 〈3, 2, 1〉
which will result in the rejection of 〈2, 0, 1〉 and 〈3, 0, 1〉.
All the rejection edges are shown in dashed arrows in Fig.
4. We show how such a graph can be constructed efficiently
in parallel. The next step in the algorithm is to compute
the transitive closure of this graph. Finally, the algorithm
determines the least local state at each process which has
not been rejected. In this example, it is the fourth state on
P1, the second state on P2 and the third state on P3.

Our parallel algorithm is presented in Fig. 3. The input
to the algorithm is same as that of the sequential algorithm:
a two-dimensional array of vector clocks.

We now explain the steps of the algorithm.
Step 1: We first create F , the set of all initially rejected
states. Let I be the global state consisting of each proces-
sor’s first local state, i.e., I = {(i, 1) | i ∈ 1..n}. If there
are no dependencies between any of these states, we have

function ParallelCut()
Input: states : array[1 . . . n][1 . . .m] of vectorClock
// Sequence of local states at each process
Output: Consistent Global State as array cut[1 . . . n]

Step 1: Create F : set of states rejected in the first round
var F : array[1 . . . n] of 0 . . . 1 initially 0
for all (i ∈ 1 . . . n, j ∈ 1 . . . n) in parallel do

if ((i, 1)→ (j, 1)) then
F [i] := 1

Step 2: Create R: State Rejection Graph
// Represented as Adjacency Matrix

var R : [(1 . . . n, 1 . . .m), (1 . . . n, 1 . . .m)] of 0 . . . 1
for all (i ∈ 1 . . . n, j ∈ 1 . . .m) in parallel do

R[(i, j), (i, j)] := 1
for all (i ∈ 1 . . . n, j ∈ 1 . . .m− 1, i′ ∈ 1 . . . n, j′ ∈ 1 . . .m)

such that i 6= i′ in parallel do
if ((i′, j′) → (i, j + 1)) then

R[(i, j), (i′, j′)] := 1
else

R[(i, j), (i′, j′)] := 0

Step 3: Create RT : transitive closure of R
var RT : array[(1 . . . n, 1 . . .m), (1 . . . n, 1 . . .m)] of 0 . . . 1
RT := TransitiveClosure(R);

Step 4: Create valid: replace invalid states by 0
var valid : array[[1 . . . n][1 . . .m] of 0 . . . 1
for all (i ∈ 1 . . . n, j ∈ 1 . . .m) in parallel do

valid[i][j] := 1
for all (i ∈ 1 . . . n, i′ ∈ 1 . . . n, j′ ∈ 1 . . .m) in parallel do

if (F [i] = 1) ∧ (RT [(i, 1), (i′, j′)] = 1) then
valid[i′][j′] := 0

Step 5: Create cut: First Consistent Global State
var cut : array[1 . . . n] of 0 . . .m initially 0
for all (i ∈ 1 . . . n, j ∈ 1 . . .m) in parallel do

if (valid[i][j] 6= 0) then
if (j = 1) ∨ ((j > 1) ∧ (valid[i][j − 1] = 0) then

cut[i] := j
for all (i ∈ 1 . . . n) in parallel do

if (cut[i] = 0) then
output(”No satisfying Consistent Cut”)

return ConsistentCut := cut ;

Figure 3. The ParallelCut algorithm to find the first consistent cut.

already reached the first consistent global state. Else, if there
is a dependency from one of these states to another, we reject
whichever state happened-before the other and add it to F .
We represent the set F by a boolean bit array of size n that
is indexed by processor. Thus, F [i] = 1 iff (i, 1) is in F . We
initialize the bit array with zeroes, i.e., F is initially empty.
Then, we set F [i] to 1 whenever there exists a state (j, 1)
such that (j, 1)→ (i, 1). Formally,

∀i ∈ 1 . . . n : F [i] = 1 ≡ ∃j : (i, 1)→ (j, 1)

This step can be done in O(1) time in parallel with
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Figure 4. State Rejection Graph of a computation shown in dashed arrows

O(n2) work by using a separate processor for each value of
i and j.

In Fig. 1, I = {〈1, 0, 0〉, 〈1, 1, 0〉, 〈0, 0, 1〉}. Among
these elements, 〈1, 0, 0〉 → 〈1, 1, 0〉. Thus, 〈1, 0, 0〉 ∈ F .
Step 2: In step two, we create the state rejection graph
represented as an adjacency matrix. We define a new two-
dimensional array called R, which is of size mn × mn,
where each row and each column represents a different state.
In this directed graph, there is an edge from state (i, j) to
another state (i′, j′) only if we know that once state (i, j)
is rejected, state (i′j′)′ will also be rejected. In the adja-
cency matrix R, this is represented as R[(i, j), (i′, j′)] = 1.
Additionally, we make the diagonal of the matrix all 1’s.
This means that the relation is reflexive once we create the
matrix. We show that creating this boolean matrix can be
done in constant time. First, setting the diagonal to all 1’s
in R takes constant time. We now discuss how off-diagonal
entries are set. This is a crucial step in our algorithm.
Suppose that a state (i, j) is rejected. We know that the
processor will advance to the next state. Then, the next
choice for that processor is (i, j+1). Thus, the rejection of
(i, j) would lead to the rejection of all states (i′, j′) where
(i′, j′) → (i, j + 1). Formally,

R[(i, j), (i′, j′)] = 1 ≡ (i′, j′)→ (i, j + 1)

By using a separate processor for each tuple (i, j, i′, j′)
we can set R in O(1) time and O(m2n2) work. We represent
the state rejection graph as a boolean matrix so that we can
compute the transitive closure of this graph by doing matrix
multiplications.
Step 3: In step three, we take the transitive closure of
R. The transitive closure of R is also represented as an
adjacency matrix RT . Formally, for all i, i′ ∈ 1 . . . n and
j, j′ ∈ 1 . . .m : RT [(i, j)(i′, j′)] = 1 iff there exists a
k ∈ 1 . . .mn : Rk[(i, j)(i′, j′)] = 1.

It is well known that the transitive closure for any
directed graph with |V | vertices can be computed in
O(log |V |) time using O(|V |3 log |V |) work on the common
CRCW PRAM [16]. Since our graph has O(mn) vertices,

this step takes O(logmn) time using O(n3m3 logmn) op-
erations on the CRCW PRAM. This is the only step in our
algorithm that takes more than O(1) time.
Step 4: In step four, we use both F and RT to determine
which states will not be part of the first consistent global
state. To do this, we create a new two-dimensional array
called valid[[1 . . . n][1 . . .m]] where each entry is a value
of 0 . . . 1. We initialize every entry in valid to 1 in O(1)
time with O(n2) work. The algorithm sets rejected states
in valid with a 0. We use F and RT for this purpose. For
all possible values of i, j, i′, and j′, in parallel, we check
to see if a state (i, j) is an element of F and if there is an
edge from (i, j) to another state (i′, j′). If the two states
(i, j) and (i′, j′) fit this criteria, then we set valid[i′][j′]
to 0. In other words, if a state (i, j) is initially rejected,
and there is an edge from (i, j) to (i′, j′) in RT , then we
know the state (i′, j′) will also be rejected. Formally, for all
i ∈ 1 . . . n, j ∈ 1 . . .m:

valid[i][j] = 0 ≡ ∃i′ : F [(i′) = 1 ∧RT [(i′, 1), (i, j)] = 1

This step can also be done in O(1) time and
O(m2n2) work. In our example, we compute the
states reachable by 〈1, 0, 0〉. In our example, states
{〈0, 0, 1〉, 〈1, 1, 0〉, 〈2, 0, 1〉, 〈3, 0, 1〉} are all reachable by
〈1, 0, 0〉 by following one or more rejection edges. Thus,
we mark the states (1, 1), (2, 1), (3, 1), (1, 2), (1, 3) with 0′s
in valid.
Step 5: In step five, we traverse valid and construct the
set of states that form the consistent global state in a new
array called cut where cut[i] = j signifies that the tuple
(i, j) is a part of the consistent global state. To do this,
for every process, in parallel, we simply search for the first
entry which is nonzero and either it is the first entry or the
entry prior to it is zero.

Formally, ∀i, j : (valid[i][j] 6= 0) ∧ ((j =
1) ∨ (valid[i][j − 1] = 0)) ≡ (cut[i] = valid[i][j]).

In our example, we can easily see that the first consistent
global state is the set cut = {(1, 4), (2, 2), (3, 2)}. This step
can be done in O(1) time and O(n2) work.

Table 5 summarizes the time and work complexity of
each step. Thus, the algorithm takes O(logmn) time and
O(m3n3 logmn) work on a common CRCW PRAM.

Remark: Note that the algorithm to detect a conjunctive
predicate can be used to detect a global predicate in Dis-
junctive Normal Form. A predicate is in Disjunctive Normal
Form (DNF) if it is expressed as a disjunction of k pure
conjunctions. To detect a predicate in this form it is sufficient
to detect each conjunction in parallel.

3.3. Proof of Correctness

We now prove our algorithm always produces the first
consistent global state, should it exist, that satisfies the given
conjunctive predicate B. We prove that our algorithm rejects
all states for which there does not exist a consistent global
state. Once we have removed all these states, our algorithm



Step Variable Time on CRCW Work on CRCW
Step 1 F O(1) O(n2)
Step 2 R O(1) O(m2n2)
Step 3 RT O(logmn) O(m3n3 logmn)
Step 4 valid O(1) O(n2m)
Step 5 cut O(1) O(mn)
Total O(logmn) O(m3n3 logmn)

Figure 5. Time and Work Complexity on Common CRCW PRAM.

simply picks the first state from each process that can be part
of a consistent global state. Lemma 1 shows the property of
F . Lemma 2 shows the property of states that are reachable
from F in one or more steps. Finally, Theorem 3 shows the
correctness invoking Lemma 1, Lemma 2 and properties of
the SequentialCut algorithm.
Lemma 1. . For any of the initally rejected states s ∈ F ,

there does not exist a consistent global state G, where
s ∈ G.

Proof: Let s = (i, 1). From the definition of F , there exists
j such that (i, 1) → (j, 1). Since (j, 1) → (j, k) for all
k > 1, from transitivity of →, we get that (i, 1) → (j, k)
for all k. Thus, there does not exist a state along process j
that is concurrent with state s. Hence, there does not exist
a consistent global state G containing s.

We define a set Rejected(t) for t = 1..mn that captures
the states that are rejected in t steps or less starting from
the initial rejected states. Since there are mn states in all,
there cannot be a path longer than mn. Formally,

(i, j) ∈ Rejected(t) ≡ ∃(i′, j′) ∈ F : Rt[(i′, j′), (i, j)] = 1.

We now show that if a state s′ on Pi′ is rejected
by ParallelCut in any round then there does not exist a
consistent global state containing s′ or any state prior to
s′ on Pi′ .
Lemma 2. For all t ≥ 1, if any state (i, j) ∈ Rejected(t),

then for all k ≤ j, there does not exist any consistent
global state containing (i, k).

Proof: The proof is by induction on t which corresponds
to the length of a rejection path from a state in F to s′.
When t = 1, i.e., there is a direct rejection edge from some
state s ∈ F to s′. Let s = (i, j) and s′ = (i′, j′). From the
definition of R, we get that s′ → (i, j + 1). Therefore, s′
cannot be concurrent with any state (i, k) for k > j. Since
s = (i, j) is in F , we have that any state (i, k) for k ≤ j
is not in any consistent global state. Hence, s′ is not in
any consistent global state because it cannot be concurrent
with any state on process Pi that is part of a consistent
global state. Now consider any state u prior to s′. Due to
transitivity, u→ (i, j+1). Therefore, by the same reasoning
u cannot be part of a consistent global state.

Consider any state s′ ∈ Rejected(t + 1) for t ≥ 1. By
definition of Rejected(t + 1), there is a path of length at
most t + 1 from some state s ∈ F to s′. Let st = (i, j)
and s′ = st+1 = (i′, j′). Using the inductive hypothesis, we

know that all the states s0, s1, . . . st are not in any consistent
global state. For there to be a rejection edge in RT from st
to st+1 it must be that st+1 → succ(st). From induction,
we know that there is no consistent global state containing
state st or any state prior to st. The least state from Pi that
can be in a consistent state is (i, j + 1).

Consider the set L(s′) = {(i′, k′)|k′ ≤ j′}. Pick any
state u in L(s′). We claim that state u is not concurrent with
any state on Pi that can be in a consistent global state. It
cannot be in a consistent global state with any state (i, k) on
Pi for k ≤ j because st is in Rejected(t) and by induction
any state prior to (i, k) cannot be part of a consistent global
state. Furthermore, u is not concurrent with any state (i, k)
on Pi for k > j because u → (i, j + 1). From these two
assertions, we get that u is not part of any consistent global
state.

We now show the correctness of the ParallelCut algo-
rithm.
Theorem 3. The ParallelCut algorithm returns the least

consistent global state satisfying B if there exists one.
Otherwise, it returns “no consistent global state”.

Proof: We show that the states rejected by the ParallelCut
are identical to the states rejected by the SequentialCut
algorithm. Then, the correctness of the sequential algorithm
will imply the correctness of the ParallelCut algorithm.

Suppose that a state s is rejected by the sequential cut
algorithm. This implies that there is a sequence of the steps
of some length, say t, that colors s as red. We do induction
on t. When t equals 0, the state s must be an initial state
and it must happen before another initial state for it to be
colored red in step 2 of the SequentialCut algorithm. By our
construction of F , state s will be added to F in step 1 of
the ParallelCut algorithm. Now assume that the claim is true
for t = k steps of the sequential algorithm. If s is colored
red in step k+1, then there exists a state u such that s→ u
from step 3 of SequentialCut. If u is an initial state, then
s will be rejected in step 1 of the ParallelCut algorithm.
Otherwise, there exists a state u′ such that the successor of
u′ is u and u′ is colored red at some earlier step. We have
that the successor of u′ is u and s→ u. Therefore, by our
construction of R, there is a rejection edge from u′ to s.
From induction, u′ is rejected by the ParallelCut algorithm,
and there is a rejection edge from u′ to s. Hence, s is also
rejected by the ParallelCut algorithm.

We now show that if a state is not rejected by Sequen-
tialCut, then it is not rejected by ParallelCut. We show
the contrapositive. If a state is rejected by the ParallelCut
algorithm, it is reachable from F in some number of steps.
If a state s is part of F , then Lemma 1 shows that s cannot
be part of any consistent cut and therefore also rejected by
the SequentialCut. Now, consider a state s that is reachable
from some state in F by one or more rejection edges. From
Lemma 2, if a state s is rejected by the ParallelCut, then that
state and all the states before s on that process cannot be
part of a consistent cut. Since the SequentialCut algorithm
is correct, it would color all those states red and therefore
also reject them.



Remark: We note that the work complexity of the
algorithm is cubic in m. One method to reduce average work
complexity is as follows. Instead of starting with the entire
trace, one can start with a small prefix of the computation
(i.e. smaller value of m). If the algorithm succeeds in finding
the satisfying cut, we are done. Otherwise, we double the
size of the prefix. This strategy will add a factor of O(logm)
to the time complexity but the algorithm will have a lower
work complexity on average if there exists a satisfying cut
in some initial prefix.

3.4. Parallel Slicing Algorithm

In many applications, it is not sufficient to find just the
least consistent global state that satisfies the given predicate.
For example, the detection of temporal logic predicates on
a distributed computation requires capturing all consistent
global states that satisfy the given predicate. When the
given predicate is regular, i.e., the set of consistent global
states satisfying B form a sublattice, then the set can be
precisely characterized by the slice of the computation with
respect to B. A slice of a computation P with respect to
a predicate B is a graph such that the consistent global
states of the graph includes all consistent global states that
satisfy B and when B is regular, it includes only those. The
reader is referred to [13], [21] for discussions of slicing.
The algorithm requires the computation of J(B, e) for all
e ∈ E where J(B, e) is the least consistent global state that
satisfies B and includes e. Since the computation of J(B, e)
is in NC, the computation of a slice is also in NC because
the following algorithm computes the slice in O(logmn)
time.

graph function computeSlice(
B: regular predicate, P : graph)

var R: graph initialized to P ;
begin

for every element e in P in parallel do
let J(B, e) be the least global state of P

that satisfies B and includes e;
for every f ∈ J(B, e) in parallel do;

add edge (f, e) to R;
return R;
end;

Figure 6. An efficient parallel algorithm to compute the slice for a regular
predicate B

4. Data Race Predicate Detection

As mentioned earlier, the detection of data races has
received wide attention for shared-memory based programs.
We assume that such a program has n threads that share
q objects. Each thread makes at most m accesses. Given
two accesses one can establish a happened-before relation
between them as follows. If a thread executes an operation
e and then later executes another operation f , then e
happened-before f . All operations done by a single thread

are therefore totally ordered. If an operation e releases a
lock and another operation f acquires that lock, then e
happened-before f . Similarly, if any operation e results in
sending a signal and another operation f is executed on
receiving that signal, then e happened-before f . The data
race detection problem can be defined as follows.

Data Race Predicate Detection: Given a multithreaded
computation (E,→), is there any instance of a

1) read-write conflict: Are there two events e and f
in E such that e is a read on some object, f is a
write on the same object, and e is concurrent with
f .

2) write-write conflict: Are there two events e and f
in E such that both e and f are writes on the same
object and e is concurrent with f .

For ease of exposition, we first consider a special case
of the problem when we are concerned only with a single
object and all accesses need to be mutually exclusive. We
then extend mutual exclusion violation algorithms to the
general case of the data race predicate.

4.1. Special Case: Mutual Exclusion Violation
Predicate

In this section, we discuss detecting the violation of
mutual exclusion. Mutual exclusion is used when there is
shared data or there is a section of program called the
critical section, that must be executed by at most one thread
(or a process in a distributed system) at any given time. Our
model is the same as that for conjunctive predicates detec-
tion. There are n processes and each process has a sequential
trace of all accesses to the critical section. We assume that
there are at most m accesses per process. Each access to
the critical section is given by a vector timestamp of size
n. The computation has a violation of mutual exclusion if
there exists two concurrent accesses to the critical section.
The optimal sequential algorithm requires O(mn log n) time
and is based on merging n sorted lists of vector clocks. A
straightforward parallel algorithm with O(1) time complex-
ity is shown in Fig. 7. This algorithm requires O(m2n2)
work and O(1) time with O(m2n2) processors. It does not
require any additional space besides the traces themselves.
Note that we have used the notation [n] to mean {1 . . . n}.

We can reduce the work complexity as follows. Let
trace[i] be the sorted array of all m vectors on Pi. Given
any vector u we can determine if it is comparable to all
the vectors in trace[i] using O(logm) time. The algorithm
is shown in Fig. 7. This algorithm requires O(mn2 logm)
work and O(logm) time with O(mn2) processors.

We can improve the work complexity further by us-
ing a parallel merge [16] algorithm and additional space
as follows. At the beginning of the algorithm, we have
n sorted traces each of size m. At each round, we will
reduce the number of lists by a factor of two and increase
the size of lists by a factor of two. If in any round, we



Mutex Violation Algorithm 1:
Time: O(1), Additional Space: O(1)
Work: O(m2n2)

for all (i ∈ [n], j ∈ [n], k ∈ [m], l ∈ [m])
with i < j in parallel do

if (v[i][k]||v[j][l]) return “mutex violation”
endfor;
return “no violation of mutual exclusion”

Mutex Violation Algorithm 2:
Time: O(logm), Additional Space:O(1)
Work: O(mn2 logm)

for all (i ∈ [n], j ∈ [n], k ∈ [m]) with i < j in parallel do
binary search v[i][k] in trace[j]
if (incomparable vector found)

return “mutex violation”
endfor;
return “no violation of mutual exclusion”

Figure 7. Brute force parallel algorithms to detect mutex violation

do not succeed because of any incomparable vectors, we
have managed to find a violation of mutual exclusion. We
can implement each round in parallel time O(logmn) as
follows. For simplicity, we have assumed that n is a power
of 2. The goal is to merge trace 0 with trace 1, trace
2 with trace 3 and so on. Assume that there is a thread
for each vector. It can determine the rank of the vector
in the merged trace by computing the number of elements
smaller than itself in its list and the list to be merged. The
ranks can be computed in O(logmn) time by performing
binary search. There are O(log n) rounds giving us the time
complexity of O(logmn log n). The algorithm is shown in
Fig. 8. This algorithm requires O(mn logmn log n) work,
O(logmn log n) time and O(mn2) space.

4.2. Data Race Detection

In this section, we discuss detecting data races when
concurrent reads are allowed but read-write and write-write
conflicts must be detected. We use the same model as that
of the violation of mutual exclusion, i.e., we have traces of
read accesses and write accesses of any object given by the
vector timestamps. Associated with each vector is a field
object that gives the identifier of the object and a bit op
that indicates whether the access is a read or a write. In data
race detection, it is more traditional to use the event based
model and we assume that the trace consists of vector clocks
for events representing accesses to shared objects instead
of vector clocks of states. The O(1) algorithm for mutual
exclusion with O(m2n2) processors is easily generalized to
data race detection. It is shown in Fig. 9. When we compare
any event with any other event, we flag violation only if at
least one of the accesses is write and only if they are on the
same object.

We now consider the generalization of algorithm 2 for
mutual exclusion. In algorithm 2 for mutual exclusion, we

Mutex Violation Algorithm 3:
procedure ME();
Time: O(logmn logn), Space:O(mn)
Work: O(mn logmn logn)

L := set of n traces each with m vectors;
numTraces := n; // assume n is a power of 2
for r := 1 . . . logn do // in sequence

// for all j := 0 to numTraces/2 in parallel
// merge trace 2j with trace 2j + 1
for all u in trace 2j and 2j + 1 in parallel do

// rank of u in trace[2j]
rank1:= binary search u in trace[2j];
// rank of u in trace[2j + 1]
rank2 := binary search u in trace[2j + 1];
if (binary search finds incomparable vector)

return “violation of mutual exclusion”
else

write u at rank1 + rank2 in the merged trace;
numTraces := numTraces/2;

endfor;
return “no violation of mutual exclusion”

Figure 8. An almost work optimal parallel algorithm to detect mutex
violation

Data Race Detection Algorithm 1:
Time: O(1), Additional Space:O(1)
Work: O(m2n2)

for all (i ∈ [n], j ∈ [n], k ∈ [m], l ∈ [m])
with i < j in parallel do

if ((v[i][k]||v[j][l])
∧((v[i][k].op = write) ∨ (v[j][l].op = write))
∧(v[i][k].object = v[j][l].object))

return “data race”
endfor;
return“no data race”

Figure 9. A Data Race Detection Algorithm with O(1) time and O(m2n2)
work.

employed binary search to reduce the work complexity. In
that algorithm, given any vector u and trace[i], vector u was
comparable with all vectors in the trace[i] unless there is a
violation of mutual exclusion. For data races, this is not the
case since the vector u may be on a different object than a
vector in trace[i] or both u and the vector in trace[i] may
be reads. However, if we take the projection of trace i for
each object and only focus on vectors u that correspond to
writes, we can still employ binary search.

The second algorithm starts with taking projections on
the traces for individual objects. These projections can be
computed in parallel for all traces and all objects. The
method projection takes the trace inTrace for any process
and an object q as input and returns its projection of the
trace on the object q. First, we compute an array loc of the
size equal to the size of the trace as follows. We set, for
the kth event, loc[k] to be 1 if that event is an operation



Data Race Detection Algorithm 2:
Time: O(logm), Additional Space:O(mn),
Work: O(mn(n+ q) logm)

Step 1: Compute projections for all objects
for all (i ∈ [n], obj ∈ [q]) in parallel do

objectTrace[i][obj] := projection(trace[i], obj);

Step 2: Do binary search for each event and process
for all (i ∈ [n], j ∈ [n], k ∈ [m]) in parallel do

if (v[i][k].op = write)
obj := v[i][k].object;
binary search v[i][k] in objectTrace[i][obj]
if (found incomparable vector)
return “data race exists” for v[i][k].object;

endfor;
return “no data race”

function projection(inTrace : array[1..m] of
(vector, object, op), obj: object);

var
loc : array[1..m] of integer;

for all (k ∈ [m]) in parallel do
if (inTrace[k].object = obj) then

loc[k] := 1
else

loc[k] := 0;
loc := parallelPrefixSum(loc);
int s := loc[m]; // size of outTrace;
outTrace := new array[1..s] of (vector, object, op);
for all (k ∈ [m]) in parallel do

if (inTrace[k].object = obj) then
outTrace[loc[k]] := inTrace[k]

return outTrace;
end function

Figure 10. Parallel algorithm 2 to detect data races

on object q. The parallel-prefix sum operation calculates
the output address of each such event in the output trace.
Finally, all events that are related to the object q are written
in the appropriate locations in outTrace. This method takes
O(logm) time due to parallel prefix-sum. Summing up all
the work and time in step 1, we get O(mnq logm) work
and O(logm) time.

In step 2, we perform binary search for each local
event and each process. This step takes O(logm) time and
O(mn2 logm) work.

This algorithm requires no additional space beyond the
traces.

Theorem 4. Consider the execution trace on n processes
and q objects with at most m events per process.

1) The first parallel algorithm in Fig. 9 detects data
race in O(1) time and O(m2n2) work on CREW
PRAM.

2) The second algorithm in Fig. 10 detects data race
in O(logm) time and O(mn(n + q) logm) work
on CREW PRAM.

The second algorithm reduces the work but is quadratic
in n. We now give a parallel algorithm for data races that
reduces the dependence on n to O(n log n) by generalizing
algorithm 3 for mutual exclusion. We check for data race in
two steps. In the first step, we take the projection of each
object trace with respect to write accesses. Now we invoke
the algorithm ME to merge all the write accesses. If we find
incomparable vectors, we have found a write-write conflict.
Computing the projection of all traces requires O(logm)
time and O(mnq logm) work. Merging these traces requires
O(logmn log n) time and O(mnq logmn log n) work. In
the second step, we check that no read access is concurrent
to any write in the merged object trace. This can be done
using binary search for all read operations. This step requires
O(logmn) time with O(mn logmn) work.

Data Race Detection Algorithm 3:
Time: O(logmn logn), Additional Space:O(mn),
Work: O(mnq logmn logn)

// Step 1: Merge traces for all write operations for every object
L := set of n traces each with m vectors;
numTraces := n; // assume n is a power of 2
for obj ∈ 1 . . . q in parallel do

Lobj := L projected on obj and write operations;
mergedTraceobj := Algorithm ME applied to Lobj ;
if (incomparable vectors found)

return “write-write data race”;
endfor;

// Step 2: Do binary search for all read operations
for all (i ∈ [n], k ∈ [m]) in parallel do

if (v[i][k].op = read) ∧ (v[i][k].object = obj);
binary search v[i][k] in mergedTraceobj
if (incomparable vectors found)

return “read-write data race”;
endfor;
return “no data race”

Figure 11. Parallel algorithm 3 to detect data races

Theorem 5. Consider the execution trace on n processes
and q objects with at most m events per process. The
parallel algorithm in Fig. 11 detects a data race in
O(logmn log n) time and O(mnq logmn log n) work
on CREW PRAM.

5. Conclusions and Future Work

We have shown that a conjunctive global predicate in
a system with n processes and a maximum of m local
states can be found in O(logmn) parallel time on a CRCW
PRAM. This also allows the parallel detection of a disjunc-
tive normal form predicate. Furthermore, the complexity of
computing a slice of any conjunctive predicate is also in
NC.

Our parallel algorithm has optimal time complexity but
high work complexity. We do not know if there exists an
algorithm with lower work complexity. Linear predicates [3]



and regular predicates [9] generalize conjunctive predicates.
Finding the parallel complexity of detecting these predicates
is a future work. Recently, it was shown that the problem
of stable marriage can be formulated as detecting a linear
predicate in a computation [14]. Clearly, if detecting any
linear predicate is in NC, then the stable marriage problem
would also be in NC. The problem of finding the parallel
complexity of the stable marriage problem has been open
for many decades and any progress in finding the parallel
complexity of linear predicates is important.

We have given parallel algorithms for data race detection
with different time complexities and work complexities.
Finding work-optimal parallel algorithms is a future work.

Another class of predicates for which there exists effi-
cient polynomial time algorithms are relational predicates
[2]. These predicates are of the form

∑
i xi ≥ k where

each xi is on a different process. We do not know if the
complexity of detecting relational predicates is in NC.
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