
Some Optimal Algorithms for Decomposed Partially Ordered SetsVijay K. GargDepartment of Electrical and Computer Engineering,University of Texas, Austin, TX 78712-1084email: vijay@pine.ece.utexas.eduAbstractWe describe two problems and their optimal solutions for partially ordered sets. We�rst describe an optimal algorithm for computing the largest anti-chain of a partiallyordered set given its decomposition into its chains. Our algorithm requires O(n2m)comparisons where n is the number of chains and m is the maximum number of el-ements in any chain. We also give an adversary argument to prove that this is alower bound. Our second problem requires us to �nd if the given poset is a total or-der. Our optimal algorithm requires O(mn logn) comparisons. These algorithms haveapplications in distributed debugging and recovery in distributed systems.Keywords: Partially-ordered sets, Distributed debugging1. IntroductionLet (S;<) be any partially ordered �nite set. We are given a decomposition of S into nsets P0; :::Pn�1 such that for any i, Pi is a chain of size at most m. We call such a structurea decomposed poset. These structures arise in distributed systems, because any executionof a distributed program can be viewed as a decomposed poset with local states of theprocesses as elements of the poset, and ordering between these states as that imposed byhappened-before relation de�ned by Lamport[1].Our �rst problem is to �nd an element si in each Pi such that < 8i; j : i 6= j : si 6< sj >.In other words, we have to �nd an anti-chain of size n if one exists. Clearly, this anti-chainis the largest as there cannot be any anti-chain of size greater than n. Our second problemis to �nd any two elements si and sj such that (si 6< sj)^(sj 6< si). If no two such elementsexist, then the given poset is actually a totally ordered set.These problems have many applications in distributed processing. In distributed de-bugging[2,5], one may need to detect a global snapshot so that the local condition Ci istrue in process i. Each process may then detect Ci locally and send the states in which itbecame true to a coordinator process. The task of the coordinator is to �nd one state ineach process i in which Ci is true and states are causally unrelated to each other. Intu-itively speaking, these states can be considered to have occurred simultaneously. We callsuch a set of states a consistent cut. For example, consider an implementation of the diningphilosophers problem. Let holdingi denote the condition that philosopheri is holding afork. We may want to detect the condition < 8i : holdingi > if it ever becomes true for anyconsistent cut. Assume that each philosopheri sends the state in which holdingi became1

true to a coordinator process. The task of the coordinator is to �nd causally unrelatedsets of states in which holdingi is true. If it succeeds then we can claim that for someexecution speeds of the philosophers the algorithm may lead to a deadlock.As another example, consider the problem of recovery in a distributed system[3]. Whilea distributed computation proceeds, it is desirable to keep a global consistent cut so thatin case of any fault the computation may start from the consistent cut instead of the be-ginning. Assuming that local checkpointing and messages-logging is done asynchronously,each process outputs states from which it can restart its local computation. The task againis to �nd a consistent cut.The second problem may be useful in debugging a mutual-exclusion algorithm. Eachprocess may record its state when it accessed the critical region. If there is any pair ofconcurrent states in which critical region is accessed, i.e., (si 6< sj)^ (sj 6< si), then mutualexclusion can be violated with appropriate processor speeds.In this paper, we describe an algorithm that requires O(n2m) comparisons for �ndingthe largest anti-chain and an algorithm that requires O(mn logn) comparisons to �nd anyanti-chain of size two.2. Consistent Cut ProblemWe use sjjt to denote that s and t are concurrent, i.e., (si 6< sj) ^ (sj 6 si). Theconsistent cut problem is: Given (S;<) and its decomposition (P0; P1; :::; Pn�1), does thereexists fsi 2 Pig such that (8i; j : i 6= j : sijjsj) ? We �rst present an o�-line algorithmwhich assumes that the entire poset is available at the beginning. Later, we adapt thisalgorithm for on-line detection of consistent cut in a distributed environment.2.1 AlgorithmWe will assume that any two elements of the set can be compared in O(1) time. This istrue in distributed processing if states are time-stamped with vector clocks[4]. Our algo-rithm uses one queue qi per chain to store elements of pi. We assume that elements withina queue are sorted in increasing order. In the following discussion, we use the followingoperations on queues:insert(q,elem); insert elem in the queue qdeletehead(q); remove the head of the queueempty(q); true if q is emptyhead(q); �rst element if : empty(q), returns max (the biggest element) otherwiseThe algorithm is given below:function antichain(q0; :::; qn�1:queues):boolean;(* returns true if there is an anti-chain of size n, false otherwise. If true, the anti-chainis given by the head of all the queues *)const all = f0,1,...,n-1g;var low,newlow: subsets of all;i,j: 0..n-1;beginlow := all; 2

while low 6= � dobeginnewlow := fg;for i in low dofor j in all doif head(qi) < head(qj) then newlow:=newlow [fig;if head(qj) < head(qi) then newlow:=newlow [fjg;low := newlow;for i in low dodeletehead(qi)endreturn(8i : : empty(qi))endThe algorithm works as follows. It compares only the heads of queues. Moreover, itcompares only those heads of the queues which have not been compared earlier. For thispurpose, it uses the variable low which is the set of indices for which the head of the queueshave been updated. The invariant maintained by the while is(I) (8i; j 62 low : :empty(qi) ^ :empty(qj)) head(qi)jjhead(qj))I is true initially because low contains the entire set. The while loop maintains theinvariant by �nding all those elements which are lower than some other elements andincluding them in low. This means that there can not be two comparable elements inall � low. The loop terminates when low is empty. At that point, if all queues are non-empty, then by the invariant I, we can deduce that all the heads are concurrent. Theprocedure clearly terminates because the number of elements in the queues decreases onevery execution of the while loop unless low is � in which case the procedure terminates.The above procedure can be made to terminate earlier when any of the queue becomesempty. For that purpose, it is enough to introduce a variable noempty which is made falsewhenever the last element in any queue is deleted. This ag is also a part of the whilecondition. We have not done so for clarity of the discussion.We now discuss the complexity of above algorithm. Our complexity analysis will bedone based on the number of comparisons used by the algorithm. The following theoremshows that the number of comparisons are quadratic in n and linear in m.Proposition 1 The above algorithm requires at most O(n2m) comparisons.Proof: Let comp(k) denote the number of comparisons required in the kth iteration of thewhile loop. Let t denote the total number of iterations of the while loop. Then, totalnumber of comparisons = Pk=tk=1 comp(k). Let low(k) represent the value of low at the kthiteration. It is all in the �rst iteration. We note that jlow(k)j for k � 2 represents thenumber of elements deleted in the k�1 iteration of the while loop. Therefore,Ptk=2 jlow(k)j= total elements deleted < total elements in system � mn.3

From the structure of the for-loops we get that comp(k) = O(n � jlow(k)j). Therefore,the total number of comparisons required arePtk=1 comp(k) = n �Ptk=1 jlow(k)j= n � n+ n �Ptk=2 jlow(k)j� n � n+ n �mn = O(n2m)The above algorithm assumes that the entire queues were available as the input atthe beginning. For many applications, the queues may be available only one element at atime. The problem of on-line computation of consistent-cut is to detect the consistent cutas soon as all elements forming the cut are available. This cut corresponds to the in�mumelement of the lattice of all consistent cuts in S[4]. The following algorithm assumes thata centralized process receives all the elements in the set S one at a time. This algorithmis a minor variant of the previous algorithm. The main di�erence is that an empty queuesigni�es that no consistent cut has been found so far. The centralized process may receivemore elements in future and succeed in �nding one. It computes only on receiving a mes-sage from some process. It maintains the assertion that heads of all non-empty queues areincomparable. The computation is shown below:Upon recv(elem) from Pi dobeginif : empty(qi) then insert(qi, elem)else begininsert(qi, elem)low := f i gwhile low 6= � dobeginnewlow := fg;for k in low dofor j in all doif head(qk) < head(qj) then newlow:=newlow [fkg;if head(qj) < head(qk) then newlow:=newlow [fjg;low := newlow;for k in low dodeletehead(qk)end;(* while *)if 8k : :empty(qk) then found:=trueend2.2 Adversary ArgumentsIn this section we show that the complexity of the above problem is at least
(n2m),thus showing that our algorithm is optimal. We �rst show an intermediate lemma whichhandles the case when the size of each queue is exactly one, i.e. m = 1.4

Lemma 2 Let there be n elements in a set S. Any algorithm which determines if allelements are incomparable must make at least n(n � 1)=2 comparisons.Proof: The adversary will give to the algorithm a set in which either zero or exactly onepair of elements are incomparable. The adversary also chooses to answer \incomparable"to �rst n(n � 1)=2 � 1 questions. Thus, the algorithm cannot determine if the set has acomparable pair unless it asks about all the pairs.We use the above Lemma to show the desired result.Proposition 3 Let (S;<) be any partially ordered �nite set of size mn. We are given adecomposition of S into n sets P0; :::Pn�1 such that Pi is a chain of size m. Any algorithmwhich determines if there exists an anti-chain of size n must make at least mn(n � 1)=2comparisons.Proof: Let Pi[k] denote the kth element in P thi chain. The adversary will give the algorithmS and Pi's with the following characteristic:8i; j; k : Pi[k] < Pj [k + 1]Thus, the above problem reduces to m instances of the problem which checks if any of then elements is incomparable. The algorithm for the adversary can be stated as follows:var num[k]:integer initially 0;f number of questions asked about level kgOn being asked to compare Pi[k] and Pj[l]if (k < l) then return Pi[k] < Pj[l]if (l < k) then return Pj [l] < Pi[k]if (l = k) then beginnum[k]++;if (num[k] = n*(n-1)/2) then return Pi[k] < Pj[l]else return Pj[l]jjPi[k]endIf the algorithm does not completely solve one instance then the adversary chooses thatinstance to show a poset consistent with all its answers but di�erent in the �nal outcome.3. Total Order ProblemLet (S;<) be any decomposed partially ordered set. Our problem is to �nd if thereexists elements si and sj such that sijjsj. In other words, we have to �nd if the givendecomposed poset is a total order.3.1. An AlgorithmWe �rst provide a sequential algorithm for the above problem. It can be seen that ifthere is a total order then the above poset can be sorted. Thus any sorting algorithm will5

answer the query in O(mn logmn) time. However, we have not exploited the fact that allevents within a chain are comparable. To do so, we employ the following algorithm:L = fP0; P1; P2; :::; Pn�1gwhile jLj 6= 1 dobeginXi := removemin(L);Xj := removemin(L);Y :=merge(Xi;Xj);insert(L; Y)endL in the above algorithm is a set of all chains known so far. It may be a heap inan actual implementation. removemin removes the chain from L with the smallest size.merge inputs two chains and outputs a merged chain if all elements are comparable. Thecomplexity of merging two lists Xi and Xj is O(jXij + jXj j). Each chain is involved inat most O(log n) merges. In each merge it makes a contribution of m. Since there are nchains, the total number of comparisons is O(mn logn).The above algorithm assume that all elements of the poset are available as input. Anon-line computation can be done as follows. All the elements seen so far are kept in a sortedorder. On receiving any new element, its position in the sorted list can be determined inat most O(logmn) comparisons. Thus, O(mn logmn) comparisons would be required todetect the �rst anti-chain. This algorithm is similar to insertion sort used for sorting anarray of integers. Note that if n < m, then O(mn logmn) = O(mn(logm + logn)) =O(mn logm).3.2. An Adversary ArgumentThe lower bound for the problem is
(mn logn). We use our previous technique ofdividing the poset in m levels. Given two elements s and t at levels i and j with i < j, theadversary always returns s < t. Thus, the task of the algorithm is reduced to �nding ifeach level is a total order. For each level, we show that at least
(n logn) comparisons arerequired. We just need to show that for any poset of size n, at least
(n logn) comparisonsare required to determine whether it is a total order. To prove this we claim that thealgorithm must ask enough questions so that it can determine the precise order just toanswer if the set is totally ordered or not. In other words, the algorithm must ask enoughquestions to be able to \sort" the poset. If not, there is a pair of elements e and f for whichall the answers are consistent for both e < f and f < e. In this case, the adversary canalways produce a poset that is inconsistent with the answer given by the algorithm. As thenumber of comparisons required to sort is
(n logn), so is the complexity for determiningif any level is a total order.4. ConclusionsWe have described the notion of a decomposed poset and its relevance to distributedsystems. We have also discussed two important problems in connection with decomposedposets and provided optimal solutions to them.Acknowledgements 6

We would like to thank anonymous reviewers of this paper for their suggestions. Thisresearch was supported in part by a NSF Grant CCR-9110605, a Navy Grant N00039-91-C-0082, and a TRW faculty assistantship award.5. References[1] L. Lamport, \Time, clocks, and the ordering of events in a distributed system," Com-munications of the ACM 21(7):, July 1978, 95-114.[2] V.K. Garg, B. Waldecker, \Detection of Weak Unstable Predicates in Distributed Pro-grams," Electrical and Computer Engineering Department, University of Texas at Austin,1992, submitted for publication[3] D.B.Johnson, W. Zwaenepoel, \Recovery in Distributed Systems Using OptimisticMessage Logging and Checkpointing," Journal of Algorithms Vol. 11, No. 3, Sept 1990,462-491.[4] Friedemann Mattern, \Virtual Time and Global States of Distributed Systems," Par-allel and Distributed Algorithms, M. Cosnard et al.(eds.), Elsevier, North-Holland, (1989),215-226.[5] B. Waldecker, and V.K. Garg, \Detection of Strong Predicates in Distributed Pro-grams," Proc. IEEE Symposium on Parallel and Distributed Processing, December 1991,692-699.

7

