Some Optimal Algorithms for Decomposed Partially Ordered Sets

Viay K. Garg

Department of Electrical and Computer Engineering,
University of Texas, Austin, TX 78712-108/
email: vijay@pine.ece.utexas.edu

Abstract

We describe two problems and their optimal solutions for partially ordered sets. We
first describe an optimal algorithm for computing the largest anti-chain of a partially
ordered set given its decomposition into its chains. Our algorithm requires O(n?*m)
comparisons where n is the number of chains and m is the maximum number of el-
ements in any chain. We also give an adversary argument to prove that this is a
lower bound. Our second problem requires us to find if the given poset is a total or-
der. Our optimal algorithm requires O(mn logn) comparisons. These algorithms have

applications in distributed debugging and recovery in distributed systems.

Keywords: Partially-ordered sets, Distributed debugging
1. Introduction

Let (S, <) be any partially ordered finite set. We are given a decomposition of S into n
sets Py, ...P,_1 such that for any ¢, P; is a chain of size at most m. We call such a structure
a decomposed poset. These structures arise in distributed systems, because any execution
of a distributed program can be viewed as a decomposed poset with local states of the
processes as elements of the poset, and ordering between these states as that imposed by
happened-before relation defined by Lamport[1].

Our first problem is to find an element s; in each P; such that < Vi,7:7# 7 :5; £ s; >.
In other words, we have to find an anti-chain of size n if one exists. Clearly, this anti-chain
is the largest as there cannot be any anti-chain of size greater than n. Our second problem
is to find any two elements s; and s; such that (s; £ s;)A(s; £ s;). If no two such elements
exist, then the given poset is actually a totally ordered set.

These problems have many applications in distributed processing. In distributed de-
bugging[2,5], one may need to detect a global snapshot so that the local condition C; is
true in process ¢. Each process may then detect C; locally and send the states in which it
became true to a coordinator process. The task of the coordinator is to find one state in
each process ¢ in which C; is true and states are causally unrelated to each other. Intu-
itively speaking, these states can be considered to have occurred simultaneously. We call
such a set of states a consistent cut. For example, consider an implementation of the dining
philosophers problem. Let holding; denote the condition that philosopher; is holding a
fork. We may want to detect the condition < Vi : holding; > if it ever becomes true for any
consistent cut. Assume that each philosopher; sends the state in which holding; became

true to a coordinator process. The task of the coordinator is to find causally unrelated
sets of states in which holding; is true. If it succeeds then we can claim that for some
execution speeds of the philosophers the algorithm may lead to a deadlock.

As another example, consider the problem of recovery in a distributed system[3]. While
a distributed computation proceeds, it is desirable to keep a global consistent cut so that
in case of any fault the computation may start from the consistent cut instead of the be-
ginning. Assuming that local checkpointing and messages-logging is done asynchronously,
each process outputs states from which it can restart its local computation. The task again
is to find a consistent cut.

The second problem may be useful in debugging a mutual-exclusion algorithm. Each
process may record its state when it accessed the critical region. If there is any pair of
concurrent states in which critical region is accessed, i.e., (s; £ s;)A(s; £ s;), then mutual
exclusion can be violated with appropriate processor speeds.

In this paper, we describe an algorithm that requires O(n?m) comparisons for finding

the largest anti-chain and an algorithm that requires O(mnlogn) comparisons to find any
anti-chain of size two.

2. Consistent Cut Problem

We use s||[t to denote that s and ¢ are concurrent, ie., (s; £ s;) A (s; /s;). The
consistent cut problem is: Given (5, <) and its decomposition (P, Py, ..., P,—1), does there
exists {s; € P;} such that (Vi,j : ¢ # j : s|[s;) 7 We first present an off-line algorithm
which assumes that the entire poset is available at the beginning. Later, we adapt this
algorithm for on-line detection of consistent cut in a distributed environment.

2.1 Algorithm

We will assume that any two elements of the set can be compared in O(1) time. This is
true in distributed processing if states are time-stamped with vector clocks[4]. Our algo-
rithm uses one queue ¢; per chain to store elements of p;. We assume that elements within
a queue are sorted in increasing order. In the following discussion, we use the following
operations on queues:

insert(q,elem); insert elem in the queue q
deletehead(q); remove the head of the queue
empty(q); true if q is empty
head(q); first element if = empty(q), returns maz (the biggest element) otherwise
The algorithm is given below:
function antichain(qo, ..., ¢,—1:queues):boolean;
(* returns true if there is an anti-chain of size n, false otherwise. If true, the anti-chain
is given by the head of all the queues *)
const all = {0,1,...n-1};
var low,newlow: subsets of all;
1,J: 0.n-1;
begin
low := all;

while low # ¢ do
begin
newlow := {};
for i in low do
for j in all do
if head(q;) < head(q;) then newlow:=newlow U {i};
if head(q;) < head(q;) then newlow:=newlow U {j};
low := newlow;
for i in low do
deletehead(g;)
end
return(Ve : -~ empty(¢;))
end

The algorithm works as follows. It compares only the heads of queues. Moreover, it
compares only those heads of the queues which have not been compared earlier. For this
purpose, it uses the variable low which is the set of indices for which the head of the queues
have been updated. The invariant maintained by the while is
(1) (Vi,j & low : mempty(q;) N ~empty(q;) = head(g;)||head(q;))

I is true initially because low contains the entire set. The while loop maintains the
invariant by finding all those elements which are lower than some other elements and
including them in low. This means that there can not be two comparable elements in
all — low. The loop terminates when low is empty. At that point, if all queues are non-
empty, then by the invariant I, we can deduce that all the heads are concurrent. The
procedure clearly terminates because the number of elements in the queues decreases on
every execution of the while loop unless low is ¢ in which case the procedure terminates.

The above procedure can be made to terminate earlier when any of the queue becomes
empty. For that purpose, it is enough to introduce a variable noempty which is made false
whenever the last element in any queue is deleted. This flag is also a part of the while
condition. We have not done so for clarity of the discussion.

We now discuss the complexity of above algorithm. Our complexity analysis will be
done based on the number of comparisons used by the algorithm. The following theorem
shows that the number of comparisons are quadratic in n and linear in m.

Proposition 1 The above algorithm requires at most O(n*m) comparisons.

Proof: Let comp(k) denote the number of comparisons required in the k% iteration of the
while loop. Let t denote the total number of iterations of the while loop. Then, total
number of comparisons = Y-¥=! comp(k). Let low(k) represent the value of low at the k"
iteration. It is all in the first iteration. We note that |low(k)| for k > 2 represents the
number of elements deleted in the k—1 iteration of the while loop. Therefore, 3=} _, |low(k)|
= total elements deleted < total elements in system < mn.

From the structure of the for-loops we get that comp(k) = O(n * |low(k)|). Therefore,
the total number of comparisons required are
Yzt comp(k) = nx Yy [low(k)]
=nxn+n*xyi_,llow(k)

<nx*n+n*mn=0(n*m)
||

The above algorithm assumes that the entire queues were available as the input at
the beginning. For many applications, the queues may be available only one element at a
time. The problem of on-line computation of consistent-cut is to detect the consistent cut
as soon as all elements forming the cut are available. This cut corresponds to the infimum
element of the lattice of all consistent cuts in S[4]. The following algorithm assumes that
a centralized process receives all the elements in the set S one at a time. This algorithm
i1s a minor variant of the previous algorithm. The main difference is that an empty queue
signifies that no consistent cut has been found so far. The centralized process may receive
more elements in future and succeed in finding one. It computes only on receiving a mes-
sage from some process. It maintains the assertion that heads of all non-empty queues are
incomparable. The computation is shown below:

Upon recv(elem) from P; do
begin
if - empty(¢;) then insert(g;, elem)
else begin
insert(g;, elem)

low :={i}
while low # ¢ do
begin

newlow := {};

for k in low do
for j in all do
if head(qr) < head(q;) then newlow:=newlow U {k};
if head(q;) < head(qy) then newlow:=newlow U {j};
low := newlow;
for k in low do
deletehead(gy)
end;(* while *)
if Vi : —mempty(qi) then found:=true
end

2.2 Adversary Arguments

In this section we show that the complexity of the above problem is at least Q(n*m),
thus showing that our algorithm is optimal. We first show an intermediate lemma which
handles the case when the size of each queue is exactly one, i.e. m = 1.

Lemma 2 Let there be n elements in a set S. Any algorithm which determines if all
elements are incomparable must make at least n(n —1)/2 comparisons.

Proof: The adversary will give to the algorithm a set in which either zero or exactly one
pair of elements are incomparable. The adversary also chooses to answer “incomparable”
to first n(n — 1)/2 — 1 questions. Thus, the algorithm cannot determine if the set has a
comparable pair unless it asks about all the pairs.

We use the above Lemma to show the desired result.

Proposition 3 Let (S, <) be any partially ordered finite set of size mn. We are given a
decomposition of S into n sets Py, ...P,_1 such that P; is a chain of size m. Any algorithm
which determines if there ezists an anti-chain of size n must make at least mn(n — 1)/2
COMParisons.

Proof: Let P;[k] denote the k' element in P{" chain. The adversary will give the algorithm
S and P;’s with the following characteristic:
\V/i,j,k : PZ[]C] < P][k + 1]
Thus, the above problem reduces to m instances of the problem which checks if any of the
n elements is incomparable. The algorithm for the adversary can be stated as follows:
var num|k]:integer initially 0;
{ number of questions asked about level k}
On being asked to compare P;[k] and P;[/]
if (k < 1) then return P,[k] < P;[]]
if (I < k) then return P;[l] < P;[k]
if (I = k) then begin

num [k]++;

if (num[k] = n*(n-1)/2) then return P;[k] < P;[I]

else return P;[I]||P;[k]
end

If the algorithm does not completely solve one instance then the adversary chooses that
instance to show a poset consistent with all its answers but different in the final outcome.

3. Total Order Problem

Let (S, <) be any decomposed partially ordered set. Our problem is to find if there
exists elements s; and s; such that s;||s;. In other words, we have to find if the given
decomposed poset is a total order.

3.1. An Algorithm

We first provide a sequential algorithm for the above problem. It can be seen that if
there is a total order then the above poset can be sorted. Thus any sorting algorithm will

answer the query in O(mnlogmn) time. However, we have not exploited the fact that all
events within a chain are comparable. To do so, we employ the following algorithm:
L=A{Py,P,Ps,...., P}
while |L| #1 do
begin
X, := removenun(L);
X, := removemin(L);
Y :=merge(X;, X;);
insert(L,Y")
end

L in the above algorithm is a set of all chains known so far. It may be a heap in
an actual implementation. removemin removes the chain from L with the smallest size.
merge inputs two chains and outputs a merged chain if all elements are comparable. The
complexity of merging two lists X; and X; is O(|X;| + |X;|). Each chain is involved in
at most O(logn) merges. In each merge it makes a contribution of m. Since there are n
chains, the total number of comparisons is O(mnlogn).

The above algorithm assume that all elements of the poset are available as input. An
on-line computation can be done as follows. All the elements seen so far are kept in a sorted
order. On receiving any new element, its position in the sorted list can be determined in
at most O(logmn) comparisons. Thus, O(mnlogmn) comparisons would be required to
detect the first anti-chain. This algorithm is similar to insertion sort used for sorting an
array of integers. Note that if n < m, then O(mnlogmn) = O(mn(logm + logn)) =
O(mnlogm).

3.2. An Adversary Argument

The lower bound for the problem is Q(mnlogn). We use our previous technique of
dividing the poset in m levels. Given two elements s and ¢ at levels ¢ and j with ¢ < j, the
adversary always returns s < t. Thus, the task of the algorithm is reduced to finding if
each level is a total order. For each level, we show that at least (nlogn) comparisons are
required. We just need to show that for any poset of size n, at least Q(nlogn) comparisons
are required to determine whether it is a total order. To prove this we claim that the
algorithm must ask enough questions so that it can determine the precise order just to
answer if the set is totally ordered or not. In other words, the algorithm must ask enough
questions to be able to “sort” the poset. If not, there is a pair of elements ¢ and f for which
all the answers are consistent for both e < f and f < e. In this case, the adversary can
always produce a poset that is inconsistent with the answer given by the algorithm. As the
number of comparisons required to sort is £(nlogn), so is the complexity for determining
if any level is a total order.

4. Conclusions

We have described the notion of a decomposed poset and its relevance to distributed
systems. We have also discussed two important problems in connection with decomposed
posets and provided optimal solutions to them.

Acknowledgements

We would like to thank anonymous reviewers of this paper for their suggestions. This
research was supported in part by a NSF Grant CCR-9110605, a Navy Grant N00039-91-
C-0082, and a TRW faculty assistantship award.

5. References

[1] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” Com-
munications of the ACM 21(7):, July 1978, 95-114.

[2] V.K. Garg, B. Waldecker, “Detection of Weak Unstable Predicates in Distributed Pro-
grams,” Electrical and Computer Engineering Department, University of Texas at Austin,
1992, submitted for publication

[3] D.B.Johnson, W. Zwaenepoel, “Recovery in Distributed Systems Using Optimistic
Message Logging and Checkpointing,” Journal of Algorithms Vol. 11, No. 3, Sept 1990,
462-491.

[4] Friedemann Mattern, “Virtual Time and Global States of Distributed Systems,” Par-
allel and Distributed Algorithms, M. Cosnard et al.(eds.), Elsevier, North-Holland, (1989),
215-226.

[5] B. Waldecker, and V.K. Garg, “Detection of Strong Predicates in Distributed Pro-
grams,” Proc. IEEE Sympositum on Parallel and Distributed Processing, December 1991,
692-699.

