
Detecting Conjunctions of Global PredicatesVijay K. Garg� J. Roger MitchellyElectrical and Computer Engineering DepartmentThe University of Texas at Austin,Austin, TX 78712http://maple.ece.utexas.eduAbstractWe present an e�cient algorithm to detect if the conjunction of two nonlocal predicates ispossibly true in a distributed computation. For o�ine detection of such global predicates,our algorithm is signi�cantly more e�cient than the previous algorithms by Cooper andMarzullo, and by Stoller and Schneider.Keywords: Distributed systems, Predicate detection1 IntroductionThe detection of global conditions is a fundamental problem in an asynchronous distributedsystem. In an asynchronous distributed system a process cannot know the state of otherprocesses at any given time due to communication delays. This creates di�culty in detectingconditions, or predicates, spread across the system. Deadlock and termination are two suchglobal predicates. Detection of these predicates is useful for distributed debugging, monitoringdistributed systems for faults, and other areas of distributed computing.There are two interpretations of truthness of a global predicate in a distributed computation.A global predicate denoted by � is possibly true [2], (or true in the weak sense [3]) if there existsa consistent global state in the computation in which the global predicate is true. A globalpredicate is de�nitely true [2], (or true in the strong sense [3]) if all sequential observations ofthe computation go through a consistent global state in which the global predicate is true. Inthis paper, we will restrict ourselves to the �rst interpretation.Cooper and Marzullo [2] discuss methods of detecting any global predicate. However theirmethod involves searching the entire lattice of possible global states, a search which is O(mn),where m is the number of states in a process, and n is the number of processes. By restrictingthe class of predicates detected, algorithms have been proposed which are of polynomial time.For example, the class of conjunctive predicates can be detected in O(n2m) time using thealgorithms proposed by Garg and Waldecker [3].Stoller and Schneider [5] combine the approach of Garg and Waldecker with that of Cooperand Marzullo. Their algorithm, like the algorithm of Cooper and Marzullo, can detect any�supported in part by the NSF Grants ECS-9414780, CCR-9520540, a TRW faculty assistantship award, aGeneral Motors Fellowship, and an IBM grantysupported in part by a Virginia & Ernest Cockrell fellowship1

general global predicate �; and like the algorithm of Garg and Waldecker, can exploit thestructure of the predicate � to reduce the computational complexity of detection. They assumethat the global predicate is a conjunction of predicates of the form�(x1; ::xj); (1)where �() is a predicate with variables, xi, from di�erent processes. An example of a predicatein this form is (x1 = x2) ^ (x3 > x4) ^ (x5 < 10); (2)where x0is are variables on di�erent processes. When the global predicate has only one conjunct,their approach reduces to that of Cooper and Marzullo; and when each of the conjuncts is localto a single process, their approach reduces to that of Garg and Waldecker. They introduce thenotion of a �xed set of a global predicate. A �xed set of a global predicate is a set of variablessuch that by �xing these variables in the predicate, the predicate reduces to a conjunction oflocal predicates. The sets fx1; x3g and fx2; x3g are some examples of �xed sets for the globalpredicate in equation 2. The algorithm proposed by Stoller and Schneider is exponential in thesize of the �xed set.In this paper we present a signi�cantly faster algorithm for a restricted class of predicates.Speci�cally, Stoller and Schneider's algorithm requires O(mj+k�1) time for a predicate of theform �1(x1; :::; xj) ^ �2(y1; :::; yk) (3)where m is the number of states at one process. In equation (3) we assume that all xi's and yi'sare on di�erent processes. We present an o�ine algorithm which requires O(ml) time, wherel = max(j; k).We note here that the algorithm of Stoller and Scneider can be used either o�-line or on-line with the same time complexity. However, the algorithm proposed in this paper can be runon-line only by increasing its time complexity. A trivial way in which the proposed algorithmcan be used on-line is by running it from scratch every time a new local state is received. Thisincreases the time complexity by a factor of m.We use many novel ideas in the algorithm and therefore make the following contributions:� We formalize a property of predicates called monotonicity [6] which is crucial for e�cientevaluation of global predicates in real-life applications. This property allows detectionalgorithms to consider at most as many states as the number of messages sent and receivedby the process as opposed to the total number of states from a process.� We introduce a technique which transforms the problem of predicate detection into acomputational geometric problem.� We give an e�cient algorithm for the computational geometric problem. Our algorithmfor this problem may also be of independent interest.This paper is organized as follows. Section 2 presents our model of distributed computationand the notation that is used in the paper. Section 3 describes our algorithm and its correctness.Section 4 presents some extensions and optimizations of the basic algorithm.2

2 ModelWe assume a loosely-coupled message-passing system without shared memory or a global clock.A distributed program consists of a set of n processes denoted by fP1,P2,...,Png communicatingsolely via asynchronous messages. In this paper, we will be concerned with a single run r of adistributed program. Each process Pi in that run generates a single execution trace r[i] whichis a �nite sequence of states. The state of a process is de�ned by the values of all its variablesincluding its program counter. The state transition occurs in any process due to an internalaction, the send of a message, or the receive of a message.We de�ne the usual causally precedes relation (!) on states as follows. A state s 2 r[i]causally precedes (!) a state t 2 r[j] if and only if one of the following conditions holds.1. i = j and s occurs before t in r[i]. We say that s � t (s locally precedes t) when this istrue.2. The action following s is the send of a message and the action preceding t is the receiveof that message.3. There is a state u such that s! u and u! t.We use skt to denote that states s and t are concurrent. That is, skt � s 6! t ^ t 6! s.We use g and h to represent global states. A global state g is a set of states [ig[i] for whichg[i] 2 r[i] and 8i; j : i 6= j : g[i]kg[j]. The global state g is also called a consistent cut. Wealso use the notion of sub-cuts { a sub-cut is a cut across a subset of processes in the system.We use g(�) to represent a consistent sub-cut across a minimal set of processes in which thepredicate � is true. This notation uniquely speci�es the local states used to satisfy �. Thenotation g(�1)kg(�2) means that every pair of states in the two sub-cuts satisfying �1 and �2are concurrent; we say, then, that g(�1) and g(�2) are concurrent. A set of cuts is written asG.2.1 State IntervalA state interval is a sequence of states between two external events where an external event isthe sending or receiving of a message, the beginning of the process or the termination of theprocess. Formally, the kth interval in Pi (denoted by (i; k)) is the subsequence of r[i] betweenthe (k � 1)th and kth external events. For a given interval (i; k), if k is out of range then (i; k)refers to ? which represents a sentinel value (or a \null" interval). The notion of intervals isuseful because the relation of two states belonging to the same interval is a congruence withrespect to !. That is, the relation of two states being in the same interval is an equivalencerelation and for any two states s; s0 in the same interval and any state u from a di�erent interval:(s ! u , s0 ! u) and (u ! s , u ! s0). We exploit this congruence in our algorithms byassigning a single timestamp to all states belonging to the same interval.2.2 Predecessor and Successor functionsThe predecessor and successor functions are de�ned as follows for any state u and 1 � i � n:pred:u:i = maxfv 2 r[i] j v ! ugsucc:u:i = minfv 2 r[i] j u! vg3

Consider a state s 2 r[i]. The predecessor of s in r[j], denoted pred:s:j, is the latest state in r[j]which causally precedes s. Due to the congruence for states belonging to the same interval, thepred and succ functions and the jj relation are well de�ned on intervals. The following lemmaestablishes some useful properties of pred and succ.Lemma 1 Let u and v be states in r[i] and r[j] respectively.1. (i; w) = pred:(j; x):i , (8y : y > w : (i; y) 6! (j; x))^ (i; w)! (j; x)2. (i; w) = succ:(j; x):i , (8y : y < w : (j; x) 6! (i; y))^ (j; x)! (i; w)3. v � pred:u:j , succ:v:i � u.4. succ:(pred:u:j):i� u � pred:(succ:u:j):iIn addition to pred and succ, we also use prev and next. For any state u in r[i], prev:ureturns the state preceding u in r[i] if there exists one, else it returns ?. The de�nition ofnext:u is similar.3 The algorithmFor simplicity, we �rst give an algorithm for predicates of the form�1(x1; x2) ^ �2(y1; y2):This algorithm is of complexity O(m2). This is faster than the previously known algorithm byStoller and Schneider [5] which requires O(m3) time. Later we briey explain how to extendthe algorithm to a more general case.There are three steps in the algorithm { computing the sub-cuts that satisfy �1 and �2,transformation of the problem to a computational geometric problem, and �nally, solution ofthe transformed problem. We discuss each of these steps next.3.1 Computing the sub-cutsIn the �rst step, we compute the set of consistent sub-cuts in processes P1 and P2 that satisfy�1(x1; x2). For example, if �1(x1; x2) = (x1 < x2), then we �nd pairs of states s 2 P1 andt 2 P2 such that s and t are concurrent and the value of x1 in s is less than or equal to x2 in t.If there are at most m distinct states in each of P1 and P2, and evaluation of the predicate �1requires O(1) time, then this step can be done in O(m2) time. This step can be viewed as anapplication of Cooper and Marzullo's algorithm for detection of �1.It is important to observe that in most applications, m as de�ned earlier is too large forthis step to be practical. However, we now show that for most predicates �1, m can be takenas the total number of state intervals. The total number of state intervals is much smaller thanthe total number of states.The property of any global predicate � that allows this reduction is considered next.De�nition 2 Assume that x1 takes its value from a set totally ordered with respect to a relation<. We say that � is monotone with respect to x1 if it satis�es the following equation:8a; x2 : �(a; x2)) (8b : b < a : �(b; x2))or, 8a; x2 : �(a; x2)) (8b : a < b : �(b; x2)):4

Informally, a predicate is monotone with respect to a variable x1 if replacing the variableby a larger value (or by a smaller value) while keeping all other variables the same does notviolate the truthness of the predicate. For example, consider the predicate � = x1 < x2 wherex1 and x2 are integers. Then � is monotone with respect to x1, because if �(x1; x2) holds fora certain value of x1, then it would continue to do so for any smaller value of x1. � is alsomonotone with respect to x2 because if �(x1; x2) holds for a certain value of x2, then it wouldcontinue to do so for any larger value of x2. An example of a predicate that is not monotonewith respect to x1 or x2 is (x1 = x2).Monotonicity of a predicate allows us to restrict our attention to state intervals rather thanstates. For example, for the predicate (x1 < x2), it is su�cient to keep the state with thesmallest value of x1 for each state interval. This reduction also exploits the fact that if twolocal states, s and s0, on the same process are separated only by internal events, then they areindistinguishable to other processes as far as consistency is concerned.We denote by G(�1) and G(�2) the set of all consistent sub-cuts which satisfy �1 and�2. In the worst case, G(�1) and G(�2) are of size O(m2). However, as mentioned above,for monotonic predicates the value of m is at most the number of messages sent or receivedby any process. From now on we will use state and state interval interchangeably with theunderstanding that for monotonic predicates, at most one state will be used from each stateinterval.3.2 Transformation of the Predicate Detection ProblemWe now describe the transformation of the predicate detection problem. Each element in G(�1)can be viewed as a point in a 2-dimensional space. For example, if the third interval on processP1 (denoted by (1; 3)) and the �fth interval on P2 (denoted by (2; 5)) together satisfy �1, thenwe view this consistent cut as a point (3; 5) in the plane generated by intervals in processesP1 and P2. For our example of the predicate (x1 < x2) the point (3; 5) signi�es that the stateinterval (1; 3) is concurrent to the state interval (2; 5) and the minimum value of x1 in theinterval (1; 3) is less than the maximum value of x2 in the interval (2; 5).Next, we consider the set of sub-cuts G(�2) on P3 and P4. For each sub-cut f(3; u); (4; v)gin G(�2), we construct a rectangle in the plane de�ned by the intervals of P1 and P2. Each rect-angle represents the set of all sub-cuts on P1 and P2 which are concurrent with f(3; u); (4; v)g.This is done by �nding intervals sl and sh on P1 and tl and th on P2 as follows.sl = next(max(pred:u:1; pred:v:1))sh = prev(min(succ:u:1; succ:v:1))tl = next(max(pred:u:2; pred:v:2))th = prev(min(succ:u:2; succ:v:2))The points (sl; tl) and (sh; th) de�ne a rectangle on the plane such that any point withinrepresents a sub-cut on P1 and P2 which is concurrent to f(3; u); (4; v)g. The following lemmahelps demonstrate this.Lemma 3 Any state s such that sl � s � sh is concurrent with u and v. Conversely, any states in P1 that is concurrent with both u and v satis�es sl � s � sh.Proof: From the de�nition of sl, it follows that pred:u:1 � sl. Since sl � s we get thatpred:u:1 � s. From Lemma 1, it follows that s 6! u. Similarly, s � sh and sh � succ:u:1,implies that u 6! s. Therefore, sku. By repeating the argument for v, we get skv.5

Conversely, let s be concurrent with u and v. Since s 6! u and s 6! v, it follows thatmax(pred:u:1; pred:v:1)� s. Thus, sl � s. The argument for the upper bound is similar. 2Let R(�2) be the set of rectangles constructed from G(�2). The following result shows thatthe problem of checking whether any sub-cut in G(�1) is concurrent with any sub-cut in G(�2)is equivalent to checking whether any point corresponding to a sub-cut in G(�1) lies in any ofthe rectangles in R(�2).Theorem 4 For any global predicate �1(x1; x2) ^ �2(y1; y2),9(s; t) 2 G(�1); (u; v) 2 G(�2) : (s; t)k(u; v) i� 9(s; t) 2 G(�1) which lies in one of the rectan-gles in R(�2).Proof: Using Lemma 3. 2We now turn our attention to the complexity of this transformation. Since there are O(m2)sub-cuts in G(�2), the operation of de�ning these rectangle needs to be done in O(1) time perrectangle. We achieve this bound by use of vector clocks for predecessors as well as successors.The traditional vector clock implements the predecessor function. The notion of successorvector clocks was previously used without giving a detailed implementation in [1]. Basten usedthese for �nding a global state prior to a sub-cut, but not for predicate detection. We now showa construction for successor vector clocks.We describe an o�-line version of a successor vector clock denoted by sv. Let the intervalof the �nal state on process Pi be (i; fi). Then, the �nal state of any process Pi is timestampedwith a vector sv de�ned as sv[i] = fi and sv[j] = 1 for all j 6= i. The rules to construct thesv vector of other state intervals are as follows. The intervals are timestamped with sv in abackward manner. Assume that the state s on Pi immediately precedes t which has alreadybeen timestamped. If the transition from s to t was a receive, then the following action is taken.s:sv[j] = (t:sv[j] if j 6= it:sv[j]� 1 otherwiseIf the transition was a send of a message which was received at state u, then the followingaction is taken s:sv[j] = (min(t:sv[j]; u:sv[j]) if j 6= it:sv[j]� 1 otherwiseThe above rules are the simple dual of predecessor vector clocks.Given predecessor and successor clocks, it is easy to construct a rectangle for each sub-cutin G(�2). Observe that end points of rectangles are constructed using functions pred, max,next, succ, min and prev each of which can be computed in constant time.3.3 Solution of the transformed problemFrom Theorem 4, checking whether a sub-cut in G(�1) is consistent with a sub-cut in G(�2)is equivalent to checking whether there exists a rectangle in R(�2) which includes a pointcorresponding to a sub-cut in G(�1). Since there are O(m2) points and O(m2) rectangles, asimple brute force algorithm of checking each point for each rectangle will lead to an ine�cientO(m4) algorithm. We now describe an O(m2) algorithm for this problem. The algorithm shownin Figure 1 detects whether any of up to m2 points on an m�m plane lie within any of up tom2 rectangles. For the case when the number of points and the number of rectangles is muchless than m2, a more e�cient algorithm can be used. This will be given in a following section.6

boolean is pt in rectangle() fistrue[m;m]: 0..1; /* istrue[s; t] = 1 i� (s; t) 2 G(�1) */R: list of record /* rectangles speci�ed by two corners. */fint sl; tl; sh; thg;int A[m+ 1; m+ 1]; /* number of points that lie between (0,0) and (s,t) */for i = 0 to m doA[0,i]=0; A[i,0]=0;/* Array assignment: coding A with the points */for i = 1 to m dofor j = 1 to m doA[i; j] = A[i� 1; j] + A[i; j � 1] - A[i� 1; j � 1] + istrue[i; j];/* Rectangle/point overlap check */for (sl; tl; sh; th) 2 R do/* exclusion inclusion principle */if A[sh; th]� A[sl � 1; th]�A[sh; tl � 1] + A[sl � 1; tl � 1] > 0 thenreturn true;return false;g Figure 1: Detecting if any point in an m�m plane is contained in any rectangle.The algorithm is pt in rectangle operates as follows. The arrays istrue and R store thecoordinate values of the points and rectangles created in steps 2 and 3. The values stored by Rspecify two opposite corners as (sl; tl) and (sh; th). These arrays are assigned before calling thealgorithm, an operation of complexity O(m2). The algorithm uses another arrayA of size m�m.The entry A[s; t] is used to store the total number of points that are in the rectangle de�nedby (0; 0) and (s; t). The �rst column and row in A is �rst initialized to zeroes. The \arrayassignment" loop then assigns the correct value to other entries of A. The \Rectangle/pointoverlap check" checks for overlaps as follows. For all rectangles, the values in A at the fourcorners of the rectangle are used to determine if a point is contained within. Using set-theoreticinclusion exclusion principle it follows that the number of points in the rectangle (sl; tl; sh; th)is given by A[sh; th]� A[sl � 1; th]�A[sh; tl � 1] + A[sl � 1; tl � 1]The algorithm can check m2 points against m2 rectangles with time complexity O(m2+m2) orO(m2). The algorithm uses O(m2) space; however, we later show how the space overhead canalso be reduced to O(m). The correctness of the is pt in rectangle algorithm is proven next.First we show that A[s; t] equals the number of points which are contained in the rectanglede�ned by (0; 0) and (s; t).Lemma 5 After the array assignment of A,A[s; t] = jB(s; t)j where B(s; t) = f(i; j)jistrue(i; j)^ 0 � i � s ^ 0 � j � tgProof: We use induction on (s; t). If either of them is 0, then by initial assignment A[s; t] is0. Since B(s; t) is empty for this case, the assertion holds. Now consider the case when both s7

and t are strictly greater than 0. The program calculates A[s; t] using:A[s; t] = A[s� 1; t] +A[s; t� 1]�A[s� 1; t� 1] + istrue[s; t]But using induction hypothesis, and the fact that the points in B(s � 1; t� 1) are common inB(s � 1; t) and B(s; t� 1) we get that A[s; t] equals cardinality of B(s; t). 2Theorem 6 The function is pt in rectangle returns true i� there exists a point and a rectanglesuch that the point is contained in the rectangle.Proof: Using Lemma 5, A[s; t] contains the number of points in the rectangle (0; 0; s; t). Itfollows that A[sh; th] � A[sl � 1; th] � A[sh; tl � 1] + A[sl � 1; tl � 1] is equal to the number ofpoints in the rectangle (sl; tl; sh; th). 2Finally, we consider the complexity of this algorithm. It is easy to verify that each step inis pt in rectangle takes at most O(m2) time.4 Discussion: Optimization and Extensions4.1 Reducing the Space ComplexityOne drawback of the above algorithm is that it requires O(m2) space. This may be unacceptablewhen m is large. We now show that the space requirements of the algorithm in addition to theinput (points and rectangles) can be reduced to O(m+ r) where r is the number of rectangles.First, we assume that the set of points are provided as a list of coordinates rather than a m�mboolean array. This is similar to the way the rectangles are provided in the algorithm of Fig.1. Next, we observe that the algorithm uses four values from the array A for each rectangle(sl; tl; sh; th): A[sh; th]; A[sl � 1; th]; A[sh; tl � 1]; A[sl � 1; tl � 1]:We will store these values with each rectangle. The only problem is how to determine thesevalues. We cannot use the entire array A since that itself is O(m2). The next importantobservation is that calculation of the ith row of A does not need any entry from any row lowerthan i � 1. A similar observation applies to columns. As a result, keeping the previous row ofA is su�cient to calculate the next row of A With above observations, it is easy to verify thatthe algorithm takes additional O(m+ r) space.4.2 Finding k points in l rectangles, when maxfk; lg � mSince there are m state intervals in a process, in the worst case there can be O(m2) consistentsub-cuts for processes P1 and P2. This implies that if almost all sub-cuts satis�ed �1, then thesize of G(�1) is also O(m2). Similar reasoning can be applied for the number of rectangles inR(�2). However, in some cases it can be expected that the number of points in G(�1) as wellas the number of rectangles in R(�2) is much smaller. In these cases, we show that the abovealgorithm can be modi�ed to reduce its computational time. We �rst encode each rectangleusing its bottom left corner and the upper right corner. With this convention, we have k + 2lpoints in all { k for the points themselves and 2l for the l rectangles. These k + 2l pointscan be sorted for each of the two dimensions, an operation which is not more than O(m logm)where m =maxfk; lg. The coordinates of each point are now the rank of each dimension. A(k+2l)� (k+2l) space is created in which to place all points. The is pt in rectangle algorithm8

is now used to detect any of the k points within any of the l rectangles. This approach requiresO((k+ 2l)2) operations.As an example, suppose that there are two points (3,15) and (6,12) and a rectangle speci�edby opposite corners (5,7) and (10,21). The coordinates can be ordered for the two dimensionsas follows: 3,5,6,10 and 7,12,15,21. Mapping these sequences to the sequence 1,2,3,4 results in amapping of the points to (1,3) and (3,2) and the rectangle corners to (2,1) and (4,4). Runningthe algorithm on this reduced space will give the same result as the original: a point is containedin the rectangle.There are other approaches to �nding k points in l rectangles. For example, Preparatos andShamos [4] present an algorithm for �nding k points in a rectangle. Applying their algorithml times is slightly more e�cient when k and l � m2. Their algorithm would use only a k2space for the k points created in O(k2) time. The check for each rectangle is O(log k) becausea binary search is performed on each of the four corners to determine where in the k2 space itlies. With l rectangles their search is O(k2 + l log k).4.3 The algorithm for j + k variablesWe next demonstrate how to detect a predicate of the form�1(x1; :::; xj) ^ �2(y1; :::; yk)where x1; :::; xj are on P1; :::; Pj and y1; :::; yk are on Pj+1; :::; Pj+k. The algorithm works asfollows:1. All g(�1) and g(�2) are found, and placed in the sets G(�1) and G(�2). These operationsare O(mj) and O(mk) respectively.2. The sub-cuts g(�1) 2 G(�1) found in step 1 are now used to create points for a j-dimensional space. Each sub-cut speci�es one point. As for the case of 2 variables, wealso determine a j-dimensional box for each of the sub-cut in G(�2). By using predecessorand successor clocks, the box corresponding to a sub-cut in G(�2) can be determined inO(jk) operations. Since there are O(mk) sub-cuts, �nding all the boxes requires O(jkmk)operations.3. Following the procedure of the is pt in rectangle algorithm, all points and boxes found insteps 2 and 3 are checked for overlap. There areO(mk) boxes, each of which is of dimensionj. To check containment in each box is an O(2j) operation because of the 2j corners of abox in a j-dimensional space. Therefore, this step requires O(2jmk) operations.Therefore, for the general case, the complexity is O(mj +mk + jkmk + 2jmk) = O(mj + (jk+2j)mk).AcknowledgmentsWe are thankful to Scott Stoller and referees of the paper for their comments.References[1] T. Basten, \Breakpoints and Time in Distributed Computations," LNCS 857, pp340-354,1993. 9

[2] R. Cooper and K. Marzullo. Consistent detection of global predicates. In Proc. of theWorkshop on Parallel and Distributed Debugging, pages 163{173, Santa Cruz, CA, May1991. ACM/ONR.[3] V. K. Garg and B. Waldecker. Detection of unstable predicates in distributed programs. InProc. of 12th Conference on the Foundations of Software Technology & Theoretical Com-puter Science, pages 253{264. Springer Verlag, December 1992. Lecture Notes in ComputerScience 652.[4] F. Preparata and M. Shamos, Computational Geometry: An Introduction, Springer-Verlag,1985.[5] S. D. Stoller and F. B. Schneider. Faster possibility detection by combining two ap-proaches. In Proc. of the 9th International Workshop on Distributed Algorithms, pages318{332, France, September 1995. Springer-Verlag.[6] A. I. Tomlinson and V. K. Garg. Detecting relational global predicates in distributedsystems. In Proc. of the Workshop on Parallel and Distributed Debugging, pages 21{31, SanDiego, CA, May 1993. ACM/ONR.

10

