Detecting Conjunctions of Global Predicates

Vijay K. Garg* J. Roger Mitchell

Electrical and Computer Engineering Department
The University of Texas at Austin,

Austin, TX 78712
http://maple.ece.utexas.edu

Abstract

We present an efficient algorithm to detect if the conjunction of two nonlocal predicates is
possibly true in a distributed computation. For offline detection of such global predicates,
our algorithm is significantly more efficient than the previous algorithms by Cooper and
Marzullo, and by Stoller and Schneider.

Keywords: Distributed systems, Predicate detection

1 Introduction

The detection of global conditions is a fundamental problem in an asynchronous distributed
system. In an asynchronous distributed system a process cannot know the state of other
processes at any given time due to communication delays. This creates difficulty in detecting
conditions, or predicates, spread across the system. Deadlock and termination are two such
global predicates. Detection of these predicates is useful for distributed debugging, monitoring
distributed systems for faults, and other areas of distributed computing.

There are two interpretations of truthness of a global predicate in a distributed computation.
A global predicate denoted by @ is possibly true [2], (or true in the weak sense [3]) if there exists
a consistent global state in the computation in which the global predicate is true. A global
predicate is definitely true [2], (or true in the strong sense [3]) if all sequential observations of
the computation go through a consistent global state in which the global predicate is true. In
this paper, we will restrict ourselves to the first interpretation.

Cooper and Marzullo [2] discuss methods of detecting any global predicate. However their
method involves searching the entire lattice of possible global states, a search which is O(m™),
where m is the number of states in a process, and n is the number of processes. By restricting
the class of predicates detected, algorithms have been proposed which are of polynomial time.
For example, the class of conjunctive predicates can be detected in O(n?m) time using the
algorithms proposed by Garg and Waldecker [3].

Stoller and Schneider [5] combine the approach of Garg and Waldecker with that of Cooper
and Marzullo. Their algorithm, like the algorithm of Cooper and Marzullo, can detect any

*supported in part by the NSF Grants ECS-9414780, CCR-9520540, a TRW faculty assistantship award, a
General Motors Fellowship, and an IBM grant
fsupported in part by a Virginia & Ernest Cockrell fellowship

general global predicate ®; and like the algorithm of Garg and Waldecker, can exploit the
structure of the predicate ® to reduce the computational complexity of detection. They assume
that the global predicate is a conjunction of predicates of the form

b(2q,..2;), (1)

where ®() is a predicate with variables, #;, from different processes. An example of a predicate
in this form is
($1 = $2) A ($3 > $4) A ($5 < 10), (2)

where /s are variables on different processes. When the global predicate has only one conjunct,
their approach reduces to that of Cooper and Marzullo; and when each of the conjuncts is local
to a single process, their approach reduces to that of Garg and Waldecker. They introduce the
notion of a fized set of a global predicate. A fixed set of a global predicate is a set of variables
such that by fixing these variables in the predicate, the predicate reduces to a conjunction of
local predicates. The sets {x1, 23} and {29,235} are some examples of fixed sets for the global
predicate in equation 2. The algorithm proposed by Stoller and Schneider is exponential in the
size of the fixed set.

In this paper we present a significantly faster algorithm for a restricted class of predicates.
Specifically, Stoller and Schneider’s algorithm requires O(mj+k—1) time for a predicate of the
form

(I)l(xlv"'ij)/\q)Z(ylv"'vyk) (3)

where m is the number of states at one process. In equation (3) we assume that all ;’s and y;’s
are on different processes. We present an offline algorithm which requires O(ml) time, where
l = maz(j,k).

We note here that the algorithm of Stoller and Scneider can be used either off-line or on-
line with the same time complexity. However, the algorithm proposed in this paper can be run
on-line only by increasing its time complexity. A trivial way in which the proposed algorithm
can be used on-line is by running it from scratch every time a new local state is received. This
increases the time complexity by a factor of m.

We use many novel ideas in the algorithm and therefore make the following contributions:

e We formalize a property of predicates called monotonicity [6] which is crucial for efficient
evaluation of global predicates in real-life applications. This property allows detection
algorithms to consider at most as many states as the number of messages sent and received
by the process as opposed to the total number of states from a process.

e We introduce a technique which transforms the problem of predicate detection into a
computational geometric problem.

o We give an efficient algorithm for the computational geometric problem. Our algorithm
for this problem may also be of independent interest.

This paper is organized as follows. Section 2 presents our model of distributed computation
and the notation that is used in the paper. Section 3 describes our algorithm and its correctness.
Section 4 presents some extensions and optimizations of the basic algorithm.

2 Model

We assume a loosely-coupled message-passing system without shared memory or a global clock.
A distributed program consists of a set of n processes denoted by { Py, Ps,...,P,} communicating
solely via asynchronous messages. In this paper, we will be concerned with a single run r of a
distributed program. Each process P; in that run generates a single execution trace r[i] which
is a finite sequence of states. The state of a process is defined by the values of all its variables
including its program counter. The state transition occurs in any process due to an internal
action, the send of a message, or the receive of a message.

We define the usual causally precedes relation (—) on states as follows. A state s € r[¢]
causally precedes (—) a state t € r[j] if and only if one of the following conditions holds.

1. 7 = 7 and s occurs before ¢ in r[i]. We say that s < t (s locally precedes ¢) when this is
true.

2. The action following s is the send of a message and the action preceding ¢ is the receive
of that message.

3. There is a state u such that s — w and v — ¢.

We use s||t to denote that states s and ¢ are concurrent. That is, s||t = s & t At £ s.
We use g and h to represent global states. A global state g is a set of states U;g[i] for which
gli] € r[t] and Vi, 5 : 4 # j : g[i]||g[j]- The global state ¢ is also called a consistent cut. We
also use the notion of sub-cuts — a sub-cut is a cut across a subset of processes in the system.
We use g(®) to represent a consistent sub-cut across a minimal set of processes in which the
predicate @ is true. This notation uniquely specifies the local states used to satisfy ®. The
notation ¢(®1)||g(P2) means that every pair of states in the two sub-cuts satisfying ®; and ¢,
are concurrent; we say, then, that g(®1) and g(®;) are concurrent. A set of cuts is written as

G.

2.1 State Interval

A state interval is a sequence of states between two external events where an external event is
the sending or receiving of a message, the beginning of the process or the termination of the
process. Formally, the k%" interval in P; (denoted by (i,k)) is the subsequence of r[i] between
the (k — 1)"* and k" external events. For a given interval (i, k), if k is out of range then (i, k)
refers to L which represents a sentinel value (or a “null” interval). The notion of intervals is
useful because the relation of two states belonging to the same interval is a congruence with
respect to —. That is, the relation of two states being in the same interval is an equivalence
relation and for any two states s, s’ in the same interval and any state u from a different interval:
(s —ue s —u)and (u — s & u — s'). We exploit this congruence in our algorithms by
assigning a single timestamp to all states belonging to the same interval.

2.2 Predecessor and Successor functions
The predecessor and successor functions are defined as follows for any state w and 1 <1 < n:
pred.u.t = max{v € r[t] | v — u}

succ.u.t = min{v € r[i] | v — v}

Consider a state s € r[i]. The predecessor of s in r[j], denoted pred.s.j, is the latest state in 7[j]
which causally precedes s. Due to the congruence for states belonging to the same interval, the
pred and suce functions and the || relation are well defined on intervals. The following lemma
establishes some useful properties of pred and succ.

Lemma 1 Let u and v be states in r[i] and r[j] respectively.
1 (w) = pred (ua)i & (Wyiy > w (i) £ Gio) A lhw) — (o)
2 (iw) = sucero)i & (Vg <w:(ha) & (hp)A (o) — (i)
3. v < predauj & succw.n < u.
4. succ.(pred.u.j).a = u < pred.(succ.u.j).i

In addition to pred and succ, we also use prev and next. For any state u in r[i], prev.u
returns the state preceding w in r[i] if there exists one, else it returns L. The definition of
next.u is similar.

3 The algorithm

For simplicity, we first give an algorithm for predicates of the form

Sy (21, 22) A P11, ¥2).

This algorithm is of complexity O(m?). This is faster than the previously known algorithm by
Stoller and Schneider [5] which requires O(m?) time. Later we briefly explain how to extend
the algorithm to a more general case.

There are three steps in the algorithm — computing the sub-cuts that satisfy ®; and ®,,
transformation of the problem to a computational geometric problem, and finally, solution of
the transformed problem. We discuss each of these steps next.

3.1 Computing the sub-cuts

In the first step, we compute the set of consistent sub-cuts in processes P; and P, that satisfy
®1(z1,22). For example, if ®1(z1,22) = (21 < x32), then we find pairs of states s € P, and
t € P, such that s and ¢t are concurrent and the value of z in s is less than or equal to x5 in t.
If there are at most m distinct states in each of P, and P, and evaluation of the predicate ®
requires O(1) time, then this step can be done in O(m?) time. This step can be viewed as an
application of Cooper and Marzullo’s algorithm for detection of ®;.

It is important to observe that in most applications, m as defined earlier is too large for
this step to be practical. However, we now show that for most predicates ®¢, m can be taken
as the total number of state intervals. The total number of state intervals is much smaller than
the total number of states.

The property of any global predicate ® that allows this reduction is considered next.

Definition 2 Assume that x1 takes its value from a set totally ordered with respect to a relation
<. We say that ® is monotone with respect to x1 if it satisfies the following equation:

Va,zg: ®(a,z2) = (Vb:b<a:®(b,x2))

or,

Va,zo: ®(a,22) = (Vb:a <b: (b, z2)).

Informally, a predicate is monotone with respect to a variable z if replacing the variable
by a larger value (or by a smaller value) while keeping all other variables the same does not
violate the truthness of the predicate. For example, consider the predicate ® = 1 < x5 where
x1 and zy are integers. Then @ is monotone with respect to 1, because if ®(z1,22) holds for
a certain value of xq, then it would continue to do so for any smaller value of z1. ® is also
monotone with respect to zy because if ®(z1,z3) holds for a certain value of x5, then it would
continue to do so for any larger value of 5. An example of a predicate that is not monotone
with respect to @1 or a3 is (21 = x2).

Monotonicity of a predicate allows us to restrict our attention to state intervals rather than
states. For example, for the predicate (z1 < z3), it is sufficient to keep the state with the
smallest value of x4 for each state interval. This reduction also exploits the fact that if two
local states, s and s’, on the same process are separated only by internal events, then they are
indistinguishable to other processes as far as consistency is concerned.

We denote by G(®1) and G(®;y) the set of all consistent sub-cuts which satisfy ®; and
®,. In the worst case, G(®1) and G(®3) are of size O(m?). However, as mentioned above,
for monotonic predicates the value of m is at most the number of messages sent or received
by any process. From now on we will use state and state interval interchangeably with the
understanding that for monotonic predicates, at most one state will be used from each state
interval.

3.2 Transformation of the Predicate Detection Problem

We now describe the transformation of the predicate detection problem. Each element in G/(®q)
can be viewed as a point in a 2-dimensional space. For example, if the third interval on process
Py (denoted by (1,3)) and the fifth interval on P, (denoted by (2,5)) together satisfy @, then
we view this consistent cut as a point (3,5) in the plane generated by intervals in processes
Py and P,. For our example of the predicate (21 < x3) the point (3,5) signifies that the state
interval (1,3) is concurrent to the state interval (2,5) and the minimum value of z; in the
interval (1,3) is less than the maximum value of x4 in the interval (2,5).

Next, we consider the set of sub-cuts G(®2) on P3 and Py. For each sub-cut {(3,u),(4,v)}
in G(®;), we construct a rectangle in the plane defined by the intervals of P, and P,. Each rect-
angle represents the set of all sub-cuts on P; and P, which are concurrent with {(3,u),(4,v)}.
This is done by finding intervals s; and s, on Py and ¢; and t; on P as follows.

s; = next(max(pred.u.l, pred.v.1))
sy = prev(min(succ.u.l, suce.v.1))
t = next(max(pred.u.2, pred.v.2))

ty, = prev(min(succ.u.2, succ.v.2))

The points (s;,%;) and (sp,t,) define a rectangle on the plane such that any point within
represents a sub-cut on Py and P, which is concurrent to {(3,u), (4,v)}. The following lemma
helps demonstrate this.

Lemma 3 Any state s such that s; < s < sy is concurrent with w and v. Conversely, any state
s in Py that is concurrent with both v and v satisfies s; < s < syp.

Proof: From the definition of s;, it follows that pred.u.l < s;. Since s; < s we get that
pred.u.l < s. From Lemma 1, it follows that s /4 w. Similarly, s < s, and s, < succ.u.l,
implies that u /4 s. Therefore, s||u. By repeating the argument for v, we get s||v.

Conversely, let s be concurrent with » and ». Since s 4 u and s 4 v, it follows that
max(pred.u.l, pred.v.1) < s. Thus, s; < s. The argument for the upper bound is similar. O

Let R(®3) be the set of rectangles constructed from G(®;). The following result shows that
the problem of checking whether any sub-cut in G(®4) is concurrent with any sub-cut in G(®3)
is equivalent to checking whether any point corresponding to a sub-cut in G/(®q) lies in any of
the rectangles in R(®3).

Theorem 4 For any global predicate ®1(x1,22) A P2(y1, y2),
3(s,t) € G(Py), (u,v) € G(P3) : (s,1)||(u,v) iff I(s,t) € G(Py) which lies in one of the rectan-
gles in R(®7).

Proof: Using Lemma 3. O

We now turn our attention to the complexity of this transformation. Since there are O(m?)
sub-cuts in G(®;), the operation of defining these rectangle needs to be done in O(1) time per
rectangle. We achieve this bound by use of vector clocks for predecessors as well as successors.
The traditional vector clock implements the predecessor function. The notion of successor
vector clocks was previously used without giving a detailed implementation in [1]. Basten used
these for finding a global state prior to a sub-cut, but not for predicate detection. We now show
a construction for successor vector clocks.

We describe an off-line version of a successor vector clock denoted by sv. Let the interval
of the final state on process P; be (¢, f;). Then, the final state of any process P; is timestamped
with a vector sv defined as sv[i] = f; and sv[j] = oo for all j # 7. The rules to construct the
sv vector of other state intervals are as follows. The intervals are timestamped with sv in a
backward manner. Assume that the state s on P; immediately precedes ¢ which has already
been timestamped. If the transition from s to { was a receive, then the following action is taken.

wsolj] = { t.sv[j] if £

t.sv[j] — 1 otherwise

If the transition was a send of a message which was received at state w, then the following
action is taken
s.50[j] = min(.t.sv[j],u.sv[j]) if j # i‘
t.sv[j]—1 otherwise

The above rules are the simple dual of predecessor vector clocks.

Given predecessor and successor clocks, it is easy to construct a rectangle for each sub-cut
in G(®3). Observe that end points of rectangles are constructed using functions pred, maz,
next, suce, min and prev each of which can be computed in constant time.

3.3 Solution of the transformed problem

From Theorem 4, checking whether a sub-cut in G(®4) is consistent with a sub-cut in G(®3)
is equivalent to checking whether there exists a rectangle in R(®y) which includes a point
corresponding to a sub-cut in G(®1). Since there are O(m?) points and O(m?) rectangles, a
simple brute force algorithm of checking each point for each rectangle will lead to an inefficient
O(m?*) algorithm. We now describe an O(m?) algorithm for this problem. The algorithm shown
in Figure 1 detects whether any of up to m? points on an m x m plane lie within any of up to
m? rectangles. For the case when the number of points and the number of rectangles is much

less than m?, a more efficient algorithm can be used. This will be given in a following section.

boolean is_pt_in_rectangle() {
istrue[m, m]: 0..1; /* istrue[s,t] = 1 iff (s,t) € G(P1) */
R: list of record /* rectangles specified by two corners. */
{int s;, 1}, sp,th};

int A[m + 1,m + 1]; /* number of points that lie between (0,0) and (s,t) */

for : = 0 to m do

AJ0,i]=0; A[i,0]=0;

/* Array assignment: coding A with the points */
for:=1tomdo
for j = 1tom do
Ali,j] = Ale — 1,5 + Ale,j— 1] - A[i — 1,5 — 1] + istrue[, j];

/* Rectangle/point overlap check */
for (s, 11, 5n,t1) € R do
/* exclusion inclusion principle */
if A[Sh,th] — A[Sl — 1,th] — A[Sh,tl — 1] + A[Sl - 1,4 — 1] > 0 then
return true;
return false;

Figure 1: Detecting if any point in an m X m plane is contained in any rectangle.

The algorithm is_pt_in_rectangle operates as follows. The arrays istrue and R store the
coordinate values of the points and rectangles created in steps 2 and 3. The values stored by R
specify two opposite corners as (s;,%;) and (sp,). These arrays are assigned before calling the
algorithm, an operation of complexity O(m?). The algorithm uses another array A of size m xm.
The entry A[s,t] is used to store the total number of points that are in the rectangle defined
by (0,0) and (s,¢). The first column and row in A is first initialized to zeroes. The “array
assignment” loop then assigns the correct value to other entries of A. The “Rectangle/point
overlap check” checks for overlaps as follows. For all rectangles, the values in A at the four
corners of the rectangle are used to determine if a point is contained within. Using set-theoretic
inclusion exclusion principle it follows that the number of points in the rectangle (s, 1, i, t4)
is given by

A[Sh,th] — A[Sl — 1,th] — A[Sh,tl — 1] + A[Sl - 1,4 — 1]
The algorithm can check m? points against m? rectangles with time complexity O(m? +m?) or
O(m?). The algorithm uses O(m?) space; however, we later show how the space overhead can

also be reduced to O(m). The correctness of the is_pt_in_rectangle algorithm is proven next.
First we show that A[s,t] equals the number of points which are contained in the rectangle

defined by (0,0) and (s,).

Lemma 5 After the array assignment of A,
Als,t] = |B(s,t)| where B(s,t) = {(7,j)|istrue(i,j)AN0<i<sA0<j <t}

Proof: We use induction on (s,t). If either of them is 0, then by initial assignment A[s,] is
0. Since B(s,t) is empty for this case, the assertion holds. Now consider the case when both s

and t are strictly greater than 0. The program calculates A[s,] using:

Als,t] = Als — 1, t] + Als,t — 1] — A[s — 1,t — 1] + istrue[s, t]

But using induction hypothesis, and the fact that the points in B(s — 1, — 1) are common in
B(s—1,t) and B(s,t — 1) we get that A[s,?] equals cardinality of B(s,1). a

Theorem 6 The function is_pt_in_rectangle returns true iff there exists a point and a rectangle
such that the point is contained in the rectangle.

Proof: Using Lemma 5, A[s,?] contains the number of points in the rectangle (0,0,s,t). It
follows that A[sp,tn] — A[s; — 1,t5] — Alsp, t; — 1] + A[s; — 1,¢; — 1] is equal to the number of
points in the rectangle (s;,1;,sp,t4). O

Finally, we consider the complexity of this algorithm. It is easy to verify that each step in
is_pt_in_rectangle takes at most O(m?) time.

4 Discussion: Optimization and Extensions

4.1 Reducing the Space Complexity

One drawback of the above algorithm is that it requires O(m?) space. This may be unacceptable
when m is large. We now show that the space requirements of the algorithm in addition to the
input (points and rectangles) can be reduced to O(m + r) where r is the number of rectangles.
First, we assume that the set of points are provided as a list of coordinates rather than a m xm
boolean array. This is similar to the way the rectangles are provided in the algorithm of Fig.
1. Next, we observe that the algorithm uses four values from the array A for each rectangle
(81, tr, Sp, th):
A[Sh,th], A[Sl — 1,th], A[Sh,tl — 1], A[Sl - 1,4 — 1].

We will store these values with each rectangle. The only problem is how to determine these
values. We cannot use the entire array A since that itself is O(m?). The next important
observation is that calculation of the i*" row of A does not need any entry from any row lower
than ¢ — 1. A similar observation applies to columns. As a result, keeping the previous row of
A is sufficient to calculate the next row of A With above observations, it is easy to verify that
the algorithm takes additional O(m + r) space.

4.2 Finding k points in [rectangles, when max{k,[} < m

Since there are m state intervals in a process, in the worst case there can be O(m?) consistent
sub-cuts for processes P; and P,. This implies that if almost all sub-cuts satisfied ®4, then the
size of G(®1) is also O(m?). Similar reasoning can be applied for the number of rectangles in
R(®;). However, in some cases it can be expected that the number of points in G(®1) as well
as the number of rectangles in R(®9) is much smaller. In these cases, we show that the above
algorithm can be modified to reduce its computational time. We first encode each rectangle
using its bottom left corner and the upper right corner. With this convention, we have k + 2/
points in all — & for the points themselves and 2! for the [rectangles. These k + 2/ points
can be sorted for each of the two dimensions, an operation which is not more than O(mlogm)
where m =max{k,[}. The coordinates of each point are now the rank of each dimension. A
(k+20) x (k+2l) space is created in which to place all points. The is_pt_in_rectangle algorithm

is now used to detect any of the k points within any of the [rectangles. This approach requires
O((k + 21)*) operations.

As an example, suppose that there are two points (3,15) and (6,12) and a rectangle specified
by opposite corners (5,7) and (10,21). The coordinates can be ordered for the two dimensions
as follows: 3,5,6,10 and 7,12,15,21. Mapping these sequences to the sequence 1,2,3.4 results in a
mapping of the points to (1,3) and (3,2) and the rectangle corners to (2,1) and (4,4). Running
the algorithm on this reduced space will give the same result as the original: a point is contained
in the rectangle.

There are other approaches to finding k points in [rectangles. For example, Preparatos and
Shamos [4] present an algorithm for finding & points in a rectangle. Applying their algorithm
[times is slightly more efficient when k and [< m?. Their algorithm would use only a k2
space for the k points created in O(k?) time. The check for each rectangle is O(log k) because
a binary search is performed on each of the four corners to determine where in the k? space it

lies. With [rectangles their search is O(k? 4 llog k).

4.3 The algorithm for j + k£ variables

We next demonstrate how to detect a predicate of the form

q)l($1, cens $]) A ‘1)2(3/17 (ES) yk)

where zq,...,z; are on Py, ..., P; and yy,...,y; are on Pjyq,..., Pj1. The algorithm works as
follows:

1. All g(®q) and g(®;) are found, and placed in the sets G/(®4) and G(®;). These operations
are O(m?) and O(m*) respectively.

2. The sub-cuts g(®1) € G(®1) found in step 1 are now used to create points for a j-
dimensional space. Each sub-cut specifies one point. As for the case of 2 variables, we
also determine a j-dimensional box for each of the sub-cut in G/(®3). By using predecessor
and successor clocks, the box corresponding to a sub-cut in G(®3) can be determined in
O(jk) operations. Since there are O(m*) sub-cuts, finding all the boxes requires O(jkm*)
operations.

3. Following the procedure of the is_pt_in_rectangle algorithm, all points and boxes found in
steps 2 and 3 are checked for overlap. There are O(mk) boxes, each of which is of dimension
j. To check containment in each box is an O(27) operation because of the 2/ corners of a
box in a j-dimensional space. Therefore, this step requires O(2/m*) operations.

Therefore, for the general case, the complexity is O(m’ + m* + jkm* 4 27m*) = O(m? + (jk +
27 ym*).
Acknowledgments

We are thankful to Scott Stoller and referees of the paper for their comments.

References

[1] T. Basten, “Breakpoints and Time in Distributed Computations,” LNCS 857, pp340-354,
1993.

[2]

R. Cooper and K. Marzullo. Consistent detection of global predicates. In Proc. of the
Workshop on Parallel and Distributed Debugging, pages 163-173, Santa Cruz, CA, May
1991. ACM/ONR.

V. K. Garg and B. Waldecker. Detection of unstable predicates in distributed programs. In
Proc. of 12th Conference on the Foundations of Software Technology & Theoretical Com-
puter Science, pages 253-264. Springer Verlag, December 1992. Lecture Notes in Computer
Science 652.

F. Preparata and M. Shamos, Computational Geometry: An Introduction, Springer-Verlag,
1985.

S. D. Stoller and F. B. Schneider. Faster possibility detection by combining two ap-
proaches. In Proc. of the 9th International Workshop on Distributed Algorithms, pages
318-332, France, September 1995. Springer-Verlag.

A. 1. Tomlinson and V. K. Garg. Detecting relational global predicates in distributed
systems. In Proc. of the Workshop on Parallel and Distributed Debugging, pages 21-31, San
Diego, CA, May 1993. ACM/ONR.

10

