
Formal Verification of a System-on-Chip Using Computation Slicing

Alper Sen 1, Jayanta Bhadra 2, Vijay K. Garg 1 and Jacob A. Abraham 1

1 The University of Texas at Austin 2 Motorola Inc.

Contact email: sen@ece.utexas.edu

Abstract
Formal verification of Systems-on-Chips (SoCs) is an
immense challenge to current industrial practice. Most
existent formal verification techniques are extremely
computation intensive and produce good results only
when used on individual sub-components of SoCs. With-
out major modifications they are of little effectiveness
in the SoC world. We attack the problem of SoC veri-
fication using an elegant abstraction mechanism, called
computation slicing, and show that it enables effective
temporal property verification on large designs. The tech-
nique targets a set of execution sequences, that is exhaus-
tive with respect to an intended subset of system level
properties, and automatically finds counter-example ex-
ecution sequences in case of errors in the design. We
have obtained exponential gains in reducing the global
state space using a polynomial-time algorithm, and also
applied a polynomial-time algorithm for checking global
liveness and safety properties. We have successfully ap-
plied the technique to verify properties on two high level
transaction based designs – the MSI cache coherence pro-
tocol and an admittedly academic SoC having a bus ar-
biter and a parameterizable number of devices connected
to a PCI bus backbone.

1 Introduction

Modern day hardware systems often consist of individual
IP blocks connected in meaningful arrangements carry-
ing out independent as well as cooperative objectives.
Such Systems-on-Chips (SoCs) are gradually becoming
more and more diverse and complicated, thereby gain-
ing popularity. Their enormous potential for re-using
IP makes them economically viable solutions to many
products out in the market today. The design of an SoC
can be very large and complex. Therefore, verification
of such systems is a hard but an important problem.
Shorter design cycles increase the severity of the prob-
lem, elevating early bug detection to the highest priority.
While reasonably effective techniques exist to tackle the
problem of verification for individual sub-components, to
the best of our knowledge, we are yet to see any report
on formal verification of SoCs. This is because SoCs rep-
resent an exponential increase in state space as well as
design complexity with respect to their sub-components.

The dual problem of size and complexity makes exist-
ing techniques totally ineffective for SoC verification. In
this paper, we address these issues using an abstraction
technique that provides satisfactory amelioration in both
areas.

As design objectives become larger and more complex,
the natural design methodology is to decompose a large
system into relatively independent pieces or components
that are more manageable. Analysis of hardware de-
signs is often limited to the analysis or testing of the
components in isolation since analyzing an entire sys-
tem is limited by its own size and complexity. As a re-
sult, although individual components can be effectively
verified as stand alone modules embedded in carefully
constructed environments, many bugs can be introduced
when the pieces of a system are put together and the
environmental assumptions used in designing each piece
are not guaranteed by the actual environments [3]. These
interface errors can be difficult to detect because the
knowledge needed to effectively test for these errors is
distributed among different design groups. These diffi-
culties are exacerbated greatly for high level hardware
designs because of their concurrency, i.e., design compo-
nents consisting of multiple interacting threads. In such
design descriptions the environmental assumptions have
the added dimension of time and involve sequencing of
events from different sources. The complexity of debug-
ging concurrent programs has lead to interest in model
checking approaches [5] where the state space of a pro-
gram is often exhaustively (at least in an implicit fash-
ion) searched for erroneous behaviors. Unfortunately,
practical model checking techniques are limited to pro-
grams with a relatively small number of states or a small
number of boolean variables, while many concurrent pro-
grams reside in megabytes of memory. Some verifica-
tion of individual blocks have been achieved by theorem
proving where conditions of system correctness have to
be written in precise terms of mathematics as theorems
and have to be manually proved using axioms and lem-
mas arrived at by examining the behavior of the system
under verification [4]. Many individual IP blocks can be
verified to some satisfaction by using these techniques.
Many such verification obligations have to be achieved
only by very experienced users with a very good domain
knowledge (theorem proving), or by relatively automatic
techniques (model checking) that do not achieve satis-
factory verification on large designs like SoCs because

of capacity limitations. Therefore, random and pseudo-
random techniques for generating tests have been used
for SoCs with some success [24, 1]. However, these tech-
niques have not yet reported any major success with
verification of large and complex SoC interfaces where
coverage plays a major role. Although simulation is ex-
pected to remain the mainstay of SoC validation due to
its simplicity and scalability, we choose model checking
using abstractions on system level execution traces as we
believe that this approach provides us with a judicious
blend of automation and the ability to find bugs in large
and complex interfaces of SoCs.

In this paper, we introduce an application of compu-
tation slicing [11, 22, 30, 28] to verification of high level
hardware design descriptions. As opposed to program
slicing [36], where the user is interested in generating a
projection of a program with respect to a set of inter-
esting variables, computation slicing generates program
abstractions with respect to execution traces (also called
computations). Normally, an execution trace can be de-
fined as a directed graph and so specialized graph al-
gorithms can be employed to find the abstractions for
property checking [30, 28]. The inputs to our automatic
abstraction generation algorithm are a set of execution
traces and a temporal logic property (interchangeably
called a temporal logic predicate) that is a subset of
Computational Tree Logic (CTL) [5]. A slice, or an ab-
straction, defined with respect to a global predicate, is
the computation with the least number of global states
that contains all the global states of the original com-
putation for which the property evaluates to true. The
algorithm spends polynomial amount of time to com-
pute an abstraction slice that has exponential reduction
in the number of global states one needs to examine in
order to validate the property [30, 28]. We also use a
polynomial-time algorithm to verify the property on the
slice. This allows an exponential overall speedup as one
need not exhaustively examine the entire state space any
more. Our technique judiciously marries two fundamen-
tal state space reduction tools – (a) non-determinism:
the inherent non-determinism of a partial order execu-
tion captures possibly exponential number of total order
executions, and (b) divide and conquer: analysis of ex-
ponentially abstracted partial order traces for property
checking. Since the criterion for generating the abstrac-
tion is not a set of variables, but a temporal logic prop-
erty, computation slicing is a better choice for verifica-
tion of hard-to-verify properties on large systems, like the
SoCs. Therefore, our technique is more attuned to prop-
erty checking than program slicing, which is more use-
ful for manufacturing test generation applications [35].
Also, the verification check in our technique is as strong
as model checking because in the end the initial state(s)
need to be in the set of global states obeying the tempo-
ral property under verification. However, unlike in clas-
sical model checking, where the entire state space has
to be computed and traversed, in our technique we can
abstract the state space of a partial order computation

trace and verify properties in a smaller subset of global
states. Even if model checking algorithms are used on
partial order computation traces as in our case, the com-
plexity will still be exponential unlike in our case. There-
fore, great success can be achieved when our technique
is employed in property checking for systems where it is
hard to even build the entire state transition relation, let
alone explicitly or implicitly traversing it in its entirety.
Our initial experimental results show a lot of promise
of the proposed technique with verification of complex
SoCs.

In this paper, we provide (a) an introduction to com-
putation slicing, (b) a systematic approach of how it can
be used on high level transaction based descriptions of
hardware for property verification on SoCs, and (c) ex-
perimental results showing the effectiveness of our tech-
nique on large scale transaction based hardware descrip-
tions.

2 Related Work

Although the area of formal verification of SoCs is ex-
tremely important, it is relatively new. To the best of
our knowledge there has not been much work published
in this area. However, the area of validation of SoCs
has been a relatively more popular area of research. Al-
though the following techniques are not formal in na-
ture this discussion will give the state of the art in SoC
validation. (A) Directed test cases that were carefully
hand generated by verification engineers that worked on
individual IPs stopped being effective on SoCs because
of their sheer size and complexity. Therefore, random
and pseudo-random test generation techniques became
popular [24, 1]. However, these techniques were largely
troubled by the issue of coverage and effectiveness on
complex interfaces. (B) The idea of self checking tests
is to compute predicted results at the time of test gen-
eration. SpecMan [33], from Verisity Design Systems,
QuickBench [32], from Forte Design Systems and Vera
[16], from Synopsys use this approach. This approach
has two major drawbacks – firstly, the observability is
limited and secondly, most of the times information re-
garding relative timing of various transactions may be
missing, making it hard to debug. Although some of the
problems can be mitigated by a cycle-accurate model,
but that approach entails a huge performance penalty.
(C) Compiled testing paradigm for SoCs embeds all the
requisite data of a test into the source of the test genera-
tor. The test generator thus has to be compiled for each
test or a set of related tests. The main advantage of this
technique is that if the test generator is compiled into
the testbench dynamic behavior can be easily handled
[26]. However, dynamic behavior was also achieved by a
later data driven test generator as well [24].

Program slicing, originally proposed by Weiser [36], is
a static program analysis technique to extract appropri-
ate portions of programs relevant to a set of program
variables. These portions are referred to as slices – ar-

2

tifacts that maintain exact information about the pro-
gram’s behavior projected onto the relevant segments of
the original program. This technique has been widely
studied and applied to a myriad of applications in soft-
ware engineering such as debugging [8], testing [20],
maintenance [9] and reuse [19]. Such a source-to-source
transformation technique offers an opportunity to formu-
late a systematic approach to simplify a design described
in a Hardware Description Language (HDL) for test gen-
eration without having to synthesize a prohibitively large
design. However, most of these algorithms have been de-
veloped for sequential languages and cannot be directly
applied to HDLs such as Verilog or VHDL, which al-
low concurrent constructs. Iwaihara et al. [15] suggested
an approach to use program slicing for analyzing VHDL
designs. An automated program slicing approach for
VHDL was proposed by Clarke et al. [6], in which VHDL
constructs were mapped onto constructs for C-like pro-
cedural languages. The primary focus of their work was
formal verification. Vedula et al. [35] reported a tech-
nique where program slicing was used for the first time
to automatically generate effective manufacturing tests
from HDLs.

The problem of test generation on SoCs has been ad-
dressed using divide and conquer as well as Built In Self
Test (BIST) and full or partial scan designs – either in-
dividually or in a judicious combination. However, for
temporal property checking tackling the problem of state
space explosion becomes of primary importance as the
techniques that are effective for manufacturing test gen-
eration do not always work for property checking. This
is because while structural information is important in
the manufacturing test generation world, functional in-
formation is more important in the temporal property
checking area.

The idea of using temporal logic for analyzing execu-
tion traces (also referred to as runtime verification) has
recently been attracting a lot of attention. We first pre-
sented a temporal logic framework for partially ordered
execution traces in [27] and a tool for runtime verifica-
tion in [30]. Some other examples of using temporal logic
for checking execution traces are the MaC tool [17], the
JPaX tool [13], and the JMPaX tool [31]. The specifi-
cation languages used in these tools are different than
ours and we have polynomial-time complexity, whereas
the complexity is exponential for the other tools.

Computation slicing was first proposed by Garg et
al. [11] in order to generate abstractions of computations
of distributed programs (finite execution traces). The
central problem in predicate detection (interchangeably
called property checking here) in a hardware descrip-
tion is the state explosion problem – the set of possi-
ble global states of a design consisting of n individual
processes, each having at most k states, is of the order
of O(kn). Strategies like symbolic state representation
and partial order reduction have been proposed earlier
to address the problem [12, 21, 25, 34]. The technique
of computation slicing has been shown to be extremely

useful for throwing away extraneous global states of the
original computation (with respect to a given property)
in an efficient manner, and focus on only the relevant
global states [30, 28]. Although computation slicing has
been used successfully on computations of distributed
programs, we will apply it for the first time to solve the
problem of formal verification of temporal properties in
high level hardware descriptions. The next section deals
with details of the technique of computation slicing.

3 Slicing Partial Order Traces

We can model an execution trace of a transaction level
hardware description (interchangeably called a program
here), which consists of events, in two ways. The first
model imposes a total order (interleaving) of events. The
second model imposes a partial order between events. A
partial order is a reflexive, antisymmetric, and transi-
tive binary relation. Traditionally, the former model has
been used in testing, simulation and runtime verification.
We use the latter approach which has several advantages
over the former. First, it is a more faithful representa-
tion of concurrency [18], that is, only the events that
have a causal dependency are ordered. Second, a par-
tial order encodes possibly exponential number of total
orders. This usually translates into better coverage in
terms of testing and bug detection than in cases where
a total order is used. Third, our partial order approach
is applicable to both message passing and shared mem-
ory based transaction level hardware descriptions. For
example, the partial orders in [18] and [31] are used for
representing traces of message passing and shared mem-
ory programs, respectively. These aspects aid in mod-
eling transaction level hardware descriptions in a very
compact and efficient manner aiding in relatively easier
debugging.

Example: Consider an execution of a program. The
partial order model of the resulting execution trace is
shown in Figure 1(a). In the trace, there are two pro-
cesses P1 and P2 with local integer variables x and y, re-
spectively. The events are represented by circles. Process
P2 sends a message to process P1 by executing event f1

and process P1 receives that message by executing event
e1. In each process an event is labeled with an ordered
tuple – the value of the respective local variable immedi-
ately after the event is executed and a vector clock, which
we will define later. For example, the value of x imme-
diately after executing e1 is 2. The first event on each
process initializes the state of the process. Figure 1(b)
contains the set of all reachable global states of the com-
putation reachable from the initial state {e0, f0}. In the
figure, we represent a global state as a tuple where each
element is the last event that occurred on a process. Ob-
serve that {e1, f0} is not a reachable global state because
it depicts a situation where a message has been received
from P2 by P1, that is e1, but P2 has not yet sent the
message. By using a partial order representation, we are
able to capture all possible interleavings of events, ten in
total, rather than a single interleaving. One such inter-

3

2e ,

1e ,

2f 1f

2e ,

3f2e , 3e , 2f

2f

1e ,

1f

3f

3e , 1f1e , 3f 3e , 1f

0e 0f

0e

0e

0e 3f

2f

1f

3f

1e 2e

1f

0e

0f 2f

0e 0f

0e 0f

3f3e

3f2e1e 1f 3f2e

3f

1e 2e

1f

0e

0f

P 1

P 2
2f

3e

3f

1e 2e

1f

0e

0f 2f

P 1

P 2

���������������
������
���

������
���
������
���
���������������
������
���

������
���
������
���

	�	�		�	�		�	�	

�

�

�

������
���
������
���

��
�
������
���

���������������
������
���

���������������
������
���

������
���������

���������������
������
���

������
���
������
���

������
���������

���
�

���
�

��

!!"
"

,3e{

{ {

{

{

{

{

{ }

}

}

}}

}

}

}

{ }

(b)

{ },

{ },

{ },

{ },

(c)

(a)

6

4

0 2

2

0

0

Initial state

Final state

Initial state: Final state:{ , }

Initial state: Final state:{ , }

{ , }

{ , }

(d)

W

D

V

C

Initial state: Final state:{ , } { , }

6

4

y 0 2

2

0

x 0

4, [3,2]

0, [0,2] 2, [0,3]

x, v1

y, v2

0, [1,0]

0, [0.1] 6, [0,4]

5, [4,2]2, [2,2]

Figure 1: (a) A computation (b) its set of all reachable global states (c) its slice with respect to (2 6 x 6 4) ∧ (y 6= 2) (d)
its slice with respect to EF((2 6 x 6 4) ∧ (y 6= 2))

leaving sequence is {e0, f0}, {e0, f1}, {e1, f1}, {e2, f1},
{e3, f1}, {e3, f2}, {e3, f3} as shown in Figure 1(b) with
thick lines. Therefore, we can obtain better coverage in
terms of testing and debugging by capturing all inter-
leavings. This coverage may translate into finding bugs
that are not found using a single interleaving.

System Model: We assume a system consisting of
processes denoted by P1, . . . , Pn. Examples of processes
are a node sitting on a PCI bus or a cache in a cache
coherence protocol. Processes execute events. Events on
the same process are totally ordered. However, events
on different processes are only partially ordered. In this
paper, we relax the partial order restriction on the set of
events and use directed graphs to model computations
as well as slices.

Given a directed graph G, let V(G) and E(G) denote
the set of vertices and edges, respectively. We define
a consistent global state on directed graphs as a sub-
set of vertices such that if the subset contains a vertex
then it contains all its incoming neighbors. Formally,
C is a consistent global state of G, if ∀e, f ∈ V(G) :
(e, f) ∈ E(G) ∧ (f ∈ C) ⇒ (e ∈ C). We denote the
set of consistent global states of a directed graph G by
C(G), which forms a distributive lattice under the sub-
set relation (⊆) [22]. We say that a state D is reachable
from a state C if C ⊆ D. In the rest of the paper, unless
otherwise stated, a global state or simply a state refers
to a consistent global state.

We model an execution trace (or a computation) as a
directed graph. We use event and vertex interchange-
ably. Figure 1 shows a computation and its lattice of
global states. Only the frontier of the global states is
displayed in the figure where the frontier is composed of
events in a global state that occur last in process order.

How to generate partial order traces: For mod-
eling message passing program traces, a partial order
relation known as Lamport’s happened-before relation
[18] has been used. Lamport’s happened-before relation
is defined as the smallest transitive relation satisfying
the following properties:

• if events e and f occur on the same process, and
e occurred before f in real time then e happened-
before f , and

• if events e and f correspond to the send and receive,
respectively, of a message then e happened-before f .

A mechanism known as vector clocks has been used to
represent the partial order relation on events in traces. A
vector clock assigns timestamps to events such that the
partial order relation between events can be determined
by using the timestamps.

Definition 1 (vector clock) Given a computation G
on n processes, a vector clock v is a map from V(G) to
Nn (vectors of natural numbers) such that

∀e, f ∈ V(G) : (e, f) ∈ E(G) ⇐⇒ e.v 6 f.v

4

where e.v is the vector assigned to the element e.

For example, given an n process message passing pro-
gram, for every process j, there is a vector clock of size
n, denoted by vj . Initially, vj [i] = 0, for i 6= j, and
vj [j] = 1. The vector clock is manipulated after each
event in the process. A process increments its own com-
ponent of the vector clock after each event. It also in-
cludes a copy of its vector clock in every outgoing mes-
sage. On receiving a message, it updates its vector clock
by taking a component wise maximum with the vector
clock included in the message. A sample execution of the
algorithm is given in Figure 1(a), where the vector clocks
corresponding to all the states have been shown. Vector
clock algorithms for shared memory programs also exist
[31].

Computation Slice: The notion of computation
slice is based on the Birkhoff’s Representation Theorem
for Finite Distributive Lattices [7]. Informally speaking,
a computation slice (or a slice) is a concise representa-
tion of all those global states of the computation that
satisfy a global predicate (or simply predicate or prop-
erty). Formally,

Definition 2 (slice [22]) A slice of a computation with
respect to a predicate is a directed graph with the least
number of global states that contains all global states of
the given computation for which the predicate evaluates
to true.

We denote the slice of a computation G with respect to
a predicate p by slice(G, p). Note that G = slice(G, true).

Figure 1(c) shows the slice of the computation in Fig-
ure 1(a) with respect to the predicate (2 6 x 6 4)∧ (y 6=
2), which is a conjunction of two local predicates from
the processes P1 and P2, respectively. We say that a
predicate is local if it only depends on variables of a sin-
gle process. In the figure, if a local predicate is true for
an event of a process we represent it using an empty cir-
cle, otherwise with a filled circle. To obtain the slice, we
add an edge from the successor of a filled circle back to
it, thereby increasing the number of incoming neighbors.
As a result, from the thirteen consistent global states
in Figure 1(b), this exercise eliminates nine – retaining
states C, D, V , and W . In order to understand how we
generate slices, we use the following theorem.

Theorem 1 ([10]) Let G be a directed graph. Let H be
obtained by adding edges to and removing vertices from
G. Then C(H) is a sublattice of C(G). Conversely, every
sublattice of C(G) is generated by some directed graph H
obtained from G by adding edges and removing vertices.

Theorem 1 gives a general procedure to compute slices
for arbitrary predicates. It has been shown that the slice
exists for all predicates, however it is, in general, in-
tractable to compute the slice for an arbitrary predicate
[11]. Our approach to computation slicing is based on
exploiting the structure of the predicate itself. For this
purpose, we focused on regular predicates.

Definition 3 (regular predicates [11]) A predicate
is regular if the set of consistent global states that satisfy
the predicate forms a sublattice of the lattice of consis-
tent global states. Equivalently, a predicate p is regular
with respect to G if it is closed under set union and in-
tersection, i.e., for all consistent global states C,D of
G:

(C satisfies p) ∧ (D satisfies p) ⇒
(C ∪D) satisfies p ∧ (C ∩D) satisfies p

Some examples of regular predicates are conjunction
of local predicates such as “Pi and Pj are in critical sec-
tion”, monotonic channel predicates such as “there are
at least k messages in transit from Pi to Pj”, and re-
lational predicates such as “x1 − x2 6 5, where xi is a
monotonically non-decreasing integer variable on process
i”. A disjunctive predicate such as x1 ∨ x2 ∨ x3 is not
regular.

In the light of Theorem 1, since the set of global states
satisfying a regular predicate forms a sublattice of the set
of global states of the computation, we can obtain the
slice for regular predicates from the given computation
by adding edges and removing vertices. Furthermore,
these slices are exact (also called lean slices) in the sense
that they contain exactly the states that satisfy the pred-
icate.

Although Theorem 1 gives a general procedure to com-
pute slices for arbitrary predicates, it does not specify
how to add edges or remove vertices. We developed effi-
cient (polynomial in the number of processes or better)
slicing algorithms for both non-temporal and temporal
regular predicates and to compute slices with respect to
boolean combination of regular predicates [11, 22, 28].

4 Slices for Non-Temporal Predicates

We present an algorithm to compute the slice for a non-
temporal regular predicate from [23] after introducing
a lemma. Non-temporal regular predicates are regular
predicates that contain only boolean operators and no
timing information.

Let G be a directed graph and let G[e, f] denote the
directed graph obtained by adding an edge from e to f
in G. The following lemma shows which edges should be
added to obtain the slice.

Lemma 2 ([23]) There is an edge from an event e to
an event f in slice(G, p) if and only if no consistent global
state in C(G) \ C(G[e, f]) satisfies p.

We can efficiently obtain a graph Ĝ[e, f] from G by
adding an edge from f to every initial event and remov-
ing vertex e and all its successors. Graph Ĝ[e, f] is per-
tinent here because it can be shown that Ĝ[e, f] has the
same state space as C(G) \ C(G[e, f]).

Lemma 2 is useful provided it is possible to ascer-
tain efficiently whether some consistent global state in
Ĝ[e, f] satisfies p. Let CONTC denote the problem of

5

deciding whether some consistent global state of a given
graph satisfies p. There are efficient CONTC algorithms
for non-temporal regular predicates [23]. Figure 2 gives
the algorithm for computing the slice for a non-temporal
predicate.

Input: (1) a directed graph G, (2) a predicate p, and

(3) an algorithm to evaluate CONTC(H, p) for an
arbitrary directed graph H

Output: the slice of G with respect to p

1 K := G;

2 for every pair of events (e, f) do

3 if not(CONTC(Ĝ[e, f], p)) then

4 add an edge from e to f in K;
// K := K[e, f]

endif;
endfor;

5 output K;

Figure 2: An algorithm to compute the slice for a non-
temporal predicate

The complexity of the algorithm is a small multiple of
the complexity of an algorithm for CONTC. In particu-
lar, the multiple is |E|2, where E is the set of vertices
in G. The complexity of CONTC in the case of non-
temporal regular predicates is O(n|E|), where n is the
number of processes. In [11], we present a more effi-
cient slicing algorithm for non-temporal regular predi-
cates with O(n2|E|) complexity.

There are no known efficient algorithms for solving
CONTC for temporal regular predicates, i.e., regular
predicates containing timing information. Therefore, we
cannot use the above slicing algorithm to compute the
slice for such predicates. Next, we will discuss a tem-
poral logic for specification of hardware predicates. In
Section 6, we will present our slicing algorithms for tem-
poral regular predicates.

5 Specification of Hardware

The concept of slicing is useful for detecting temporal
logic predicates since it enables us to reason only on the
part of the global state space that could potentially af-
fect the predicate. Many specifications of hardware are
temporal in nature because designers are interested in
properties related to the sequence of states during an
execution rather than just the initial and final states.
We can specify both safety and liveness properties of a
system using temporal logic. A safety property specifies
that something bad will never happen, whereas a live-
ness property specifies that something good will eventu-
ally happen. For example, the safety property in a cache
coherence protocol, “no two cache lines are in the exclu-

sive state at the same time”, is a temporal property, as
is the liveness property in a bus protocol, “all requests
for the bus are eventually acknowledged”. We use the
branching temporal logic CTL [5] to write specifications.
This logic allows us to express many alternative futures
from every instant of time. Each path is a sequence of
global states ending at the final state, where a successor
of each global state on the path is obtained by the execu-
tion of a single event from a single process. We interpret
CTL on the finite distributive lattice of global states of
a computation.

Basic temporal operators of this logic include EF, AF,
EG, and AG. There are two path quantifiers: A denotes
for all paths and E denotes for some path. There are two
linear temporal operators that are of interest to us: G,
that is the always operator, and F, that is the eventually
operator. We define some of these operators here, the
rest may be found elsewhere [5].

AGC (p)EGC (p)

EFC (p) AFC (p)

C C

final state final state

C C

final state final state

: p is true : p is false

Figure 3: Basic CTL operators

Given a global state, a predicate is evaluated with re-
spect to the values of variables resulting after executing
all events in the state. If a predicate p evaluates to true
for a global state C, we say that C satisfies p (symbol-
ically, C |= p). We say that temporal predicate EF(p)
(resp. EG(p)) holds at a global state C if and only if
for some path starting from C and ending at the final
state, the predicate p eventually (resp. always) holds on
the path. We say that temporal predicate AF(p) (resp.
AG(p)) holds at a global state C if and only if for all paths
starting from C, the predicate p eventually (resp. always)
holds on all the paths. There can be arbitrary nesting
of temporal operators. For example, a nested tempo-
ral predicate AG(EF(reset)) states that reset is possible
from every state. Figure 3 illustrates the afore mentioned
temporal predicates on a lattice of global states where C

6

is the initial state.

6 Slicing and Checking for Temporal
Predicates

In this section we present slicing algorithms for temporal
regular predicates from [28]. It has been proved that
only a subset of CTL temporal operators are regular [28].
Those are – EF, AG, and EG collectively referred to as
Regular CTL (RCTL). Most typical safety and liveness
properties of hardware can be specified in RCTL. We
developed a property checking system that uses slicing
of temporal predicates in RCTL. For the sake of brevity,
we provide slicing algorithms for temporal operators AG
and EG in Figure 4. The slicing algorithm for EF will be
explained in the next section with a simple example.

From Theorem 1, it is known that a slice may con-
tain additional edges. Since the set of states that satisfy
AG(p) and EG(p) are a subset of states that satisfy p, the
slice with respect to AG(p) and EG(p) can be obtained
by adding even more edges to the slice with respect to
p. The algorithms in Figure 4 show which edges should
be added.

Both algorithms take a computation and its slice with
respect to a non-temporal regular predicate p as inputs.
The output of each algorithm is a slice for the temporal
predicate. We make the following observation to obtain
the AG(p) algorithm.

Lemma 3 ([28]) For each additional edge (e, f) and
global state D in slice(G, p), if D does not include vertex
e then D does not satisfy AG(p).

To see this, first observe that the global state that
contains f but not e (denote this state by V) is not a
consistent global state of slice(G, p), which implies that
V does not satisfy p. Second, D does not include either e
or f but V includes f so D ⊂ V , i.e., V is reachable from
D. Finally, since a state that does not satisfy p is reach-
able from D, D does not satisfy AG(p). Therefore, for
any additional edge (e, f) in slice(G, p), we add an edge
from e to all the initial vertices (Algorithm AG Step 2),
thereby increasing the incoming neighbors of the initial
vertices. This procedure results in all consistent global
states of the output graph including e.

The algorithm for EG(p) is similar to that of AG(p),
however, this time for every additional edge (e, f) that
generates a strongly connected component in slice(G, p),
we add an edge to all the initial vertices. For any state
D in slice(G, p) that does not include the component, we
cannot construct a path in G that starts from D. This
is because any global state upon including a vertex from
a strongly connected component, has to include all the
vertices in the component. Therefore, we add an edge
from e to all the initial vertices (Algorithm EG Step 2).

The complexity analysis is similar for both algorithms.
In Step 2 we can add edges for each additional edge in
slice(G, p). There are O(n|E|) such edges when the skele-
tal representation of a slice is used [22]. Therefore, the

Algorithm AG

Input: A computation G and slice(G, p)
Output: slice(G, AG(p))
1. Let K be slice(G, p)
2. For each pair of vertices (e, f) in slice(G, p)

such that,
(i) (e, f) 6∈ E(G), and
(ii) (e, f) ∈ E(slice(G, p))

add an edge from vertex e to the initial vertex
on each process in K

3. output K

Algorithm EG

Input: A computation G and slice(G, p)
Output: slice(G, EG(p))
1. Let K be slice(G, p)
2. For each pair of vertices (e, f) in slice(G, p)

such that,
(i) (e, f) 6∈ E(G), and
(ii) Both (e, f) and (f, e) ∈ E(slice(G, p))

add an edge from vertex e to the initial vertex
on each process in K

3. output K

Figure 4: Algorithm for generating a slice with respect to
AG(p) and EG(p)

overall complexity of both algorithms is O(n|E|), which
is linear in the number of processes.

Temporal Property Checking:

The property checking (predicate detection) problem is
to decide whether the initial global state of a computa-
tion satisfies a predicate.

Figure 5 displays our property checking algorithm that
uses slicing algorithms explained earlier. The complex-
ity of property checking for RCTL is dominated by the
complexity of computing the slice with respect to a non-
temporal regular predicate, which has O(n2|E|) com-
plexity [11, 22]. Therefore, the overall complexity of
property checking for RCTL is polynomial in n, that
is, O(|p| ·n2|E|), where |p| is the number of boolean and
temporal operators in p.

Input: A computation G and an RCTL property p
Output: Property is satisfied or not
1. Recursively process p from inside to outside

while applying temporal and boolean operators
to compute slices

2. If initial(G) 6= initial(slice(G, p)) then
3. return false and a counter-example

else
4. return true

Figure 5: Property Checking using Slicing

7

7 Simple Example

To illustrate property checking using computation slic-
ing as shown in Figure 5, consider the computation in
Figure 1(a) again. Let p = (2 6 x 6 4) ∧ (y 6= 2), and
suppose we want to detect EF(p), that is, whether there
exists a global state that satisfies p. Without computa-
tion slicing, we are forced to examine all global states
of the computation, thirteen in total, to decide whether
the computation satisfies the predicate. Alternatively,
we can compute the slice of the computation with re-
spect to the regular predicate EF(p) and use this slice
for predicate detection. For this purpose, first (Figure 5,
start of Step 1), we compute the slice with respect to
p as explained in Section 3. The slice is shown in Fig-
ure 1(c). The slice contains only four states C,D, V and
W and has much fewer states than the computation itself
– exponentially smaller in many cases – resulting in sub-
stantial savings. Using the slice in Figure 1(c), we can
obtain the last state that satisfies p in the computation,
which is denoted by W . We also know from the defini-
tion of EF(p) that every global state of the computation
that can reach W satisfies EF(p), e.g., states enclosed in
the dashed ellipse in Figure 1(b). Therefore, applying
this observation we can compute the slice with respect
to EF(p) as shown in Figure 1(d) (Figure 5, end of Step
1). Note that the slice has less vertices than the compu-
tation and the slice and the computation have the same
global states up-to W . Finally, we check (Figure 5, Step
2) whether the initial state of the computation is the
same as the initial state of the slice. If the answer is yes
(Figure 5, Step 4), then the predicate is satisfied, other-
wise not, and a counter-example is returned (Figure 5,
Step 3). In this case the predicate p is satisfied.

8 Experimental Results

We ran experiments with our tool Partial Order Trace
Analyzer (POTA) for checking execution traces of pro-
grams. The overall structure of POTA architecture is
shown in Figure 6. The tool contains three modules;
analyzer, translator, and instrumentor.

The instrumentation module inserts code at the ap-
propriate places in the program to be monitored. The
instrumented program is such that it outputs the val-
ues of variables relevant to the predicate in question and
keeps a vector clock. Figure 1 shows such an output trace
where x and y are the relevant variables for the predi-
cate in question. The translator module translates exe-
cution traces into Promela [14] (SPIN input language).
This module enables comparison with SPIN on execution
traces. Since we are working with programs which ex-
hibit a lot of parallelism and independence, partial order
reduction techniques can take advantage of these prop-
erties of programs. The SPIN model checker contains
implementation of partial order reduction techniques. In
all fairness, SPIN is designed for checking correctness of
programs and not traces. However, to the best of our
knowledge it is the best program verification tool we

can use for our trace model. The use of computation
slicing abstraction technique for temporal logic property
verification is the most significant aspect of POTA and
constitutes the analyzer module.

To the best of our knowledge, there did not exist tools
that implement efficient algorithms (polynomial in the
number of processes) to detect predicates that contain
typical safety and liveness properties of hardware.

All experiments were performed on a 1.4 Ghz Pentium
4 machine running Linux. We restricted the memory
usage to 512MB, but did not set a time limit. The two
performance metrics we measured are running time and
memory usage. In the case of slicing both metrics also
include the overhead of computing the slice. Further
experimental results can be obtained from the website
[29].

As experimental testbeds, we chose PCI bus and MSI
cache coherence protocols, and an SoC based on a PCI
backbone. This way we could stretch the verification al-
gorithms by incrementing both the complexity and the
number of processes in the systems, which also demon-
strates the effectiveness of the algorithms for very large
state spaces and complex designs. The protocol IPs are
taken from Texas97 benchmarks [2]. We do not consider
ISCAS benchmarks because meaningful safety and live-
ness properties are not available for them.

The MSI (Modified Shared Invalid) cache coherence
protocol is a protocol to maintain data consistency
among a number of caches connected to a central di-
rectory structure in a multi-processor system. The pro-
tocol is a directory based scheme in which individual
processes snoop on all other processors’ activities over
a shared directory. The property we checked on the
MSI protocol is the safety property, “two caches can-
not be in the modified state simultaneously”. Symbol-
ically, EF(modifiedi ∧modifiedj), where i and j are
cache identifiers. In the experiments, we drastically in-
creased the number of processor caches from 3 to 120.
The related time and memory usage is displayed in Fig-
ure 7. However, SPIN failed to complete verification for
number of caches beyond 10. Our technique successfully
and efficiently found bugs in the implementation with
very large number of caches connected to the MSI.

The PCI Local Bus is a high performance bus with
multiplexed address and data lines. It is used as an inter-
connect mechanism between peripheral controller com-
ponents or add-in boards and processor/memory sys-
tems. Our example contains an arbiter, and a parame-
terizable number of nodes that can act either as a master
or a target machine.

In the SoC based on the PCI backbone, we have
a parameterizable number of devices that are non-
deterministically sending requests to the arbiter for
accessing the bus as a master and interacting with
each other. The safety property that we verified is
“there cannot be two masters of the bus”. Symbol-
ically, EF(masteri ∧masterj), where i and j are de-
vice identifiers. The liveness property that we checked

8

Program Specification

Promela

Code

Analyzer

Translator

Slicer

Translator

Predicate

Detector

Specification

Specification

Instrumentor

Execute

SPIN

Execute Program

Instrumentor

Execution Trace

Partial Order

Partial Order

Execution Trace
Program

Instrumented

Slice

Slice

Yes/Witness

No/Counterexample

Yes

No/Counterexample

Figure 6: Overview of POTA Architecture

is that “all requests for the bus would be eventu-
ally be processed”. The negation of the property is
EF(requesti ∧ EG(¬grantedi)), where i is a device iden-
tifier. For this experiment, we have varied the number
of nodes from 10 to 100 for the safety property and from
10 to 200 for the liveness property. The reason for the
less number of nodes in the safety property experiments
is that the property size is larger in this case (that is,
every possible combination of nodes i and j exists in the
property). The related time and memory usage is dis-
played in Figure 8 and Figure 9 for safety and liveness
properties, respectively. SPIN again failed to complete
verification for number of nodes beyond 20 and 14, re-
spectively.

20 40 60 80 100 120

0
20

0
40

0
60

0
80

0
10

00

number of processes

Ti
m

e(
s)

20 40 60 80 100 120

0
10

20
30

40

number of processes

M
em

or
y(

M
B

)

Figure 7: MSI verification results with POTA, SPIN runs
out of memory for > 10 processes

9 Conclusions and Future Work

For large and complex designs, temporal logic slicing has
proved to be a very effective technique for formal verifica-
tion. We have demonstrated that it can find bugs, which
cannot be found using other techniques. The true power

20 40 60 80 100

0
10

0
30

0
50

0
70

0

number of processes

Ti
m

e(
s)

20 40 60 80 100

0
5

10
15

20
25

number of processes

M
em

or
y(

M
B

)
Figure 8: SoC safety verification results with POTA, SPIN
runs out of memory for > 20 processes

50 100 150 200

0
20

0
40

0
60

0
80

0
10

00

number of processes

Ti
m

e(
s)

50 100 150 200

0
10

20
30

40
50

60

number of processes

M
em

or
y(

M
B

)

Figure 9: SoC liveness verification results with POTA, SPIN
runs out of memory for > 14 processes

of our technique comes from the exponential reduction
of state spaces using polynomial-time slicing abstraction
and polynomial-time property detection. Our initial ex-
perimental results show a lot of promise of the proposed
technique with verification of complex SoCs.

In the future we plan to enhance our technique by (a)

9

exploring coverage metrics for execution traces in order
to enhance the effectiveness of our approach, (b) incor-
porating multiple clock hardware designs, and (c) de-
veloping hierarchical slicing abstraction techniques for
property checking.

References
[1] A. Aharon, A. Bar-David, B. Dorfman, E. Gofman, M. Lei-

bowitz, and V. Schwatrzburd. Verification of the IBM RISC
System/6000 by a dynamic pseudorandom test program gen-
erator. In IBM Systems Journal, volume 30, 1991.

[2] Texas97 Verification Benchmarks. Examples of HW Verifi-
cation using VIS. 1997. Available from VIS website.

[3] J. Bhadra and N. Krishnamurthy. Automatic Generation of
Design Constraints in Verifying High Performance Embedded
Dynamic Circuits. In International Test Conference (ITC),
2002.

[4] R. S. Boyer and J S. Moore. A Computational Logic. Aca-
demic Press, 1979.

[5] E. M. Clarke and E. A. Emerson. Design and Synthesis of
Synchronization Skeletons using Branching Time Temporal
Logic. In Proceedings of the Workshop on Logics of Programs,
volume 131 of Lecture Notes in Computer Science, Yorktown
Heights, New York, May 1981.

[6] E. M. Clarke, M. Fujita, P. S. Rajan, T. Reps, S. Shankar, ,
and T. Teitelbaum. Program Slicing of Hardware Description
Languages . In Proc. Conf. on Correct Hardware Design and
Verif. Method, 1999.

[7] B. A. Davey and H. A. Priestley. Introduction to Lattices and
Order. Cambridge University Press, Cambridge, UK, 1990.

[8] Y. Deng, S. Kothari, and Y. Namara. Program Slice Browser
. In Proc. of the Intl. Workshop on Program Comprehension,
2001.

[9] K. B. Gallagher and J. R. Lyle. Using Program Slicing in Soft-
ware Maintenance. In IEEE Trans. on Software Engineering,
volume 17, 1991.

[10] V. K. Garg. Algorithmic Combinatorics based on Slicing
Posets. In Proceedings of the 22nd Conference on the Founda-
tions of Software Technology and Theoretical Computer Sci-
ence (FSTTCS), Kanpur, India, 2002.

[11] V. K. Garg and N. Mittal. On Slicing a Distributed Compu-
tation. In Proceedings of the 21st IEEE International Con-
ference on Distributed Computing Systems (ICDCS), pages
322–329, Phoenix, Arizona, April 2001.

[12] P. Godefroid and P. Wolper. A partial approach to model
checking. In Proceedings of the 6th IEEE Symposium on Logic
in Computer Science, pages 406–415, 1991.

[13] K. Havelund and G. Rosu. Monitoring Java Programs with
Java PathExplorer. In Proceedings of the 1st International
Workshop Runtime Verification (RV), volume 55 of ENTCS,
2001.

[14] G.J. Holzmann. The model checker spin. IEEE Transactions
on Software Engineering, 23(5):279–295, May 1997.

[15] S. Ichinose, M. Iwaihara, and H. Yasuura. Program Slicing
on VHDL Descriptions and Its Evaluation. In IEICE Trans.
Fund., volume E81-A, 1988.

[16] Synopsys Inc. Synopsys VERA Datashee. on the Synopsys
website.

[17] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan.
Java-MaC: a Run-time Assurance Tool for Java Programs.
In Proceedings of the 1st International Workshop Runtime
Verification (RV), volume 55 of ENTCS, 2001.

[18] L. Lamport. Time, Clocks, and the Ordering of Events in a
Distributed System. Communications of the ACM (CACM),
21(7):558–565, July 1978.

[19] F. Lanubile and G. Visaggio. Extracting Reusable Functions
by Flow Graph-Based Program Slicing. In IEEE Trans. on
Software Engg, volume 23, 1997.

[20] J. R. Lyle and K. B. Gallagher. A Program Decomposition
Scheme with Applications to Software Modification and Test-
ing. In Proc. of the Hawaii Intl. Conf. on System Sciences,
volume 2, 1989.

[21] K. L. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993.

[22] N. Mittal and V. K. Garg. Computation Slicing: Techniques
and Theory. In Proceedings of the Symposium on Distributed
Computing (DISC), pages 78–92, Lisbon, Portugal, October
2001.

[23] N.Mittal, A. Sen, V. K. Garg, and R. Atreya. Finding Satisfy-
ing Global States: All for One and One for All. In Proceedings
of the 18th International Parallel and Distributed Processing
Symposium (IPDPS), Santa Fe, New Mexico, April 2004.

[24] M. H. Nodine, M. Bose, K. G. Davis, and W. R. Jurasz. An
effective test generation methodology for System-on-Chips. In
Workshop on Microprocessor Test and Verification (MTV),
2002.

[25] D. Peled. All from One, One for All: On Model Checking
Using Representatives. In Proceedings of the 5th Interna-
tional Conference on Computer-Aided Verification (CAV),
pages 409–423, Berlin, Heidelberg, 1993.

[26] S. Cox and M. Glasser and W. Grundmann and C. Norris Ip
and W. Paulsen and J. L. Pierce and J. Rose and D. Shea and
K. Whiting. Creating a C++ library for Transaction-Based
Test Bench Authoring. In Forum in Design Languages, 2001.

[27] A. Sen and V. K. Garg. Detecting Temporal Logic Pred-
icates on the Happened-Before Model. In Proceedings of
the 16th International Parallel and Distributed Processing
Symposium (IPDPS), Fort Lauderdale, Florida, April 2002.

[28] A. Sen and V. K. Garg. Detecting Temporal Logic Predicates
in Distributed Programs Using Computation Slicing. In Pro-
ceedings of the 7th International Conference on Principles
of Distributed Systems (OPODIS), December 2003.

[29] A. Sen and V. K. Garg. Partial Or-
der Trace Analyzer (POTA). 2003.
http://maple.ece.utexas.edu/˜sen/POTA.html.

[30] A. Sen and V. K. Garg. Partial Order Trace Analyzer (POTA)
for Distributed Programs. In Proceedings of the 3rd Interna-
tional Workshop Runtime Verification (RV), volume 89 of
Electronic Notes in Theoretical Computer Science, 2003.

[31] K. Sen, G. Rosu, and G. Agha. Runtime Safety Analysis of
Multithreaded Programs. In Proceedings of the Symposium
on the Foundations of Software Engineering (FSE), 2003.

[32] Forte Design System. QuickBench Verification Suite
Overview. on the Forte website.

[33] Verisity Design Systems. Spec-Based Verification - A New
Methodology for Functional Verification of Systems/ASICs.
Whitepaper on the Verisity website.

[34] A. Valmari. A stubborn attack on state explosion. In Proceed-
ings of the 3rd International Conference on Computer-Aided
Verification (CAV), volume 531 of Lecture Notes in Computer
Science, pages 156–165, Berlin, Germany, 1991.

[35] V. M. Vedula, J. Bhadra, J. A. Abraham, , and R. Tupuri. A
Hierarchical Test Generation Approach Using Program Slic-
ing Techniques on Hardware Description Language. In Jour-
nal of Electronic Testing and Test Automation (JETTA),
2003.

[36] M. Weiser. Programmers Use Slices when Debugging. Com-
munications of the ACM (CACM), 25(7):446–452, 1982.

10

