
Chapter 10

Global Properties

10.1 Introduction

In this chapter, we introduce another useful tool for monitoring distributed computations. A distributed
computation is generally monitored to detect if the system has reached a global state satisfying a certain
property. For example, a token ring system may be monitored for the loss of the token. A distributed
database system may be monitored for deadlocks. The global snapshot algorithm discussed in Chapter 9
can be used to detect a stable predicate in a distributed computation. To define stable predicates, we use
the notion of the reachability of one global state from another. For two consistent global states G and H,
we say that G ≤ H if H is reachable from G. A predicate B is stable iff

∀G,H : G ≤ H : B(G) ⇒ B(H)

In other words, a property B is stable if once it becomes true, it stays true. Some examples of stable
properties are deadlock, termination, and loss of a token. Once a system has deadlocked or terminated, it
remains in that state. A simple algorithm to detect a stable property is as follows. Compute a consistent
global state. If the property B is true in that global state, then we are done. Otherwise, we repeat the
process after some period of time. It is easily seen that if the stable property ever becomes true, the
algorithm will detect it. Conversely, if the algorithm detects that some stable property B is true, then the
property must have become true in the past (and is therefore also true currently).

Formally, if the global snapshot computation was started in the global state Gi, the algorithm finished
by the global state Gf , and the recorded state is G∗, then the following is true:

1. B(G∗) ⇒ B(Gf)

2. ¬B(G∗) ⇒ ¬B(Gi)

Note that the converses of statements 1 and 2 may not hold.
At this point it is important to observe some limitations of the snapshot algorithm for detection of

global properties:

• The algorithm is not useful for unstable predicates. An unstable predicate may turn true only between
two snapshots.

• In many applications (such as debugging), it is desirable to compute the least global state that
satisfies some given predicate. The snapshot algorithm cannot be used for this purpose.

151

152 CHAPTER 10. GLOBAL PROPERTIES

• The algorithm may result in an excessive overhead depending on the frequency of snapshots. A
process in Chandy and Lamport’s algorithm is forced to take a local snapshot on receiving a marker
even if it knows that the global snapshot that includes its local snapshot cannot satisfy the predicate
being detected. For example, suppose that the property being detected is termination. Clearly, if a
process is not terminated, then the entire system could not have terminated. In this case, computation
of the global snapshot is a wasted effort.

10.2 Unstable Predicate Detection

In this section, we discuss an algorithm to detect unstable predicates. We will assume that the given global
predicate, say, B, is constructed from local predicates using boolean connectives. We first show that B
can be detected using an algorithm that can detect q, where q is a pure conjunction of local predicates.
The predicate B can be rewritten in its disjunctive normal form. Thus

B = q1 ∨ . . . ∨ qk k ≥ 1

where each qi is a pure conjunction of local predicates. Next, observe that a global cut satisfies B if and
only if it satisfies at least one of the qi’s. Thus the problem of detecting B is reduced to solving k problems
of detecting q, where q is a pure conjunction of local predicates.

As an example, consider a distributed program in which x, y, and z are in three different processes.
Then,

even(x) ∧ ((y < 0) ∨ (z > 6))

can be rewritten as
(even(x) ∧ (y < 0)) ∨ (even(x) ∧ (z > 6))

where each disjunct is a conjunctive predicate.
Note that even if the global predicate is not a boolean expression of local predicates, but is satisfied by

a finite number of possible global states, it can also be rewritten as a disjunction of conjunctive predicates.
For example, consider the predicate (x = y), where x and y are in different processes. (x = y) is not a
local predicate because it depends on both processes. However, if we know that x and y can take values
{0, 1} only, we can rewrite the preceding expression as follows:

((x = 0) ∧ (y = 0)) ∨ ((x = 1) ∧ (y = 1)).

Each of the disjuncts in this expression is a conjunctive predicate.
In this chapter we study methods to detect global predicates that are conjunctions of local predicates.

We have emphasized conjunctive predicates and not disjunctive predicates. The reason is that disjunctive
predicates are quite simple to detect. To detect a disjunctive predicate l1 ∨ l2 ∨ . . . ∨ lN , where li denotes
a local predicate in the process Pi, it is sufficient for the process Pi to monitor li. If any of the processes
finds its local predicate true, then the disjunctive predicate is true.

Formally, we define a weak conjunctive predicate (WCP) to be true for a given computation if and only
if there exists a consistent global cut in that run in which all conjuncts are true. Intuitively, detecting a
weak conjunctive predicate is generally useful when one is interested in detecting a combination of states
that is unsafe. For example, violation of mutual exclusion for a two-process system can be written as “P1

is in the critical section and P2 is in the critical section.” It is necessary and sufficient to find a set of
incomparable states, one on each process in which local predicates are true, to detect a weak conjunctive
predicate. We now present an algorithm to do so. This algorithm finds the least consistent cut for which
a WCP is true.

10.2. UNSTABLE PREDICATE DETECTION 153

In this algorithm, one process serves as a checker. All other processes involved in detecting the WCP are
referred to as application processes. Each application process checks for local predicates. It also maintains
the vector clock algorithm. Whenever the local predicate of a process becomes true for the first time since
the most recently sent message (or the beginning of the trace), it generates a debug message containing its
local timestamp vector and sends it to the checker process.

Note that a process is not required to send its vector clock every time the local predicate is detected.
If two local states, say, s and t, on the same process are separated only by internal events, then they are
indistinguishable to other processes so far as consistency is concerned, that is, if u is a local state on some
other process, then s||u if and only if t||u. Thus it is sufficient to consider at most one local state between
two external events and the vector clock need not be sent if there has been no message activity since the
last time the vector clock was sent.

The checker process is responsible for searching for a consistent cut that satisfies the WCP by consider-
ing a sequence of candidate cuts. If the candidate cut either is not a consistent cut or does not satisfy some
term of the WCP, the checker can efficiently eliminate one of the states along the cut. The eliminated state
can never be part of a consistent cut that satisfies the WCP. The checker can then advance the cut by
considering the successor to one of the eliminated states on the cut. If the checker finds a cut for which no
state can be eliminated, then that cut satisfies the WCP and the detection algorithm halts. The algorithm
for the checker process is shown in Figure 10.1.

var
cut: array[1..n] of struct

v: array[1..n] of integer;
color: {red, green};

endstruct initially (∀i : cut[i].color = red);
detect: boolean initially false;

while (∃i : (cut[i].color = red)) do
if (q[i] = null) and Pi terminated then return false;
else cut[i].v := receive(q[i]);// advance the cut
paintState(i);

endwhile;

detect := true;

Figure 10.1: WCP detection algorithm—checker process.

The checker receives local snapshots from the other processes in the system. These messages are used
by the checker to create and maintain data structures that describe the global state of the system for the
current cut. The data structures are divided into two categories: queues of incoming messages and those
data structures that describe the state of the processes.

The queue of incoming messages is used to hold incoming local snapshots from application processes.
We require that messages from an individual process be received in FIFO order. We abstract the message-
passing system as a set of N FIFO queues, one for each process. We use the notation q[1 . . . N] to label
these queues in the algorithm.

The checker also maintains information describing one state from each process Pi. cut[i] represents
the state from Pi using the vector clock. Thus, cut[i][j] denotes the jth component of the vector clock
of cut[i]. The color[i] of a state cut[i] is either red or green and indicates whether the state has been

154 CHAPTER 10. GLOBAL PROPERTIES

eliminated in the current cut. A state is green only if it is concurrent with all other green states. A state
is red only if it cannot be part of a consistent cut that satisfies the WCP.

paintState(i)
cut[i].color := green;
for j := 1 to n do

if (cut[j].color = green) then
if (cut[i].v < cut[j].v) then cut[i].color := red;
else if (cut[j].v < cut[i].v) then cut[j].color := red;

endfor

Figure 10.2: Procedure paintState.

The aim of advancing the cut is to find a new candidate cut. However, we can advance the cut only
if we have eliminated at least one state along the current cut and if a message can be received from the
corresponding process. The data structures for the processes are updated to reflect the new cut. This is
done by the procedure paintState shown in Fig. 10.2. The parameter i is the index of the process from
which a local snapshot was most recently received. The color of cut[i] is temporarily set to green. It
may be necessary to change some green states to red to preserve the property that all green states are
mutually concurrent. Hence, we must compare the vector clock of cut[i] to each of the other green states.
Whenever the states are comparable, the smaller of the two is painted red.

Let N denote the number of processes involved in the WCP and m denote the maximum number of
messages sent or received by any process.

The main time complexity is involved in detecting the local predicates and time required to maintain
vector clocks. In the worst case, one debug message is generated for each program message sent or received,
so the worst-case message complexity is O(m). In addition, program messages have to include vector clocks.

The main space requirement of the checker process is the buffer for the local snapshots. Each local
snapshot consists of a vector clock that requires O(N) space. Since there are at most O(mN) local
snapshots, O(N2m) total space is required to hold the component of local snapshots devoted to vector
clocks. Therefore, the total amount of space required by the checker process is O(N2m).

We now discuss the time complexity of the checker process. Note that it takes only two comparisons
to check whether two vectors are concurrent. Hence, each invocation of paintState requires at most N
comparisons. This function is called at most once for each state, and there are at most mN states.
Therefore, at most N2m comparisons are required by the algorithm.

10.3 Application: Distributed Debugging

Assume that a programmer is interested in developing an application in which there is a leader or a
coordinator at all times. Since the leader has to perform more work than other nodes, the programmer
came up with the idea of circulating a token in the network and requiring that whichever node has the
token acts as the leader. We will assume that this is accomplished using the class CircToken discussed
in Chapter 8. Now, the programmer wants to ensure that his program is correct. He constructs the bad
condition as “there is no coordinator in the system.” This condition can be equivalently written as “P1

does not have the token, and P2 does not have the token,” and so on for all processes. To see if this
condition becomes true, the programmer must modify his program to send a vector clock to the sensor
whenever the local condition “does not have the token” becomes true.

10.4. A TOKEN-BASED ALGORITHM FOR DETECTING PREDICATES 155

When the programmer runs the program, he may discover that the global condition actually becomes
true, that is, there is a global state in which there is no coordinator in the system. This simple test
exposed the fallacy in the programmer’s thinking. The token may be in transit and at that time there is
no coordinator in the system.

We leave it for the reader to modify the circulating token application in which a process continues
to act as the leader until it receives an acknowledgment for the token. This solution assumes that the
application work correctly even if there are two processes acting as the leader temporarily.

10.4 A Token-Based Algorithm for Detecting Predicates

Up to this point we have described detection of WCP on the basis of a checker process. The checker process
in the vector-clock-based centralized algorithm requires O(N2m) time and space, where m is the number
of messages sent or received by any process and N is the number of processes over which the predicate is
defined. We now introduce token-based algorithms that distribute the computation and space requirements
of the detection procedure. The distributed algorithm has O(N2m) time, space, and message complexity,
distributed such that each process performs O(Nm) work.

We introduce a new set of N monitor processes. One monitor process is mated to each application
process. The application processes interact according to the distributed application. In addition, the
application processes send local snapshots to monitor processes. The monitor processes interact with each
other but do not send any information to the application processes.

var
// vector clock from the candidate state
candidate: array[1..n] of integer initially 0;

Upon receiving the token (G, color)
while (color[i] = red) do

receive candidate from application process Pi;
if (candidate[i] > G[i]) then

G[i] := candidate[i];
color[i] := green;

endif;
endwhile;
for j := 1 to n, (j ̸= i) do

if (candidate[j] ≥ G[j]) then
G[j] := candidate[j];
color[j] := red;

endif
endfor
if (∃j : color[j] = red) then send token to Mj ;
else detect := true;

Figure 10.3: Monitor process algorithm at Pi

The distributed WCP detection algorithm shown in Figure 10.3 uses a unique token. The token contains
two vectors. The first vector is labeled G. This vector defines the current candidate cut. If G[i] has the
value k, then state k from process Pi is part of the current candidate cut. Note that all states on the

156 CHAPTER 10. GLOBAL PROPERTIES

candidate cut satisfy local predicates. However, the states may not be mutually concurrent, that is, the
candidate cut may not be a consistent cut. The token is initialized with ∀i : G[i] = 0.

The second vector is labeled color, where color[i] indicates the color for the candidate state from
application process Pi. The color of a state can be either red or green. If color[i] equals red, then the state
(i, G[i]) and all its predecessors have been eliminated and can never satisfy the WCP. If color[i] = green,
then there is no state in G such that (i, G[i]) happened before that state. The token is initialized with
∀i : color[i] = red.

The token is sent to monitor process Mi only when color[i] = red. When it receives the token, Mi

waits to receive a new candidate state from Pi and then checks for violations of consistency conditions with
this new candidate. This activity is repeated until the candidate state does not causally precede any other
state on the candidate cut, that is, the candidate can be labeled green. Next, Mi examines the token to see
if any other states violate concurrency. If it finds any j such that (j,G[j]) happened before (i, G[i]), then
it makes color[j] red. Finally, if all states in G are green, that is, G is consistent, then Mi has detected
the WCP. Otherwise, Mi sends the token to a process whose color is red.

The implementation for the algorithm is given in Figure ??. It uses three types of messages. The
trueVC message is sent by the application process to the monitor process whenever the local predicate
becomes true in a message interval. This message includes the value of the vector clock when the local
predicate became true. This vector is stored in the queue q. The Token message denotes the token used
in the description of the algorithm. Whenever a monitor process receives the token, it invokes the method
handleToken described later. For simplicity of implementation, we send the G vector and the color vector
separately. The finished message from the application process indicates that it has ended and that there
will not be any more messages from it.

Let us now look at the handleToken method. The goal of the process is to make the entry color[i]

green. If there is no pending vector in the queue q, then the monitor process simply waits for either a
trueVC or a finished message to arrive. If there is no pending vector and the finished message has been
received, then we know that the global predicate can never be true and thus it is declared to be false
for this computation. If a vector, candidate, is found such that candidate[i] > G[i], then the global
cut is advanced to include candidate[i]. This advancement may result in color[j] becoming red if
candidate[j] ≥ G[j]. The method getRed determines the first process that has red color. If the array
color is completely green, getRed returns −1, and the global predicate is detected to be true. Otherwise,
the token is sent to the process returned by getRed.

Let us analyze the time complexity of the algorithm. It is easy to see that whenever a process receives
the token, it deletes at least one local state, that is, it receives at least one message from the application
process. Every time a state is eliminated, O(N) work is performed by the process with the token. There
are at most mN states; therefore, the total computation time for all processes is O(N2m). The work for
any process in the distributed algorithm is at most O(Nm). The analysis of message and space complexity
is left as an exercise (see Problem 10.4).

10.5 Problems

10.1. Show that it is sufficient to send the vector clock once after each message is sent irrespective of the
number of messages received.

10.2. Assume that the given global predicate is a simple conjunction of local predicates. Further assume
that the global predicate is stable. In this scenario, both Chandy and Lamport’s algorithm and the
weak conjunctive algorithm can be used to detect the global predicate. What are the advantages and
disadvantages of using each of them?

10.6. BIBLIOGRAPHIC REMARKS 157

10.3. Show that if the given weak conjunctive predicate has a conjunct from each of the processes, then
direct dependency clocks can be used instead of the vector clocks in the implementation of sensors.
Give an example showing that if there is a process that does not have any conjunct in the global
predicate, then direct dependency clocks cannot be used.

10.4. Show that the message complexity of the vector-clock-based distributed algorithm is O(mN), the bit
complexity (number of bits communicated) is O(N2m), and the space complexity is O(mN) entries
per process.

10.5. The main drawback of the single-token WCP detection algorithm is that it has no concurrency—a
monitor process is active only if it has the token. Design an algorithm that uses multiple tokens in
the system. [Hint: Partition the set of monitor processes into g groups and use one token-algorithm
for each group. Once there are no longer any red states from processes within the group, the token
is returned to a predetermined process (say, P0). When P0 has received all the tokens, it merges
the information in the g tokens to identify a new global cut. Some processes may not satisfy the
consistency condition for this new cut. If so, a token is sent into each group containing such a
process.]

10.6. Design a hierarchical algorithm to detect WCP based on ideas in the previous exercise.

10.7. Show the following properties of the vector-clock-based algorithm for WCP detection: for any i,
1. G[i] ̸= 0 ∧ color[i] = red ⇒ ∃j : j ̸= i : (i, G[i]) → (j,G[j]);
2. color[i] = green ⇒ ∀k : (i, G[i]) ̸→ (k,G[k]);
3. (color[i] = green) ∧ (color[j] = green) ⇒ (i, G[i])∥(j,G[j]).
4. If (color[i] = red), then there is no global cut satisfying the WCP which includes (i, G[i]).

10.8. Show the following claim for the vector-clock-based distributed WCP detection algorithm: The flag
detect is true with G if and only if G is the smallest global state that satisfies the WCP.

*10.9. (due to Hurfin et al.[HMRS95]) Assume that every process communicates with every other process
directly or indirectly infinitely often. Design a distributed algorithm in which information is piggy-
backed on existing program messages to detect a conjunctive predicate under this assumption, that
is, the algorithm does not use any additional messages for detection purposes.

10.6 Bibliographic Remarks

Detection of conjunctive properties was first discussed by Garg and Waldecker[GW92]. Distributed online
algorithms for detecting conjunctive predicates were first presented by Garg and Chase [GC95]. Hurfin
et al.[HMRS95] were the first to give a distributed algorithm that does not use any additional messages
for predicate detection. Their algorithm piggybacks additional information on program messages to detect
conjunctive predicates. Distributed algorithms for offline evaluation of global predicates are also discussed
in Venkatesan and Dathan [VD92]. Stoller and Schneider [SS95] have shown how Cooper and Marzullo’s
algorithm can be integrated with that of Garg and Waldecker to detect conjunction of global predicates.
Lower bounds on these algorithms were discussed by Garg [Gar92].

10.7 Implementation in Java

We will implement the interface Sensor, which abstracts the functionality of a global predicate evaluation
algorithm. This interface is shown below:

158 CHAPTER 10. GLOBAL PROPERTIES

1 public interface Sensor extends MsgHandler {
2 void l o ca lPred i ca t eTrue (VectorClock vc) ;
3 }

Any application that uses Sensor is required to call localPredicateTrue whenever its local predicate
becomes true and provide its VectorClock. It also needs to implement the following interface:

1 public interface SensorUser extends MsgHandler {
2 void g loba lPred i ca teTrue (int G[]) ;
3 void g l oba lP r ed i c a t eFa l s e (int pid) ;
4 }

The class that implements Sensor calls these methods when the value of the global predicate becomes
known. If the global predicate is true in a consistent global state G, then the vector clock for the global
state is passed as a parameter to the method. If the global predicate is false, then the process id of the
process that terminated is passed as a parameter.

10.7. IMPLEMENTATION IN JAVA 159

10.7.1 A Centralized Algorithm for Detecting Weak Conjunctive Predicates

1 import java . u t i l . ∗ ;
2 // import s t a t i c myconst . Color ;
3 public class CentSensor extends Process implements Runnable , Sensor {
4 f ina l stat ic int red = 0 , green = 1 ;
5 LinkedLis t q [] ; // q [i] s t o r e s v ec t o r timestamps from proces s i
6 int cut [] [] , c o l o r [] , g s t a t e [] ;
7 boolean f i n i s h e d [] ; // proces s i f i n i s h e d
8 SensorUser app ; f ina l int checker = Symbols . coo rd ina to r ;
9 public CentSensor (VCLinker initComm , SensorUser app) {

10 super (initComm) ;
11 cut = new int [N] [N] ; q = new LinkedLis t [N] ;
12 c o l o r = new int [N] ; g s t a t e = new int [N] ; f i n i s h e d = new boolean [N] ;
13 for (int i = 0 ; i < N; i++) {
14 q [i] = new LinkedLis t () ; c o l o r [i] = red ; f i n i s h e d [i] = fa l se ;
15 }
16 this . app = app ;
17 i f (myId == checker) new Thread (this) . s t a r t () ;
18 }
19 public synchronized void l o ca lPred i ca t eTrue (VectorClock vc){
20 i f (myId == checker)
21 handleMsg (new Msg(0 ,0 , ”trueVC” , vc . t oS t r i ng ()) , 0 , ”trueVC”) ;
22 else
23 ((VCLinker)comm) . simpleSendMsg (checker , ”trueVC” , vc . t oS t r i ng ()) ;
24 }
25 public synchronized void run () {
26 int i = Ut i l . searchArray (co lo r , red) ;
27 while (i != −1) {
28 while (q [i] . isEmpty () && ! f i n i s h e d [i]) myWait () ;
29 i f (f i n i s h e d [i]) {
30 app . g l oba lP r ed i c a t eFa l s e (i) ;
31 return ;
32 }
33 cut [i] = (int []) q [i] . removeFirst () ;
34 pa in tS ta t e (i) ;
35 i = Ut i l . searchArray (co lo r , red) ;
36 }
37 for (int j = 0 ; j < N; j++) g s t a t e [j] = cut [j] [j] ;
38 app . g loba lPred i ca teTrue (g s t a t e) ;
39 }
40 public synchronized void handleMsg (Msg m, int src , S t r ing tag){
41 i f (tag . equa l s (”trueVC”)) {
42 int [] r ece iveTag = new int [N] ;
43 Ut i l . readArray (m. getMessage () , rece iveTag) ;
44 q [s r c] . add (rece iveTag) ;
45 } else i f (tag . equa l s (” f i n i s h e d ”))
46 f i n i s h e d [s r c] = true ;
47 }
48 void pa in tSta te (int i) {
49 c o l o r [i] = green ;
50 for (int j = 0 ; j < N; j++)
51 i f (c o l o r [j] == green)
52 i f (Ut i l . lessThan (cut [i] , cut [j])) c o l o r [i] = red ;
53 else i f (Ut i l . lessThan (cut [j] , cut [i])) c o l o r [j] = red ;
54 }
55 }

160 CHAPTER 10. GLOBAL PROPERTIES

10.7.2 An Application of the Weak Conjunctive Predicate Detection Algorithm

1 public class SensorCircToken extends CircToken
2 implements MsgHandler , SensorUser {
3 VCLinker comm;
4 Sensor checker ;
5 int coo rd ina to r ;
6 int algoCode ;
7 public SensorCircToken (VCLinker comm, int coord inator , int algoCode){
8 super (comm, coo rd ina to r) ;
9 this . comm = comm;

10 this . c oo rd ina to r = coord ina to r ;
11 this . algoCode = algoCode ;
12 }
13 public void i n i t i a t e () {
14 i f (algoCode == 0)
15 checker = new CentSensor (comm, this) ;
16 else
17 checker = new DistSensor (comm, this) ;
18 i f (! haveToken) checker . l o ca lPr ed i ca t eTrue (comm. vc) ;
19 super . i n i t i a t e () ;
20 }
21 public synchronized void sendToken () {
22 super . sendToken () ;
23 i f (! haveToken) checker . l o ca lPr ed i ca t eTrue (comm. vc) ;
24 }
25 public synchronized void handleMsg (Msg m, int src , S t r ing tag){
26 checker . handleMsg (m, src , tag) ;
27 super . handleMsg (m, src , tag) ;
28 }
29 public void g loba lPred i ca teTrue (int v []) {
30 System . out . p r i n t l n (”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗”) ;
31 System . out . p r i n t l n (” Pred i ca te t rue at : ” + Ut i l . wr iteArray (v)) ;
32 }
33 public void g l oba lP r ed i c a t eFa l s e (int pid){
34 System . out . p r i n t l n (”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗”) ;
35 System . out . p r i n t l n (” Pred i ca te f a l s e . Proc ” + pid + ” f i n i s h e d ”) ;
36 }
37 }

1 public class SensorTester {
2 public stat ic void main (S t r ing [] a rgs) throws Exception {
3 VCLinker comm = new VCLinker (args) ;
4 int algoCode = In t eg e r . pa r s e In t (args [3]) ;
5 SensorCircToken sp = new SensorCircToken (
6 comm, Symbols . coord inator , algoCode) ;
7 sp . i n i t i a t e () ;
8 sp . s t a r t L i s t e n i n g () ;
9 }

10 }

10.7. IMPLEMENTATION IN JAVA 161

10.7.3 Token-based Weak Conjunctive Predicate Detection Algorithm

1 import java . u t i l . ∗ ;
2 public class DistSensor extends Process implements Runnable , Sensor {
3 f ina l stat ic int red = 0 , green = 1 ;
4 int candidate [] , c o l o r [] ,G [] ;
5 boolean f i n i s h e d = false , haveToken = fa l se ;
6 L inkedLis t q = new LinkedLis t () ;
7 SensorUser app ;
8 public DistSensor (VCLinker initComm , SensorUser app) {
9 super (initComm) ; this . app = app ;

10 candidate = new int [N] ; c o l o r = new int [N] ; G = new int [N] ;
11 Arrays . f i l l (co lo r , red) ; Arrays . f i l l (G, 0) ;
12 i f (myId == Symbols . coo rd ina to r) haveToken=true ;
13 new Thread (this) . s t a r t () ;
14 }
15 public synchronized void run (){
16 while (! f i n i s h e d) {
17 while (! haveToken) myWait () ;
18 handleToken () ;
19 }
20 }
21 public synchronized void handleToken () {
22 while (c o l o r [myId] == red) {
23 while (q . isEmpty () && ! f i n i s h e d) myWait () ;
24 i f (q . isEmpty () && f i n i s h e d) {
25 app . g l oba lP r ed i c a t eFa l s e (myId) ; return ;
26 }
27 candidate = (int []) q . removeFirst () ;
28 i f (candidate [myId] > G[myId]) {
29 G[myId] = candidate [myId] ; c o l o r [myId] = green ;
30 }
31 }
32 for (int j = 0 ; j < N; j++)
33 i f ((j != myId) && (candidate [j] >= G[j])) {
34 G[j] = candidate [j] ; c o l o r [j] = red ;
35 }
36 int j = Ut i l . searchArray (co lo r , red) ;
37 i f (j != −1) sendToken (j) ;
38 else { app . g loba lPred i ca teTrue (G) ; f i n i s h e d = true ; }
39 }
40 public synchronized void handleMsg (Msg m, int src , S t r ing tag) {
41 i f (tag . equa l s (”TokenG”)) Ut i l . readArray (m. getMessage () , G) ;
42 else i f (tag . equa l s (”Tokencolor ”)) {
43 Ut i l . readArray (m. getMessage () , c o l o r) ;
44 haveToken = true ;
45 } else i f (tag . equa l s (” f i n i s h e d ”)) f i n i s h e d = true ;
46 }
47 void sendToken (int j) {
48 ((VCLinker) comm) . simpleSendMsg (j , ”TokenG” , Ut i l . wr iteArray (G)) ;
49 ((VCLinker) comm) . simpleSendMsg (j , ”Tokencolor ” , U t i l . wr iteArray (c o l o r)) ;
50 haveToken = fa l se ;
51 }
52 public synchronized void l o ca lPred i ca t eTrue (VectorClock vc) {
53 q . add (vc . v) ; n o t i f yA l l () ;
54 }
55 }

162 CHAPTER 10. GLOBAL PROPERTIES

