
Chapter 12

Message Ordering

12.1 Introduction

Distributed programs are difficult to design and test because of their nondeterministic nature, that is, a
distributed program may exhibit multiple behaviors on the same external input. This nondeterminism
is caused by reordering of messages in different executions. It is sometimes desirable to control this
nondeterminism by restricting the possible message ordering in a system.

P1

P2

P3

Figure 12.1: A FIFO computation that is not causally ordered

A fully asynchronous computation does not have any restriction on the message ordering. It permits
maximum concurrency, but algorithms based on fully asynchronous communication can be difficult to
design because they are required to work for all ordering of the messages. Therefore, many systems restrict
message delivery to a FIFO order. This results in simplicity in design of distributed algorithms based on
the FIFO assumption. For example, we used the FIFO assumption in Lamport’s algorithm for mutual
exclusion and Chandy and Lamport’s algorithm for a global snapshot.

A FIFO-ordered computation is implemented generally by using sequence numbers for messages. How-
ever, observe that by using FIFO ordering, a program loses some of its concurrency. When a message is
received out of order, its processing must be delayed.

A stronger requirement than FIFO is that of causal ordering. Intuitively, causal ordering requires that
a single message not be overtaken by a sequence of messages. For example, the computation in Figure 12.1
satisfies FIFO ordering of messages but does not satisfy causal ordering. A sequence of messages from P1

to P2 and from P2 to P3 overtakes a message from P1 to P3 in this example. Causal ordering of messages
is useful in many contexts. In Chapter 8, we considered the problem of mutual exclusion. Assume that

175

176 CHAPTER 12. MESSAGE ORDERING

we use a centralized coordinator for granting requests to the access of the critical section. The fairness
property requires that the requests be honored in the order they are made (and not in the order they are
received). It is easy to see that if the underlying system guaranteed a causal ordering of messages, then
the order in which requests are received cannot violate the happened-before order in which they are made.
For another example of the usefulness of causal ordering, see Problem 12.1.

The relationship among various message orderings can be formally specified on the basis of the happened-
before relation. For convenience, we denote the receive event corresponding to the send event si by ri and
vice versa. The message is represented as (si, ri). We also use si ❀ ri to denote that ri is the receive event
corresponding to the send event si. Finally, we use e ≺ f to denote that e occurred before f in the same
process.

Now, FIFO and causally ordered computations can be defined as follows:

FIFO: Any two messages from a process Pi to Pj are received in the same order as they were sent.
Formally, let s1 and s2 be any two send events and r1 and r2 be the corresponding receive events.
Then

s1 ≺ s2 ⇒ ¬(r2 ≺ r1) (FIFO)

Causally Ordered: Let any two send events s1 and s2 in a distributed computation be related such that
the first send happened before the second send. Then, the second message cannot be received before
the first message by any process. Formally, this can be expressed as

s1 → s2 ⇒ ¬(r2 ≺ r1) (CO)

12.2 Causal Ordering

Pi::
var

M :array[1..N , 1..N] of integer initially ∀j, k : M [j, k] = 0;

To send a message to Pj :
M [i, j] := M [i, j] + 1;
piggyback M as part of the message;

To receive a message with matrix W from Pj

enabled if (W [j, i] = M [j, i] + 1) ∧ (∀k ̸= j : M [k, i] ≥ W [k, i])
M := max(M,W);

Figure 12.2: An algorithm for causal ordering of messages at Pi

We now describe an algorithm to ensure causal ordering of messages. We assume that a process never
sends any message to itself. Each process maintains a matrix M of integers. The entry M [j, k] at Pi

records the number of messages sent by process Pj to process Pk as known by process Pi. The algorithm
for process Pi is given in Figure 12.2. Whenever a message is sent from Pi to Pj , first the entry M [i, j] is
incremented to reflect the fact that one more message is known to be sent from Pi to Pj . The matrix M is
piggybacked with the message. Whenever messages are received by the communication system at Pi, they

12.3. TOTAL ORDER FOR MULTICAST MESSAGES 177

are first checked for eligibility before delivery to Pi. If a message is not eligible, it is simply buffered until
it becomes eligible. A message m from Pj is eligible to be received when

1. The entry W [j, i] is one more than the entry M [j, i] that records the number of messages received by
Pi from Pj .

2. The number of messages sent from any other process Pk(k ̸= j) to Pi, as indicated by the matrix
W in the message, is less than or equal to the number recorded in the matrix M . Formally, this
condition is

∀k ̸= j : M [k, i] ≥ W [k, i]

If for some k, W [k, i] > M [k, i], then there is a message that was sent in the causal history of the
message and has not arrived yet. Therefore, Pi must wait for that message to be delivered before it
can accept the message m.

Whenever a message is accepted for delivery, the information at matrix M is updated with the matrix
W received in the message.

12.3 Total Order for Multicast Messages

In applications where a message may be sent to multiple processes, it is often desirable that all messages
be delivered in the same order at all processes. For example, consider a server that is replicated at multiple
sites for fault tolerance. If a client makes a request to the server, then all copies of the server should handle
requests in the same order. The total ordering of messages can be formally specified as follows:

There exists a total order on all messages in the system such that every process receives messages in
an order that is consistent with the total order. (Total Order)

In this section we discuss algorithms for the total ordering of messages. Observe that the property of
total order of messages does not imply causal or even FIFO property of messages. Consider the case when
P sends messages m1 followed by m2. If all processes receive m2 before m1, then the total order is satisfied
even though FIFO is not. If messages satisfy causal order in addition to the total order, then we will call
this ordering of messages causal total order.

The algorithms for ensuring total order are very similar to mutual exclusion algorithms. After all,
mutual exclusion algorithms ensure that all accesses to the critical section form a total order. If we ensure
that messages are received in the “critical section” order, then we are done. We now discuss centralized
and distributed algorithms for causal total ordering of messages.

12.3.1 Centralized Algorithm

We first modify the centralized algorithm for mutual exclusion to guarantee causal total ordering of mes-
sages. We assume that channels between the coordinator process and other processes satisfy the FIFO
property. A process that wants to multicast a message simply sends it to the coordinator. This step
corresponds to requesting the lock in the mutual exclusion algorithm. Furthermore, in that algorithm, the
coordinator maintains a request queue, and whenever a request by a process becomes eligible, it sends the
lock to that process. In the algorithm for total ordering of messages, the coordinator will simply multicast
the message corresponding to the request instead of sending the lock. Since all multicast messages originate
from the coordinator, and the channels are FIFO, the total-order property holds.

In this centralized algorithm, the coordinator has to perform more work than the other nodes. One way
to perform load balancing over time is by suitably rotating the responsibility of the coordinator among
processes. This can be achieved through the use of a token. The token assigns sequence numbers to
broadcasts, and messages are delivered only in this sequence order.

178 CHAPTER 12. MESSAGE ORDERING

12.3.2 Lamport’s Algorithm for Total Order

We modify Lamport’s algorithm for mutual exclusion to derive an algorithm for total ordering of messages.
As in that algorithm, we assume FIFO ordering of messages. We also assume that a message is broadcast
to all processes. To simulate multicast, a process can simply ignore a message that is not meant for it.
Each process maintains a logical clock (used for timestamps) and a queue (used for storing undelivered
messages). The algorithm is given by the following rules:

• To send a broadcast message, a process sends a timestamped message to all processes including itself.
This step corresponds to requesting the critical section in the mutual exclusion algorithm.

• On receiving a broadcast message, the message and its timestamp are stored in the queue, and a
timestamped acknowledgment is returned.

• A process can mark a message as deliverable if its timestamp is smallest in the request queue and the
process has received acknowledgments from all other processes. This step corresponds to executing
the critical section for the mutual exclusion algorithm.

• Once a process finds a message to be deliverable, it informs all other processes that the message is
deliverable. This step corresponds to sending the release message in the mutual exclusion algorithm.
On receiving this notification, the corresponding message is delivered.

In this algorithm, the total order of messages delivered is given by the logical clock of send events of the
broadcast messages. Since logical clocks preserve the happened-before order, the algorithm also satisfies
the causal order.

12.3.3 Skeen’s Algorithm

Lamport’s algorithm is wasteful when most messages are multicast and not broadcast. Skeen’s algorithm
requires messages proportional to the number of recipients of a message and not the total number of
processes in the system.

The distributed algorithm of Skeen also assumes that processes have access to Lamport’s logical clock.
The algorithm is given by the following rules:

• To send a multicast message, a process sends a timestamped message to all the destination processes.

• On receiving a message, a process marks it as undeliverable and sends the value of the logical clock
as the proposed timestamp to the initiator.

• When the initiator has received all the proposed timestamps, it takes the maximum of all proposals
and assigns that timestamp as the final timestamp to that message. This value is sent to all the
destinations.

• On receiving the final timestamp of a message, it is marked as deliverable.

• A deliverable message is delivered to the site if it has the smallest timestamp in the message queue.

In this algorithm, the total order of message delivery is given by the final timestamps of the messages.

12.4. IMPLEMENTATION IN JAVA 179

12.3.4 Application: Replicated State Machines

Assume that we are interested in providing a fault-tolerant service in a distributed system. The service
is expected to process requests and provide outputs. We would also like the service to tolerate up to t
faults where each fault corresponds to a crash of a processor. We can build such a service using t + 1
processors in a distributed system as follows. We structure our service as a deterministic state machine.
This means that if each nonfaulty processor starts in the same initial state and executes the requests in
the same order, then each will produce the same output. Thus, by combining outputs of the collection,
we can get a t fault-tolerant service. The key requirement for implementation is that all state machines
process all requests in the same order. The total ordering of messages satisfies this property.

12.4 Implementation in Java

The structure of a causal message is shown in Figure 12.3, and the Java implementation of the causal
ordering algorithm is shown in Figure 12.4. The causal ordering algorithm extends the class Linker to
include the matrix in outgoing messages. The method sendMsg increments the entry M [myId][destId] to
account for this message and attaches the matrix M with it. The method multicast is used for sending
a message to multiple sites. In this method, we first increment M [myId][destId] for all destId in the list
of destinations. It is this matrix that is sent with every message.

The method okayToReceive determines whether a message can be delivered to the process. The
method receiveMsg uses two LinkedList for storing messages. The deliverQ stores all messages that
are deliverable to the application layer. The pendingQ stores all messages that are received but are not
deliverable. When the application layer asks for a message, the pendingQ is traversed first to check whether
some messages are deliverable. Deliverable messages are moved from the pendingQ to the deliveryQ by
the method checkPendingQ. If deliveryQ is empty, then we wait for a message to arrive by calling the
blocking method super.receiveMsg. On receiving this message, it is put in the pendingQ and the method
checkPendingQ is invoked again. If deliveryQ is nonempty, the first message from that queue is delivered
and the matrix M updated to record the delivery of this message.

1 public class CausalMessage {
2 Msg m;
3 int N;
4 int W[] [] ;
5 public CausalMessage (Msg m, int N, int matrix [] []) {
6 this .m = m;
7 this .N = N;
8 W = matrix ;
9 }

10 public int [] [] getMatrix () {
11 return W;
12 }
13 public Msg getMessage () {
14 return m;
15 }
16 }

Figure 12.3: Structure of a causal message

180 CHAPTER 12. MESSAGE ORDERING

1 import java . u t i l . ∗ ; import java . net . ∗ ; import java . i o . ∗ ;
2 public class CausalLinker extends Linker {
3 int M[] [] ;
4 L inkedLis t de l iveryQ = new LinkedLis t () ; // d e l i v e r a b l e messages
5 LinkedLis t pendingQ = new LinkedLis t () ; // messages wi th matrix
6 public CausalLinker (S t r ing args []) throws Exception {
7 super (args) ;
8 M = new int [N] [N] ; Matrix . s e tZero (M) ;
9 }

10 public synchronized void sendMsg (int destId , S t r ing tag , S t r ing msg){
11 M[myId] [de s t Id]++;
12 super . sendMsg (destId , ”matrix ” , Matrix . wr i t e (M)) ;
13 super . sendMsg (destId , tag , msg) ;
14 }
15 public synchronized void mul t i c a s t (LinkedList<Integer> dest Ids ,
16 St r ing tag , S t r ing msg) {
17 for (int i : d e s t Id s)
18 M[myId] [i]++;
19 for (int i : d e s t Id s) {
20 super . sendMsg (i , ”matrix ” , Matrix . wr i t e (M)) ;
21 super . sendMsg (i , tag , msg) ;
22 }
23 }
24 boolean okayToRecv (int W[] [] , int s r c I d) {
25 i f (W[s r c I d] [myId] > M[s r c I d] [myId]+1) return fa l se ;
26 for (int k = 0 ; k < N; k++)
27 i f ((k!= s r c I d) && (W[k] [myId] > M[k] [myId])) return fa l se ;
28 return true ;
29 }
30 synchronized void checkPendingQ () {
31 L i s t I t e r a t o r i t e r = pendingQ . l i s t I t e r a t o r (0) ;
32 while (i t e r . hasNext ()) {
33 CausalMessage cm = (CausalMessage) i t e r . next () ;
34 i f (okayToRecv (cm. getMatrix () , cm . getMessage () . ge tSrc Id ())) {
35 i t e r . remove () ; de l iveryQ . add (cm) ;
36 }
37 }
38 }
39 // p o l l s the channel g i ven by fromId to add to the pendingQ
40 public Msg rece iveMsg (int fromId) throws IOException {
41 checkPendingQ () ;
42 while (de l iveryQ . isEmpty ()) {
43 Msg matrix = super . rece iveMsg (fromId) ; // matrix
44 int [] []W = new int [N] [N] ;
45 Matrix . read (matrix . getMessage () , W) ;
46 Msg m1 = super . rece iveMsg (fromId) ; //app message
47 pendingQ . add (new CausalMessage (m1, N, W)) ;
48 checkPendingQ () ;
49 }
50 CausalMessage cm = (CausalMessage) de l iveryQ . removeFirst () ;
51 Matrix . setMax (M, cm. getMatrix ()) ;
52 return cm. getMessage () ;
53 }
54 }

Figure 12.4: CausalLinker for causal ordering of messages

12.5. PROBLEMS 181

12.4.1 Application: Causal Chat

To illustrate an application of causal ordering, we consider a chat application in which a user can send
messages to multiple other users. This simple program, shown in Figure 12.5, takes as input from the user
a message and the list of destination process identifiers. This message is then multicast to all the process
identifiers in the list.

1 import java . i o . ∗ ; import java . u t i l . ∗ ;
2 public class Chat extends Process {
3 public Chat (Linker initComm) {
4 super (initComm) ;
5 }
6 public synchronized void handleMsg (Msg m, int src , S t r ing tag){
7 i f (tag . equa l s (” chat ”))
8 p r i n t l n (”Message from ” + s r c +” : ” + m. getMessage ()) ;
9 }

10 public stat ic void main (S t r ing [] a rgs) throws Exception {
11 Linker comm = null ;
12 i f (args [3] . equa l s (” s imple ”))
13 comm = new Linker (args) ;
14 else i f (args [3] . equa l s (” causa l ”))
15 comm = new CausalLinker (args) ;
16 else i f (args [3] . equa l s (” synch”))
17 comm = new SynchLinker (args) ;
18 Chat c = new Chat (comm) ;
19 c . s t a r t L i s t e n i n g () ;
20 BufferedReader din = new BufferedReader (
21 new InputStreamReader (System . in)) ;
22 while (true) {
23 System . out . p r i n t l n (”Type your message in a s i n g l e l i n e : ”) ;
24 St r ing chatMsg = din . readLine () ;
25 i f (chatMsg . equa l s (” qu i t ”)) break ;
26 p r i n t l n (”Type in d e s t i n a t i o n p ids on one l i n e : ”) ;
27 LinkedList<Integer> de s t Id s = new LinkedList<Integer >() ;
28 S t r ing s = din . readLine () ;
29 Ut i l . r e adL i s t (s , d e s t Id s) ;
30 i f (args [3] . equa l s (” synch”))
31 comm. sendMsg (de s t Id s . get (0) , ” chat ” , chatMsg) ;
32 else
33 comm. mu l t i ca s t (des t Ids , ” chat ” , chatMsg) ;
34 }
35 }
36 }

Figure 12.5: A chat program

The application takes as an argument the message ordering to be used. The user can verify that if the
plain Linker class were used in this application, then the following scenario would be possible. If P0 sends
a query to both P1 and P2, and P1 sends a reply to the query to both P0 and P2, then P2 may receive the
reply before the query. On the other hand, if the class CausalLinker is used, then such a scenario is not
possible.

12.5 Problems

12.1. Assume that you have replicated data for fault tolerance. Any file (or a record) may be replicated
at more than one site. To avoid updating two copies of the data, assume that a token-based scheme

182 CHAPTER 12. MESSAGE ORDERING

is used. Any site possessing the token can update the file and broadcast the update to all sites that
have that file. Show that if the communication is guaranteed to be causally ordered, then the scheme
described above will ensure that all updates at all sites happen in the same order.

12.2. Let M be the set of messages in a distributed computation. Given a message x, we use x.s to denote
the send event and x.r to denote the receive event. We say that a computation is causally ordered if

∀x, y ∈ M : (x.s → y.s) ⇒ ¬(y.r → x.r).

We say that a computation is mysteriously ordered if

∀x, y ∈ M : (x.s → y.r) ⇒ ¬(y.s → x.r).

(a) Prove or disprove that every causally ordered computation is also mysteriously ordered.
(b) Prove or disprove that every mysteriously ordered computation is also causally ordered.

12.3. Show the relationship between conditions (C1), (C2), and (C3) on message delivery of a system.

s1 → s2 ⇒ ¬(r2 → r1) (C1)

s1 ≺ s2 ⇒ ¬(r2 → r1) (C2)

s1 → s2 ⇒ ¬(r2 ≺ r1) (C3)

where s1 and s2 are sends of any two messages and r1 and r2 are the corresponding receives. Note
that a computation satisfies a delivery condition if and only if the condition is true for all pairs of
messages.

12.4. Assume that all messages are broadcast messages. How can you simplify the algorithm for guaran-
teeing causal ordering of messages under this condition?

12.5. Consider a system of N + 1 processes {P0, P1, . . . , PN} in which processes P1 through PN can only
send messages to P0 or receive messages from P0. Show that if all channels in the system are FIFO,
then any computation on this system is causally ordered.

12.6. In this chapter, we have used the happened-before model for modeling the dependency of one message
to the other. Thus all messages within a process are totally ordered. For some applications, messages
sent from a process may be independent. Give an algorithm to ensure causal ordering of messages
when the send events from a single process do not form a total order.

12.7. Suppose that a system is composed of nonoverlapping groups such that any communication outside
the group is always through the group leader, that is, only a group leader is permitted to send or
receive messages outside the group. How will you exploit this structure to reduce the overhead in
causal ordering of messages?

12.8. Prove the correctness of Lamport’s algorithm for providing causal total ordering of messages.

12.9. Prove the correctness of Skeen’s algorithm for providing total ordering of messages.

12.10. Build a multiuser Chat application in Java that guarantees that all users see all messages in the same
order.

12.6. BIBLIOGRAPHIC REMARKS 183

12.6 Bibliographic Remarks

Causal ordering was first proposed by Birman and Joseph [BJ87]. The algorithm for causal ordering
described in this chapter is essentially the same as that described by Raynal, Schiper, and Toueg [RST91].
For a discussion on total ordering of messages, see the article by Birman and Joseph [BJ87]. The distributed
algorithm for causal total ordering of messages is implicit in the replicated state machine construction
described by Lamport [Lam78]. Skeen’s algorithm is taken from the reference [Ske82].

