
Chapter 13

Leader Election

13.1 Introduction

Many distributed systems superimpose a logical ring topology on the underlying network to execute control
functions. An important control function is that of electing a leader process. The leader can serve as a
coordinator for centralized algorithms for problems such as mutual exclusion. Electing a leader in a ring
can also be viewed as the problem of breaking symmetry in a system. For example, once a deadlock is
detected in the form of a cycle, we may wish to remove one of the nodes in the cycle to remove the deadlock.
This can be achieved by electing the leader.

The leader election problem is similar to the mutual exclusion problem discussed in Chapter 8. In both
problems, we are interested in choosing one of the processes as a privileged process. Coordinator-based
or token-based solutions for mutual exclusion are not applicable for the leader election problem, because
deciding which process can serve as the coordinator or has the token is precisely the leader election problem.
If processes have unique identifiers and the underlying communication network is completely connected,
then we can apply Lamport’s mutual exclusion algorithm to determine the leader—the first process to enter
the critical section is deemed as the leader. However, this algorithm requires every process to communicate
with every other process in the worst case. We will explore more efficient algorithms for the ring topology.

13.2 Ring-Based Algorithms

A ring is considered anonymous if processes in the ring do not have unique identifiers. Furthermore, every
process has an identical state machine with the same initial state.

It is not difficult to see that there is no deterministic algorithm for leader election in an anonymous
ring. The reason is that we have complete symmetry initially—no process is distinguishable from other
processes. Because there is a unique leader, we know that the system can never terminate in a symmetric
state. Thus the algorithm has not terminated in the initial state. We now show an execution that moves
the system from one symmetric state to the other. Assume that any process in the ring takes a step. By
symmetry, this step is possible at all processes. Thus in the adversarial execution all processes take the
same step. Since the algorithm is deterministic, the system must again reach a symmetric state. Therefore,
the system could not have terminated (i.e., the leader could not have been elected yet). We can repeat
this procedure forever.

Observe that our argument uses the fact that the algorithm is deterministic. A randomized algorithm
can solve the leader election problem in expected finite time (see Problem 13.1).

163

164 CHAPTER 13. LEADER ELECTION

13.2.1 Chang–Roberts Algorithm

Now assume that each process has a unique identifier. In such a system, a leader can be elected in a ring
by a very simple algorithm due to Chang and Roberts. The algorithm ensures that the process with the
maximum identifier gets elected as the leader. In the algorithm shown in Figure 13.1, every process sends
messages only to its left neighbor and receives messages from its right neighbor. A process can send an
election message along with its identifier to its left, if it has not seen any message with a higher identifier
than its own identifier. It also forwards any message that has an identifier greater than its own; otherwise,
it swallows that message. If a process receives its own message, then it declares itself as the leader by
sending a leader message. When a process receives its own leader message, it knows that everybody knows
the leader.

In the algorithm, one or more processes may spontaneously wake up and initiate the election. When
a process wakes up on receiving a message from a process with a smaller identifier, it circulates its own
election message.

Note that the algorithm does not require any process to know the total number of processes in the
system.

Pi::
var

myid: integer ;
awake: boolean initially false;
leaderid: integer initially null;

To initiate election:
send (election,myid) to Pi−1;
awake := true;

Upon receiving a message (election, j):
if (j > myid) then

send (election, j) to Pi−1;
else if (j = myid) then

send (leader,myid) to Pi−1;
else if ((j < myid) ∧ ¬awake) then

send (election,myid) to Pi−1;
awake := true;

Upon receiving a message (leader, j):
leaderid := j;
if (j ̸= myid) then send(leader, j) to Pi−1;

Figure 13.1: The leader election algorithm at Pi

The worst case of this algorithm is when N processes with identifiers 1 . . . N are arranged clockwise in
decreasing order (see Figure 13.2(a)). The message initiated by process j will travel j processes before it

13.3. ELECTION ON GENERAL GRAPHS 165

8

7

6

5

4

3

2

1

1

2

3

4

5

6

7

8

(a) (b)

Figure 13.2: Configurations for the worst case (a) and the best case (b)

is swallowed by a larger process. Thus the total number of election messages in the worst case is

j=N∑

j=1

j = O(N2).

In addition, there are N leader messages. The best case is when the same identifiers are arranged clockwise
in the increasing order. In that case, only O(N) election messages are required. On an average, the
algorithm requires O(N logN) messages (see Problem 13.2).

13.2.2 Hirschberg–Sinclair Algorithm

In this section we assume that the ring is bidirectional so that messages can be sent to the left or the right
neighbor. The main idea of the algorithm is to carry out elections on increasingly larger sets. The algorithm
works in asynchronous rounds such that a process Pi tries to elect itself in round r. Only processes that
win their election in round r can proceed to round r + 1. The invariant satisfied by the algorithm is that
process Pi is a leader in round r iff Pi has the largest identifier of all nodes that are at distance 2r or less
from Pi. It follows that any two leaders after round r must be at least 2r distance apart. In other words,
after round r, there are at most N/(2r−1 + 1) leaders. With each round, the number of leaders decreases,
and in O(logN) rounds there is exactly one leader. It can be shown by using induction that there are at
most O(N) messages per round, which gives us a bound of O(N logN). The details of the algorithm and
its proof of correctness are left as exercises.

13.3 Election on General Graphs

First assume that the graph is completely connected, that is, every process can talk to every other process
directly. In this case, we can modify Lamport’s mutual exclusion algorithm for leader election. One or
more processes start the election. Any process that enters the critical section first is considered the leader.

Note that a process need not acknowledge another process’s request if it knows that there is a request
with a lower timestamp. Moreover, there is no need for release messages for the leader election problem. As
soon as a process enters the critical section, it can inform all other processes that it has won the election.
If c processes start the election concurrently, then this algorithm takes at most 2cN messages for “request”
and “acknowledgment,” and N messages for the final broadcast of who the leader is.

166 CHAPTER 13. LEADER ELECTION

Now consider the case when the graph is not completely connected. We assume that every process
initially knows only the identities of its neighbors. In this case, we can simulate the broadcast from a node
v by constructing a spanning tree rooted at v.

var
parent: process id initially null;
numchildren: integer initially 0;
childrenlist: list initially null;
numneighbors: integer initially the number of neighbors;
numreports: integer initially 0;
notdone: boolean initially true except for the root;

Upon receiving a message m from Pj

if notdone then
parent = Pj ;
notdone := false;
send m to all neighbors except Pj ;
send (parent) to Pj ;
numreports := 1;

else
send (reject) to Pj ;

Upon receiving a (parent) message
numchildren := numchildren+ 1;
append(childrenlist, Pj);
numreports := numreports+ 1;
if (numreports = numneighbors) then halt;

Upon receiving a (reject) message
numreports := numreports+ 1;
if (numreports = numneighbors) then halt;

Figure 13.3: A spanning tree construction algorithm

13.3.1 Spanning Tree Construction

We assume that there is a distinguished process root. Later we will remove this assumption. The algorithm
shown in Figure 13.3 is initiated by the root process by sending an invite message to all its neighbors.
Whenever a process Pi receives an invite message (from Pj) for the first time, it sends that message to
all its neighbors except Pj . To Pj it sends an accept message, indicating that Pj is the parent of Pi. If
Pi receives an invite message from some other process thereafter, it simply replies with a reject message.
Every node keeps a count of the number of nodes from which it has received messages in the variable
numreports. When this value reaches the total number of neighbors, Pi knows that it has heard from all
processes that it had sent the invite message (all neighbors except the parent). At this point, Pi can be
sure that it knows all its children and can halt.

13.4. APPLICATION: COMPUTING GLOBAL FUNCTIONS 167

This algorithm is also called the flooding algorithm because it can be used to broadcast a message m,
when there is no predefined spanning tree. The algorithm for flooding a message is simple. Whenever a
process Pi receives a message m (from Pj) for the first time, it sends that message to all its neighbors
except Pj .

What if there is no distinguished process? We assume that each process has a unique id, but initially
every process knows only its own id. In this case, each node can start the spanning tree construction
assuming that it is the distinguished process. Thus many instances of spanning tree construction may be
active concurrently. To distinguish these instances, all messages in the spanning tree started by Pi contain
the id for Pi. By ensuring that only the instance started by the process with the largest id succeeds, we
can build a spanning tree even when there is no distinguished process. The details of the algorithm are
left as an exercise.

13.4 Application: Computing Global Functions

One of the fundamental difficulties of distributed computing is that no process has access to the global
state. This difficulty can be alleviated by developing mechanisms to compute functions of the global state.
We call such functions global functions. More concretely, assume that we have xi located at process Pi.
Our aim is to compute a function f(x1, x2, . . . , xN) that depends on states of all processes.

First, we present an algorithm for convergecast and broadcast on a network, assuming that there is a
predefined spanning tree. The convergecast requires information from all nodes of the tree to be collected
at the root of the tree. Once all the information is present at the root node, it can compute the global
function and then broadcast the value to all nodes in the tree. Both the convergecast and the broadcast
require a spanning tree on the network.

The algorithms for convergecast and broadcast are very simple if we assume a rooted spanning tree.
For convergecast, the algorithm is shown in Figure 13.4. Each node in the spanning tree is responsible
to report to its parent the information of its subtree. The variable parent, for a node x, is the identity of
the neighbor of x, which is the parent in the rooted spanning tree. For the root, this value is null. The
variable numchildren keeps track of the total number of its children, and numreports keeps track of the
number of its children who have reported. When the root node hears from all its children, it has all the
information needed to compute the global function.

var
parent: process id;// initialized based on the spanning tree
numchildren: integer; // initialized based on the spanning tree
numreports: integer initially 0;

on receiving a report from Pj

numreports := numreports+ 1;
if (numreports = numchildren) then

if (parent = null) then // root node
compute global function;

else send report to parent;
endif;

Figure 13.4: A convergecast algorithm

168 CHAPTER 13. LEADER ELECTION

Proot ::
send m to all children;

Pi :: i ̸= root
on receiving a message m from parent

send m to all children;

Figure 13.5: A broadcast algorithm

The broadcast algorithm shown in Figure 13.5 is dual of the convergecast algorithm. The algorithm
is initiated by the root process by sending the broadcast message to all its children. In this algorithm,
messages traverse down the tree.

13.5 Implementation in Java

We abstract the leader election problem using the interface Election shown below.

1 public interface Ele c t i on extends MsgHandler {
2 void s t a r tE l e c t i o n () ;
3 int getLeader () ; // b l o c k s t i l l t he l e ade r i s known
4 }

Any implementation of Election should provide the method startElection, which is invoked by one
or more processes in the system. The method getLeader returns the identity of the leader. If the identity
of the leader is not known, then this method blocks until the leader is elected.

13.5. IMPLEMENTATION IN JAVA 169

13.5.1 Chang–Roberts Algorithm

1 public class RingLeader extends Process implements Ele c t i on {
2 int number ;
3 int l e ad e r Id = −1;
4 int next ;
5 boolean awake = fa l se ;
6 public RingLeader (Linker initComm , int number) {
7 super (initComm) ;
8 this . number = number ;
9 next = (myId + 1) % N;

10 }
11 public synchronized int getLeader (){
12 while (l e ade r Id == −1) myWait () ;
13 return l e ad e r Id ;
14 }
15 public synchronized void handleMsg (Msg m, int src , S t r ing tag) {
16 int j = m. getMessageInt () ; // ge t the number
17 i f (tag . equa l s (” e l e c t i o n ”)) {
18 i f (j > number)
19 sendMsg (next , ” e l e c t i o n ” , j) ; // forward the message
20 else i f (j == number) // I won !
21 sendMsg (next , ” l e ade r ” , myId) ;
22 else i f ((j < number) && ! awake) s t a r tE l e c t i o n () ;
23 } else i f (tag . equa l s (” l e ade r ”)) {
24 l e ade r Id = j ;
25 no t i f y () ;
26 i f (j != myId) sendMsg (next , ” l e ade r ” , j) ;
27 }
28 }
29 public synchronized void s t a r tE l e c t i o n () {
30 awake = true ;
31 sendMsg (next , ” e l e c t i o n ” , number) ;
32 }
33 }

170 CHAPTER 13. LEADER ELECTION

13.5.2 Dolev, Klawe and Rodeh’s Algorithm

1 public class DKR extends Process implements Ele c t i on {
2 public enum State {ASLEEP,PASSIVE, ACTIVE} ;
3 int myNum, l e ade r Id = −1;
4 State s t a t e = State .PASSIVE ;
5 int maxNum, neighborR ;
6 int next ;
7 public DKR(Linker initComm , int number) {
8 super (initComm) ;
9 this .myNum = number ;

10 maxNum = myNum;
11 next = (myId + 1) % N;
12 }
13 public synchronized int getLeader (){
14 while (l e ade r Id == −1) myWait () ;
15 return l e ad e r Id ;
16 }
17 public synchronized void handleMsg (Msg m, int src , S t r ing tag) {
18 i f (s t a t e == State .ASLEEP) s t a r tE l e c t i o n () ;
19 int rNum = m. getMessageInt () ;
20 i f (tag . equa l s (” type1 ”)) {
21 i f (s t a t e == State .ACTIVE){
22 i f (rNum != maxNum){
23 sendMsg (next , ” type2 ” , rNum) ;
24 neighborR = rNum;
25 }
26 else {
27 l e ade r Id = rNum;
28 sendMsg (next , ” l e ade r ” , rNum) ;
29 }
30 }
31 else sendMsg (next , ” type1 ” ,rNum) ;
32 }
33 else i f (tag . equa l s (” type2 ”)) {
34 i f (s t a t e == State .ACTIVE){
35 i f ((neighborR > rNum) && (neighborR > maxNum)){
36 maxNum = neighborR ;
37 sendMsg (next , ” type1 ” , neighborR) ;
38 }
39 else s t a t e = State .PASSIVE ;
40 }
41 else sendMsg (next , ” type2 ” ,rNum) ;
42 }
43 else i f ((tag . equa l s (” l e ade r ”)) && (l e ade r Id == −1)) {
44 l e ade r Id = rNum;
45 sendMsg (next , ” l e ade r ” , rNum) ;
46 }
47 }
48 public synchronized void s t a r tE l e c t i o n (){
49 i f (s t a t e == State .ASLEEP) {
50 s t a t e = State .ACTIVE;
51 sendMsg (next , ” type1 ” , myNum) ;
52 }
53 }
54 }

13.5. IMPLEMENTATION IN JAVA 171

13.5.3 A Spanning Tree Construction Algorithm

1 import java . u t i l . ∗ ;
2 public class SpanTree extends Process {
3 public int parent = −1; // no parent ye t
4 public LinkedList<Integer> ch i l d r en = new LinkedList<Integer >() ;
5 int numReports = 0 ;
6 boolean done = fa l se ;
7 public SpanTree (Linker initComm , boolean i sRoot) {
8 super (initComm) ;
9 i f (i sRoot) {

10 parent = myId ;
11 i f (initComm . ne ighbors . s i z e () == 0)
12 done = true ;
13 else
14 sendToNeighbors (” i n v i t e ” , myId) ;
15 }
16 }
17 public synchronized void waitForDone () { // b l o c k t i l l c h i l d r en known
18 while (! done) myWait () ;
19 }
20 public synchronized void handleMsg (Msg m, int src , S t r ing tag) {
21 i f (tag . equa l s (” i n v i t e ”)) {
22 i f (parent == −1) {
23 numReports++;
24 parent = s r c ;
25 sendMsg (src , ” accept ”) ;
26 for (int i : comm. ne ighbors)
27 i f ((i != myId) && (i != s r c))
28 sendMsg (i , ” i n v i t e ”) ;
29 } else
30 sendMsg (src , ” r e j e c t ”) ;
31 } else i f ((tag . equa l s (” accept ”)) | | (tag . equa l s (” r e j e c t ”))) {
32 i f (tag . equa l s (” accept ”)) ch i l d r en . add (s r c) ;
33 numReports++;
34 i f (numReports == comm. ne ighbors . s i z e ())
35 done = true ;
36 }
37 }
38 }

172 CHAPTER 13. LEADER ELECTION

13.5.4 Computing Global Functions

We now combine the convergecast and the broadcast algorithms to provide a service that can compute a
global function. For simplicity, we assume that the global function is commutative and associative, such
as min, max, sum, and product. This allows internal nodes to send intermediate results to the parent node
during the convergecast process. The GlobalService interface is shown below.

1 public interface Globa lSe rv i c e extends MsgHandler {
2 public void i n i t i a l i z e (int x , FuncUser prog) ;
3 public int computeGlobal () ;
4 }

Any program that wants to compute a global function can invoke computeGlobal with its value and
the global function to be computed as arguments. The FuncUser is required to have a binary function
called func as shown below.

1 public interface FuncUser {
2 public int func (int x , int y) ;
3 }

Now we can give an implementation for GlobalService based on the ideas of convergecast and broad-
cast. The Java implementation is shown in Figure 13.6.

The program uses two types of messages, subTreeVal and globalFunc, for convergecast and broadcast
respectively. The list pending keeps track of all the children that have not reported using the subTreeVal
message. Whenever a subTreeVal message is received, it is combined with myValue using prog.func().
Whenever the pending list becomes empty, that node has the value of the global function for its subtree.
If the node is a root, it can initiate the broadcast; otherwise it sends its myValue to its parent and waits
for the globalFunc message to arrive. The final answer is given by the value that comes with this message.

The class GlobalFunc can be used to compute a global function as illustrated by the class GlobalFuncTest
in Figure 13.7.

13.6 Problems

13.1. An algorithm on a ring is considered nonuniform if every process knows the total number of processes
in the ring. Show that there exists a randomized nonuniform algorithm to elect a leader on an
anonymous ring that terminates with probability 1. [Hint: Consider an algorithm with rounds in
which initially all processes are eligible. In each round, an eligible process draws at random from
0 . . .m (where m > 0). The subset of processes that draw the maximum element from the set selected
is eligible for the next round. If there is exactly one eligible process, then the algorithm terminates.
Analyze the expected number of rounds as a function of N and m.]

13.2. Show that the Chang–Roberts algorithm requires O(N logN) messages on average.

13.3. Modify the Chang–Roberts algorithm such that a process keeps track of maxid, the largest identifier
it has seen so far. It swallows any message with any identifier that is smaller than maxid. What are
the worst and the expected number of messages for this variant of the algorithm?

13.4. Give an O(N logN) algorithm for leader election on a bidirectional ring.

13.6. PROBLEMS 173

1 import java . u t i l . ∗ ;
2 public class GlobalFunc extends Process implements Globa lSe rv i c e {
3 FuncUser prog ;
4 SpanTree t r e e = null ;
5 LinkedList<Integer> pending = null ;
6 int myValue ;
7 int answer ;
8 boolean answerRecvd ;
9 public GlobalFunc (Linker initComm , boolean i sRoot) {

10 super (initComm) ;
11 t r e e = new SpanTree (comm, isRoot) ;
12 }
13 public void i n i t i a l i z e (int myValue , FuncUser prog) {
14 this . myValue = myValue ;
15 this . prog = prog ;
16 t r e e . waitForDone () ;
17 Ut i l . p r i n t l n (myId + ” : ” + t r e e . c h i l d r en . t oS t r i ng ()) ;
18 }
19 public synchronized int computeGlobal () {
20 pending = new LinkedList<Integer >() ;
21 pending . addAll (t r e e . c h i l d r en) ;
22 n o t i f yA l l () ;
23 while (! pending . isEmpty ()) myWait () ;
24 i f (t r e e . parent == myId) { // roo t node
25 answer = myValue ;
26 } else { //non−roo t node
27 sendMsg (t r e e . parent , ” subTreeVal” , myValue) ;
28 answerRecvd = fa l se ;
29 while (! answerRecvd) myWait () ;
30 }
31 sendChi ldren (answer) ;
32 return answer ;
33 }
34 void sendChi ldren (int value) {
35 for (int ch i l d : t r e e . c h i l d r en)
36 sendMsg (ch i ld , ” globalFunc ” , va lue) ;
37 }
38 public synchronized void handleMsg (Msg m, int src , S t r ing tag) {
39 t r e e . handleMsg (m, src , tag) ;
40 i f (tag . equa l s (” subTreeVal”)) {
41 while (pending == null) myWait () ;
42 pending . remove (s r c) ;
43 myValue = prog . func (myValue , m. getMessageInt ()) ;
44 } else i f (tag . equa l s (” globalFunc ”)) {
45 answer = m. getMessageInt () ;
46 answerRecvd = true ;
47 }
48 }
49 }

Figure 13.6: Algorithm for computing a global function

174 CHAPTER 13. LEADER ELECTION

1 public class GlobalFuncTester implements FuncUser {
2 public int func (int x , int y) {
3 return x + y ;
4 }
5 public stat ic void main (S t r ing [] a rgs) throws Exception {
6 Linker comm = new Linker (args) ;
7 GlobalFunc g = new GlobalFunc (comm, (comm.myId == 0)) ;
8 g . s t a r t L i s t e n i n g () ;
9 int myValue = In t eg e r . pa r s e In t (args [3]) ;
10 GlobalFuncTester h = new GlobalFuncTester () ;
11 g . i n i t i a l i z e (myValue , h) ;
12 int globalSum = g . computeGlobal () ;
13 System . out . p r i n t l n (”The g l oba l sum i s ” + globalSum) ;
14 }
15 }

Figure 13.7: Computing the global sum

13.7 Bibliographic Remarks

The impossibility result on anonymous rings is due to Angluin [Ang80]. The O(N2) algorithm is due to
Chang and Roberts [CR79]. The O(N logN) algorithm discussed in the chapter is due to Hirschberg and
Sinclair [HS80]. Dolev, Klawe and Rodeh [DKR82] and Peterson [Pet82] have presented an O(N logN)
algorithm for unidirectional rings. For lower bounds of Ω(N logN), see papers by Burns [Bur80] and Pachl,
Korach, and Rotem [PKR82].

