Chapter 2

Mutual Exclusion Problem

2.1 Introduction

When processes share data, it is important to synchronize their access to the data so that updates are not
lost as a result of concurrent accesses and the data are not corrupted. This can be seen from the following
example. Assume that the initial value of a shared variable x is 0 and that there are two processes, Py and
P; such that each one of them increments x by the following statement in some high-level programming
language:

r=x+1

It is natural for the programmer to assume that the final value of x is 2 after both the processes have
executed. However, this may not happen if the programmer does not ensure that x = = + 1 is executed
atomically. The statement x = z + 1 may compile into the machine-level code of the form

LD R, x ; load register R from x
INC R ; increment register R
ST R, z ; store register R to x

Now the execution of Py and P; may get interleaved as follows:

Py: LD R, x ; load register R from x

Py: INC R ; increment register R
Pi: LD R, z ; load register R from x
P: INCR ; increment register R

Py: ST R,x ; store register R to x
Pi: ST R,z ; store register R to x

Thus both processes load the value 0 into their registers and finally store 1 into x resulting in the “lost
update” problem.

To avoid this problem, the statement x = = + 1 should be executed atomically. A section of the code
that needs to be executed atomically is also called a critical region or a critical section. The problem of
ensuring that a critical section is executed atomically is called the mutual exclusion problem. This is one
of the most fundamental problems in concurrent computing and we will study it in detail.

17

18 CHAPTER 2. MUTUAL EXCLUSION PROBLEM

The mutual exclusion problem can be abstracted as follows. We are required to implement the interface
shown in Figure 2.1. A process that wants to enter the critical section (CS) makes a call to requestCS with
its own identifier as the argument. The process or the thread that makes this call returns from this method
only when it has the exclusive access to the critical section. When the process has finished accessing the
critical section, it makes a call to the method releaseCS.

public interface Lock {
public void requestCS(int pid); //may block
public void releaseCS (int pid);

Figure 2.1: Interface for accessing the critical section

The entry protocol given by the method requestCS and the exit protocol given by the method
releaseCS should be such that the mutual exclusion is not violated.

To test the Lock, we use the program shown in Figure 2.2. This program tests the Bakery algorithm that
will be presented later. The user of the program may test a different algorithm for a lock implementation
by invoking the constructor of that lock implementation. The program launches N threads as specified by
arg[0]. Each thread is an object of the class MyThread. Let us now look at the class MyThread. This
class has two methods, nonCriticalSection and CriticalSection, and it overrides the run method of
the Thread class as follows. Each thread repeatedly enters the critical section. After exiting from the
critical section it spends an undetermined amount of time in the noncritical section of the code. In our
example, we simply use a random number to sleep in the critical and the noncritical sections.

Let us now look at some possible protocols, one may attempt, to solve the mutual exclusion problem.
For simplicity we first assume that there are only two processes, Py and P;.

2.2 Peterson’s Algorithm

Our first attempt would be to use a shared boolean variable openDoor initialized to true. The entry
protocol would be to wait for openDoor to be true. If it is true, then a process can enter the critical section
after setting it to false. On exit, the process resets it to true. This algorithm is shown in Figure 2.3.

This attempt does not work because the testing of openDoor and setting it to false is not done
atomically. Conceivably, one process might check for the openDoor and go past the while statement in
Figure 2.3. However, before that process could set openDoor to false, the other process starts executing.
The other process now checks for the value of openDoor and also gets out of busy wait. Both the processes
now can set openDoor to false and enter the critical section. Thus, mutual exclusion is violated.

In the attempt described above, the shared variable did not record who set the openDoor to false. One
may try to fix this problem by keeping two shared variables, wantCS [0] and wantCS[1], as shown in Figure
2.4. Every process P; first sets its own wantCS bit to true at line 3 and then waits until the wantCS for the
other process is false at line 4. We have used 1 — i to get the process identifier of the other process when
there are only two processes - Py and P;. To release the critical section, P; simply resets its wantCS bit to
false. Unfortunately, this attempt also does not work. Both processes could set their wantCS to true and
then indefinitely loop, waiting for the other process to set its wantCS false.

Yet another attempt to fix the problem is shown in Figure 2.5. This attempt is based on evaluating the
value of a variable turn. A process waits for its turn to enter the critical section. On exiting the critical
section, it sets turn to 1-1.

This protocol does guarantee mutual exclusion. It also guarantees that if both processes are trying to

2.2. PETERSON’S ALGORITHM

import java.util.Random;
public class MyThread extends Thread {
int myld;
Lock lock;
Random r = new Random ();
public MyThread(int id, Lock lock) {
myld = id;
this.lock = lock;

void nonCriticalSection () {
System.out.println (myld + 7_is_not.in._CS”);
Util.mySleep(r.nextInt (1000));

void CriticalSection () {
System.out.println (myld + 7 _is.in CSosskskskx”);
// critical section code
Util.mySleep(r.nextInt (1000));

public void run() {
while (true) {
lock .requestCS (myld) ;
CriticalSection ();
lock.releaseCS (myld);
nonCriticalSection ();

}

public static void main(String [] args) throws Exception {
MyThread t[];
int N = Integer.parselnt (args[0]);
t = new MyThread [N];
Lock lock = new Bakery(N);//or any other mutex algorithm
for (int i = 0; i < N; i++) {
t[i] = new MyThread(i, lock);
t[i].start ();

Figure 2.2: A program to test mutual exclusion

class Attemptl implements Lock {
boolean openDoor = true;
public void requestCS(int i) {
while (lopenDoor) ; // busy wait
openDoor = false;

public void releaseCS (int i) {
openDoor = true;
}

Figure 2.3: An attempt that violates mutual exclusion

19

20 CHAPTER 2. MUTUAL EXCLUSION PROBLEM

1 class Attempt2 implements Lock {

2 boolean wantCS[] = {false, false};

3 public void requestCS(int i) { // entry protocol
4 wantCS[i] = true; //declare intent

5 while (wantCS[1 — i]) ; // busy wait

6

7 public void releaseCS (int i) {

8 wantCS[i] = false;

9

10 }

Figure 2.4: An attempt that can deadlock

class Attempt3 implements Lock {

int turn = 0;
public void requestCS(int i) {
while (turn =— 1 — i) ;

public void releaseCS (int i) {
turn = 1 — 1i;
}

Figure 2.5: An attempt with strict alternation

enter the critical section, then one of them will succeed. However, it suffers from another problem. In
this protocol, both processes have to alternate with each other for getting the critical section. Thus, after
process Py exits from the critical section it cannot enter the critical section again until process P; has
entered the critical section. If process P; is not interested in the critical section, then process Py is simply
stuck waiting for process P;. This is not desirable.

By combining the previous two approaches, however, we get Peterson’s algorithm for the mutual ex-
clusion problem in a two-process system. In this protocol, shown in Figure 2.6, we maintain two flags,
wantCS[0] and wantCS[1], as in Attempt2, and the turn variable as in Attempt3. To request the critical
section, process P; sets its wantCS flag to true at line 6 and then sets the turn to the other process P; at
line 7. After that, it waits at line 8 so long as the following condition is true:

(wantCS[j] && (turn == j))

Thus a process enters the critical section only if either it is its turn to do so or if the other process is not
interested in the critical section.

To release the critical section, P; simply resets the flag wantCS[i] at line 11. This allows P; to enter
the critical section by making the condition for its while loop false.

Intuitively, Peterson’s algorithm uses the order of updates to turn to resolve the contention. If both
processes are interested in the critical section, then the process that updated turn last, loses and is required
to wait.

We show that Peterson’s algorithm satisfies the following desirable properties:

1. Mutual exclusion: Two processes cannot be in the critical section at the same time.

2.2. PETERSON’S ALGORITHM 21

1 class PetersonAlgorithm implements Lock {
2 boolean wantCS[] = {false, false};

3 int turn = 1;

4 public void requestCS(int i) {

5 int j =1 — i;

6 wantCS[i] = true;

7 turn = j;

8 while (wantCS[j] && (turn = j)) ;
9

10 public void releaseCS (int i) {

11 wantCS[i] = false;

12

13 }

Figure 2.6: Peterson’s algorithm for mutual exclusion

2. Progress: If one or more processes are trying to enter the critical section and there is no process
inside the critical section, then at least one of the processes succeeds in entering the critical section.

3. Starvation-freedom: If a process is trying to enter the critical section, then it eventually succeeds in
doing so.

We first prove that mutual exclusion is satisfied by Peterson’s algorithm by the method of contradiction.
Suppose, if possible, both processes Py and P; are in the critical section for some execution. Each of the
processes P; must have set the variable turn to 1 — ¢. Without loss of generality, assume that P; was the
last process to set the variable turn. This means that the value of turn was 0 when P; checked the entry
condition for the critical section. Since P; entered the critical section in spite of turn being 0, it must have
read wantCS[0] to be false. Therefore, we have the following sequence of events:

Py sets turn to 1, Py sets turn to 0, P; reads wantCS[0] as false. However, Py sets the turn variable to 1
after setting wantCS[0] to true. Since there are no other writes to wantCS[0], P; reading it as false gives
us the desired contradiction.

We give a second proof of mutual exclusion due to Dijkstra. This proof does not reason on the sequence
of events; it uses an assertional proof. For the purposes of this proof, we introduce auxiliary variables
trying|0] and trying[l]. Whenever Py reaches line 8, trying[0] becomes true. Whenever Py reaches line 9,
i.e., it has acquired permission to enter the critical section, trying[0] becomes false.

Consider the predicate H(0) defined as

H(0) = wantCS[0] A [(turn = 1) V ((turn = 0) A trying[1])]

Assuming that there is no interference from P; it is clear that Py makes this predicate true after executing
(turn = 1) at line 7. Similarly, the predicate

H(1) = wantCS[1] A [(turn = 0) V ((turn = 1) A trying[0])]

is true for P; after it executes line 7.

We now take care of interference between processes. It is sufficient to show that Py cannot falsify H(1).
From symmetry, it will follow that P, cannot falsify H(0).

The first conjunct of H(1) is not falsified by Py because it never updates the variable wantCS[1]. It only
reads the value of wantCS[1]. Now, let us look at the second conjunct. Whenever P falsifies (turn = 0)
by setting turn = 1, it makes (turn = 1) A trying[0] true. So, the only case left is falsification of (turn =

22 CHAPTER 2. MUTUAL EXCLUSION PROBLEM

1) Atrying[0]. Since wantCS[1] is also true, we look at falsification of (turn = 1) Atrying[0] A wantCS[1].
Py can falsify this only by setting trying[0] to false (i.e., by acquiring the permission to enter the critical
section). But, (turn = 1) A (wantCS[1]) implies that the condition for the while statement at line 8 is
true, so Py cannot exit the while loop.

Now, it is easy to show mutual exclusion. If Py and P; are in critical section, we get —trying[0] A H(0) A
—trying[1] A H(1), which implies (turn = 0) A (turn = 1), a contradiction.

It is easy to see that the algorithm satisfies the progress property. If both the processes are forever
checking the entry protocol in the while loop, then we get

wantCS[1] A (turn = 1) A wantsCS[0] A (turn = 0)

which is clearly false because (turn = 1) A (turn = 0) is false.

The proof of freedom from starvation is left as an exercise. The reader can also verify that Peterson’s
algorithm does not require strict alternation of the critical sections—a process can repeatedly use the
critical section if the other process is not interested in it.

2.3 Filter Algorithm

We now extend Peterson’s algorithm for more than two processes. The first difficulty that we face is that in
Peterson’s algorithm, a process would set the turn variable to that of the other process before checking the
entry condition. Now that there are more than two processes, it is not clear how to set the turn variable.
Therefore, instead of the turn variable, we use the variable last which stores the pid of the last process
that wrote to that variable. Now a process can use last to wait whenever there is a conflict. In a system
of two processes, one of them will wait and the other one can enter the critical section. If there are N > 2
processes, then one of them will wait and the remaining can get through. Note that we have managed to
reduce the number of contending processes from N to N — 1. By applying this idea N — 1 times, we can
reduce the number of active processes from N to 1.

Figure 2.7 shows the Filter Algorithm. We have N — 1 gates numbered 1... N — 1. For each thread 1,
variable gateli] stores the gate that thread is trying to enter. Initially, gateli] is 0 for each i. For each gate
k, we use last[k] to store the last process that tries to enter the gate (i.e. writes on the variable last[k]). In
requestCS method, P; goes through a gate k as follows. P; checks whether there is any process P; which is
at that gate or a higher numbered gate and F; is the last one to arrive at that gate. Under this condition,
P; waits by continually rechecking the condition. It will exit from the while loop only if gate[j] becomes
lower than gate[i] when P; exits the critical section or the variable last[k] is changed.

Since this algorithm is a minor generalization of Peterson’s algorithm, we leave its proof of correctness
as an exercise.

2.4 Lamport’s Bakery Algorithm

A crucial disadvantage of Peterson’s algorithm is that it uses shared variables that may be written by
multiple writers. Specifically, the correctness of Peterson’s algorithm depends on the fact that concurrent
writes to the last variables result in a valid value.

We now describe Lamport’s bakery algorithm, which overcomes this disadvantage. The algorithm is
similar to that used by bakeries in serving customers. Each customer who arrives at the bakery receives a
number. The server serves the customer with the smallest number. In a concurrent system, it is difficult
to ensure that every process gets a unique number. So in case of a tie, we use process ids to choose the
smaller process.

2.4. LAMPORT’S BAKERY ALGORITHM

import java.util.Arrays;

class PetersonN implements Lock {
int N;
int [] gate;
int [] last;
public PetersonN (int numProc) {
N = numProc;
gate = new int [N];
Arrays. fill (gate, 0);
last = new int [N]; //We only use last[1]..last [N—1]; last[0] is unused
Arrays. fill (last, —1);

)

public void requestCS(int i) {

for (int k = 1; k < N; k++) {
gate[i] = k;
last [k] = 1i;
for (int j = 0; j < N; j++) {
while ((j '= 1) & // there is some other process
(gate[j] >= k) & // that is ahead or at the same level
(last [k] = 1)) // and I am the last to update last[k]

{};// busy wait

}
public void releaseCS (int i) {
gate[i] = 0;

Figure 2.7: PetersonN.java

24 CHAPTER 2. MUTUAL EXCLUSION PROBLEM

The algorithm shown in Figure 2.8 requires a process P; to go through two main steps before it can
enter the critical section. In the first step (lines 15-21), it is required to choose a number. To do that, it
reads the numbers of all other processes and chooses its number as one bigger than the maximum number
it read. We will call this step the doorway. In the second step the process P; checks if it can enter the
critical section as follows. For every other process P;, process P; first checks whether P; is currently in the
doorway at line 25. If P; is in the doorway, then P; waits for P; to get out of the doorway. At lines 26-29,
P; waits for the number[j] to be 0 or (numberli],i) < (number[j],j). When P; is successful in verifying
this condition for all other processes, it can enter the critical section.

1 class Bakery implements Lock {

2 int N;

3 boolean [| choosing; // inside doorway

4 int [] number;

5 public Bakery(int numProc) {

6 N = numProc;

7 choosing = new boolean [N];

8 number = new int [N];

9 for (int j = 0; j < N; j++) {

10 choosing[j] = false;

11 number[j] = 0;

12 }

13

14 public void requestCS(int i) {

15 // step 1: doorway: choose a number

16 choosing [i] = true;

17 for (int j = 0; j < N; j++)

18 if (number[j] > number[i])

19 number[i] = number[j];

20 number [i]++;

21 choosing [i] = false;

22

23 // step 2: check if my number is the smallest
24 for (int j = 0; j < N; j++) {

25 while (choosing[j]) ; // process j in doorway
26 while ((number[j] = 0) &

27 ((number[j] < number[i]) ||

28 ((number [j] = number[i]) && j < 1)))
29 i // busy wait

30 }

31

32 public void releaseCS (int i) { // exit protocol
33 number [i] = 0;

34

35}

Figure 2.8: Lamport’s bakery algorithm

We first prove the assertion:

(A1) If a process P, is in critical section and some other process Py has already chosen its number, then
(numberli],i) < (number[k], k).

Let t be the time when P; read the value of choosing[k] to be false. If P, had chosen its number be-
fore ¢, then P; must read P,’s number correctly. Since P; managed to get out of the kth iteration of the

2.5. LOWER BOUND ON THE NUMBER OF SHARED MEMORY LOCATIONS 25

for loop, ((number(i],i) < (number[k],k)) at that iteration. If P had chosen its number after ¢, then
Py, must have read the latest value of number(i] and is guaranteed to have number[k] > number[i]. If
((numberli],i) < (numberlk],k)) at the kth iteration, this will continue to hold because number[i] does
not change and number[k] can only increase.

We now claim the assertion:
(A2) If a process P; is in critical section, then (number(i] > 0).

(A2) is true because it is clear from the program text that the value of any number is at least 0 and a
process executes increment operation on its number at line 20 before entering the critical section.

Showing that the bakery algorithm satisfies mutual exclusion is now trivial. If two processes P; and
Py are in critical section, then from (A2) we know that both of their numbers are nonzero. From (A1) it
follows that (numberli],i) < (number|k], k) and vice versa, which is a contradiction.

The bakery algorithm also satisfies starvation freedom because any process that is waiting to enter
the critical section will eventually have the smallest nonzero number. This process will then succeed in
entering the critical section.

It can be shown that the bakery algorithm does not make any assumptions on atomicity of any read
or write operation. Note that the bakery algorithm does not use any variable that can be written by more
than one process. Process P; writes only on variables number[i] and chooseli].

There are two main disadvantages of the bakery algorithm: (1) it requires O(N) work by each process
to obtain the lock even if there is no contention, and (2) it requires each process to use timestamps that
are unbounded in size.

2.5 Lower Bound on the Number of Shared Memory Locations

In this section, we show that any algorithm that solves the mutual exclusion problem for n processes must
use at least n memory locations. The key idea in showing the lower bound is that the system never gets
into an inconsistent state in which a thread is not able to determine by reading shared locations whether
the critical section is empty or not.

Consider a system with two processes, P and (). Suppose that there is a protocol that uses a single
shared location A to coordinate access to the critical section. It is clear that a thread must write to A
before entering the critical section otherwise the other thread would not be able to distinguish this state
from the state in which the critical section is empty. Now, we consider an adversarial schedule as follows.
Suppose that P is about to write to A before entering the CS. We now let process @) execute its protocol,
possibly writes on the location A, and enter the CS. We now resume process P which writes on location
A overwriting anything that) may have written. At this point, the system is in an inconsistent state
because even though @ is in the CS, it is indistinguishable from the state in which the CS is available.

It is instructive to extend this argument for three processes P, @) and R using two shared locations
A and B. By previous argument any correct protocol for two processes must use both the locations. By
letting P run three times, we know that there exists an execution in which P writes on some location, say
A, twice. We first run P till it is ready to write to A for the first time. Then, we run @ till it is ready to
write in a separate location, say B, for the first time before entering the CS. If () does not write at any
location other than A and enters CS, P can overwrite what) wrote and also enter the CS. At this point
Q@ is about to write on B and P is about to write on A. We now run P again. Since P overwrites on A
and nothing has been written on B; it cannot tell whether @) has taken any step so far. We let P enter

26 CHAPTER 2. MUTUAL EXCLUSION PROBLEM

the CS and then request CS again till it is about to write on A again. At this point both A and B are in
state consistent with no process in the CS. Next, we let R run and enter the CS. Then, we run P and @)
for one step thereby overwriting any change that R may have done. One of them must be able to enter
the CS to keep the algorithm deadlock-free. We have a violation of mutual exclusion in that state because
R is already in the CS.

2.6 Fischer’s Algorithm

Our lower bound result assumed that processes are asynchronous. We now give an algorithm that uses
timing assumptions to provide mutual exclusion with a single shared variable turn. The variable turn is
either —1 signifying that the critical section is available or has the identifier of the process that has the
right to enter the critical section. Whenever any process P; finds that turn is —1, it must set turn to i in
at most ¢ time units. It must then wait for at least delta units of time before checking the variable turn
again. The algorithm requires delta to be greater than c. If turn is still set to ¢, then it can enter the
critical section.

1 public class Fischer implements Lock {

2 int N;

3 int turn;

4 int delta;

)

6 public Fischer (int numProc) {

7 N = numProc;

8 turn = —1;

9 delta = 5;

10

11 public void requestCS(int i) {

12 while (true) {

13 while (turn != —-1) {}; // wait for the door to open
14 turn = i; // write my id on turn
15 try { // Assume that delta is bigger than time to update turn
16 Thread . sleep (delta);

17

18 catch (InterruptedException e){};
19 if (turn = i) return;

20 }

21

22 public void releaseCS (int i) {

23 turn = —1;

24 }

25}

Figure 2.9: Fischer’s mutual exclusion algorithm

We first show mutual exclusion. Suppose that both P; and P; are in the CS. Suppose that turn is 7.
This means that turn must have been j when P; entered and then later turn was set to i. But P; can set
turn to ¢ only within ¢ time units of P; setting turn to j. However, P; found turn to be j even after d > c
time units. Hence, both P; and P; cannot be in CS.

We leave the proof of deadlock-freedom as an exercise.

2.7. A FAST MUTEX ALGORITHM 27

2.7 A Fast Mutex Algorithm

We now present an algorithm due to Lamport that allows fast accesses to critical section in absence of
contention. The algorithm uses an idea called splitter that is of independent interest.

2.7.1 Splitter

A splitter is a method that splits processes into three disjoint groups: Left, Right, and Down. We can
visualize a splitter as a box such that processes enter from the top and either move to the left, the right
or go down which explains the names of the groups. The key property a splitter satisfies is that at most
one process goes in the down direction and not all processes go in the left or the right direction.

The algorithm for the splitter is shown in Fig. 2.10.

P;::

var
door: {open, closed} initially open
last : pid initially -1;

last :=i;
if (door == closed)
return Left;
else
door := closed;
if (last == i) return Down;
else return Right;
end

Figure 2.10: Splitter Algorithm

A splitter consists of two variables: door and last. The door is initially open and if any process
finishes executing splitter the door gets closed. The variable last records the last process that executed the
statement last := i.

Each process P, first records its pid in the variable last. It then checks if the door is closed. All processes
that find the door closed are put in the group Left. We claim

Lemma 2.1 There are at most n — 1 processes that return Left.

Proof: Initially, the door is open. At least one process must find the door to be open because every process
checks the door to be open before closing it. Since at least one process finds the door open, it follows that
|Left] <n—1.

Process P; that find the door open checks if the last variable contains its pid. If this is the case, then
the process goes in the Down direction. Otherwise, it goes in the Right direction.
We now have the following claim.

Lemma 2.2 At most one process can return Down.

28 CHAPTER 2. MUTUAL EXCLUSION PROBLEM

Proof: Suppose that P; be the first process that finds the door to be open and last equal to ¢ (and then
later returns Down). We have the following order of events: P; wrote last variable, P; closed the door, P;
read last variable as i. During this interval, no process P; modified the last variable. Any process that
modifies last after this interval will find the door closed and therefore cannot return Down. Consider any
process P; that modifies last before this interval. If P; checks last before the interval, then FP; is not the
first process then finds last as itself. If P; checks last after P; has written the variable last, then it cannot
find itself as the last process since its pid was overwritten by F;.

Lemma 2.3 There are at most n — 1 processes that return Right.

Proof: Consider the last process that wrote its index in last. If it finds the door closed, then that process
goes left. If it finds the door open then it goes down.

Note that the above code does not use any synchronization. In addition, the code does not have any
loop.

2.7.2 Lamport’s Fast Mutex Algorithm

Lamport’s fast mutex algorithm shown in Fig. 2.11 uses two shared registers X and Y that every process
can read and write. A process P; can acquire the critical section either using a fast path when it finds
X =1 or using a slow path when it finds Y = i. It also uses n shared single-writer-multiple-reader registers
flag[i]. The variable flag[i] is set to value up if P; is actively contending for mutual exclusion using the
fast path. The shared variable X plays the role of the variable last in the splitter algorithm. The variable
Y plays the role of door in the splitter code. When Y is —1, the door is open. A process P; closes the door
by updating Y with 1.

Processes that are in the group Left of the splitter, simply retry. Before retrying, they lower their flag
and wait for the door to be open (i.e. Y to be —1). A process that is in the group Down of the splitter
succeeds in entering the critical section. Note that at most process may succeed using this route. Processes
that are in the group Right of the splitter first wait for all flags to go down. This can happen only if no
process returned Down, or if the process that returned Down releases the critical section. Now consider
the last process in the group Right to update Y. That process will find its pid in Y and can enter the
critical section. All other processes wait for the door to be open again and then retry.

Theorem 2.4 Fast Mutex algorithm in Fig. 2.11 satisfies Mutez.

Proof: Suppose P; is in the critical section. This means that Y is not —1 and P; exited either with X =i
or Y =i.

Any process that finds Y # —1 gets stuck till Y becomes —1 so we can focus on processes that found
Y equal to —1.

Case 1: P; entered with X =1
Its flag stays up and thus other processes stay blocked.

Case 2: P; entered with Y =1
Consider any P; which read ¥ == —1. X is not equal to j otherwise P; would have entered CS and F;
would have been blocked

Since Y =4, P; would get blocked waiting for ¥ to become —1.

2.7. A FAST MUTEX ALGORITHM

var
X, Y:int initially -1;
flag: array[1..n] of {down, up};

acquire(int i)

{
while (true)
flag[i] := up;
X =1
if (Y I=-1){ // splitter’s left
flag[i] := down;
waitUntil(Y == -1)
continue;
}
else {
Y =i
if (X ==1) // success with splitter
return; // fast path
else {// splitter's right
flag[i] := down;
forall j:
waitUntil(flag[j] == down);
if (Y ==i) return; // slow path
else {
waitUntil(Y == -1);
continue;
}
}
}
}
release(int 1)
{
Y =-1;
flag[i] := down;
}

Figure 2.11: Lamport’s Fast Mutex Algorithm

29

30 CHAPTER 2. MUTUAL EXCLUSION PROBLEM

Theorem 2.5 Fast Mutex algorithm in Fig. 2.11 satisfies deadlock-freedom.

Proof:

Consider processes that found the door open, i.e., Y to be —1. Let) be the set of processes that are
stuck that found the door open. If any one of them succeeded in ”last-to-write-X” we are done; otherwise,
the last process that wrote Y can enter the CS.

2.8 Locks with Get-and-Set Operation

Although locks for mutual exclusion can be built using simple read and write instructions, any such
algorithm requires as many memory locations as the number of threads. By using instructions with higher
atomicity, it is much easier to build locks. For example, the getAndSet operation (also called testAndSet)
allows us to build a lock as shown in Fig. 2.12.

import java.util.concurrent.atomic.x;

1

2

3 public class GetAndSet implements MyLock {

4 AtomicBoolean isOccupied = new AtomicBoolean(false);
5 public void lock() {

6 while (isOccupied.getAndSet(true)) {

7 Thread . yield ();

8

// skip ();
9
10
11 public void unlock () {
12 isOccupied.set (false);
13
14 }

Figure 2.12: Building Locks Using GetAndSet

This algorithm satisfies the mutual exclusion and progress property. However, it does not satisfy
starvation freedom. Developing such a protocol is left as an exercise.

Most modern machines provide the instruction compareAndSet which takes as argument an expected
value and a new value. It atomically sets the current value to the new value if the current value equals the
expected value. It also returns true if it succeeded in setting the current value; otherwise, it returns false.
The reader is invited to design a mutual exclusion protocol using compareAndSet.

We now consider an alternative implementation of locks using getAndSet operation. In this imple-
mentation, a thread first checks if the lock is available using the get operation. It calls the getAndSet
operation only when it finds the critical section available. If it succeeds in getAndSet, then it enters
the critical section; otherwise, it goes back to spinning on the get operation. The implementation called
GetAndGetAndSet (or testAndTestAndSet) is shown in Fig. 2.13.

Although the implementations in Fig. 2.12 and Fig. 2.13 are functionally equivalent, the second
implementation usually results in faster accesses to the critical section on current multiprocessors. Can
you guess why?

The answer to the above question is based on the current architectures that use a shared bus and a
local cache with each core. Since an access to the shared memory via bus is much slower compared to an
access to the local cache, each core checks for a data item in its cache before issuing a memory request. Any

2.9. QUEUE LOCKS 31

1 import java.util.concurrent.atomic.x;

2

3 public class GetAndGetAndSet implements MyLock {

4 AtomicBoolean isOccupied = new AtomicBoolean(false);
5 public void lock () {

6 while (true) {

7 while (isOccupied.get()) {

8

9 if (!isOccupied.getAndSet(true)) return;
10 }

11

12 public void unlock () {

13 isOccupied . set (false);

14 }

15 }

Figure 2.13: Building Locks Using GetAndGetAndSet

data item that is found in the local cache is termed as a cache hit and can be served locally. Otherwise, we
get a cache miss and the item must be served from the main memory or cache of some other core. Caches
improve the performance of the program but require that the system ensures coherence and consistency of
cache. In particular, an instruction such as getAndSet requires that all other cores should invalidate their
local copies of the data item on which getAndSet is called. When cores spin using get AndSet instruction,
they repeatedly access the bus resulting in high contention and a slow down of the system. In the second
implementation, threads spin on the variable isOccupied using get. If the memory location corresponding
to isOccupied is in cache, the thread only reads cached value and therefore avoids the use of the shared
data bus.

Even though the idea of getAndGetAndSet reduces contention of the bus, it still suffers from high
contention whenever a thread exits the critical section. Suppose that a large number of threads were
spinning on their cached copies of isOccupied. Now suppose that the thread that had the lock leaves the
critical section. When it updates isOccupied, the cached copies of all spinning threads get invalidated.
All these threads now get that isOccupied is false and try to set it to true using getAndSet. Only, one
of them succeeds but all of them end up contributing to the contention on the bus. An idea that is useful
in reducing the contention is called backoff. Whenever a thread finds that it failed in getAndSet after a
successful get, instead of continuing to get the lock, it backs off for a certain random period of time. The
exponential backoff doubles the maximum period of time a thread may have to wait after any unsuccessful
trial. The resulting implementation is shown in Fig. 2.14.

Another implementation that is sometimes used for building locks is based on getting a ticket number
similar to Bakery algorithm. This implementation is also not scalable since it results in high contention
for currentTicket.

2.9 Queue Locks

Our previous approaches to solve mutual exclusion require threads to spin on the shared memory location
isOccupied. As we have seen earlier, any update to this variable results in multiple threads getting cache
invalidation. Even when threads backoff, we have the issue of deciding the duration of time to back off. If
we do not back off for a sufficient period, the bus contention is still there. On the other hand, if the period
for the backoff is large, then the threads may be sleeping even when the critical section is not occupied.
In this section, we present alternate methods to avoid spinning on the same memory location. All three

32 CHAPTER 2. MUTUAL EXCLUSION PROBLEM

1 import java.util.concurrent.atomic.x;
2
3 public class MutexWithBackOff{
4 AtomicBoolean isOccupied = new AtomicBoolean (false);
5 public void lock () {
6 while (true) {
7 while (isOccupied.get()) {
8
9 if (!isOccupied.getAndSet(true)) return;
10 else {
11 int timeToSleep = calculateDuration ();
12 Thread . sleep (timeToSleep);
13 }
14 }
15
16 public void unlock () {
17 isOccupied.set (false);
18 }
19 }
Figure 2.14: Using Backoff during Lock Acquisition
1 import java.util.concurrent.atomic.x;
2
3 public class TicketMutex {
4 AtomicInteger nextTicket = new AtomicInteger (0);
) AtomicInteger currentTicket = new AtomicInteger (0);
6 public void lock () {
7 int myticket = nextTicket.getAndIncrement ();
8 while (myticket != currentTicket.get()) {
9 /) skip ();
10
11
12 public void unlock () {
13 int temp = currentTicket.getAndIncrement ();
14 }
15 }

Figure 2.15: Using Tickets for Mutex

2.9. QUEUE LOCKS 33

methods maintain a queue of threads waiting to enter the critical section. Anderson’s lock uses a fixed size
array, CLH lock uses an implicit linked list and MCS lock uses an explicit linked list for the queue. One
of the key challenges in designing these algorithms is that we cannot use locks to update the queue.

2.9.1 Anderson’s Lock

Anderson’s lock uses a circular array Available of size n which is at least as big as the number of threads
that may be contending for the critical section. The array is circular so that the index ¢ in the array is
always a value in the range 0..n — 1 and is incremented modulo n. Different threads waiting for the critical
section spin on the different slots in this array thus avoiding the problem of multiple threads spinning
on the same variable. An atomic integer tailSlot (initialized to 0) is maintained which points the next
available slot in the array. Any thread that wants to lock, reads the value of the tailSlot in its local
variable mySlot and advances it in one atomic operation using getAndIncrement(). It then spins on
Available[mySlot] until the slot becomes available. Whenever a thread finds that the entry for its slot
is true, it can enter the critical section. The algorithm maintains the invariant that distinct processes have
distinct slots and also that there is at most one entry in Available that is true. To unlock, the thread sets
its own slot as false and the entry in the next slot to be true. Whenever a thread sets the next slot to be
true, any thread that was spinning on that slot can then enter the critical section. Note that in Anderson
lock, only one thread is affected when a thread leaves the critical section. Other threads continue to spin
on other slots which are cached and thus result only in accesses of local caches.

Note that the above description assumes that each slot is big enough so that adjacent slots do not share
a cache line. Hence even though we just need a single bit to store Available[i], it is important to keep it
big enough by padding to avoid the problem of false sharing. Also note that since Anderson’s lock assigns
slots to threads in the FCFS manner, it guarantees fairness and therefore freedom from starvation.

A problem with Anderson lock is that it requires a separate array of size n for each lock. Hence, a
system that uses m locks shared among n threads will use up O(nm) space.

1 // pseudo—code for Anderson Lock
2 public class AndersonLock {

3 AtomicInteger tailSlot = new AtomicInteger (0);
4 boolean [] Awvailable;

5 ThreadLocal<Integer> mySlot ;//initialize to 0
6

7 public AndersonLock (int n) { // constructor

8 // all Awvailable false except Awvailable [0]

9

10 public void lock () {

11 mySlot.set (tailSlot .getAndIncrement () % n);
12 spinUntil (Available [mySlot]);

13

14 public void unlock () {

15 Available [mySlot.get ()] = false;

16 Available [(mySlot.get()+1) % n] = true;

17

18 }

Figure 2.16: Anderson Lock for Mutex

34 CHAPTER 2. MUTUAL EXCLUSION PROBLEM

2.9.2 CLH Queue Lock

We can reduce the memory consumption in Anderson’s algorithm by using a dynamic linked list instead
of a fixed size array. The idea of CLH Lock (shown in Fig. 2.17) is due to Travis Craig, Erik Hagersten
and Anders Landin. For each lock, we maintain a linked list. Any thread that wants to get that lock
inserts a node in that linked list. Just as we had a shared variable tailSlot in Anderson’s algorithm, we
maintain a shared variable tailNode that points to the last node inserted in the linked list. Suppose a
thread wants to insert myNode in the linked list. This insertion in the linked list must be atomic; therefore,
the thread uses pred = tailNode.getAndSet (myNode) to insert its node in the linked list as well as get
the pointer to the previous node in the variable pred. Each node has a field locked which is initially set
to true when the node is inserted in the linked list. A thread spins on the field locked of the predecessor
node pred. Whenever a thread releases the critical section, it sets the locked field to false. Any thread
that was spinning on that field can now enter the critical section.

It is important to note that if the thread that exits the critical section wants to enter the critical section
again, it cannot reuse its own node because the next thread may still be spinning on that node’s field.
However, it can reuse the node of its predecessor.

Also note that we do not maintain an explicit pointer in each node. The linked list is virtual. A thread
that is spinning has the variable pred that points to the predecessor node in the linked list. The node
itself has a single field: locked.

import java.util.concurrent.atomic.x;
public class CLHLock implements MyLock {
class Node {
boolean locked;

AtomicReference<Node> tailNode;
ThreadLocal<Node> myNode;
ThreadLocal<Node> pred;

1

2

3

4

5

6

7

8

9

10 public CLHLock() {

11 tailNode = new AtomicReference<Node>(new Node ());
12 tailNode.get ().locked = false;

13 myNode = new ThreadLocal<Node> () {

14 protected Node initialValue () {

15 return new Node ();

16
17
18
19
20

¥
}s
pred = new ThreadLocal<Node> ();
}

21 public void lock () {
22 myNode. get (). locked = true;
23 pred.set (tailNode.getAndSet (myNode. get ()));
24 while (pred.get ().locked) { Thread.yield (); };
25
26 public void unlock ()
27 myNode. get ().locked = false;
28 myNode. set (pred.get ()); // reusing predecessor node for future use
29 }
30 1

Figure 2.17: CLH Lock for Mutex

2.10. PROBLEMS 35

2.9.3 MCS Queue Lock

In many architectures, each core may have local memory such that access to its local memory is fast but
access to the local memory of another core is slower. In such architectures, CLH algorithm results in
threads spinning on remote locations. We now show a method due to John Mellor-Crummey and Michael
Scott called MCS lock that avoids remote spinning, i.e. spinning on memory of a different core.

In MCS lock (shown in Fig. 2.18), we maintain a queue based on an explicit linked list. Any thread
that wants to access the critical section inserts its node in the linked list at the tail. Each node has a field
locked which is initialized to true when the node is inserted in the linked list. A thread spins on that field
waiting for it to become false. It is the responsibility of the thread that exits the critical section to set this
field to false.

When a thread p exits the critical section, it first checks if there is any node linked next to its node.
If there is such a node, then it makes the locked field false and removes its node from the linked list by
making its next pointer null. The tricky case is when it finds that there is no node linked next to its node.
There can be two reasons for this. First, there is no thread that has inserted its node in the linked list
using tailNode yet. In this case, tailNode is still pointing to its node. In this case, the thread must
simply set the tailNode to null. The second case is that a thread ¢ has called tailNode.getAndSet but not
yet set the next pointer of p’s node to ¢’s node. In this case, the thread p waits until its next field is not
null. It can then set the locked field for that node to be false as before.

2.10 Problems

2.1. Show that any of the following modifications to Peterson’s algorithm makes it incorrect:

a) A process in Peterson’s algorithm sets the turn variable to itself instead of setting it to the
p g g
other process.

(b) A process sets the turn variable before setting the wantC'S variable.
2.2. Show that Peterson’s algorithm also guarantees freedom from starvation.
2.3. Show that the bakery algorithm does not work in absence of choosing variables.

2.4. Prove the correctness of the Filter algorithm in Figure 2.7. (Hint: Show that at each level, the
algorithm guarantees that at least one processes loses in the competition.)

2.5. Consider the software protocol shown in Figure 2.19 for mutual exclusion between two processes.
Does this protocol satisfy (a) mutual exclusion, and (b) livelock freedom (both processes trying to

enter the critical section and none of them succeeding)? Does it satisfy starvation freedom?

2.6. Modify the bakery algorithm to solve k-mutual exclusion problem, in which at most k processes can
be in the critical section concurrently.

2.7. Give a mutual exclusion algorithm that uses atomic swap instruction.
2.8. Give a mutual exclusion algorithm that uses Test AndSet instruction and is free from starvation.

*2.9. Give a mutual exclusion algorithm on N processes that requires O(1) time in absence of contention.

36

© 00 ~JO U= W

CHAPTER 2. MUTUAL EXCLUSION PROBLEM

import java.util.concurrent.atomic.x;

public class MCSLock implements MyLock {
class QNode {
boolean locked;
QNode next ;
QNode () {
locked = true;
next = null;

}

AtomicReference<QNode> tailNode = new AtomicReference<QNode>(null);
ThreadLocal<QNode> myNode;

public MCSLock ()
myNode = new ThreadLocal<QNode> () {
protected QNode initialValue () {
return new QNode ();
}

}s

public void lock () {
QNode pred = tailNode.getAndSet (myNode. get ());
if (pred != null){
myNode. get (). locked = true;
pred.next = myNode. get ();
while (myNode.get ().locked){ Thread.yield (); };

}

public void unlock () {
if (myNode.get ().next = null)
if (tailNode.compareAndSet(myNode.get (), null)) return;
while (myNode.get ().next = null) { Thread.yield (); };

myNode. get (). next.locked = false;
myNode. get (). next = null;

Figure 2.18: MCS Lock for Mutex

2.11. BIBLIOGRAPHIC REMARKS 37

class Dekker implements Lock {
boolean wantCS[] = {false, false};
int turn = 1;
public void requestCS(int i) { // entry protocol
int j =1— 1i;

wantCS[i] = true;
while (wantCS[j]) {
if (turn = j
wantCS[i] = false;
while (turn = j) ;// busy wait
wantCS[i] = true;
}
}
public void releaseCS(int i) { // exzit protocol
turn = 1 — 1i;
wantCS[i] = false;

Figure 2.19: Dekker.java

2.11 Bibliographic Remarks

The mutual exclusion problem was first introduced by Dijkstra [Dij65a]. Dekker developed the algorithm
for mutual exclusion for two processes. Dijkstra [Dij65b] gave the first solution to the problem for N
processes. The bakery algorithm is due to Lamport [Lam74], and Peterson’s algorithm is taken from a
paper by Peterson [Pet81].

38

CHAPTER 2. MUTUAL EXCLUSION PROBLEM

