Chapter 3

Synchronization Primitives

3.1 Introduction

All of our previous solutions to the mutual exclusion problem were wasteful in one regard. If a process is
unable to enter the critical section, it repeatedly checks for the entry condition to be true. While a process
is doing this, no useful work is accomplished. This way of waiting is called busy wait. Instead of checking
the entry condition repeatedly, if the process checked the condition only when it could have become true,
it would not waste CPU cycles. Accomplishing this requires support from the operating system.

In this chapter we introduce synchronization primitives that avoid busy wait. Synchronization prim-
itives are used for mutual exclusion as well as to provide order between various operations by different
threads. Although there are many types of synchronization constructs in various programming languages,
two of them are most prevalent: semaphores and monitors. We discuss these constructs in this chapter.

3.2 Semaphores

Dijkstra proposed the concept of semaphore that solves the problem of busy wait. A semaphore has two
fields, its value and a queue of blocked processes, and two operations associated with it — P() and V().
The semantics of a binary semaphore is shown in Figure 3.1. The value of a semaphore (or a binary
semaphore) can be only false or true. The queue of blocked processes is initially empty and a process may
add itself to the queue when it makes a call to P(). When a process calls P() and value is true, then the
value of the semaphore becomes false. However, if the value of the semaphore is false, then the process
gets blocked at line 7 until it becomes true. The invocation of Util.myWait () at line 8 achieves this. The
class Util is shown in the appendix, but for now simply assume that this call inserts the caller process
into the queue of blocked processes.

When the value becomes true, the process can make it false at line 9 and return from P(). The call to
V() makes the value true and also notifies a process if the queue of processes sleeping on that semaphore
is nonempty.

Now, mutual exclusion is almost trivial to implement:

BinarySemaphore mutex = new BinarySemaphore(true);
mutex.P();

criticalSection();

mutex.V();

39



40 CHAPTER 3. SYNCHRONIZATION PRIMITIVES

1 public class BinarySemaphore {

2 boolean value;

3 public BinarySemaphore(boolean initValue) {
4 value = initValue;

5

6 public synchronized void P() {

7 while (value = false)

8 Util .myWait(this); // in the queue of blocked processes
9 value = false;

10

11 public synchronized void V() {

12 value = true;

13 notify ();

14

15 }

Figure 3.1: Binary semaphore

Another variant of semaphore allows it to take arbitrary integer as its value. These semaphores are
called counting semaphores. Their semantics is shown in Figure 3.2.

public class CountingSemaphore {
int value;
public CountingSemaphore(int initValue) {
value = initValue;

public synchronized void P()
while (value = 0) Util.myWait(this);
value ——;

public synchronized void V() {
value++;
notify ();

Figure 3.2: Counting semaphore

Semaphores can be used to solve a wide variety of synchronization problems. Note that Java does not
provide semaphores as basic language construct, but they can easily be implemented in Java using the idea
of monitors, which we will cover later. For now we simply assume that semaphores are available to us and
solve synchronization problems using them.

3.2.1 The Producer-Consumer Problem

We first consider the producer-consumer problem. In this problem, there is a shared buffer between two
processes called the producer and the consumer. The producer produces items that are deposited in the
buffer and the consumer fetches items from the buffer and consumes them. Since the buffer is shared, each
process must access the buffer in a mutually exclusive fashion. We use an array of Object of size size
as our buffer. The buffer has two pointers, inBuf and outBuf, which point to the indices in the array for
depositing an item and fetching an item, respectively. The variable count keeps track of the number of



3.2. SEMAPHORES 41

items currently in the buffer. Figure 3.3 shows the buffer as a circular array in which inBuf and outBuf
are incremented modulo size to keep track of the slots for depositing and fetching items.

inBuf

~4—— outBuf

Size of buffer -1

Figure 3.3: A shared buffer implemented with a circular array

In this problem, we see that besides mutual exclusion, there are two additional synchronization con-
straints that need to be satisfied:

1. The consumer should not fetch any item from an empty buffer.

2. The producer should not deposit any item in the buffer if it is full. The buffer can become full if the
producer is producing items at a greater rate than the rate at which the items are consumed by the
consumer.

Such form of synchronization is called conditional synchronization. It requires a process to wait for some
condition to become true (such as the buffer to become nonempty) before continuing its operations. The
class BoundedBuffer is shown in Figure 3.4. It uses mutex semaphore to ensure that all shared variables
are accessed in mutually exclusive fashion. The counting semaphore isFull is used for making a producer
wait in case the buffer is full, and the semaphore isEmpty is used to make a consumer wait when the buffer
is empty.

In the method deposit, line 10 checks whether the buffer is full. If it is, the process making call
waits using the semaphore isFull. Note that this semaphore has been initialized to the value size, and
therefore in absence of a consumer, first size calls to isFull.P() do not block. At this point, the buffer
would be full and any call to isFull.P() will block. If the call to isFull.P() does not block, then we
enter the critical section to access the shared buffer. The call mutex.P() at line 11 serves as entry to the
critical section, and mutex.V() serves as the exit from the critical section. Once inside the critical section,
we deposit the value in buffer using the pointer inBuf at line 12 (see Figure 3.4). Line 15 makes a call to
isEmpty.V() to wake up any consumer that may be waiting because the buffer was empty. The method
fetch is dual of the method deposit.

The class BoundedBuffer can be exercised through the producer-consumer program shown in Figure



42 CHAPTER 3. SYNCHRONIZATION PRIMITIVES

1 class BoundedBuffer {

2 final int size = 10;

3 Object [] buffer = new Object[size ];

4 int inBuf = 0, outBuf = 0;

5 BinarySemaphore mutex = new BinarySemaphore (true);

6 CountingSemaphore isEmpty = new CountingSemaphore (0);

7 CountingSemaphore isFull = new CountingSemaphore(size );
8
9

public void deposit(Object value) {
10 isFull .P();// wait if buffer is full
11 mutex.P(); // ensures mutual ezxclusion
12 buffer [inBuf] = value; // update the buffer
13 inBuf = (inBuf + 1) % size;
14 mutex.V();
15 isEmpty.V(); // notify any waiting consumer
16 }
17 public Object fetch () {
18 Object value;
19 isEmpty .P(); // wait if buffer is empty
20 mutex.P(); // ensures mutual ezxclusion
21 value = buffer [outBuf]; //read from buffer
22 outBuf = (outBuf + 1) % size;
23 mutex.V();
24 isFull . V(); // notify any waiting producer
25 return value;
26
27}

Figure 3.4: Bounded buffer using semaphores

3.5. This program starts a Producer thread and a Consumer thread, repeatedly making calls to deposit
and fetch, respectively.

3.2.2 The Reader-Writer Problem

Next we show the solution to the reader-writer problem. This problem requires us to design a protocol to
coordinate access to a shared database. The requirements are as follows:

1. No read-write conflict: The protocol should ensure that a reader and a writer do not access the
database concurrently.

2. No write-write conflict: The protocol should ensure that two writers do not access the database
concurrently.

Further, we would like multiple readers to be able to access the database concurrently. A solution
using semaphores is shown in Figure 3.6. We assume that the readers follow the protocol that they call
startRead before reading the database and call endRead after finishing the read. Writers follow a similar
protocol. We use the wlock semaphore to ensure that either there is a single writer accessing the database
or only readers are accessing it. To count the number of readers accessing the database, we use the variable
numReaders.

The methods startWrite and endWrite are quite simple. Any writer that wants to use the database
locks it using wlock.P(). If the database is not locked, this writer gets the access. Now no other reader
or writer can access the database until this writer releases the lock using endWrite().

Now let us look at the startRead and the endRead methods. In startRead, a reader first increments
numReaders. If it is the first reader (numReaders equals 1), then it needs to lock the database; otherwise,



3.2. SEMAPHORES

import java.util.Random;

class Producer implements Runnable {
BoundedBuffer b = null;
public Producer (BoundedBuffer initb) {

b = initb;
new Thread (this).start ();

public void run() {

}

Double item;

Random r = new Random ();
while (true) {
item = r.nextDouble ();

System.out. println (” produced._item.” + item);
b.deposit (item);
Util.mySleep (200);

class Consumer implements Runnable {
BoundedBuffer b = null;

public Consumer(BoundedBuffer initb) {

b = inithb;
new Thread (this).start ();

public void run() {

}

Double item;

while (true) {
item = (Double) b.fetch ();
System.out . println (” fetched._.item.” + item);
Util.mySleep (50);

class ProducerConsumer {
public static void main(String [] args) {

BoundedBuffer buffer = new BoundedBuffer ();
Producer producer = new Producer(buffer);
Consumer consumer = new Consumer (buffer);

Figure 3.5: Producer-consumer algorithm using semaphores



44 CHAPTER 3. SYNCHRONIZATION PRIMITIVES

there are already other readers accessing the database and this reader can also start using it. In endRead,
the variable numReaders is decremented and the last reader to leave the database unlocks it using the call
wlock.V().

This protocol has the disadvantage that a writer may starve in the presence of continuously arriving
readers. A starvation-free solution to the reader-writer problem is left as an exercise.

class ReaderWriter {
int numReaders = 0;
BinarySemaphore mutex = new BinarySemaphore(true);
BinarySemaphore wlock = new BinarySemaphore (true);
public void startRead () {
mutex.P();
numReaders++;
if (numReaders = 1) wlock.P();
mutex.V();

public void endRead() {
mutex.P();
numReaders——;
if (numReaders =— 0) wlock.V();
mutex.V();

public void startWrite () {
wlock .P();

public void endWrite () {
wlock .V ();

Figure 3.6: Reader-writer algorithm using semaphores

3.2.3 The Dining Philosopher Problem

This problem, first posed and solved by Dijkstra, is useful in bringing out issues associated with concurrent
programming and symmetry. The dining problem consists of multiple philosophers who spend their time
thinking and eating spaghetti. However, a philosopher requires shared resources, such as forks, to eat
spaghetti (see Figure 3.7). We are required to devise a protocol to coordinate access to the shared resources.
A computer-minded reader may substitute processes for philosophers and files for forks. The task of eating
would then correspond to an operation that requires access to shared files.

Let us first model the process of a philosopher. The class Philosopher is shown in Figure 3.8. Each
philosopher P; repeatedly cycles through the following states — thinking, hungry, and eating. To eat, a
philosopher requires resources (forks) for which it makes call to acquire(i). Thus, the protocol to acquire
resources is abstracted as an interface Resource shown in Figure 3.9.

The first attempt to solve this problem is shown in Figure 3.10. It uses a binary semaphore for each of
the forks. To acquire the resources for eating, a philosopher i grabs the fork on its left by using fork[i].P()
at line 12, and the fork on the right by using fork[(i+1) % n].P() at line 13. To release the resources,
the philosopher invokes V() on both the forks at lines 16 and 17.

This attempt illustrates the dangers of symmetry in a distributed system. This protocol can result in
deadlock when each philosopher is able to grab its left fork and then waits for its right neighbor to release
its fork.



3.2. SEMAPHORES

% % : Dining philosophers Q
W : Shared fork

Figure 3.7: The dining philosopher problem

class Philosopher implements Runnable {
int id = 0;
Resource r = null;
public Philosopher (int initId, Resource initr) {
id = initld;
r = initr;
new Thread (this).start ();

public void run() {
while (true) {
try {
System.out.println (”Phil.” + id + ”_thinking”);
Thread. sleep (30);
System.out.println (? Phil.” 4+ id + ”_hungry”);
r.acquire (id);
System.out.println (? Phil.” 4+ id + ”_eating”);
Thread. sleep (40);
r.release (id);
} catch (InterruptedException e) {
return;
}

Figure 3.8: Dining Philosopher

45



46

CHAPTER 3.

SYNCHRONIZATION PRIMITIVES

interface Resource {
public void acquire(int i);
public void release(int i);

Figure 3.9: Resource Interface

class DiningPhilosopher implements Resource {

int n = 0;
BinarySemaphore [] fork = null;
public DiningPhilosopher (int initN) {
n = initN;
fork = new BinarySemaphore[n];
for (int i = 0; i < n; i++) {
fork [i] = new BinarySemaphore(true);
}
public void acquire(int i) {
fork [1].P();

fork [(i + 1) % n].P();

public void release(int i) {
fork [1].V();
fork [(1 + 1) % n].V();

public static void main(String [] args) {
DiningPhilosopher dp = new DiningPhilosopher (5);
for (int i = 0; i < 5; i++)
new Philosopher (i, dp);

Figure 3.10: Dining philosopher using semaphores



3.3. MONITORS 47

There are many ways that one can extend the solution to ensure freedom from deadlock. For example:

1. We can introduce asymmetry by requiring one of the philosophers to grab forks in a different order
(i.e., the right fork followed by the left fork instead of vice versa).

2. We can require philosophers to grab both the forks at the same time.

3. Assume that a philosopher has to stand before grabbing any fork. Allow at most four philosophers
to be standing at any given time.

It is left as an exercise for the reader to design a protocol that is free from deadlocks.

The dining philosopher problem also illustrates the distinction between deadlock freedom and starvation
freedom. Assume that we require a philosopher to grab both the forks at the same time. Although
this eliminates deadlock, we still have the problem of a philosopher being starved because its neighbors
continuously alternate in eating. The reader is invited to come up with a solution that is free from deadlock
as well as starvation.

3.3 Monitors

The Monitor is a high-level object-oriented construct for synchronization in concurrent programming. A
monitor can be viewed as a class that can be used in concurrent programs. As any class, a monitor
has data variables and methods to manipulate that data. Because multiple threads can access the shared
data at the same time, monitors support the notion of entry methods to guarantee mutual exclusion. It
is guaranteed that at most one thread can be executing in any entry method at any time. Sometimes the
phrase “thread ¢ is inside the monitor” is used to denote that thread ¢ is executing an entry method. It
is clear that at most one thread can be in the monitor at any time. Thus associated with every monitor
object is a queue of threads that are waiting to enter the monitor.

As we have seen before, concurrent programs also require conditional synchronization when a thread
must wait for a certain condition to become true. To address conditional synchronization, the monitor
construct supports the notion of condition variables. A condition variable has two operations defined on
it: wait and notify (also called a signal). For any condition variable z, any thread, say, ¢1, that makes a
call to z.wait() is blocked and put into a queue associated with . When another thread, say, t2, makes
a call to z.notify(), if the queue associated with z is nonempty, a thread is removed from the queue and
inserted into the queue of threads that are eligible to run. Since at most one thread can be in the monitor,
this immediately poses a problem: which thread should continue after the notify operation—the one that
called the notify method or the thread that was waiting. There are two possible answers:

1. One of the threads that was waiting on the condition variable continues execution. Monitors that
follow this rule are called Hoare monitors (or, signal-and-wait monitors).

2. The thread that made the notify call continues its execution. When this thread goes out of the
monitor, then other threads can enter the monitor. This is the semantics followed in Java and is
called signal-and-continue.

One advantage of Hoare’s monitor is that the thread that was notified on the condition starts its
execution without intervention of any other thread. Therefore, the state in which this thread starts
executing is the same as when the notify was issued. On waking up, it can assume that the condition is
true. Therefore, using Hoare’s mointor, a thread’s code may be

if (!'B) x.wait();



48 CHAPTER 3. SYNCHRONIZATION PRIMITIVES

Assuming that to notifies only when B is true, we know that ¢; can assume B on waking up. In Java-
style monitor, even though ¢, issues the notify, it continues its execution. Therefore, when t; gets its turn
to execute, the condition B may not be true any more. Hence, when using Java, the threads usually wait
for the condition as

while (!B) x.wait();

The thread t; can take a notify() only as a hint that B may be true. Therefore, it explicitly needs to
check for truthness of B when it wakes up. If B is actually false, it issues the wait () call again.

In Java, we specify an object to be a monitor by using the keyword synchronized with its methods.
To get conditional synchronization, Java provides

1. wait(): which inserts the thread in the wait queue. For simplicity, we use Util.myWait () instead
of wait () in Java. The only difference is that myWait catches the InterruptedException.

2. notify(): which wakes up a thread in the wait queue.
3. notifyAll(): which wakes up all the threads in the wait queue.

In Java, by default, associated with each object is a single wait queue for conditions. This is sufficient
for most programming needs. A pictorial representation of a Java monitor is shown in Figure 3.11. There
are two queues associated with an object—a queue of threads waiting for the lock associated with the
monitor and another queue of threads waiting for some condition to become true.

If one needs multiple condition queues, then Java provides ReenetrantLocks which can have multiple
conditions variables associated with them. We discuss ReentrantLocks in Section 3.3.2.

4 N

DATA Queue of processes
waiting for monitor lock

Synchronized method Queue of processes
I: waiting to be notified

Synchronized method

Nonsynchronized method

Nonsynchronized method

/

Figure 3.11: A pictorial view of a Java monitor

Let us solve some synchronization problems with Java monitors. We first look at the producer-consumer
problem. The BoundedBufferMonitor shown in Figure 3.12 has two entry methods: deposit and fetch.
This means that if a thread is executing the method deposit or fetch, then no other thread can execute
deposit or fetch. The synchronized keyword at lines 5 and 14 allows mutual exclusion in access of



3.3. MONITORS 49

shared variables and corresponds to acquiring the monitor lock. Let us now look at the method deposit.
At line 6, if the buffer is full, (i.e., count is equal to size), then the thread that called deposit must wait
for a slot in the buffer to be consumed. Therefore, it invokes the method myWait (). When a thread waits
for the condition, it goes in a queue waiting to be notified by some other thread. It also has to release the
monitor lock so that other threads can enter the monitor and make the condition on which this thread is
waiting true. When this thread is notified, it has to acquire the monitor lock again before continuing its
execution.

Now assume that the condition in the while statement at line 6 is false. Then the value can be
deposited in the buffer. The variable inBuf points to the tail of the circular buffer. It is advanced after the
insertion at line 9 and the count of the number of items in the buffer is incremented at line 10. We are not
really done yet. While designing a monitor, one also needs to ensure that if some thread may be waiting
for a condition that may have become true, then that thread must be notified. In this case, a consumer
thread may be waiting in the method fetch for some item to become available. Therefore, if count is 1,
we notify any waiting thread at line 12.

The method fetch is very similar to deposit.

1 class BoundedBufferMonitor {

2 final int size = 10;

3 Object [] buffer = new Object[size |;

4 int inBuf = 0, outBuf = 0, count = 0;

5 public synchronized void deposit(Object value) {
6 while (count = size) // buffer full

7 Util . myWait (this );

8 buffer [inBuf] = value;

9 inBuf = (inBuf + 1) % size;

10 count++;

11 if (count = 1) // items awvailable for fetch
12 notify ();

13

14 public synchronized Object fetch () {

15 Object value;

16 while (count = 0) // buffer empty

17 Util . myWait (this);

18 value = buffer [outBuf];

19 outBuf = (outBuf + 1) % size;

20 count ——;

21 if (count = size — 1) // empty slots available
22 notify ();

23 return value;

24

25 }

Figure 3.12: Bounded buffer monitor for one producer and one consumer

The class BoundedBufferMonitor works correctly only when there is exactly one producer and one
consumer. Can you determine why the code does not work for multiple producers and multiple consumers?
For simplicity, consider the case when size equals 1 and count equals 0. Suppose that two consumer threads
C1 and Cs call the method fetch(). They are now waiting for producers. Now suppose that two producers
P and P, arrive. When P; leaves, it notifies consumers. However, before C enters the monitor, P> enters
the monitor and also starts waiting because the buffer is full. Now C; enters the monitor. At this point,
there is one consumer Cs and one producer P, waiting for their conditions to become true. When C;
executes notify (), it is poissible that the thread Cy gets the notification. When thread Cy enters the
monitor, it finds count equal to 0 and goes to sleep again. At this point, we have both a producer and a



50 CHAPTER 3. SYNCHRONIZATION PRIMITIVES

consumer thread waiting for notifications. The problem is that the notification from thread C was really
meant for P». However, since notify() wakes up a single thread, it ended up notifying the wrong thread.
One way to solve this problem is to use notifyAl1() and remove the if check before the notification.
A solution for the bounded buffer in presence of multiple producers and consumers with this approach is
given in Figure 3.13. Another method is based on using Condition variables discussed in Section 3.3.2.

1 class MultiBoundedBufferMonitor {

2 final int size = 10;

3 double [] buffer = new double[size |;

4 int inBuf = 0, outBuf = 0, count = 0;
5 public synchronized void deposit(double value) {
6 while (count = size) // buffer full
7 Util . myWait(this );

8 buffer [inBuf] = value;

9 inBuf = (inBuf + 1) % size;

10 count++;

11 notifyAll ();

12

13 public synchronized double fetch () {
14 double value;

15 while (count = 0) // buffer empty
16 Util . myWait (this );

17 value = buffer [outBuf];

18 outBuf = (outBuf + 1) % size;

19 count ——;

20 notifyAll ();

21 return value;

22

23}

Figure 3.13: Bounded buffer monitor for multiple producers and consumers

Now let us revisit the dining philosophers problem. In the solution shown in Figure 3.14, a philosopher
7 uses the method test at line 18 to determine if any of neighboring philosophers is eating. If not,
then this philosopher can start eating. Otherwise the philosopher must wait for the condition (state[i]
== eating) at line 19 to begin eating. This condition can become true when one of the neighboring
philosophers finishes eating. After eating, the philosopher invokes the method release to check at lines
24 and 25, whether the left neighbor or the right neighbor can now eat. If any of them can eat, this
philosopher wakes up all the waiting philosophers by invoking notifyAl1() at line 32. This solution
guarantees mutual exclusion of neighboring philosophers and is also free from deadlock. However, it does
not guarantee freedom from starvation. The reader should devise a protocol for starvation freedom.

3.3.1 Implementing Monitors Using Semaphores

Binary semaphores can easily be implemented on top of Java monitor. Figure 3.1 gives one such imple-
mentation. Is the converse true? We now show that any concurrent program that is written using monitors
can also be written using binary semaphores. There are two aspects of monitors: mutual exclusion and
conditional synchronization. Providing mutual exclusion is simple. We keep a mutex binary semaphore
initialized as true for each object. Before any synchronized method, we use mutex.P() to acquire the
monitor lock, and at exit use mutex.V() to release the monitor lock. We now describe how to implement
wait() and notify() using binary semaphores. We will use another binary semaphore cond initialized
as false to implement conditional synchronization. When a thread invokes wait (), it must first release
the monitor lock, and then wait for notification to evaluate the condition again. Once it receives the



3.3. MONITORS

1
2
3
4
5
6
7
8

class DiningMonitor implements Resource {

int n = 0;

int state[] = null;

static final int thinking = 0, hungry = 1, eating = 2;
public DiningMonitor (int initN) {

n = initN;
state = new int[n];
for (int i = 0; i < n; i++4) state[i] = thinking;

}
int left (int 1)
return (n +

{
i— 1) % n;

int right(int i) {
return (i + 1) % n;

public synchronized void acquire (int i) {

state[i] = hungry;
test (i);
while (state[i] != eating)

Util . myWait (this );

public synchronized void release (int i) {
state[i] = thinking;
test (left (i));
test (right (1));

void test (int i) {
if ((state[left(i)] !=
(state[i] = hungry) &&
(state[right(i)] != eating)) {
state[i] = eating;
notifyAll ();

eating) &&

}
}
public static void main(String [] args) {
DiningMonitor dm = new DiningMonitor (5);
for (int 1 = 0; i < 5; i++)
new Philosopher (i, dm);

Figure 3.14: Dining philosopher using monitors

51



52 CHAPTER 3. SYNCHRONIZATION PRIMITIVES

notification, it must first acquire the monitor lock. Hence wait () is implemented as:
mutex.V(); // release the monitor lock

cond.P(); // wait on cond

mutex.P(); // reacquire the monitor lock.

The construct notify () would be implemented as cond.V().

3.3.2 Reenetrant Locks and Condition Variables

In the multiple producer-consumer example, conditional synchronization would have been easier if a pro-
ducer could signal only the consumers and vice-versa. We implement this idea by using the notion of
condition variables. In Java, instead of using synchronized keywork to protect the monitor, we use ex-
plicit lock class called ReentrantLock. Any ReentrantLock has two methods associated with it lock ()
and unlock(). The qualifier Reentrant indicates that if a thread that already has the ReentrantLock,
calls the method lock(), then it is not blocked and can reenter the critical section. This feature is useful
when a thread accesses an object using nested methods. We can associate any number of conditions with a
ReentrantLock by invoking the method newCondition() of a ReentrantLock. For example, the following
code snippet declares a ReentrantLock and associates two condition variables with it.

Lock mutex = new ReentrantLock();

Condition notFull = mutex.newCondition();

Condition notEmpty = mutex.newCondition();

Associated with each condition variable are three important methods, await (), signal() and signalAll().
Now the programmer has flexibility to signal threads waiting for some specific condition.

Fig. 3.15 gives a solution for multiple producer consumer problem using ReentrantLocks and Condi-
tions.

Note the use of lock() and unlock() in this example. The unlock() method is used in the finally
clause so that the lock is released even when some exception is thrown.

3.4 Other Examples

In this section we give another example of concurrent programming in Java. Figure 3.16 shows a thread-
safe implementation of a queue that is based on a linked list. The class Node declared at line 2 contains
a String as data and the reference to the next node in the linked list. To enqueue data, we first create a
temp node at line 8. This node is inserted at the tail. If the linked list is empty, this is the only node in
the linked list and both head and tail are made to point to this node at lines 11-13. To dequeue a node,
a thread must wait at line 22 if head is null (the linked list is empty). Otherwise, the data in the head
node is returned and head is moved to the next node.

As mentioned earlier, whenever a thread needs to execute a synchronized method, it needs to get the
monitor lock. The keyword synchronized can also be used with any statement as synchronized (expr)
statement. The expression expr must result in a reference to an object on evaluation. The semantics
of the above construct is that the statement can be executed only when the thread has the lock for the
object given by the expr. Thus a synchronized method

public synchronized void method() {
body ) ;
}

can simply be viewed as a short form for



3.4.

© 00N Ui WN -

OTHER EXAMPLES

import java.util.concurrent.locks.x*;

class MBoundedBufferMonitor {

final int size = 10;

final ReentrantLock monitorLock = new ReentrantLock ();
final Condition notFull = monitorLock.newCondition ();
final Condition notEmpty = monitorLock.newCondition ();

final Object[] buffer = new Object[size |;
int inBuf=0, outBuf=0, count=0;

public void put(Object x) throws InterruptedException {
monitorLock.lock ();
try {
while (count = buffer.length)
notFull.await ();
buffer [inBuf] = x;
inBuf = (inBuf + 1) % size;
count—+-+;
notEmpty . signal ();
} finally {
monitorLock . unlock ();
}
}

public Object take() throws InterruptedException {
monitorLock . lock ()
try {
while (count = 0)
notEmpty . await ();
Object x = buffer [outBuf];
outBuf = (outBuf + 1) % size;
count ——;
notFull.signal ();
return x;
} finally {
monitorLock. unlock ();

)

Figure 3.15: Bounded Buffer Using ReentrantLocks and Conditions

53



54 CHAPTER 3. SYNCHRONIZATION PRIMITIVES

1 public class ListQueue {

2 class Node {

3 public String data;

4 public Node next;

5

6 Node head = null, tail = null;

7 public synchronized void enqueue(String data) {
8 Node temp = new Node ();

9 temp.data = data;

10 temp.next = null;

11 if (tail = null) {

12 tail = temp;

13 head = tail;

14 } else {

15 tail .next = temp;

16 tail = temp;

17

18 notify ();

19

20 public synchronized String dequeue() {
21 while (head = null)

22 Util . myWait(this );

23 String returnval = head.data;
24 if (head = tail) tail = null;
25 head = head.next;

26 return returnval;

27 }

28 }

Figure 3.16: Linked list

public void method() {
synchronized (this) {
body () ;
}
}

Just as nonstatic methods can be synchronized, so can the static methods. A synchronized static
method results in a classwide lock.

One also needs to be careful with inheritance. When an extended class overrides a synchronized
method with an unsynchronized method, the method of the original class stays synchronized. Thus, any
call to super.method() will result in synchronization.

3.5 Dangers of Deadlocks

Since every synchronized call requires a lock, a programmer who is not careful can introduce deadlocks.
For example, consider the following class that allows a cell to be swapped with the other cell. An object
of class BCell provides three methods: getValue, setValue and swap. Although the implementation
appears correct at first glance, it suffers from deadlock. Assume that we have two objects, p and ¢, as
instances of class BCell. What happens if a thread t; invokes p.swap(q) and another thread, say, to,
invokes q.swap(p) concurrently? Thread t; acquires the lock for the monitor object p and t2 acquires the
lock for the monitor object q. Now, thread ¢; invokes q.getValue() as part of the swap method. This
invocation has to wait because object ¢ is locked by to. Similarly, to has to wait for the lock for p, and we
have a deadlock!



3.6. OTHER USEFUL METHODS IN THREAD CLASS 55

class BCell { // can result in deadlocks
int value;
public synchronized int getValue() {
return value;

public synchronized void setValue(int i) {
value = i;

public synchronized void swap(BCell x) {
int temp = getValue ();
setValue (x.getValue ());
x.setValue (temp);

The program that avoids the deadlock is given below. It employs a frequently used strategy of to-
tally ordering all the objects in a system and then acquiring locks only in increasing order. In this
program, both p.swap(q) and q.swap(p) result in either p.doSwap(q) or q.doSwap(p), depending on the
identityHashCode value of the objects p and q.

class Cell {
int value;
public synchronized int getValue() {
return value;

public synchronized void setValue(int i) {
value = i;

protected synchronized void doSwap(Cell x) {
int temp = getValue ();
setValue (x.getValue ());
x.setValue (temp);

public void swap(Cell x) {

if (this = x)
return;

else if (System.identityHashCode (this)

< System.identityHashCode(x))

doSwap (x);

else
x.doSwap (this);

Another frequent reason for deadlock is when a thread waits for a condition inside a mested monitor.
For example, suppose that a thread ¢; is inside a monitor for an object £irst0bj and it calls a synchronized
method for another object secondObj. Now if the thread invokes a wait() inside this method, by the
semantics of Java monitor, it will release the lock on second0bj. However, it will continue to hold the
monitor lock of first0bj. Suppose that thread to can notify thread t;, but thread to needs the lock of
first0bj, we have a deadlock. Thus, one needs to be extra careful when nested monitor calls are made.

3.6 Other Useful Methods in Thread Class

. Some other useful methods in Java Thread class are as follows:



56

3.7

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

3.9.

3.10.

3.11.

CHAPTER 3. SYNCHRONIZATION PRIMITIVES

. The interrupt () method allows a thread to be interrupted. If thread ¢; calls ty.interrupt(), then

to gets an InterruptedException.

. The yield() method allows a thread to yield the CPU to other threads temporarily. It does not

require any interaction with other threads, and a program without yield() would be functionally
equivalent to yield() call. A thread may choose to yield() if it is waiting for some data to become
available from say InputStream.

The method holdsLock(x) returns true if the current thread holds the monitor lock of the object z.

Problems

Show that if the P() and V() operations of a binary semaphore are not executed atomically, then
mutual exclusion may be violated.

Show that a counting semaphore can be implemented using binary semaphores. (Hint: Use a shared
variable of type integer and two binary semaphores)

Give a starvation-free solution to the reader-writer problem using semaphores.
Show that BoundedBufferMonitor does not work for multiple producers and multiple consumers.

The following problem is known as the sleeping barber problem. There is one thread called barber.
The barber cuts the hair of any waiting customer. If there is no customer, the barber goes to sleep.
There are multiple customer threads. A customer waits for the barber if there is any chair left in
the barber room. Otherwise, the customer leaves immediately. If there is a chair available, then the
customer occupies it. If the barber is sleeping, then the customer wakes the barber. Assume that
there are n chairs in the barber shop. Write a Java class for SleepingBarber using semaphores that
allows the following methods:

runBarber() // called by the barber thread; runs forever
hairCut() // called by the customer thread

How will you extend your algorithm to work for the barber shop with multiple barbers?

Give a deadlock-free solution to the dining philosophers problem using semaphores. Assume that one
of the philosophers picks forks in a different order.

Assume that there are three threads—P, ), and R—that repeatedly print “P”, “Q”, and “R”
respectively. Use semaphores to coordinate the printing such that the number of “R” printed is
always less than or equal to the sum of “P” and “Q” printed.

Write a monitor for the sleeping barber problem.
How will you implement wait (), notify() and notifyAll() using binary semaphores?
Show how condition variables of a monitor can be implemented in Java.

Write a monitor class counter that allows a process to sleep until the counter reaches a certain value.
The counter class allows two operations: increment () and sleepUntil(int x).



3.8. BIBLIOGRAPHIC REMARKS 57

3.12. Write a Java class for BoundedCounter with a minimum and a maximum value. This class provides
two methods: increment () and decrement (). Decrement at the minimum value and increment at
the maximum value result in the calling thread waiting until the operation can be performed without
violating the bounds on the counter.

3.13. Write a Java class FifoSemaphore that is identical to BinarySemaphore except that it maintains
blocked threads in a fifo queue, and the call to V() notifies the thread at the head of the queue.

3.14. Implement class ReaderWriter using Java monitors.

3.15. Write a Java class for Multiroom that is supposed to coordinate access to a set of m rooms. There
are two requirements on synchronization.

(a) Multiple threads can be in the same room but no more than one room can ever be occupied.
For example, suppose that a thread T} is in room[1]. Now if another thread T3 requests to enter
room|2], it must wait. However, if it requests to enter room/[1], then it can enter the room.

(b) If a thread is waiting to enter a room, then no thread that arrives later can succeed in entering
its room before this thread does.

3.8 Bibliographic Remarks

The semaphores were introduced by Dijkstra [Dij65a]. The monitor concept was introduced by Brinch
Hansen [Han72] and the Hoare-style monitor, by Hoare [Hoa74]. Solutions to classical synchronization
problems in Java are also discussed in the book by Hartley [Har98]. The example of deadlock and its
resolution based on resource ordering is discussed in the book by Lea [Lea99].



58

CHAPTER 3. SYNCHRONIZATION PRIMITIVES



