EE 360P Vijay Garg Spring 2006

Deadlocks

1 Introduction

A process is assumed to make calls to the system for using resources in the following
sequence: request, use, and release.

2

3

Conditions for Deadlock

. Mutual Ezclusion The resources cannot be accessed in shared mode. For some

resources, one can break this condition by allowing multiple processes to access
it. For example, an object may be accessed in read mode by multiple processes.
Not possible in general.

. Hold and wait A process is allowed to wait while holding resources. This con-

dition can be avoided by requiring processes to get all resources at one time.
This may lead to slowing down the system where a process may have to wait
for a long time to get all the resources, even though some of them may not be
necessary to start the operation. This leads to under-utilization of resources.

The other strategy to prevent this condition is by requiring processes to request
resources only when they do not hold any resource. If a process needs addi-
tional resources, it is required to release existing resources. This strategy is not
possible for many operations which require simultaneous use of resources.

. No Preemption Resources cannot be taken away from processes that are waiting.

In some cases, this condition can be prevented by taking back the resources by
aborting or rolling back a process.

. Circular Wait A cycle of processes exist such that each process waits for a

resource held by the next process in the cycle. One can prevent this condition
by linearly ordering all resources and requiring processes to request resources
in increasing order.

Resource Allocation Graph

A Resource Allocation Graph is a directed graph with vertices as processes and re-
sources. There are two types of edges - request edges and assignment edges. A request

edge is from a process P; to R; if P; has requested a resource of type ;. An assign-
ment edge is from a resource R; to P; if a resource of type R; has been assigned to
process P;.

First assume that there is exactly one instance of each resource type. In this case,
the system is in a deadlock state iff there is a directed cycle in the resource allocation
graph.

When the multiplicity of resources can be more than one, then presence of a cycle
is only a necessary condition but not sufficient for deadlock.

4 Banker’s algorithm

Assume that there are n processes competing for m resource types. The following
data structures are used:

e Total[i]: Total number of resources in the system

e Avail[i]: Total number of resources not assigned to any process
e Need]i, j|: Need of process i for resources of type j

e Alloc[i, j]: allocation of process i for resources of type j

Safe State: A state is safe if there exists a sequence of operations in which all of
the processes can run to completion.
To determine if the state is safe, one can use the following procedure.

private boolean safeCheck() {
boolean finish[] = new boolean[Banker.NumThreads];
int work[] = new int[Banker.NumRes]; //make copy of Avail
for (int i = 0; i < Banker.NumRes; i++) work[i] = availlil;

boolean changed = true;
while (changed == true) {
changed = false;
for (j = 0; j < Banker.NumThreads; j++) {
if (true == finish[j]) continue;

boolean canFinish = true; // true if (need[] <= Work[])
for (int i = 0; i < Banker.NumRes; i++)

if (need[j]1[i] > work[il) canFinish = false;

if (canFinish) {

finish[j]l = true; //flag thread as finished

for (int i = 0; i < Banker.NumRes; i++)
work[i] += Alloc[jl[il; // add its alloc into work;
changed = true;
}
} //for each thread

boolean done = true; //check if all threads have finished
for (int j = 0; j < Banker.NumThreads; j++)

if (! (finish[j])) done = false;

if (done) return true;
} //while (changed)

return false; //not all can finish, therefore unsafe

To determine if a request should be satisfied the system simply checks if the
resulting state of the system is safe or not.

