Efficient Detection of Channel Predicates in Distributed Systems!

V. K. Garg C. M. Chase Richard Kilgore J. Roger Mitchell

January 19, 1995

1 This paper is an extended and substially revised version of a paper which appeared as V. K. Garg, C. M. Chase, J.
R. Mitchell, and R. Kilgore, “ Detecting conjunctive Channel Predicatesin a Distributed Programming Environment,”
Proc. of the Twenty-Eighth Hawaii International Conference on System Sciences, January 1995, Vol. 11, pp. 232—-241,
1995.

Abstract

This paper discusses efficient detection of global predicates in a distributed program. Previous work in this
arearequired predicates to be specified as a conjunction of predicates defined on individual processes. Many
propertiesin distributed systems, however, use the state of channels such as“the channel isempty,” or “there
isatoken inthe channd”. In this paper, weintroduce the concept of amonotonic channel predicate and pro-
vide efficient centralized and distributed algorithms to detect any conjunction of local and monotonic channel
predicates. We show that many problems studied earlier such as detection of termination and computation of
global virtual time are special cases of the problem considered in this paper. The message complexity of our
algorithms is bounded by the number of messages used by the program. The main application of our results
are in debugging and testing of distributed programs.

Index Terms;
. Digtributed Systems

. Distributed Debugging

1
2
3. Predicate Detection
4. Channel Predicate
5

. Monotonic Channel Predicates

1 Introduction

A distributed program is one that runs on multiple processors connected by a communication network. The
state of such a program is distributed across the network and no process has access to the global state at any
instant. Detection of a global predicate is a fundamental problem in distributed computing. This problem
arises in many contexts such as designing, testing and debugging of distributed programs.

Previouswork has described a gorithms for detecting stabl e and unstable global predicates[CL85, CM 91,
FRGT94, GW94, GW92, HW88, Lam78, Mat89, M192, MC88, TG93]. See [BM94, SM9] for surveys of
stable and unstable predicate detection. Stable predicates are those that never become false once they are
true. The often cited examples of stable predicates are deadlock and termination. For example, asystem that
has terminated remains in this state. Chandy and Lamport’s method [CL85] for detecting agloba predicate
involves periodically taking a globa snapshot of the state of the system. If the predicate becomes true at
some time ¢, their algorithm will eventually create a snapshot using states after ¢. Since the predicate they
are detecting is stable, the predicate must still be true, and will be detected by their algorithm.

Unlike stable predicates, unstable predicates may alternate between true and false values. Cooper and
Marzullo [CM91] presented a method for detecting general predicates which included unstable predicates.
Their approach, though, requires exponential (O(m™)) time where m is the maximum number of events a
monitored process has executed and 7 is the number of processes. In this paper, we define a subclass of
predicates which can be detected in low-order polynomial time.

Manabe and Imase [M192] presented a method for detecting predicates, including channel predicates,
using areplay approach. This approach requires two identical runs and restricts channel predicates to those
detectable by a process. Our approach requires only a single run. Furthermore, our channel predicates are
more general because they also include predicates that cannot be detected by a single process.

Garg and Waldecker [GW94] presented a method for detecting weak unstable conjunctive predicates
where local processes check for their own predicate and send a message to aglobal predicate checker when-
ever the predicate becomes true between application messages.

Our detection of global predicates extends the algorithms used in the detection of weak unstable pred-
icates [GW94] to include the state of communication channels. A channel is a uni-directional connection
between any two processes through which messages can be passed. A general mechanism for the detection

of channel predicates as part of global predicates is an important characteristic for distributed debuggers.

Furthermore, many classic problems, such as distributed termination, and bounding of global virtual time
can be detected by our algorithm.

The key to making our algorithm efficient is to restrict the channel predicates to a class which we call
monotonic. An example of amonotonic predicate is, “ The channel contains exactly 5 messages’. When the
channel contains less than 5 messages, this predicate is false and it will remain false until more messages
are sent on the channel. If there are more than 5 messages in the channel, then the predicate is false, and
it will remain false until some messages are received on the channel. We show that monotonicity is an im-
portant key to efficient detection of channel predicates. In any global state in which the predicate is false,
we can be certain of a process which must make further progress before the channel predicate can become
true. Monotonicity alows us to guarantee that progress by the other processes can not make the predicate
true. Furthermore, we also show that thefirst global state satisfying a conjunction of channel predicates can
only bewell defined when monotonic channel predicates are used. A formal definition of monotonic channel
predicates is given in Section 2.

The next section will present the notation, definitions of predicates, and our model of a distributed sys-
tem, which are necessary in understanding the method of detecting conjunctive channel predicates. Section 3
presents two predicate detection algorithms. Thefirst algorithm, described in Section 3.2 is based on a cen-
tralized predicate checker. The second agorithm (Section 3.3) is fully distributed, with the required data

structures evenly divided among the N processes. Section 4 summarizes the paper.

2 Our Mode€

This section presents the concepts and notation of distributed runs, and global, local and channel predicates.

2.1 Distributed Run

We assume amessage-passing distributed system without any shared memory or aglobal clock. A distributed
program consists of NV processes denoted by { P;,P,...,Py} communicating solely via asynchronous mes-
sages. In this paper, we will be concerned with a single run » of a distributed program. Each process P; in
that run generates a single execution trace r[¢] which is afinite sequence of states. Program actions, such as
changing the value of avariable, sending or receiving a message, occur during the transitions between these

states. That is, the process P; generates thetrace ri] = «; g« 1 - . . ;. Where o;'s are the local states, and

where m is the maximum number of distinct states in a single process. There are three classes of program
actions (hereafter events) that can occur between these states— sending of amessage, reception of amessage
or some internal event. Finaly, the state of a process is defined by the value of al its variables including its
program counter.

The distributed system aso includes afinite set of uni-directional channels. In this paper wewill assume
there are N2 channels arranged as afully-connected network. Welabel the channelsasan IV x N matrix with
channel(z, 5) used for messages sent by process P; to P;. However, our algorithms can be trivially extended
to work with any number or organization of channels as long as the network is connected.

We assume that no messages are lost, altered or spurioudly introduced. We do not make any assumptions

about a FIFO nature of the channels.

2.2 Global Predicates

Typically, oneisinterested in determining if some predicate becomes true during the execution of aprogram.
Since the predicate can potentialy be some function of the state of every process and channel in the system,
we must identify some reasonable definition of simultaneity between process states. For this, we use the
happened-before relation of Lamport[Lam78]. The happened-before relation for two process states « and 3

can beformaly stated as: o — (3 iff:

1. a < (8 where < means occurred before in the same process, or

2. a ~ 3 where ~» means that the action following « isasend of amessage and the action preceding 3

isareceive of that message, or
3 Iyvia=>yAy =5

Two states for which the happened-before relation does not hold in either direction are said to be concur-

rent. The symboal, ||, is used to represent concurrency. The relationship can be formally stated as:

alfelarrB A LA

Given aset of IV states, one from each process, if this condition holds for al pairwise combinations of the
states, then this set forms a consistent cut. Thus, the global predicate detection problem then becomes one

of finding a consistent cut in which the predicate evaluates to true.

2.2.1 Local Predicates

A local predicate is defined as any boolean formula on alocal process. For any process, represented by P;,
alocd predicate iswritten asi;. [;(«) is used to represent the predicate being true in aparticular state, «, of

P;. A process can detect alocal predicate on its own.

2.2.2 Channel Predicates

A channel predicate is any boolean function of the state of the channel. The channel state is defined as the
set difference of the send events and the receive events on that channel. Since the send events and receive
events are performed by different processes, no single process can evaluate a channel predicate on its own.

We use the following notation to indicate the accumulation of send and receive events on a channel.

a, B states at different processes, P; and P;, or « € r[i] and 8 € r[j].
a.Sent[j]: sequence of all messages sent at or before state « from P; to P;.

B.Revd[i]: sequence of all messages received at or before state 5 from P; to P;.

A channdl predicate can then be written as:
chanp(a.Sent[j| — B.Rcvd|i])

or in short notation as:

chanp(a, B) = chanp(a.Sent[j] — B.Revd]i])

In this paper, we will use the symbol Sto represent an arbitrary sequence of sends events from aprocess and
the symbol R to represent an arbitrary sequence of receive events. It should be noted that channels have no
memory. Hence, any channel state that can be constructed by a combination of both send events and receive
events can also be produced by some other sequence of just send events.

We require channel predicates to be at least monotonic. The requirement for monotonicity can be stated

formally as:

Definition 2.1 Achannel predicate, chanp(S), is said to be monotonic iff, for any sets of messages, S, S’, R :

VS : =chanp(S) = (VS' : =chanp(SUS")) V (VR : ~chanp(S — R))

That is, given any set of send events, S that causes the predicate to be false, then either sending more mes-
sages is guaranteed to leave the predicate fal se, or receiving more messages is guaranteed to leave the predi-
cate false. We assume that when the channel predicate isevaluated in some state S it isa so known which of
these two cases applies. To moddl this assumption, we define monotonic predicates to be 3-valued functions.

The predicate can evaluate to:
1. T — The channel predicate istrue for the current channel state.

2. F; — The channel predicate isfalse for the current channel state. Furthermore, the predicate will re-
main false in the presence of an arbitrary set of additional messages sent on the channel in the absence

of receives.

3. F, — The channel predicate is false for the current channd state. Furthermore, the predicate will re-
main false in the presence of an arbitrary set of messages received from the channel in the absence of

sends.
The following Lemma follows directly from the definition of monactonicity:
Lemma 2.2 For any states «, 3, and vy

B < v A chanp(a, B) = F, = chanp(a,v) = F;

Proof: Sincethe state of the sender has not changed, the predicate will remain F,.. O Smilarly:

a < vy A chanp(a,) = Fs = chanp(y, 8) = F;

Example 1. Empty Channdl: chanp(S) = (S = 0): Inany state in which this predicate is false, sending

more messages will not make it true. This predicate can be used in termination detection.

Example 2. Channel Overflow. chanp(S) = (30, Szeof(m) > k). In any state, if the channel is not

currently full, then receiving more messages cannot make it full.

Example 3. Exactly £ Messages in Channel: chanp(S) = (|S| = k): In any state where there are more
than k& messages in the channel, this predicate cannot be made true by sending more messages. In any
state when there are less than & messages in a channel, this predicate cannot be made true by receiving

more messages.

2.2.3 Generalized Conjunctive Predicate

We call apredicate detected by our algorithm ageneralized conjunctive predicate (GCP). A GCPisformed by
any collection of local predicates and channel predicates. The GCPistrueif and only if al of its component
predicates are simultaneously true in a consistent cut.

For example, termination detection can be easily represented as a GCP detection problem. For each of
the N processes, alocal predicate is defined as “The processisidle’. For each of the (O(/N?)) channels, a
channel predicateisdefined as“ The channel isempty”. Termination isequivalent to this GCP being satisfied.
Another example is satisfying alower bound, K, on the global virtual time of a distributed simulation. For
each of the IV processes, alocal predicate is defined as “The local timeisat least K. For each channel, a
channel predicate is defined as “The minimum time stamp over all messages in the channel is at least K.
The simulation has passed global virtual time K is equivalent to the GCP being satisfied. 1t should be noted
that although both of these examples are stable predicates, our algorithms can also detect unstable GCPs.

The following theorem describes the structure of cuts satisfying a GCP. Let C be the set of all global
cuts that satisfy a GCP with monotone channel predicates. For two cuts C, D € C, we say that C' < D iff
Vi : C[i] < D[i] where C[i] isthe state from P; in C' and < means < or =. We show that the concept of first
cut that satisfies a GCP iswell-defined. In other words, if two global cuts satisfy a GCP, then their greatest
lower bound also satisfies that GCP.

Theorem 2.3 Let a GCP be such that all of its channel predicates are monotone. Let (C, <) bethe set of all
global cutsinwhich the GCP istrue. If C, D € C, then their greatest lower bound isalsoinC.

Proof. Let £ be defined as E[i] = min(C[i], D[i]) and chanp;; (E[:], £[5]) denote the value of the channel
predicate between processes P; and P; at states £[i] and E[5]. We show that E € C, that is, £ also satisfies
the GCP. There are three properties that E must satisfy: al local predicates must betrue, all statesin E must

be concurrent, and all channel predicates must be true.

1. Since E[i] iseither C[i] or D[i], and both [;(C[7]) and I;(D[i]) hold, it follows that
Vi : 1 (E[d]).

I ={i|E[i] = C[i]} and J = {i|E[i] = D[i]}.
It isclear that since C and D are consistent cuts, Vi, j € I : E[i]||E[j] and Vi, j € J : E[i]||E[j]. We

now show that Vi € 1,5 € J : E[i]||E[j]. Assume E[i] — E[j]. Substituting, we have C[i] — D[j].

6

However, since j € J, we know D[j] < C[j], leading to C[i] — C[;], a contradiction. Therefore

E[i] /4 Ej]. A symmetric argument showsthat E[j] /4 Eli]. Hence, E isaconsistent cut.

3. We now show that E also satisfies channel predicates. By symmetry, it is sufficient to show that Vi €
1,5 € J : chanp;j(E[i], E[5]). Assumefor contradiction, that chanp;;(E[i], E[j]) isfalse. By mono-

tonicity of channel predicates, there are two cases:

Casel chanp;;j(Eli], E[j]) = Fs—Since E[i] < D[], from Lemma2.2weknow that chanp;;(D[i], E[j]) =
F;. Hence chanp;;(D]i], D]j]) isfase, acontradiction.

Case2 chanp;;(E[i], E[j]) = F.. —Similarly, since E[j] < C[j], itfollowsthat chanp;; (C[i], C[j])
is false, acontradiction.

Therefore, al channel predicates must also betruein E.

Therefore, the GCPis satisfied by thecut E. O

The above theorem does not hold for arbitrary channel predicates as shown by the next example.

Example1l Consider the distributed computation shown in Figure 1. Consider the channel predicate —
“There are an odd number of messages in the channel.” Note that this channel predicate is not monotonic.
Assume that the local predicates are true only at points C[1] and D[1] for P, and C[2] and D[2] for P». It

iseasily verified that the GCPistruein the cut C'and D but not in their greatest lower bound.

Figure 1: An example to show that the set of cuts satisfying a GCPis not alattice.

We now show that the first cut satisfying a GCP is uniquely defined only if channel predicates are re-
stricted to be monotonic. We restrict our consideration to those GCPswhich can possibly be true for at least

one run of some program.

Theorem 2.4 Thefirst cut that satisfies the GCP is always well defined only if all channel predicates in the
GCP arerestricted to monotonic channel predicates.

Proof: The proof is by contrary example. Given any GCP that includes at least one non-monotonic channel
predicate, we can construct a program for which there is no unique first cut satisfying that GCP.

Figure 1 illustrates the situation we wish to construct. Without loss of generadity, let P, and P, be two
processes from the GCP such that a non-monotonic channel predicate is used for the channel from P; to P;.
All other processes interact so as to make the remaining channel predicates true and then these processes
becomeidle in aconsistent cut with local predicates true. Up to this point, there has been no activity on the
channel from P; to P.

Since the channel predicate from P; to P, is non-monotonic, there exists a channel state for which the
channel predicate isfalse, but can be made true both by sending and by receiving messages. Let Sbe aset of
message sends so that the channel enters this state. The program is constructed such that P; performs Son
the channel prior to state C[1]. In Example 1, the sequence Sconsists of two arbitrary messages. The local
predicate on P; then becomes true for the first time in state C[1]. The local predicate on P, becomes true
for the first time in state D[2]. Since P, has not received any messages from P; by state D[2], the channel
predicate is not true aong the cut defined by C[1] and D[2].

Let S’ be the set of additional messages that can be sent so that the predicate becomes true. The process
P, sends these messages between states C[1] and D[1]. In addition, let R be the set of messages that can be
received so that the predicate can be made true. The process P, receives R between states D[2] and C[2].
Note that both cuts C and D are consistent cuts. Furthermore, al local and channel predicates are true on
these cuts.

Itisclearthat C £ D and D £ C. Sincethelocal predicates on P; and P, were not true at any earlier
point in this program, there is no cut which is alower bound of both C and D and that satisfies the GCP.

Therefore, thefirst cut to satisfy this GCP is not uniquely defined for this program. O

3 GCP Detection

The method of detecting the GCPis divided among monitor and application processes. The application pro-
cesses are those processes which were used in the original computation (i.e., the program we are trying to

debug). The GCPisdefined over the state of the application processes and the state of the channels between

application processes. The monitor processes are additional processes which are created solely for the pur-
pose of predicate detection.

We present two efficient algorithms for monotonic GCP detection. Thefirst algorithm uses a centralized
monitor process to find consistent cuts and to evaluate all channel predicates. The second algorithm uses
N monitor processes. Each monitor process evaluates at most N channel predicates and they collectively

determine when a cut is consistent. Both algorithms distribute the task of evaluating local predicates.

3.1 GCP Algorithm: The Application Processes

We assign to each application process three functions related to predicate detection:

1. Identification of which states on other application processes happen before states on this application

process.
2. |dentification of states on this application processin which al loca predicates are true.

3. Collection and delivery to the monitor process(es) of sufficient information to determine the state of

any channel incident to this process.

To satisfy the first requirement, our algorithm uses vector clocks [Mat89, Fid89]. Each application pro-
cess maintains avector clock as part of the state of the process. The vector clock is attached to all messages

sent between application process and provides the property:

a — piff a.u < B.v, where o and 3 are states in processes P; and P; (i # j) and w and v are

their respective vector clocks at these states

Each application process is assumed to be able to satisfy the second requirement trivialy. Any state in
which local predicates are not true isignored. We can disregard many of the states in which local predicates
aretrue aswell. Only the first state following each send or receive event in which the predicate istrue can be
part of the first cut to satisfy a GCP. Since our predicate detectors are capable of finding exactly this cut, we
can safely disregard all other states (i.e., wewon't fail to detect the GCPif it occurs). Thus, there are at most
M states of interest from each application process (recall that M isthe maximum number of message events
by any one process). For each of these states, the application process must construct a“local snapshot”. This

local snapshot is placed into amessage and sent to amonitor process. Thelocal snapshot includes the current

vector clock from the application process. Thisinformation will allow the monitor process(es) to determine
which local snapshots from other application processes are concurrent with this one.

To satisfy thethird requirement, the application process also includesin theloca snapshot anincremental
record of activity on al channels incident to this process. For example, if the process has sent 2 messages
and received one message since the last local snapshot was created, then the next local snapshot will contain
arecord of each of these events. Conceptually, acopy of the entire messageis placed into the snapshot for all
send events. However, in practice much lessinformation isactually required. For example, if the predicateis
“the channel isempty”, then one bit will suffice, sincethe channel isempty precisely when the number of send
events on the channel is equal to the number of receive events. Thisissue is addressed in more detail when
the monitor processes are described. Note that for receive events, all that is necessary is that the sequence
number of the message be placed into the snapshot.

Welabd the N application processes Py, . . ., Py . Figure 2 showsthe extensions werequireto the behav-
ior of each application process. We believe that the probe effect caused by this additional work is tolerable
for most applications. Reducing or eliminating probe effect is an area of active research that is beyond the
scope of this paper. It should be noted that the same extensions are required for both the centralized detec-
tor and the distributed detector. The only difference that is required is that for the centralized algorithm, all
application processes send their loca snapshots to the same monitor process (denoted M), whereas in the

distributed algorithm each application process P; sends itslocal snapshots to monitor process M;.

3.2 Centralized GCP Algorithm

In the centralized algorithm, a single monitor process is responsible for searching for a consistent cut that
satisfies the GCP. We label this process as M. Its pursuit of this cut can be most easily described as con-
sidering a sequence of candidate cuts. If the candidate cut either is not a consistent cut, or does not satisfy
some term of the GCP, M, can efficiently eliminate one of the states along the cut. The eliminated state can
never be part of a consistent cut that satisfies the GCP. The monitor process can then advance the cut by
considering the successor to one of the eliminated states on the cut. If M finds a cut for which no state can
be eliminated, then that cut satisfies the GCP and the detection algorithm halts.

Figure 4 shows the algorithm used by M, to detect the GCP. The algorithm consists of a number of
actions, each of which is guarded by some clause. Each action is assumed to be atomic. If more than one

guard is true simultaneoudly, then the action that is performed can be selected non-deterministicaly. Some

10

var
incsend, increcv: array of messages,
vclock: array [1..n] of integer;
initially Vj ;é i vclock[g
vclock [ﬁ
firstflag = true
incsend = increcv = 0;
for sendlr(ljg mdo
g(vclock my;
vclock[i]+
firstflag := true;
incsend := incsend U {m};
upon receive (msg_vclock, m) do
foreach j do:
vclock[j] := max(vclock[j], msg_vclock[j]);
done
firstflag := true;
increcv := increcv U {m};
upon glocal pred = true A firstflag) do
irstflag :=false;
send (vclock, incsend, increcv) to monitor process;
incsend:=increcv:=0);

Figure 2: Extensions to Application Process P; for GCP Detection

constant-time performance gains can be realized by prioritizing the actions appropriately. Such optimization
is beyond the scope of this paper. The algorithm terminates when none of the guards are true. When this
occurs, the GCP has been detected, and the array state]1..n] .vclock indicate which application process states
are part of the cut. Asan obvious extension, if some application process has terminated and all of the states

from that process have been eliminated, M|, can abort the detection algorithm.

3.2.1 Data Structures

The monitor process receives loca snapshots from application processes. These messages are used by M,
to create and maintain data structures that describe the globa state of the system for the current cut. The data
structures are divided into three categories: queues of incoming messages, those data structures that describe
the state of the application processes, and those data structures that include information describing the state
of the channels.

Incoming M essage Queues The monitor process relies on being able to selectively receive a message
from a specific application process. For example, a some phase in the algorithm M, may ask to receive a
message sent specifically by P;. Furthermore, we require that messages sent by an individual application

process to the monitor process be received in FIFO order. If the message passing system does not provide

11

Non-checker Non-checker Non-checker
Process 1 Process 2 Process N

Figure 3: The Centralized GCP detector.

this support, it can be easily constructed using a set of queues.

We model the message passing system as a set of n FIFO queues, one for each application process over
which some term of the GCP is defined. Recall that N was the total number of application processes in the
system. Hence, n < N. We use the notation [1..n] to label these queuesin our agorithm.

Per-Process Data The monitor process maintainsinformation describing one state from each application

process P;. The collection of thisinformation is organized into avector:
state : array[1..n] of struct process_data
The process data structure consists of alocal snapshot (see Section 3.1) plus the following item:

e color : {red, green} — The color of astate is either red or green and indicates whether the state has
been eliminated in the current cut. A stateisred only if it cannot be part of aconsistent cut that satisfies

the GCP.
Per-Channel Data The monitor process maintains three data structures for each channel:

e J1.n 1.n]: setof messages— Thepending-send set (or “ S’ set). The set contains all those messages

that have been sent on the channel, but not yet received according to the current cut.

e R[1..n,1..n] : set of messages — The pending-receive set (or “R” set). The set contains each message

that has been received from the channel, but not yet sent according to the current cut. Since the current

12

S[1..n,1..n], R[1..n,1..n] : sequence of message,
CP[1.n1.n]: {Fs, F,, T},
state : array[1..n] of struct {
v : vector of integer;
color : {red, green};
incsend, increcv : sequence of messages }
initially
statefi].v = O; statefi].color = red; S[i,j] = 0; R[i,j] = 0; CPli,j] = chanp;;(0)

[* advance the cut */
Al: upon (3 i : statefi].color = red) do
j] = rece|ve(q[|
color := green;
update channel §(i);

* eliminate states which happened before other states */
A2: upon (3i, 5 : statefi].color = green A statefi].vclock < state]j].vclock)
state]i].color :=red

[* force more messages to be sent when channel is F, */
A3: upon (CH[i,j] = F, A state]i].color = green)
state]i].color := red;

* force more messages to be received when channd is F */
A4: upon (CH[i,j] = Fs A statefj].color = green)
state]j].color := red;

Figure 4: Centralized GCP Detection Algorithm, Monitor Process M,

Ccut is not necessarily consistent, states along the cut may be causally related, and hence it is possible

for one state on the cut to be after a message has been received, and yet have ancther state on the cut

from before that message was sent. If al states are part of a consistent cut, then every R set is empty.

CP[1.n,1.n] : {Fs,F,., T} — The CP-state flag. When a channel predicate is evaluated, its value is

written into the CP-state flag. The value of a channel predicate cannot change unless there is activity

along the channel. Hence, M|, can avoid unnecessarily recomputing channel predicates by recording

which predicates have remained true or false since the last time the predicate was eval uated.

3.22 Advancing the Cut

In any cut in which the GCP is false, we know that there must exist at least one state along the cut that can

be eliminated. A formal representation of elimination is that:

Definition 3.1 Given any cut C for which the GCP is false, a state « € C' can be labeled red, iff VD for

whichthe GCPistrue, C < D = a &€ D

13

The agorithm works by considering states from each application process in sequence. Once a state has been
labeled red, we must receive a new state from that process. We update the state of the S and R sets based
on any message activity that occurred since the last snapshot. The procedure, update channels, is used to
update the channel state information. This procedure is shown in Figure 5.

A loca snapshot contains a list of send events and a list of recelve events. For each send event, up-
date channels first checks to see if the receiver is known to have already received this message. If so, the
message is removed from the R set for the channel. If not, then the message is added to the S set for the

channel. Thislatter case corresponds to the message still being in route.

update_channel s(i)

foreach message m sent by P; to P; do
if (m € R[i,j]) R[i,j] :=R[i,j] — {m}
dse di] == i,j] U {m}
CP[i,j] := chanp;;(S]ij]);
done
foreach message m received by P; from P; do
if (m € §[j.il) .11 == Ij.i] — {m}
de Rl =R ()
CPj.i] = chanp;; (i j]);
done

Figure 5: Procedure update_channels

3.2.3 Eliminating States Based Upon Causality

The GCPistrue only if the cut is consistent. Since our algorithm is based on eliminating all predecessors to
thefirst cut that satisfies the GCP, we should eliminate the older of any two states which are causally related.

Action A2 performs this task.

3.24 Eliminating States Based Upon M onatonicity

Whenever amonotonic channel predicate isfalse, we know that either more messages must be sent, or more
messages must be received in order for the predicate to become true. Actions A3 and A4 are based upon
this fact. If the channel predicate is F;., then the state from the sender can be eliminated since at least one
more message must be sent before the predi cate can becometrue. Action A3 labelsthe state from the sending

process red. Action A4 performs an analogous activity for any channel whose predicate evaluates to Fj.

14

3.25 Evaluating Channel Predicates

Channel predicates can safely be evaluated at any time without affecting either the correctness or the worst-
case time complexity of our algorithm. The S set always contains a list of messages that would be in the
channel if every application process had executed exactly up to the current cut. Note that the R set may not
be empty if this cut isnot consistent. If the R set does contain some message m, then m is not in the channel

(m has aready been received), nor will it be in the channel at any time in the future.

3.26 Correctness of the Algorithm

Now that the algorithm for detection of a GCP has been given, the correctness of this algorithm will be
shown. First, some properties of the program are given that will be used in demonstrating correctness. The
following lemma describes the role of S[i, 7] and R[s, j]. We use auxiliary variables state[i].Sent[;] and
state[i]. Revd[j]. These variables are used only for the proof and not in the actual program. The variable
state[].Sent[j] isthe set of al messages sent by P; to P; prior to P; reaching the state state[i]. Similarly,

state[i]. Revd[7] isthe set of al messages received by P; from P; prior to P; reaching the state state|i].
Lemma 3.2 Thefollowing isan invariant of the program:

Sli,j] = statei].Sent[j] — state[j]. Revd|i]

R[i,j] = state[j].Revd[i] — stateli].Sent[j]

Proof: The proof is by induction on the number of local snapshots received. The lemmais obvioudly true
initially, since both §i,j] and R[i,j] areinitialized to (). Assume that the lemma holds for all snapshots re-
ceived so far. We show that update_channels causes the lemmato hold for §i,j] when one more snapshot is
received from process F;. The proofs for snapshots received from process P; and for R[i,j] are analogous.
Let state]i] denote the state from P; that immediately precedes the snapshot, and stat€/[i] denote the state
after the snapshot. Similarly, let §i,j] be the value before the snapshot was received and let S’[i, j] denote

the value after the snapshot is received. We therefore wish to show:

S'li,j] = state'[i].Sent[j] — state[j]. Revd]i]

15

Since snapshots arrive in FIFO order, the following two identities hold:

state'[i].Sent = state[i].Sent U incsend

stateli].Sent Nincsend = ()
We can see from the program that:
S'li,7] = S[i,j] U (incsend — Rli, 5])
By the induction hypothesis:

Sli,j] = statei].Sent[j] — state[j]. Revd|i]

R[i,j] = state[j].Revd[i] — stateli].Sent[j]
Hence, by substitution we have:

S'li,j] = (stateli].Sent[j] — state[j]. Revd[i]) U (incsend — (state[j]. Revd[i] — state[i].Sent[j]))
= (state[i].Sent[j| — state[j].Rcvd[i]) U (incsend — state[j]. Revd][i])
= (state[i].Sent[j] U incsend) — state[j]. Revd|i]

= state'[i].Sent[j] — state[j]. Revd]i]

The following is also an invariant of the algorithm maintained by update_channels. The proof follows

from Lemma 3.2.
Lemma 3.3 CP[i,j] = chanp;;(statefi], state]j])

Theorem 3.4 Let H be the first cut that satisfies the GCP. Then the centralized GCP algorithm terminates
with stateli] = H[i].

Proof: We complete this proof in two parts. First we show that if state[1..n] is a predecessor to H, then at
least one state[i] will be set to red. Since H isthe first cut to satisfy the GCP, we know that either state[1..n]
isnot consistent or achannel predicate must befalse. If state] 1..n] were not consistent, then by the property
of vector clocks, the guard for Action A2 must be true. Hence at least one state]i] will be set to red, a con-

tradiction. If on the other hand, achannel predicate were false, then by Lemma 3.3 CP[i,j] must be either F

16

or F,.. Thuseither action A3 or A4 would occur, and a state would be painted red. Therefore, if state] 1..n]
is apredecessor to H, the algorithm makes progress.

We now show that if state[i] € H, then state[i] will not be labeled red. This condition guarantees we
will not bypass the cut H. The proof is by induction on the number of states painted red. Assume that no
element of H has been painted red so far. Cuts can be labeled red by actions A2, A3 and A4. We consider
each case and show by contradiction that state[i] cannot be labeled red if state[i] € H.

Casel: Action A2labelsstate]i] red. Thisimpliesthat state]i] happened before some other state state[j].
By the induction hypothesis, state[j] < H[j]. Thisleadsto H[i] — H{[j], a contradiction since H is a
consistent cut.

Case 2: Action A3 labels state]i] red. Thisimplies that for somej, CH[i,j] = F;.. By the induction hy-
pothesis, statej] must be either on H, or a predecessor to H. By Lemma 2.2 the predicate will therefore also
have the value F,. at H, a contradiction since the GCP is satisfied by H.

Case 3: Action A4 labels state]i] red. Thisimplies that CPY[j,i] = F,;. Using similar reasoning as for
Case 2, thisimplies that the channel predicate will be F; aong the cut H, a contradiction.

Hence, no component of H isever painted red, and all predecessorsto H are eventually painted red. Thus,
our algorithm will eventually advance to the cut H. At thistime, al guards are false and the algorithm will

halt. O

3.27 Overhead Analysis

We do overhead analysis only for M. We use the following parameters:
e NN: Total number of processes in the system
e n: processes involved in the GCP (n < N)
e m: maximum number of messages sent/received by any application process
e s: the size of the largest message sent by any application process.

We also make the following simplifying assumption: a channel predicate can be evaluated in time propor-
tional to the number of messages in the channel. This assumption holds for most predicates of interest.
Time complexity: Notethat Action Al can be performed at most mn times, since there are at most mn

states. Each of the actions A2, A3 and A4 may also be applied at most mn times, since each of these actions

17

labels a state red. Each state is made green initially by A1, and can only be labeled red once. We consider
the complexity of each action in turn.

Thework to perform Action Alisdetermined by the cost to receivelocal snapshots plusthe cost to update
the channel states. Each local snapshot consists of a vector clock with n elements plus the incremental send
and receive histories. Hence, the total number of bits from all local snapshots is bounded by O(mn(n +
s)). Thework performed in update_channels is dominated by the time to evaluate channel predicates. Each
channel predicate must be evaluated at least once (for empty channels at the initiaization of the system),
and up to mn re-evaluations may be required. At any given time, there can be at most O(m) messages in
any channel (although, in practice there are typically much fewer). Thus O(n? + m?n) work is required to
evaluate channel predicates. Therefore, Action Al requires O(n?m + m?n + mns) work.

Thework required to perform the actions A2, A3 and A4 is constant time. However, the guards for these
actions must also be evaluated. It must be noted that an implementation of our algorithm would not follow
Figure 4 literaly. Consider the guard for A2. Although at first glance it may appear that quadratic timeis
necessary for each evaluation of the guard, it can actually be tested in linear time. Assume that it is known
that A2 does not apply. Thereis no need to test A2 again until Action A1 has occurred and at least a new
state has been received. If state[i] is that new state, then A2 could apply only if state[i] — state[j] or
state[j] — state[i] for some other statefj]. Hence it is only necessary make n comparisons of the vector
clock! to know if A2 now applies. Finally, since A1 can occur at most mn times, the total amount of work
for Action A2is O(n?m).

Using two linked lists, Actions A3 and A4 can betested in constant time. All channels whose predicates
are F, and whose sending process is currently green are kept in one such list, and all channels whose predi-
cates are F; and whose receiving processis green arein kept in the other. Obviously one of A3 or A4 applies
iff its corresponding list is non-empty. Thelists can be superimposed on the CPJi,j] array. Thus, inserting or
removing channels from the list can be performed in constant time.

We conclude that the time complexity of the centralized algorithm is:
O(n*m + m*n + mns)

It should be noted this bound isfairly conservative. For example consider buffer overflow or termination

detection asexamples. In either of these cases, the eval uation of achannel predicate requires simply knowing

1Vector clocks can be compared in constant time.

18

how many bits remain in the channel. Hence, local snapshots do not need to include a copy of the message
in the message histories, the Sand R sets can be replaced by simple counters, and channel predicates can be

evaluated in constant time. Thus, for these predicates, the time complexity is

O(n*m)

Space complexity: The main space requirement of M, isthe buffer for the local snapshots. This space
isO(mn(n + s)). Note that strictly speaking, each vector clock may require O(n log m) bits. Thiswould
increase the space complexity to O (mn(nlogm + s)). However, we assume that storage and manipulation
of each component is a constant time/space overhead. Thisis true in practice because one word containing
32 bits would be sufficient to capture a computation with 232 messages.

M essage Complexity: Every of then processes send at most m local snapshotsto M. Eachlocal snap-

shot contains O(n + s) bits, for atotal of total of O(n?m + mns) bits communicated by the algorithm.

3.3 Distributed GCP Algorithm

This section describes a distributed version of the GCP detection algorithm. We use N monitor processes,
denoted My, ... My. Each monitor process is paired with one of the IV application processes. Whereas
in the centralized algorithm, all application processes send their local snapshots to a single monitor process
(M), in the distributed algorithm, each application process P; sends its snapshots to monitor process M;. It
should be noted, that in a distributed debugger, no messages may actually be required for messages between
P; and M;. The most reasonable implementation is to locate P; and M; on the same physical processor. In
this case, M; may be able to access local snapshots directly. (e.g. with the Unix Ptrace facility).

In the description of the algorithm we will refer to “monitor messages’. A monitor message is a mes-
sage sent between monitor processes. A local snapshot (sent between an application process and a monitor
process) is not a monitor message.

Figures 6 and 7 show the algorithm used by monitor process M;.

3.3.1 DataStructures

We use the notation M;.x to indicate the value of local datum x on monitor process M;. Most of the data

structuresin the distributed algorithm are directly related to data structures in centralized algorithm (see Sec-

19

tion 3.2.1). The most recently received snapshot from P; (previoudy state]i]) is stored in M;.state. Each
monitor process M; isresponsible for those channels on which P; can send messages. The outstanding send
list for channel;; (previously §ij])is stored in M;.S[j]. Similarly the outstanding receive list (previously
R{i,j]) for that channel is M;.R][j], and the value of the channel predicate is recorded in M;.C P[j].

Since M; does not have access to the receive events that occur on channel;;, acknowledgment messages
arerequired. We call the acknowledgment messages delayed acknowledgment (or dack) messagesto empha-
sizethefact that the acknowledgment for some message isnot sent immediately after the messageisreceived.
Consider some application process P; that receives amessage immediately before entering some state «v. Let
P; be the application process that sent the message. Then monitor process M; will eventually send a dack
message to M;. However, the dack is not sent until all predecessors to o have been eliminated by M.

Four data structures are related to the dack messages, and their usein maintaining the S and R sets. Each

of these data structures isimplemented as an array, with one entry per channel. The data structures are:
e M;.dacks_sent[j] — acount of the number of dacks sent from A; to M for channel ;.
e M;.dacks_revd[j] — acount of the number of dacks received by M; from M; for channel;;.

e M;.dacks required[j] — a count of the minimum number of messages which must be received by P;

on channel ;; before the GCP can be true.

e M;.dack _pending[j] — a boolean flag which if true means that M; is certain to receive at least one

more dack message from M for channel;;

Dack messages are one of two types of monitor messages. The other type of monitor messageisadack request
message. Dack_request messages are sent when achannel predicateis F, and it isknown that more messages
must be received in order for the channel predicate to become true. The use of these messages is described

in detail below.

3.3.2 Termination

The distributed agorithm terminates when al M; have terminated (i.e. al guardsin Figure 6 are false), and
all monitor messages have been received. We use avariation of Dijkstra's and Scholten’s termination detec-
tion agorithm for diffusing computations [DS80]. GCP detection is not atrue diffusing computation, since

there is no single parent to the monitor processes. However, itistrivia to extend Dijkstra's algorithm to our

20

needs by arbitrarily declaring M asthe parent of al other monitor processes and initializing the termination
detection data structures accordingly. Thus, M, will detect termination. It should be noted that Dijkstra’s al-
gorithm is optimal in the number of messages sent for termination detection (equal to the number of monitor
messages, which we will show is at most 2mn).

When termination has been detected, the cut defined by the M;.state variables is the first consistent cut

for which the GCP istrue.
A1l: upon my_color = red
state := receive snapshot from P,
my_color := green;
update_channel s(state);

A2:upondj :R[j] #0 A my_color = green
my_color :=red;

A3:upon 3j : CP[j] = F, A my_color = green
my_color :=red;

A4:upon 35 : CP[j] = Fs A —dack pending[]
dack_pending[j] := true;
send dack _request(dacks_rcvd[j]+1) to M;

A5: upon receive dack_request(count) from M;
dacks required[j] := max(dacks_required[j],dack request.count);

AG6: upon Jj : dacks required[j] > dacks_sent[j] A my_color = green
my_color :=red;

AT: upon receive dack(m) from M,
it (m € S[5) S[y] = S[j] - {m};
else R[j] := R[j] U{m};
dacks revd[j]++;
dack_pending[j] :=false;
CP[;j] := chanp;; (S[j1);

Figure 6: Monitor Process M;

3.3.3 Receiving New Snapshots

Each monitor process, M;, isresponsible for labeling snapshots from P; red, and for maintaining the current
state of the channels on which P; sends application messages. Thus, the global stateis advanced in parald.
Whenever monitor process M; receives a snapshot, it labels its current state green and updates the chan-
nel data structures. Each monitor process has direct access to the send activity for the channels it oversees.
However, it must communicate with other monitor processes to learn which messages have been received.
Figure 7 shows the procedure that M; uses after receiving a new snapshot from P;.

Each send event in the incremental history is handled in the analogous manner as with the centralized

21

algorithm (see Figure 5). However, each record contained in state.increcv must be sent in adack message to
the monitor process responsible for that channel.

Action A7 in Figure 6 gives the steps that will be followed by the recipient of a dack message. Collec-
tively, actions A1 and A7 in the distributed algorithm perform the same function asthat of Action Al in the
centralized algorithm.

update_channels()
foreach message m sent by P; to P; do:
gl(ms?_]R[j]% [ﬁi[ﬂ = If[j] —im};
se = my,
CPLT 2 chanpy (SL7])
done

foreach message m in received by P; from P; do:
send dack(m) to M;
dacks sent[j]++;

done

Figure 7: Monitor Process M; — update_channels()

3.34 Eliminating Inconsistent States

Action A2 isused to label the current state red when it happened before some other state in the current cut.
We do not use vector clocksin Figure 6. Vector clocks are required if n (the number of application processes
over which the global predicate is defined) islessthan N (the total number of application processes). In the
distributed algorithm, the use of vector clocks necessitates additional messages between monitor processes
which carry the latest vector clock from M;.state. However, whenn = N, asimpler test for consistency is

ViM;.R[i] = 0.

3.35 Making Progressfor Channel Predicates

Actions A3 through A6 are used to label states red according to the value of the channel predicates on the
current cut. Since M; evaluates the channels on which P; sends application messages, it can label its own
state red after evaluating any of its channel predicates to be F,.. Action A3 performs this task.

Actions A4 through A6 are used to label the receiving process red when achannel predicate hasthevaue
F. Recall that when achannel predicateis Fy, the receiving process must receive at least one more message
in order for the predicate to change value. Thus, in the case that M;.C P[j] = F, M; has determined that

M .state must be labeled red. However, M; can not directly access M, .state, and furthermore, thereisno

22

assurance that M ;.state has not already been eliminated (or equivalently, adack messageis already in route
to M;). Action A4 is used to request more dack messages, since the value of the channel predicate can not
change until more dack messages are received. Actions A5 and A6 are used to label M;.state red if and only

if more dacks have been requested than have already been sent.

3.3.6 Correctness of the Distributed Algorithm

This section presents a proof that the distributed GCP algorithm correctly detects thefirst global cut that sat-
isfiesthe GCP. The distributed algorithm is similar to the centralized algorithm, and we base our correctness

argument on the proof of Theorem 3.4.

Lemma 3.5 Thefollowing is true when all dacks have been received:

M;.S[j] = M,;.state.Sent[j] — M;.state. Revd]i]
M;.R[j] = Mj.state.Rcvd[i] — M;.state.Sent[j]
M;.CP[j] = chanp;j(M;.state, M;.state)

Proof: The proof is similar to that for Lemma 3.2 and Lemma 3.3. The only difference is that when M;
receives a new state, the increcv records are not immediately added to M;.R[j] or subtracted from M;.S[4].

They must be sent in dack messages first, hence the precondition that al dacks have been received. O

Lemma 3.6 Thefollowing invariant is a consequence of monotonicity (see Lemma 2.2):
M;.CP[j] = F, = chanp;;(M;.state, M;.state) = F,

Lemma 3.7 M;.dacks_required[j] > M;.dacks_sent[j] = chanp;;(Mj.state, M;.state) = Fy

Proof: M;.dacks_required[j] > M;.dacks_sent[j] only if M; received a dack request message from M;
with count = M;.dacks_sent[j] + 1

Consider the state of M at the time when this dack_request message was sent. From Action A4, we know
that M;.dacks_rcvd[i] = count — 1. By substitution, M;.dacks_rcvd[i| = M;.dacks_sent[j]. Hence all
dacks for messages prior to M;.state were received by M; prior to the dack_request message being sent.
Therefore, from Lemma 3.5, M;.CP[i] = chanpj;(M;.state, M;.state). Since the guard for A4 must be

true in order for the dack_request message to be sent, we know that chanp;;(M;.state, M;.state) = Fs. O

23

Theorem 3.8 The distributed GCP detection algorithm will terminate with M;.state = H]Ji] iff H is the
first cut to satisfy the GCP.
Proof: Initialy, Vi : M;.state < H[i] Since each monitor process initializes itself to afictitious state. Asin

Theorem 3.4, we show:
1. if M;.state = H[i] then M;.state is never labeled red.
2. if M;.state < Hi] then M;.state iseventually labeled red
3. if Vi : M;.state = H[i] then the algorithm will eventually terminate.

At most afinite number (m V) of states can be eliminated, thus the algorithm will always terminate.

Part 1. no statefrom H isever labeled red. The proof is by induction on the number of states labeled
red so far. Let M;.state be the next state labeled red. This can happen as a consequence of Actions A2, A3
or A6. Assume that M;.state = Hi]. If the guard for A2 is true, then 35 such that P; has received some
message before M;.state that P; has not sent prior to M;.state. Thisimplies, M;.state — Mj.state. By
our induction hypothesis, M;.state < H|j], therefore H 1] — H 5], acontradiction.

If theguard for A3weretrue, then 35 suchthat M;.C' P[j] = F,. By Lemma3.6 weknow chanp;;(M;.state, M;.state) =
F,.. Using asimilar argument as used in Theorem 3.4, thisleads to chanp;;(H[:], H[j]) = F,, acontradic-
tion.

If theguard for A6 weretrue, then 35 suchthat M;.dacks_sent|j] < M;.dacks_required[j]. By Lemma3.7,
chanpj;(M;.state, M;.state) = Fy. Thisleadsto chanp;;(H[j], H[i]) = F\, acontradiction.

We thus conclude that Vi : M;.state < Hi].

Part 2: all predecessorsto HJ[i] are eventually labeled red. The proof is by induction on the number
of predecessors to H which must be labeled red. The claim is clearly true when there are zero predecessors
to H. Assume that there are & states between the current cut (ViM;.state) and H. We show that at least one
state is labeled red. There are three cases:

Casel: 3i,j : M;.state — Mj.state. Sinceweassumen = N, thisisequivalent to 3, j : M;.state ~
M;.state. Eventually all dackswill bereceived by M;. Atthispoint, weknow M;.R[j] # () by thedefinition
of ~». Therefore Action A2 applies, and M;.state will be |abeled red.

Case2: Ji, j : chanp;;(M;.state, M;.state) = F,.. Eventually, all dackswill bereceived. At thispoint,
from Lemma 3.5 we know M;.C P[j] = F,. Hence, Action A3 applies and M;.state will be [abeled red.

24

Case3: Ji, j : chanp;;(M;.state, M;.state) = F. Eventually, all dackswill bereceived. At thispoint,
we know M;.CP[j] = Fs. Action A4 will cause a dack_request message to be sent to M. Eventually this
message will be received. At thistime, we know that Action A5 will set M;.dacks_required]i] to be one
more than M;.dacks_sent[i] (since all dacks had been received before the dack request message had been
sent). Action A6 will apply, and M .state will be labeled red.

We therefore conclude that all predecessors to H are labeled red.

We now conclude the proof by showing that when Vi : M;.state = H|[i], termination occurs. This fact
is clearly seen by noting that Action A1 can be taken at most m times on each M; since there are at most m
snapshots from each process. Actions A2, A3 and A6 can also apply at most m times, since each of these
actions causes the state to be labeled red. Each message that is received by P; causes M, to send at most
one dack message. Therefore, Action A7 can apply at most m times. Action A4 can apply at most mn times,
since at least one dack must be received for each dack request message that is sent. And finally, Action A5
can only occur m times, since A4 occurs at most m times.

Therefore, after each M; has taken O(m) actions, the algorithm will terminate. If H exists, then Vi :

M;.state = H[i]. If H doesnot exists, then all of the states have been eliminated from at | east one process. O

3.3.7 Overhead Analysis

The distributed agorithm operates using the same principl es as the centralized algorithm. The two versions
of the algorithms have identical worst case asymptotic time, space and message complexity.

We consider first the number of messages exchanged. We describe the case wheren = N. Both the cen-
tralized and distributed agorithms send mn local snapshots. However, The distributed algorithm requires
dack and dack_request messages which are not needed in the centralized algorithm. Up to mn of each type
of message are required. To detect termination, we must double the number of monitor messages. Hence,
the distributed algorithm requires 5mn messages, whereas the centralized a gorithm requires only mn. How-
ever, this anaysis is somewhat misleading. Recall that M; and P; can be located on the same physical pro-
cessor in the distributed agorithm. Hence no network traffic is generated for sending local snapshots in this
case. Furthermore, monitor messages are small. Two 32-hit integers is sufficient to encode a monitor mes-
sagein practice. Hence, it is quite possible that the distributed algorithm will actually consume less network
bandwidth than the centralized algorithm.

We now consider the design tradeoffs related to concurrency. The centralized algorithm suffers from M,

25

acting asaseria bottleneck. Thiscan beasignificant drawback, particularly if . isvery large. Thedistributed
algorithm is able to exploit concurrency. The memory requirements are also evenly distributed over the n
processors in the system. Although this appears to indicate a clear win for the distributed algorithm, there
are two issues. First, under pathological conditions there may be little or no parallelism available for the
distributed algorithm to exploit. In these cases, the distributed algorithm proceeds with only one monitor
process being active at atime. Second, the centralized algorithm may have lower detection latency. If H is
the first cut to satisfy a GCP, then the detection latency is defined as the wall-clock time between when the
last application process reaches H and when the first monitor process detects the GCP. Typically, My will be
able toimmediately detect the GCP after the last local snapshot isreceived. In the distributed algorithm the
last snapshot may generate several dack messages, each of which must be received before the GCP can be
detected.

4 Conclusions

We have presented a definition for Generalized Conjunctive Predicates and an algorithm for detecting anim-
portant class of these predicates: those with monotonic channel predicates. The concept of monotonicity for
channel predicates is useful for two important reasons. First, monotonicity is both a necessary and sufficient
condition for the set of consistent cuts satisfying global properties to contain an infimum under the usual or-
dering. That is, the notion of the first consistent cut satisfying a GCP is always well defined if and only if
channel predicates are monotonic. Second, monotonicity allows an efficient algorithm to detect GCPs.

We have a so presented two efficient agorithms to detect the first consistent cut in which aGCP istrue.
The overhead of our algorithms are bounded by low-order polynomial functions of the number of processes
and the number of messages. For many interesting problems, the channel state can be encoded by a simple
counter. Inthese cases the time, space and message complexity of our algorithms are linear in the number of

local states.

References

[BM94] O.Babaogluand K. Marzullo. Consistent global states of distributed systems. Fundamental con-
cepts and mechanisms. In Sape Mullender, editor, Distributed Systems, pages 55-96. Addison
Wedley, New York, NY, 2nd edition, 1994.

[CL85] K. Chandy and L. Lamport. Distributed snapshots: Determining global states of distributed sys-
tems. ACM Transactions on Computer Systems, pages 6375, February 1985.

26

[CMO1]

[DS80]

[Fidsg]

[FRGT94]

[GW92]

[GW94]

[HWsS]

[Lam78]

[Mat89]

[MC8S]

[M192]

[SM94]

[TGO3]

R. Cooper and K. Marzullo. Consistent detection of global predicates. In Proc. of the ACM/ONR
Workshop on Parallel and Distributed Debugging, pages 163-173, Santa Cruz, Caifornia, May
1991.

Edsger W. Dijkstraand C. S. Scholten. Termination detection for diffusing computations. Infor-
mation Processing Letters, 11(1):1-4, August 1980.

C. J. Fidge. Partial ordersfor parallel debugging. In Proceedings of the ACM SGPLAN/SIGOPS
Workshop on Parallel and Distributed Debugging, volume 24 of SGPLAN Notices, pages 183—
194, January 1989.

E. Fromentin, M. Raynal, V. K. Garg, and A. Tomlinson. On the fly testing of regular patterns
in distributed computations. In Proceedings of the 23rd Int. Conference on Parallel Processing,
1994 1994.

V. K. Garg and B. Waldecker. Detection of unstable predicates in distributed programs. In Proc.
12th Conference on the Foundations of Software Technology Theoretical Computer Science, Lec-
ture Notes in Computer Science, pages 253-264, New Delhi, India, December 1992. Springer-
Verlag.

V. K. Garg and B. Waldecker. Detection of weak unstable predicates in distributed programs.
|EEE Transactions on Parallel and Distributed Systems, 5(3):299-307, March 1994.

D. Haban and W. Weigel. Glabal events and global breakpoints in distributed systems. In Proc.
of the 21<t Intl Conf. on System Sciences, pages 166-175, 1988.

L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communications
of the ACM, 21(7):558-565, July 1978.

F. Mattern. Virtual time and global states of distributed systems. In Parallel and Distributed
Algorithms: Proceedings of the International Workshop on Parallel and Distributed Algorithms,
pages 215-226. Elsevier Science Publishers B. V, 1989.

B. P. Miller and J. Choi. Breakpoints and halting in distributed programs. In Proceedings of
the 8th International Conference on Distributed Computing Systems, pages 316-323, San Jose,
Cdlifornia, June 1988.

Y. Manabe and M. Imase. Global conditions in debugging distributed programs. Journal of
Parallel and Distributed Computing, 15:62—69, 1992.

R. Scwarz and F. Mattern. Detecting causal relationships in distributed computations: In search
of the holy grail. Distributed Computing, 7(3):149-174, 1994.

A.l. Tomlinson and V. K. Garg. Detecting relational global predicates in distributed systems. In
Proc. 3rd ACM/ONRWobrkshop on Parallel and Distributed Debugging, pages 21-31, San Diego,
Cdlifornia, May 1993.

27

