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Abstract

This paper discusses efficient detection of global predicates in a distributed program. Previous work in this
area required predicates to be specified as a conjunction of predicates defined on individual processes. Many
properties in distributed systems, however, use the state of channels such as “the channel is empty,” or “there
is a token in the channel”. In this paper, we introduce the concept of a monotonic channel predicate and pro-
vide efficient centralized and distributed algorithms to detect any conjunction of local and monotonic channel
predicates. We show that many problems studied earlier such as detection of termination and computation of
global virtual time are special cases of the problem considered in this paper. The message complexity of our
algorithms is bounded by the number of messages used by the program. The main application of our results
are in debugging and testing of distributed programs.
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1 Introduction

A distributed program is one that runs on multiple processors connected by a communication network. The

state of such a program is distributed across the network and no process has access to the global state at any

instant. Detection of a global predicate is a fundamental problem in distributed computing. This problem

arises in many contexts such as designing, testing and debugging of distributed programs.

Previous work has described algorithms for detecting stable and unstable global predicates [CL85, CM91,

FRGT94, GW94, GW92, HW88, Lam78, Mat89, MI92, MC88, TG93]. See [BM94, SM94] for surveys of

stable and unstable predicate detection. Stable predicates are those that never become false once they are

true. The often cited examples of stable predicates are deadlock and termination. For example, a system that

has terminated remains in this state. Chandy and Lamport’s method [CL85] for detecting a global predicate

involves periodically taking a global snapshot of the state of the system. If the predicate becomes true at

some time t, their algorithm will eventually create a snapshot using states after t. Since the predicate they

are detecting is stable, the predicate must still be true, and will be detected by their algorithm.

Unlike stable predicates, unstable predicates may alternate between true and false values. Cooper and

Marzullo [CM91] presented a method for detecting general predicates which included unstable predicates.

Their approach, though, requires exponential (O(mn)) time where m is the maximum number of events a

monitored process has executed and n is the number of processes. In this paper, we define a subclass of

predicates which can be detected in low-order polynomial time.

Manabe and Imase [MI92] presented a method for detecting predicates, including channel predicates,

using a replay approach. This approach requires two identical runs and restricts channel predicates to those

detectable by a process. Our approach requires only a single run. Furthermore, our channel predicates are

more general because they also include predicates that cannot be detected by a single process.

Garg and Waldecker [GW94] presented a method for detecting weak unstable conjunctive predicates

where local processes check for their own predicate and send a message to a global predicate checker when-

ever the predicate becomes true between application messages.

Our detection of global predicates extends the algorithms used in the detection of weak unstable pred-

icates [GW94] to include the state of communication channels. A channel is a uni-directional connection

between any two processes through which messages can be passed. A general mechanism for the detection

of channel predicates as part of global predicates is an important characteristic for distributed debuggers.

1



Furthermore, many classic problems, such as distributed termination, and bounding of global virtual time

can be detected by our algorithm.

The key to making our algorithm efficient is to restrict the channel predicates to a class which we call

monotonic. An example of a monotonic predicate is, “The channel contains exactly 5 messages”. When the

channel contains less than 5 messages, this predicate is false and it will remain false until more messages

are sent on the channel. If there are more than 5 messages in the channel, then the predicate is false, and

it will remain false until some messages are received on the channel. We show that monotonicity is an im-

portant key to efficient detection of channel predicates. In any global state in which the predicate is false,

we can be certain of a process which must make further progress before the channel predicate can become

true. Monotonicity allows us to guarantee that progress by the other processes can not make the predicate

true. Furthermore, we also show that the first global state satisfying a conjunction of channel predicates can

only be well defined when monotonic channel predicates are used. A formal definition of monotonic channel

predicates is given in Section 2.

The next section will present the notation, definitions of predicates, and our model of a distributed sys-

tem, which are necessary in understanding the method of detecting conjunctive channel predicates. Section 3

presents two predicate detection algorithms. The first algorithm, described in Section 3.2 is based on a cen-

tralized predicate checker. The second algorithm (Section 3.3) is fully distributed, with the required data

structures evenly divided among the N processes. Section 4 summarizes the paper.

2 Our Model

This section presents the concepts and notation of distributed runs, and global, local and channel predicates.

2.1 Distributed Run

We assume a message-passing distributed system without any shared memory or a global clock. A distributed

program consists of N processes denoted by fP1,P2,...,PNg communicating solely via asynchronous mes-

sages. In this paper, we will be concerned with a single run r of a distributed program. Each process Pi in

that run generates a single execution trace r[i] which is a finite sequence of states. Program actions, such as

changing the value of a variable, sending or receiving a message, occur during the transitions between these

states. That is, the process Pi generates the trace r[i] = �i;0�i;1 : : : �i;m, where �i’s are the local states, and
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where m is the maximum number of distinct states in a single process. There are three classes of program

actions (hereafter events) that can occur between these states — sending of a message, reception of a message

or some internal event. Finally, the state of a process is defined by the value of all its variables including its

program counter.

The distributed system also includes a finite set of uni-directional channels. In this paper we will assume

there are N2 channels arranged as a fully-connected network. We label the channels as anN�N matrix with

channel(i; j) used for messages sent by process Pi to Pj . However, our algorithms can be trivially extended

to work with any number or organization of channels as long as the network is connected.

We assume that no messages are lost, altered or spuriously introduced. We do not make any assumptions

about a FIFO nature of the channels.

2.2 Global Predicates

Typically, one is interested in determining if some predicate becomes true during the execution of a program.

Since the predicate can potentially be some function of the state of every process and channel in the system,

we must identify some reasonable definition of simultaneity between process states. For this, we use the

happened-before relation of Lamport[Lam78]. The happened-before relation for two process states � and �
can be formally stated as: �! � iff:

1. � � � where � means occurred before in the same process, or

2. �; � where; means that the action following � is a send of a message and the action preceding �
is a receive of that message, or

3. 9
 : �! 
 ^ 
 ! �.

Two states for which the happened-before relation does not hold in either direction are said to be concur-

rent. The symbol, k, is used to represent concurrency. The relationship can be formally stated as:� k � , (� 6! � ^ � 6! �)
Given a set of N states, one from each process, if this condition holds for all pairwise combinations of the

states, then this set forms a consistent cut. Thus, the global predicate detection problem then becomes one

of finding a consistent cut in which the predicate evaluates to true.
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2.2.1 Local Predicates

A local predicate is defined as any boolean formula on a local process. For any process, represented by Pi,
a local predicate is written as li. li(�) is used to represent the predicate being true in a particular state, �, ofPi. A process can detect a local predicate on its own.

2.2.2 Channel Predicates

A channel predicate is any boolean function of the state of the channel. The channel state is defined as the

set difference of the send events and the receive events on that channel. Since the send events and receive

events are performed by different processes, no single process can evaluate a channel predicate on its own.

We use the following notation to indicate the accumulation of send and receive events on a channel.�; �: states at different processes, Pi and Pj , or � 2 r[i] and � 2 r[j].�:Sent[j]: sequence of all messages sent at or before state � from Pi to Pj .�:Rcvd[i]: sequence of all messages received at or before state � from Pi to Pj .
A channel predicate can then be written as:chanp(�:Sent[j] � �:Rcvd[i])
or in short notation as: chanp(�; �) � chanp(�:Sent[j] � �:Rcvd[i])
In this paper, we will use the symbol S to represent an arbitrary sequence of sends events from a process and

the symbol R to represent an arbitrary sequence of receive events. It should be noted that channels have no

memory. Hence, any channel state that can be constructed by a combination of both send events and receive

events can also be produced by some other sequence of just send events.

We require channel predicates to be at least monotonic. The requirement for monotonicity can be stated

formally as:

Definition 2.1 A channel predicate, chanp(S), is said to be monotonic iff, for any sets of messages, S; S0; R :8S : :chanp(S)) (8S0 : :chanp(S [ S0)) _ (8R : :chanp(S �R))
4



That is, given any set of send events, S, that causes the predicate to be false, then either sending more mes-

sages is guaranteed to leave the predicate false, or receiving more messages is guaranteed to leave the predi-

cate false. We assume that when the channel predicate is evaluated in some state S, it is also known which of

these two cases applies. To model this assumption, we define monotonic predicates to be 3-valued functions.

The predicate can evaluate to:

1. T — The channel predicate is true for the current channel state.

2. Fs — The channel predicate is false for the current channel state. Furthermore, the predicate will re-

main false in the presence of an arbitrary set of additional messages sent on the channel in the absence

of receives.

3. Fr — The channel predicate is false for the current channel state. Furthermore, the predicate will re-

main false in the presence of an arbitrary set of messages received from the channel in the absence of

sends.

The following Lemma follows directly from the definition of monotonicity:

Lemma 2.2 For any states �; �; and 
� � 
 ^ chanp(�; �) = Fr ) chanp(�; 
) = Fr
Proof: Since the state of the sender has not changed, the predicate will remain Fr. 2 Similarly:� � 
 ^ chanp(�; �) = Fs ) chanp(
; �) = Fs

Example 1. Empty Channel: chanp(S) � (S = ;): In any state in which this predicate is false, sending

more messages will not make it true. This predicate can be used in termination detection.

Example 2. Channel Overflow: chanp(S) � (
Pm2S sizeof(m) � k): In any state, if the channel is not

currently full, then receiving more messages cannot make it full.

Example 3. Exactly k Messages in Channel: chanp(S) � (jSj = k): In any state where there are more

than k messages in the channel, this predicate cannot be made true by sending more messages. In any

state when there are less than k messages in a channel, this predicate cannot be made true by receiving

more messages.
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2.2.3 Generalized Conjunctive Predicate

We call a predicate detected by our algorithm a generalized conjunctive predicate (GCP). A GCP is formed by

any collection of local predicates and channel predicates. The GCP is true if and only if all of its component

predicates are simultaneously true in a consistent cut.

For example, termination detection can be easily represented as a GCP detection problem. For each of

the N processes, a local predicate is defined as “The process is idle”. For each of the (O(N2)) channels, a

channel predicate is defined as “The channel is empty”. Termination is equivalent to this GCP being satisfied.

Another example is satisfying a lower bound, K , on the global virtual time of a distributed simulation. For

each of the N processes, a local predicate is defined as “The local time is at least K”. For each channel, a

channel predicate is defined as “The minimum time stamp over all messages in the channel is at least K”.

The simulation has passed global virtual time K is equivalent to the GCP being satisfied. It should be noted

that although both of these examples are stable predicates, our algorithms can also detect unstable GCPs.

The following theorem describes the structure of cuts satisfying a GCP. Let C be the set of all global

cuts that satisfy a GCP with monotone channel predicates. For two cuts C;D 2 C, we say that C � D iff8i : C[i] � D[i] where C[i] is the state from Pi in C and �means � or =. We show that the concept of first

cut that satisfies a GCP is well-defined. In other words, if two global cuts satisfy a GCP, then their greatest

lower bound also satisfies that GCP.

Theorem 2.3 Let a GCP be such that all of its channel predicates are monotone. Let (C;�) be the set of all

global cuts in which the GCP is true. If C;D 2 C, then their greatest lower bound is also in C.

Proof: Let E be defined as E[i] = min(C[i];D[i]) and chanpij(E[i]; E[j]) denote the value of the channel

predicate between processes Pi and Pj at states E[i] and E[j]. We show that E 2 C, that is, E also satisfies

the GCP. There are three properties that E must satisfy: all local predicates must be true, all states in E must

be concurrent, and all channel predicates must be true.

1. Since E[i] is either C[i] or D[i], and both li(C[i]) and li(D[i]) hold, it follows that8i : li(E[i]).
2. Let I = fijE[i] = C[i]g and J = fijE[i] = D[i]g:

It is clear that since C and D are consistent cuts, 8i; j 2 I : E[i]jjE[j] and 8i; j 2 J : E[i]jjE[j]. We

now show that 8i 2 I; j 2 J : E[i]jjE[j]. Assume E[i] ! E[j]. Substituting, we have C[i] ! D[j].
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However, since j 2 J , we know D[j] � C[j], leading to C[i] ! C[j], a contradiction. ThereforeE[i] 6! E[j]. A symmetric argument shows that E[j] 6! E[i]. Hence, E is a consistent cut.

3. We now show that E also satisfies channel predicates. By symmetry, it is sufficient to show that 8i 2I; j 2 J : chanpij(E[i]; E[j]). Assume for contradiction, that chanpij(E[i]; E[j]) is false. By mono-

tonicity of channel predicates, there are two cases:

Case 1 chanpij(E[i]; E[j]) = Fs — SinceE[i] � D[i], from Lemma 2.2 we know that chanpij(D[i]; E[j]) =Fs. Hence chanpij(D[i];D[j]) is false, a contradiction.

Case 2 chanpij(E[i]; E[j]) = Fr . — Similarly, sinceE[j] � C[j], it follows that chanpij(C[i]; C[j])
is false, a contradiction.

Therefore, all channel predicates must also be true in E.

Therefore, the GCP is satisfied by the cut E. 2
The above theorem does not hold for arbitrary channel predicates as shown by the next example.

Example 1 Consider the distributed computation shown in Figure 1. Consider the channel predicate —

“There are an odd number of messages in the channel.” Note that this channel predicate is not monotonic.

Assume that the local predicates are true only at points C[1] and D[1] for P1, and C[2] and D[2] for P2. It

is easily verified that the GCP is true in the cut C and D but not in their greatest lower bound.

Figure 1: An example to show that the set of cuts satisfying a GCP is not a lattice.

We now show that the first cut satisfying a GCP is uniquely defined only if channel predicates are re-

stricted to be monotonic. We restrict our consideration to those GCPs which can possibly be true for at least

one run of some program.
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Theorem 2.4 The first cut that satisfies the GCP is always well defined only if all channel predicates in the

GCP are restricted to monotonic channel predicates.

Proof: The proof is by contrary example. Given any GCP that includes at least one non-monotonic channel

predicate, we can construct a program for which there is no unique first cut satisfying that GCP.

Figure 1 illustrates the situation we wish to construct. Without loss of generality, let P1 and P2 be two

processes from the GCP such that a non-monotonic channel predicate is used for the channel from P1 to P2.

All other processes interact so as to make the remaining channel predicates true and then these processes

become idle in a consistent cut with local predicates true. Up to this point, there has been no activity on the

channel from P1 to P2.

Since the channel predicate from P1 to P2 is non-monotonic, there exists a channel state for which the

channel predicate is false, but can be made true both by sending and by receiving messages. Let S be a set of

message sends so that the channel enters this state. The program is constructed such that P1 performs S on

the channel prior to state C[1]. In Example 1, the sequence S consists of two arbitrary messages. The local

predicate on P1 then becomes true for the first time in state C[1]. The local predicate on P2 becomes true

for the first time in state D[2]. Since P2 has not received any messages from P1 by state D[2], the channel

predicate is not true along the cut defined by C[1] and D[2].

Let S0 be the set of additional messages that can be sent so that the predicate becomes true. The processP1 sends these messages between states C[1] and D[1]. In addition, let R be the set of messages that can be

received so that the predicate can be made true. The process P2 receives R between states D[2] and C[2].

Note that both cuts C and D are consistent cuts. Furthermore, all local and channel predicates are true on

these cuts.

It is clear that C 6� D and D 6� C . Since the local predicates on P1 and P2 were not true at any earlier

point in this program, there is no cut which is a lower bound of both C and D and that satisfies the GCP.

Therefore, the first cut to satisfy this GCP is not uniquely defined for this program. 2
3 GCP Detection

The method of detecting the GCP is divided among monitor and application processes. The application pro-

cesses are those processes which were used in the original computation (i.e., the program we are trying to

debug). The GCP is defined over the state of the application processes and the state of the channels between
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application processes. The monitor processes are additional processes which are created solely for the pur-

pose of predicate detection.

We present two efficient algorithms for monotonic GCP detection. The first algorithm uses a centralized

monitor process to find consistent cuts and to evaluate all channel predicates. The second algorithm usesN monitor processes. Each monitor process evaluates at most N channel predicates and they collectively

determine when a cut is consistent. Both algorithms distribute the task of evaluating local predicates.

3.1 GCP Algorithm: The Application Processes

We assign to each application process three functions related to predicate detection:

1. Identification of which states on other application processes happen before states on this application

process.

2. Identification of states on this application process in which all local predicates are true.

3. Collection and delivery to the monitor process(es) of sufficient information to determine the state of

any channel incident to this process.

To satisfy the first requirement, our algorithm uses vector clocks [Mat89, Fid89]. Each application pro-

cess maintains a vector clock as part of the state of the process. The vector clock is attached to all messages

sent between application process and provides the property:� ! � iff �:u < �:v, where � and � are states in processes Pi and Pj (i 6= j) and u and v are

their respective vector clocks at these states

Each application process is assumed to be able to satisfy the second requirement trivially. Any state in

which local predicates are not true is ignored. We can disregard many of the states in which local predicates

are true as well. Only the first state following each send or receive event in which the predicate is true can be

part of the first cut to satisfy a GCP. Since our predicate detectors are capable of finding exactly this cut, we

can safely disregard all other states (i.e., we won’t fail to detect the GCP if it occurs). Thus, there are at mostM states of interest from each application process (recall that M is the maximum number of message events

by any one process). For each of these states, the application process must construct a “local snapshot”. This

local snapshot is placed into a message and sent to a monitor process. The local snapshot includes the current
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vector clock from the application process. This information will allow the monitor process(es) to determine

which local snapshots from other application processes are concurrent with this one.

To satisfy the third requirement, the application process also includes in the local snapshot an incremental

record of activity on all channels incident to this process. For example, if the process has sent 2 messages

and received one message since the last local snapshot was created, then the next local snapshot will contain

a record of each of these events. Conceptually, a copy of the entire message is placed into the snapshot for all

send events. However, in practice much less information is actually required. For example, if the predicate is

“the channel is empty”, then one bit will suffice, since the channel is empty precisely when the number of send

events on the channel is equal to the number of receive events. This issue is addressed in more detail when

the monitor processes are described. Note that for receive events, all that is necessary is that the sequence

number of the message be placed into the snapshot.

We label theN application processes P1; : : : ; PN . Figure 2 shows the extensions we require to the behav-

ior of each application process. We believe that the probe effect caused by this additional work is tolerable

for most applications. Reducing or eliminating probe effect is an area of active research that is beyond the

scope of this paper. It should be noted that the same extensions are required for both the centralized detec-

tor and the distributed detector. The only difference that is required is that for the centralized algorithm, all

application processes send their local snapshots to the same monitor process (denoted M0), whereas in the

distributed algorithm each application process Pi sends its local snapshots to monitor process Mi.
3.2 Centralized GCP Algorithm

In the centralized algorithm, a single monitor process is responsible for searching for a consistent cut that

satisfies the GCP. We label this process as M0. Its pursuit of this cut can be most easily described as con-

sidering a sequence of candidate cuts. If the candidate cut either is not a consistent cut, or does not satisfy

some term of the GCP, M0 can efficiently eliminate one of the states along the cut. The eliminated state can

never be part of a consistent cut that satisfies the GCP. The monitor process can then advance the cut by

considering the successor to one of the eliminated states on the cut. If M0 finds a cut for which no state can

be eliminated, then that cut satisfies the GCP and the detection algorithm halts.

Figure 4 shows the algorithm used by M0 to detect the GCP. The algorithm consists of a number of

actions, each of which is guarded by some clause. Each action is assumed to be atomic. If more than one

guard is true simultaneously, then the action that is performed can be selected non-deterministically. Some
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var
incsend, increcv: array of messages;
vclock: array [1..n] of integer;

initially 8j : j 6= i :vclock[j] = 0;
vclock[i] = 1;
firstflag = true;
incsend = increcv = ;;

for sending m do
send (vclock, m);
vclock[i]++ ;
firstflag := true;
incsend := incsend [ fmg;

upon receive (msg vclock, m) do
foreach j do:

vclock[j] := max(vclock[j], msg vclock[j]);
done
firstflag := true;
increcv := increcv [ fmg;

upon (local pred = true ^ firstflag) do
firstflag := false;
send (vclock, incsend, increcv) to monitor process;
incsend:=increcv:=;;

Figure 2: Extensions to Application Process Pi for GCP Detection

constant-time performance gains can be realized by prioritizing the actions appropriately. Such optimization

is beyond the scope of this paper. The algorithm terminates when none of the guards are true. When this

occurs, the GCP has been detected, and the array state[1..n].vclock indicate which application process states

are part of the cut. As an obvious extension, if some application process has terminated and all of the states

from that process have been eliminated, M0 can abort the detection algorithm.

3.2.1 Data Structures

The monitor process receives local snapshots from application processes. These messages are used by M0
to create and maintain data structures that describe the global state of the system for the current cut. The data

structures are divided into three categories: queues of incoming messages, those data structures that describe

the state of the application processes, and those data structures that include information describing the state

of the channels.

Incoming Message Queues The monitor process relies on being able to selectively receive a message

from a specific application process. For example, at some phase in the algorithm M0 may ask to receive a

message sent specifically by Pi. Furthermore, we require that messages sent by an individual application

process to the monitor process be received in FIFO order. If the message passing system does not provide

11



Non-checker
Process 1

Non-checker Non-checker
Process 2 Process N

queue 1
queue N

Process

Checker

Checker

Figure 3: The Centralized GCP detector.

this support, it can be easily constructed using a set of queues.

We model the message passing system as a set of n FIFO queues, one for each application process over

which some term of the GCP is defined. Recall that N was the total number of application processes in the

system. Hence, n � N . We use the notation q[1..n] to label these queues in our algorithm.

Per-Process Data The monitor process maintains information describing one state from each application

process Pi. The collection of this information is organized into a vector:

state : array[1..n] of struct process data

The process data structure consists of a local snapshot (see Section 3.1) plus the following item:� color : fred, greeng — The color of a state is either red or green and indicates whether the state has

been eliminated in the current cut. A state is red only if it cannot be part of a consistent cut that satisfies

the GCP.

Per-Channel Data The monitor process maintains three data structures for each channel:� S[1..n, 1..n] : set of messages — The pending-send set (or “S” set). The set contains all those messages

that have been sent on the channel, but not yet received according to the current cut.� R[1..n, 1..n] : set of messages — The pending-receive set (or “R” set). The set contains each message

that has been received from the channel, but not yet sent according to the current cut. Since the current
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S[1..n,1..n], R[1..n,1..n] : sequence of message;
CP[1..n,1..n] : fFs, Fr, Tg;
state : array[1..n] of struct f

v : vector of integer;
color : fred, greeng;
incsend, increcv : sequence of messages g

initially
state[i].v = 0; state[i].color = red; S[i,j] = ;; R[i,j] = ;; CP[i,j] = chanpij(;)

/* advance the cut */
A1: upon (9 i : state[i].color = red) do

state[i] := receive(q[i]);
state[i].color := green;
update channels(i);

/* eliminate states which happened before other states */
A2: upon (9i; j : state[i].color = green ^ state[i].vclock < state[j].vclock)

state[i].color := red

/* force more messages to be sent when channel is Fr */
A3: upon (CP[i,j] = Fr ^ state[i].color = green)

state[i].color := red;

/* force more messages to be received when channel is Fs */
A4: upon (CP[i,j] = Fs ^ state[j].color = green)

state[j].color := red;

Figure 4: Centralized GCP Detection Algorithm, Monitor Process M0
cut is not necessarily consistent, states along the cut may be causally related, and hence it is possible

for one state on the cut to be after a message has been received, and yet have another state on the cut

from before that message was sent. If all states are part of a consistent cut, then every R set is empty.� CP[1..n, 1..n] : fFs,Fr,Tg — The CP-state flag. When a channel predicate is evaluated, its value is

written into the CP-state flag. The value of a channel predicate cannot change unless there is activity

along the channel. Hence, M0 can avoid unnecessarily recomputing channel predicates by recording

which predicates have remained true or false since the last time the predicate was evaluated.

3.2.2 Advancing the Cut

In any cut in which the GCP is false, we know that there must exist at least one state along the cut that can

be eliminated. A formal representation of elimination is that:

Definition 3.1 Given any cut C for which the GCP is false, a state � 2 C can be labeled red, iff 8D for

which the GCP is true, C � D ) � 62 D
13



The algorithm works by considering states from each application process in sequence. Once a state has been

labeled red, we must receive a new state from that process. We update the state of the S and R sets based

on any message activity that occurred since the last snapshot. The procedure, update channels, is used to

update the channel state information. This procedure is shown in Figure 5.

A local snapshot contains a list of send events and a list of receive events. For each send event, up-

date channels first checks to see if the receiver is known to have already received this message. If so, the

message is removed from the R set for the channel. If not, then the message is added to the S set for the

channel. This latter case corresponds to the message still being in route.

update channels(i)

foreach message m sent by Pi to Pj do
if (m 2 R[i,j]) R[i,j] := R[i,j] � fmg
else S[i,j] := S[i,j] [ fmg
CP[i,j] := chanpij(S[i,j]);

done

foreach message m received by Pi from Pj do
if (m 2 S[j,i]) S[j,i] := S[j,i] � fmg
else R[j,i] := R[j,i] [ fmg
CP[j,i] = chanpij(S[i,j]);

done

Figure 5: Procedure update channels

3.2.3 Eliminating States Based Upon Causality

The GCP is true only if the cut is consistent. Since our algorithm is based on eliminating all predecessors to

the first cut that satisfies the GCP, we should eliminate the older of any two states which are causally related.

Action A2 performs this task.

3.2.4 Eliminating States Based Upon Monotonicity

Whenever a monotonic channel predicate is false, we know that either more messages must be sent, or more

messages must be received in order for the predicate to become true. Actions A3 and A4 are based upon

this fact. If the channel predicate is Fr , then the state from the sender can be eliminated since at least one

more message must be sent before the predicate can become true. Action A3 labels the state from the sending

process red. Action A4 performs an analogous activity for any channel whose predicate evaluates to Fs.
14



3.2.5 Evaluating Channel Predicates

Channel predicates can safely be evaluated at any time without affecting either the correctness or the worst-

case time complexity of our algorithm. The S set always contains a list of messages that would be in the

channel if every application process had executed exactly up to the current cut. Note that the R set may not

be empty if this cut is not consistent. If the R set does contain some message m, then m is not in the channel

(m has already been received), nor will it be in the channel at any time in the future.

3.2.6 Correctness of the Algorithm

Now that the algorithm for detection of a GCP has been given, the correctness of this algorithm will be

shown. First, some properties of the program are given that will be used in demonstrating correctness. The

following lemma describes the role of S[i; j] and R[i; j]. We use auxiliary variables state[i]:Sent[j] andstate[i]:Rcvd[j]. These variables are used only for the proof and not in the actual program. The variablestate[i]:Sent[j] is the set of all messages sent by Pi to Pj prior to Pi reaching the state state[i]. Similarly,state[i]:Rcvd[j] is the set of all messages received by Pi from Pj prior to Pi reaching the state state[i].
Lemma 3.2 The following is an invariant of the program:S[i; j] = state[i]:Sent[j] � state[j]:Rcvd[i]R[i; j] = state[j]:Rcvd[i] � state[i]:Sent[j]
Proof: The proof is by induction on the number of local snapshots received. The lemma is obviously true

initially, since both S[i,j] and R[i,j] are initialized to ;. Assume that the lemma holds for all snapshots re-

ceived so far. We show that update channels causes the lemma to hold for S[i,j] when one more snapshot is

received from process Pi. The proofs for snapshots received from process Pj and for R[i,j] are analogous.

Let state[i] denote the state from Pi that immediately precedes the snapshot, and state0[i] denote the state

after the snapshot. Similarly, let S[i,j] be the value before the snapshot was received and let S0[i; j] denote

the value after the snapshot is received. We therefore wish to show:S0[i; j] = state0[i]:Sent[j] � state[j]:Rcvd[i]
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Since snapshots arrive in FIFO order, the following two identities hold:state0[i]:Sent = state[i]:Sent [ incsendstate[i]:Sent \ incsend = ;
We can see from the program that:S0[i; j] = S[i; j] [ (incsend�R[i; j])
By the induction hypothesis: S[i; j] = state[i]:Sent[j] � state[j]:Rcvd[i]R[i; j] = state[j]:Rcvd[i] � state[i]:Sent[j]
Hence, by substitution we have:S0[i; j] = (state[i]:Sent[j] � state[j]:Rcvd[i]) [ (incsend� (state[j]:Rcvd[i] � state[i]:Sent[j]))= (state[i]:Sent[j] � state[j]:Rcvd[i]) [ (incsend� state[j]:Rcvd[i])= (state[i]:Sent[j] [ incsend)� state[j]:Rcvd[i]= state0[i]:Sent[j] � state[j]:Rcvd[i]2

The following is also an invariant of the algorithm maintained by update channels. The proof follows

from Lemma 3.2.

Lemma 3.3 CP[i,j] = chanpij(state[i], state[j])

Theorem 3.4 Let H be the first cut that satisfies the GCP. Then the centralized GCP algorithm terminates

with state[i] = H[i].
Proof: We complete this proof in two parts. First we show that if state[1..n] is a predecessor to H, then at

least one state[i] will be set to red. Since H is the first cut to satisfy the GCP, we know that either state[1..n]

is not consistent or a channel predicate must be false. If state[1..n] were not consistent, then by the property

of vector clocks, the guard for Action A2 must be true. Hence at least one state[i] will be set to red, a con-

tradiction. If on the other hand, a channel predicate were false, then by Lemma 3.3 CP[i,j] must be either Fs
16



or Fr. Thus either action A3 or A4 would occur, and a state would be painted red. Therefore, if state[1..n]

is a predecessor to H, the algorithm makes progress.

We now show that if state[i] 2 H , then state[i] will not be labeled red. This condition guarantees we

will not bypass the cut H. The proof is by induction on the number of states painted red. Assume that no

element of H has been painted red so far. Cuts can be labeled red by actions A2, A3 and A4. We consider

each case and show by contradiction that state[i] cannot be labeled red if state[i] 2 H .

Case 1: Action A2 labels state[i] red. This implies that state[i] happened before some other state state[j].

By the induction hypothesis, state[j] � H[j]. This leads to H[i] ! H[j], a contradiction since H is a

consistent cut.

Case 2: Action A3 labels state[i] red. This implies that for some j, CP[i,j] = Fr. By the induction hy-

pothesis, state[j] must be either on H, or a predecessor to H. By Lemma 2.2 the predicate will therefore also

have the value Fr at H, a contradiction since the GCP is satisfied by H.

Case 3: Action A4 labels state[i] red. This implies that CP[j,i] = Fs. Using similar reasoning as for

Case 2, this implies that the channel predicate will be Fs along the cut H, a contradiction.

Hence, no component of H is ever painted red, and all predecessors to H are eventually painted red. Thus,

our algorithm will eventually advance to the cut H. At this time, all guards are false and the algorithm will

halt. 2
3.2.7 Overhead Analysis

We do overhead analysis only for M0. We use the following parameters:� N : Total number of processes in the system� n: processes involved in the GCP (n � N )� m: maximum number of messages sent/received by any application process� s: the size of the largest message sent by any application process.

We also make the following simplifying assumption: a channel predicate can be evaluated in time propor-

tional to the number of messages in the channel. This assumption holds for most predicates of interest.

Time complexity: Note that Action A1 can be performed at most mn times, since there are at most mn
states. Each of the actions A2, A3 and A4 may also be applied at most mn times, since each of these actions
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labels a state red. Each state is made green initially by A1, and can only be labeled red once. We consider

the complexity of each action in turn.

The work to perform Action A1 is determined by the cost to receive local snapshots plus the cost to update

the channel states. Each local snapshot consists of a vector clock with n elements plus the incremental send

and receive histories. Hence, the total number of bits from all local snapshots is bounded by O(mn(n +s)). The work performed in update channels is dominated by the time to evaluate channel predicates. Each

channel predicate must be evaluated at least once (for empty channels at the initialization of the system),

and up to mn re-evaluations may be required. At any given time, there can be at most O(m) messages in

any channel (although, in practice there are typically much fewer). Thus O(n2 +m2n) work is required to

evaluate channel predicates. Therefore, Action A1 requires O(n2m+m2n+mns) work.

The work required to perform the actions A2, A3 and A4 is constant time. However, the guards for these

actions must also be evaluated. It must be noted that an implementation of our algorithm would not follow

Figure 4 literally. Consider the guard for A2. Although at first glance it may appear that quadratic time is

necessary for each evaluation of the guard, it can actually be tested in linear time. Assume that it is known

that A2 does not apply. There is no need to test A2 again until Action A1 has occurred and at least a new

state has been received. If state[i] is that new state, then A2 could apply only if state[i] ! state[j] orstate[j] ! state[i] for some other state[j]. Hence it is only necessary make n comparisons of the vector

clock1 to know if A2 now applies. Finally, since A1 can occur at most mn times, the total amount of work

for Action A2 is O(n2m).
Using two linked lists, Actions A3 and A4 can be tested in constant time. All channels whose predicates

are Fr and whose sending process is currently green are kept in one such list, and all channels whose predi-

cates are Fs and whose receiving process is green are in kept in the other. Obviously one of A3 or A4 applies

iff its corresponding list is non-empty. The lists can be superimposed on the CP[i,j] array. Thus, inserting or

removing channels from the list can be performed in constant time.

We conclude that the time complexity of the centralized algorithm is:O(n2m+m2n+mns)
It should be noted this bound is fairly conservative. For example consider buffer overflow or termination

detection as examples. In either of these cases, the evaluation of a channel predicate requires simply knowing1Vector clocks can be compared in constant time.
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how many bits remain in the channel. Hence, local snapshots do not need to include a copy of the message

in the message histories, the S and R sets can be replaced by simple counters, and channel predicates can be

evaluated in constant time. Thus, for these predicates, the time complexity isO(n2m)
.

Space complexity: The main space requirement of M0 is the buffer for the local snapshots. This space

is O(mn(n + s)). Note that strictly speaking, each vector clock may require O(n logm) bits. This would

increase the space complexity to O(mn(n logm+ s)). However, we assume that storage and manipulation

of each component is a constant time/space overhead. This is true in practice because one word containing

32 bits would be sufficient to capture a computation with 232 messages.

Message Complexity: Every of the n processes send at most m local snapshots to M0. Each local snap-

shot contains O(n+ s) bits, for a total of total of O(n2m+mns) bits communicated by the algorithm.

3.3 Distributed GCP Algorithm

This section describes a distributed version of the GCP detection algorithm. We use N monitor processes,

denoted M1; : : : MN . Each monitor process is paired with one of the N application processes. Whereas

in the centralized algorithm, all application processes send their local snapshots to a single monitor process

(M0), in the distributed algorithm, each application process Pi sends its snapshots to monitor process Mi. It

should be noted, that in a distributed debugger, no messages may actually be required for messages betweenPi and Mi. The most reasonable implementation is to locate Pi and Mi on the same physical processor. In

this case, Mi may be able to access local snapshots directly. (e.g. with the Unix Ptrace facility).

In the description of the algorithm we will refer to “monitor messages”. A monitor message is a mes-

sage sent between monitor processes. A local snapshot (sent between an application process and a monitor

process) is not a monitor message.

Figures 6 and 7 show the algorithm used by monitor process Mi.
3.3.1 Data Structures

We use the notation Mi:x to indicate the value of local datum x on monitor process Mi. Most of the data

structures in the distributed algorithm are directly related to data structures in centralized algorithm (see Sec-
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tion 3.2.1). The most recently received snapshot from Pi (previously state[i]) is stored in Mi:state. Each

monitor process Mi is responsible for those channels on which Pi can send messages. The outstanding send

list for channelij (previously S[i,j])is stored in Mi:S[j]. Similarly the outstanding receive list (previously

R[i,j]) for that channel is Mi:R[j], and the value of the channel predicate is recorded in Mi:CP [j].
Since Mi does not have access to the receive events that occur on channelij , acknowledgment messages

are required. We call the acknowledgment messages delayed acknowledgment (or dack) messages to empha-

size the fact that the acknowledgment for some message is not sent immediately after the message is received.

Consider some application process Pj that receives a message immediately before entering some state �. LetPi be the application process that sent the message. Then monitor process Mj will eventually send a dack

message to Mi. However, the dack is not sent until all predecessors to � have been eliminated by Mj .
Four data structures are related to the dack messages, and their use in maintaining the S and R sets. Each

of these data structures is implemented as an array, with one entry per channel. The data structures are:� Mi.dacks sent[j] — a count of the number of dacks sent from Mi to Mj for channelji.� Mi.dacks rcvd[j] — a count of the number of dacks received by Mi from Mj for channelij .� Mi.dacks required[j] — a count of the minimum number of messages which must be received by Pi
on channelji before the GCP can be true.� Mi.dack pending[j] — a boolean flag which if true means that Mi is certain to receive at least one

more dack message from Mj for channelij
Dack messages are one of two types of monitor messages. The other type of monitor message is a dack request

message. Dack request messages are sent when a channel predicate is Fs, and it is known that more messages

must be received in order for the channel predicate to become true. The use of these messages is described

in detail below.

3.3.2 Termination

The distributed algorithm terminates when all Mi have terminated (i.e. all guards in Figure 6 are false), and

all monitor messages have been received. We use a variation of Dijkstra’s and Scholten’s termination detec-

tion algorithm for diffusing computations [DS80]. GCP detection is not a true diffusing computation, since

there is no single parent to the monitor processes. However, it is trivial to extend Dijkstra’s algorithm to our
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needs by arbitrarily declaring M1 as the parent of all other monitor processes and initializing the termination

detection data structures accordingly. Thus, M1 will detect termination. It should be noted that Dijkstra’s al-

gorithm is optimal in the number of messages sent for termination detection (equal to the number of monitor

messages, which we will show is at most 2mn).

When termination has been detected, the cut defined by the Mi.state variables is the first consistent cut

for which the GCP is true.

A1: upon my color = red
state := receive snapshot from Pi
my color := green;
update channels(state);

A2: upon 9j : R[j] 6= ; ^ my color = green
my color := red;

A3: upon 9j : CP[j] = Fr ^ my color = green
my color := red;

A4: upon 9j : CP[j] = Fs ^ :dack pending[j]
dack pending[j] := true;
send dack request(dacks rcvd[j]+1) to Mj ;

A5: upon receive dack request(count) from Mj
dacks required[j] := max(dacks required[j],dack request.count);

A6: upon 9j : dacks required[j] > dacks sent[j] ^ my color = green
my color := red;

A7: upon receive dack(m) from Mj
if (m 2 S[j]) S[j] := S[j]� fmg;
else R[j] := R[j] [ fmg;
dacks rcvd[j]++;
dack pending[j] := false;
CP[j] := chanpij (S[j]);

Figure 6: Monitor Process Mi
3.3.3 Receiving New Snapshots

Each monitor process, Mi, is responsible for labeling snapshots from Pi red, and for maintaining the current

state of the channels on which Pi sends application messages. Thus, the global state is advanced in parallel.

Whenever monitor process Mi receives a snapshot, it labels its current state green and updates the chan-

nel data structures. Each monitor process has direct access to the send activity for the channels it oversees.

However, it must communicate with other monitor processes to learn which messages have been received.

Figure 7 shows the procedure that Mi uses after receiving a new snapshot from Pi.
Each send event in the incremental history is handled in the analogous manner as with the centralized
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algorithm (see Figure 5). However, each record contained in state.increcv must be sent in a dack message to

the monitor process responsible for that channel.

Action A7 in Figure 6 gives the steps that will be followed by the recipient of a dack message. Collec-

tively, actions A1 and A7 in the distributed algorithm perform the same function as that of Action A1 in the

centralized algorithm.

update channels()
foreach message m sent by Pi to Pj do:

if (m 2 R[j]) R[j] := R[j]� fmg;
else S[j] := S[j] [ fmg;
CP[j] := chanpij (S[j]);

done

foreach message m in received by Pi from Pj do:
send dack(m) to Mj;
dacks sent[j]++;

done

Figure 7: Monitor Process Mi — update channels()

3.3.4 Eliminating Inconsistent States

Action A2 is used to label the current state red when it happened before some other state in the current cut.

We do not use vector clocks in Figure 6. Vector clocks are required if n (the number of application processes

over which the global predicate is defined) is less than N (the total number of application processes). In the

distributed algorithm, the use of vector clocks necessitates additional messages between monitor processes

which carry the latest vector clock from Mi.state. However, when n = N , a simpler test for consistency is8iMi:R[i] = ;.

3.3.5 Making Progress for Channel Predicates

Actions A3 through A6 are used to label states red according to the value of the channel predicates on the

current cut. Since Mi evaluates the channels on which Pi sends application messages, it can label its own

state red after evaluating any of its channel predicates to be Fr. Action A3 performs this task.

Actions A4 through A6 are used to label the receiving process red when a channel predicate has the valueFs. Recall that when a channel predicate is Fs, the receiving process must receive at least one more message

in order for the predicate to change value. Thus, in the case that Mi:CP [j] = Fs, Mi has determined thatMj :state must be labeled red. However, Mi can not directly access Mj :state, and furthermore, there is no
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assurance that Mj :state has not already been eliminated (or equivalently, a dack message is already in route

to Mi). Action A4 is used to request more dack messages, since the value of the channel predicate can not

change until more dack messages are received. Actions A5 and A6 are used to label Mj .state red if and only

if more dacks have been requested than have already been sent.

3.3.6 Correctness of the Distributed Algorithm

This section presents a proof that the distributed GCP algorithm correctly detects the first global cut that sat-

isfies the GCP. The distributed algorithm is similar to the centralized algorithm, and we base our correctness

argument on the proof of Theorem 3.4.

Lemma 3.5 The following is true when all dacks have been received:Mi:S[j] = Mi:state:Sent[j] �Mj:state:Rcvd[i]Mi:R[j] = Mj :state:Rcvd[i] �Mi:state:Sent[j]Mi:CP [j] = chanpij(Mi:state;Mj :state)
Proof: The proof is similar to that for Lemma 3.2 and Lemma 3.3. The only difference is that when Mj
receives a new state, the increcv records are not immediately added to Mi.R[j] or subtracted from Mi.S[j].

They must be sent in dack messages first, hence the precondition that all dacks have been received. 2
Lemma 3.6 The following invariant is a consequence of monotonicity (see Lemma 2.2):Mi:CP [j] = Fr ) chanpij(Mi:state;Mj :state) = Fr
Lemma 3.7 Mi:dacks required[j] > Mi:dacks sent[j] ) chanpji(Mj :state;Mi:state) = Fs
Proof: Mi:dacks required[j] > Mi:dacks sent[j] only if Mi received a dack request message from Mj
with count = Mi:dacks sent[j] + 1
Consider the state of Mj at the time when this dack request message was sent. From Action A4, we know

that Mj :dacks rcvd[i] = count � 1. By substitution, Mj :dacks rcvd[i] = Mi:dacks sent[j]. Hence all

dacks for messages prior to Mi:state were received by Mj prior to the dack request message being sent.

Therefore, from Lemma 3.5, Mj :CP [i] = chanpji(Mj :state;Mi:state). Since the guard for A4 must be

true in order for the dack request message to be sent, we know that chanpji(Mj :state;Mi:state) = Fs. 2
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Theorem 3.8 The distributed GCP detection algorithm will terminate with Mi:state = H[i] iff H is the

first cut to satisfy the GCP.

Proof: Initially, 8i : Mi:state � H[i] since each monitor process initializes itself to a fictitious state. As in

Theorem 3.4, we show:

1. if Mi:state = H[i] then Mi:state is never labeled red.

2. if Mi:state � H[i] then Mi:state is eventually labeled red

3. if 8i : Mi:state = H[i] then the algorithm will eventually terminate.

At most a finite number (mN ) of states can be eliminated, thus the algorithm will always terminate.

Part 1: no state from H is ever labeled red. The proof is by induction on the number of states labeled

red so far. Let Mi:state be the next state labeled red. This can happen as a consequence of Actions A2, A3

or A6. Assume that Mi:state = H[i]. If the guard for A2 is true, then 9j such that Pj has received some

message before Mj:state that Pi has not sent prior to Mi:state. This implies, Mi:state ! Mj :state. By

our induction hypothesis, Mj :state � H[j], therefore H[i] ! H[j], a contradiction.

If the guard for A3 were true, then 9j such thatMi:CP [j] = Fr . By Lemma 3.6 we know chanpij(Mi:state;Mj :state) =Fr. Using a similar argument as used in Theorem 3.4, this leads to chanpij(H[i];H[j]) = Fr , a contradic-

tion.

If the guard for A6 were true, then 9j such thatMi:dacks sent[j] < Mi:dacks required[j]. By Lemma 3.7,chanpji(Mj :state;Mi:state) = Fs. This leads to chanpji(H[j];H[i]) = Fs, a contradiction.

We thus conclude that 8i : Mi:state � H[i].
Part 2: all predecessors to H[i] are eventually labeled red. The proof is by induction on the number

of predecessors to H which must be labeled red. The claim is clearly true when there are zero predecessors

to H. Assume that there are k states between the current cut (8iMi:state) and H . We show that at least one

state is labeled red. There are three cases:

Case 1: 9i; j : Mi:state!Mj:state. Since we assume n = N , this is equivalent to 9i; j : Mi:state;Mj :state. Eventually all dacks will be received byMi. At this point, we knowMi:R[j] 6= ; by the definition

of;. Therefore Action A2 applies, and Mi:state will be labeled red.

Case 2: 9i; j : chanpij(Mi:state;Mj :state) = Fr. Eventually, all dacks will be received. At this point,

from Lemma 3.5 we know Mi:CP [j] = Fr . Hence, Action A3 applies and Mi:state will be labeled red.
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Case 3: 9i; j : chanpij(Mi:state;Mj :state) = Fs. Eventually, all dacks will be received. At this point,

we know Mi:CP [j] = Fs. Action A4 will cause a dack request message to be sent to Mj . Eventually this

message will be received. At this time, we know that Action A5 will set Mj :dacks required[i] to be one

more than Mj :dacks sent[i] (since all dacks had been received before the dack request message had been

sent). Action A6 will apply, and Mj .state will be labeled red.

We therefore conclude that all predecessors to H are labeled red.

We now conclude the proof by showing that when 8i : Mi:state = H[i], termination occurs. This fact

is clearly seen by noting that Action A1 can be taken at most m times on each Mi since there are at most m
snapshots from each process. Actions A2, A3 and A6 can also apply at most m times, since each of these

actions causes the state to be labeled red. Each message that is received by Pi causes Mi to send at most

one dack message. Therefore, Action A7 can apply at most m times. Action A4 can apply at most m times,

since at least one dack must be received for each dack request message that is sent. And finally, Action A5

can only occur m times, since A4 occurs at most m times.

Therefore, after each Mi has taken O(m) actions, the algorithm will terminate. If H exists, then 8i :Mi:state = H[i]. IfH does not exists, then all of the states have been eliminated from at least one process. 2
3.3.7 Overhead Analysis

The distributed algorithm operates using the same principles as the centralized algorithm. The two versions

of the algorithms have identical worst case asymptotic time, space and message complexity.

We consider first the number of messages exchanged. We describe the case where n = N . Both the cen-

tralized and distributed algorithms send mn local snapshots. However, The distributed algorithm requires

dack and dack request messages which are not needed in the centralized algorithm. Up to mn of each type

of message are required. To detect termination, we must double the number of monitor messages. Hence,

the distributed algorithm requires 5mnmessages, whereas the centralized algorithm requires only mn. How-

ever, this analysis is somewhat misleading. Recall that Mi and Pi can be located on the same physical pro-

cessor in the distributed algorithm. Hence no network traffic is generated for sending local snapshots in this

case. Furthermore, monitor messages are small. Two 32-bit integers is sufficient to encode a monitor mes-

sage in practice. Hence, it is quite possible that the distributed algorithm will actually consume less network

bandwidth than the centralized algorithm.

We now consider the design tradeoffs related to concurrency. The centralized algorithm suffers from M0
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acting as a serial bottleneck. This can be a significant drawback, particularly if n is very large. The distributed

algorithm is able to exploit concurrency. The memory requirements are also evenly distributed over the n
processors in the system. Although this appears to indicate a clear win for the distributed algorithm, there

are two issues. First, under pathological conditions there may be little or no parallelism available for the

distributed algorithm to exploit. In these cases, the distributed algorithm proceeds with only one monitor

process being active at a time. Second, the centralized algorithm may have lower detection latency. If H is

the first cut to satisfy a GCP, then the detection latency is defined as the wall-clock time between when the

last application process reaches H and when the first monitor process detects the GCP. Typically, M0 will be

able to immediately detect the GCP after the last local snapshot is received. In the distributed algorithm the

last snapshot may generate several dack messages, each of which must be received before the GCP can be

detected.

4 Conclusions

We have presented a definition for Generalized Conjunctive Predicates and an algorithm for detecting an im-

portant class of these predicates: those with monotonic channel predicates. The concept of monotonicity for

channel predicates is useful for two important reasons. First, monotonicity is both a necessary and sufficient

condition for the set of consistent cuts satisfying global properties to contain an infimum under the usual or-

dering. That is, the notion of the first consistent cut satisfying a GCP is always well defined if and only if

channel predicates are monotonic. Second, monotonicity allows an efficient algorithm to detect GCPs.

We have also presented two efficient algorithms to detect the first consistent cut in which a GCP is true.

The overhead of our algorithms are bounded by low-order polynomial functions of the number of processes

and the number of messages. For many interesting problems, the channel state can be encoded by a simple

counter. In these cases the time, space and message complexity of our algorithms are linear in the number of

local states.
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