Linearizable Replicated State Machines with Lattice
Agreement

1% Xiong Zheng
Electrical and Computer Engineering
The University of Texas at Austin
Austin, USA
zhengxiongtym @utexas.edu

Abstract—This paper studies the lattice agreement problem in
asynchronous systems and explores its application to building
linearizable replicated state machines (RSM). First, we propose
an algorithm to solve the lattice agreement problem in O(log f)
asynchronous rounds, where f is the number of crash failures
that the system can tolerate. This is an exponential improvement
over the previous best upper bound. Second, Faleiro et al have
shown in [Faleiro et al. PODC, 2012] that combination of
conflict-free data types and lattice agreement protocols can be
applied to implement linearizable RSM. They give a Paxos style
lattice agreement protocol, which can be adapted to implement
linearizable RSM and guarantee that a command can be learned
in at most O(n) message delays, where n is the number of
proposers. Later on, Xiong et al in [Xiong et al. DISC, 2018] give
a lattice agreement protocol which improves the O(n) guarantee
to be O(f). However, neither protocols is practical for building a
linearizable RSM. Thus, in the second part of the paper, we first
give an improved protocol based on the one proposed by Xiong
et al. Then, we implement a simple linearizable RSM using the
our improved protocol and compare our implementation with
an open source Java implementation of Paxos. Results show that
better performance can be obtained by using lattice agreement
based protocols to implement a linearizable RSM compared to
traditional consensus based protocols.

Index Terms—Lattice Agreement, Generalized Lattice Agree-
ment, Replicated State Machine, Consensus, Paxos.

I. INTRODUCTION

Lattice agreement, introduced in [7], to solve the atomic
snapshot problem [11] in shared memory, is an important
decision problem in distributed systems. In this problem, n
processes start with input values from a lattice and need to
decide values which are comparable to each other in spite of
f process failures.

There are two main applications of lattice agreement. First,
Attiya et al [13] give a logn rounds algorithm to solve the
lattice agreement problem in synchronous message systems and
use it as a building block to solve the atomic snapshot object.
Second, Faleiro et al [6] propose the problem of generalized
lattice agreement (GLA), which is a generalization of lattice
agreement problem for a sequence of inputs, and demonstrate
that the combination of conflict-free data types (CRDT) [3],
[17] and generalized lattice agreement protocols can implement

Supported by CNS-1812349, NSF CNS-1563544, Huawei Inc., and the
Cullen Trust for Higher Education Endowed Professorship.

2" Vijay K. Garg
Electrical and Computer Engineering
The University of Texas at Austin
Austin, USA
garg @ece.utexas.edu

3" John Kaippallimalil
Wireless Access Laboratories
Huawei
Plano, USA
John.Kaippallimalil@huawei.com

a special class of RSM that provides linearizability [12].
We call this class of state machines as Update-Query (UQ)
state machines. The operations of UQ state machines can be
classified into two kinds: updates (operations that modify the
state) and queries or reads (operations that only return values
and do not modify the state). An operation that both modifies
the state and returns a value is not supported. In this paper,
when we talk about linearizable replicated state machine, we
actually mean UQ state machine. As shown in [6], to implement
a linearizable RSM, we can first design the underlying data
structure to be a CRDT. This makes all update operations
commute. Then, the generalized lattice agreement protocol is
invoked for each operation to guarantee linearizability. In this
paper, we call a linearizable replicated state machine built by
using combination CRDT and generalized lattice agreement
protocol as LaRSM.

Replicated state machine [18] is a popular eager technique for
fault tolerance in a distributed system. Traditional replicated
state machines typically enforce strong consistency among
replicas by using a consensus based protocol to order all
requests from the clients. In this approach, each replica executes
all the request in an identical order to ensure that all replicas are
at the same state at any given time. The most popular consensus
based protocol for building a replicated state machine is Paxos
[1], [2]. In the Paxos protocol, processes are divided into
three different roles: proposer, acceptor and learner. Since the
initial proposal of Paxos, many variants have been proposed.
FastPaxos [5] reduces the typical three message delays in
Paxos to two message delays by allowing clients to directly
send commands to acceptors. MultiPaxos [14] is the typical
deployment of Paxos in the industrial setting. It assumes that
usually there is a stable leader which acts as a proposer, so
there is no need for the first phase in the basic Paxos protocol.
CheapPaxos [15] extends basic Paxos to reduce the requirement
in the number of processors. Even though in the Paxos protocol,
there could be multiple proposers, usually only one leader
(proposer) is used in practice due to its non-termination problem
when there are multiple proposers. The system performance is
limited by the resources of the leader. Also, the unbalanced
communication pattern limits the utilization of bandwidth
available in all of the network links connecting the servers.
SPaxos [9] is a Paxos variant which tries to offload the leader

by disseminating clients to all replicas. However, the leader is
still the only process which can order requests.

Since lattice agreement can be applied to implement a
linearizable RSM, if we can solve lattice agreement problem
efficiently, we may have better performance than consensus
based protocols. From the theoretical perspective, using lattice
agreement instead of consensus is promising, since lattice
agreement has been shown to be a weaker decision problem
than consensus. In synchronous message systems, consensus
cannot be solved in fewer than f + 1 rounds [16], but
lattice agreement can be solved in log f + 1 rounds [10]. In
asynchronous systems, the consensus problem cannot be solved
even with one failure [8], whereas lattice agreement can be
solved when a majority of processes is correct [6], [10]. The
previous upper bound is O(f) asynchronous round-trips.

The lattice agreement problem in asynchronous message
systems is first studied by Faleiro et al in [6]. They present a
Paxos style protocol when a majority of processes is correct.
Their algorithm needs O(n) asynchronous round-trips in the
worst case. They also propose a protocol for the generalized
lattice agreement problem, adapted from their protocol for
lattice agreement, which requires O(n) message delays for a
value to be learned. Later, an algorithm which runs in O(f)
asynchronous round-trips was proposed by Xiong et al in [10].
They also give a protocol for the generalized lattice agreement
which improves the O(n) message delays to O(f). In this
work, we improve the upper bound for the lattice agreement
problem in asynchronous systems to be O(log f).

Although [6] has demonstrated that generalized lattice agree-
ment protocol can be applied to implement a linearizable RSM,
both the protocols proposed in [6] and [10] are impractical. This
is due to the following reason. In both the two protocols, each
process has a accept value which keeps track of all received
proposal values. When the protocols are applied to implement
a linearizable RSM, this accept value is a set which records
all previously proposed commands. When a process reject
a proposal, it has to send back this whole set. Even worse,
this set is keeps increasing as more commands coming from
clients. In this work, we propose an improved algorithm for
the generalized lattice agreement problem. The improvements
in the proposed algorithm are specifically designed to make
it practical to build a linearizable RSM. Also, in order to
demonstrate the effectiveness of our proposal, we implement a
simple linearizable RSM by combining a CRDT map structure
and our improved generalized lattice agreement protocol. We
compare our implementation with a linearizable RSM built
from conventional consensus based protocol in both the normal
case and failure case.

In summary, this paper makes the following contributions:

o We present an algorithm, AsyncL A, to solve the lattice

agreement in asynchronous system in O(log f) rounds,
where f is the number of maximum crash failures. This
bound is an exponential improvement to the previously
known best upper bound of O(f) by [10].

o We give an improved algorithm for the generalized lattice

agreement protocol based on the one proposed in [10] to

make it practical to implement a linearizable RSM. We
also present optimizations for the procedure proposed in
[6] to implement a linearizable RSM from a generalized
lattice agreement protocol.

o« We implement a simple linearizable RSM in Java by
combining a CRDT map data structure and our improved
generalized lattice agreement algorithm. We demonstrate
its performance by comparing with SPaxos. Our exper-
iments show that LaRSM achieves around 1.3x times
throughput than SPaxo and lower operation latency in
normal case.

II. SYSTEM MODEL AND PROBLEM DEFINITIONS
A. System Model

We consider a distributed message passing system with
n processes, pi, ..., P, in a completely connected topology.
We only consider asynchronous systems, which means that
there is no upper bound on the time for a message to
reach its destination. The model assumes that processes may
have crash failures but no Byzantine failures. The model
parameter f denotes the maximum number of processes that
may crash in a run. We do not assume that the underlying
communication system is reliable. The peer to peer network
could be partitioned unpredictably. We need to build a replicated
state machine which satisfy partition tolerance and provide as
much availability and consistency as possible.

B. Lattice Agreement

In the lattice agreement problem, each process p; can propose
a value z; in a join semi-lattice (X, <, sqcup) and must decide
on some output y; also in X. An algorithm solves the lattice
agreement problem if the following properties are satisfied:

Downward-Validity: For all i € [1..n], z; < y;.

Upward-Validity: For all i € [1..n], y; < UW{z1,...,2n}.

Comparability: For all ¢ € [1..n] and j € [1..n], either
Yi < yj or y; <y

The definition of height of a value and height of a lattice is
given as below:

Definition 1. The height of a value v in a lattice X is the
length of longest path from any minimal value to v, denoted
as hx(v) or h(v) when it is clear.

Definition 2. The height of a lattice X is the height of its
largest value, denoted as h(X).

C. Generalized Lattice Agreement

In the generalized lattice agreement problem, each process
may receive a possibly infinite sequence of values belong to
a lattice at any point of time. Let z¥ denote the ith value
received by process p. The aim is for each process p to learn
a sequence of output values y;) which satisfies the following
conditions:

Validity: any learned value y;’ is a join of some set of
received input values.

Stability: The value learned by any process p is non-
decreasing: j <k = ¢} <y;.

Comparability: Any two values yf and y} learned by any
two process p and ¢ are comparable.

Liveness: Every value z? received by a correct process p is
eventually included in some learned value y; of every correct
process ¢: i.e, ¥ < yi.

III. ASYNCHRONOUS LATTICE AGREEMENT IN O(log f)
ROUNDS

In this section, we give an algorithm to solve the lattice
agreement problem in asynchronous system which only needs
O(log f) asynchronous rounds. The proposed algorithm is
inspired by algorithms in [13] and [10]. The basic idea is to
apply a Classifier procedure to divide processes into master
and slave groups and ensure that any process in the master
group have values great than or equal to any process in the
slave group. Then by constructing a binary tree of Classifier
and let each process go through this tree, all processes will
have comparable values at the end. However, the height of the
input value lattice is unknown. Besides, we cannot agree on
comparable failure sets first and then have comparable values
as [10], since the system is asynchronous. Thus, instead of
directly agreeing on the input value lattice, we first agree on a
view lattice defined as follows.

Each process p; has a view v;, which is an array composed
of n segments. Each segment of the view corresponds the input
value of each process known by p;. Initially, v;[i] = z; and
Vj # i,v;[j] = L, where x; is the input value of p;. We say
L is smaller that any input value. For any two views v and
u, we say v dominates u, if for all 4, v[i] > u[i]. Consider
the lattice formed by the initial views of all processes with
the order defined by the domination relation, i.e, v < w iff
u dominates v. We call this lattice as the view lattice. This
view lattice has meet equals to [L, ..., 1] and join equals to
[1, ..., Zn]. The height of the view lattice is n. We say v and
u are comparable if either v < u or v < v. The join of any
two views is defined as the componentwise maximum. The
height of a view v, denoted as h(v), is defined defined as
the number of components which are not L, i.e, the number
of processes whose value are contained in this view. Since
the ith segment of any view is either the input value of p;
or L, if a view v < u, then view u contains all input values
contained in view v. That is, in the original input lattice, we
have U{w[i] : ¢ € [1..n]} < LW{u[i] : i € [1..n]} if v < u. Thus,
if all correct processes can output comparable views from the
view lattice, they can output comparable values from the input
value lattice. Therefore, in our algorithm, instead of directly
working on the input value lattice, we apply the Classifier
tree technique on the view lattice. The Classifier procedure is
shown in Figure 1. The main algorithm, AsyncLA, is shown in
Figure 2. Before we formally present the algorithm, we give
the following two definitions.

Definition 3 (label). Each process has a label, which serves
as a knowledge threshold and is passed as the threshold value
k whenever the process calls the Classifier procedure.

Definition 4 (group). A group is a set of processes which
have the same label. The label of a group is the label of the
processes in this group. Two processes are said to be in the
same group if and only if they have the same labels.

A. The Classifier Procedure

Now, let us first look at the Classfier procedure. Note that the
main functionality of the Classifier is to divide the processes in
the same group into two groups: the master group and the slave
group and ensure that processes in master group have views
dominate processes in slave group. Details of the Classifier
procedure for p; at round r are shown below:

Line 0: p; set its acceptV al, to be empty. This acceptV al,
is used to record all the < view,label > pairs received from
all processes at round r via write or read message. Note that
this acceptVal, also includes < view,label > pair received
from processes that are not in the same group as p;.

Line 1-2: p; sends a write message containing the input
view v and the threshold value % to all processes and wait for
n — f write_acks. This step is to ensure the value and label of
p; 1is in the acceptVal, set of n — f processes.

Line 3-5: p; sends a read message with its current round
number 7 to all processes and waits for n — f read_acks. It
collects all the received views associated with the same label
k in a set U, i.e, collects all views from processes within the
same group. It may seem that line 3-5 are performing the same
functionality as line 1-2 and there is no need to have this part,
since both are sending a message to all and waiting for n — f
acks. However, this part is actually the key of the Classifier
procedure. The reason will be clear in the correctness proof
section.

Line 6-14: p; performs classification based on the views
received from processes in the same group. Let w be the join
of all received views in U. If the size of w is greater than the
threshold value k, then p; sends a write message with w, k
and r to all and waits for n — f write_acks with round number
r. Then in line 10-12, it takes the join of w and all the views
contained in the write_acks from the same group, denoted as w’.
It returns (w’, master) as output of the Classifier procedure
in which master indicates its classified into master group in
the next round. Otherwise, it returns its own input view v and
slave.

When p; receives a write message for round r; from pj, it
includes the < view, label > pair contained in the message into
its acceptVal,, set and sends a write_ack message containing
the current acceptV al,.; back. When p; receives a read message
for round r; from pj, it sends a read_ack message containing
its current acceptVal,, back.

Note that when a process which is invoking the Classifier
at round r receives a write or read message with a round
number 7’ > r, it buffers this message and delivers it when it
reaches round 7.

B. Algorithm AsyncLA

Now let us look at the main algorithm AsyncLA. The basic
idea of AsyncLA is to construct a binary tree of Classifiers and
let each process go through this binary tree. After a process
completes execution of one Classifier node, if it is classified
as master, it goes to the right subtree, otherwise, it goes to the
left subtree.

In this algorithm, each process has a label, which is equal
to the threshold value of the Classifier node it is currently
invoking. Let y; denote the output value of p;. Let v] denote
its view at the beginning of round r. The algorithm for p;
proceeds in asynchronous rounds.

At round 0, p; sends a view message with its initial view v
to all and wait for n — f view messages for round 0 from all
processes. The purpose of round 0 is to allow us to construct a
binary tree of Classifier with height equals to log f. The reason
is as follows. After round O, the view of each correct process
must have height at least n — f in the view lattice. Since
the height of the view lattice is n, the join-closed subset that
includes all current views after round O (which is also a lattice)
has height at most f. Then we can construct a binary Classifier
tree with height equals to log f by setting the threshold value
of the root Classifier to be W =n— % Thus, we also
set the initial label for each process to be n — %

At each round r from 1 to log f, p; invokes the Classifier
procedure with its current view v and current label /; as input.
Based on the output of the classifier, p; adjust its label by
some value. If it is classified as master, then it increases its
label by QT—{CH, which is equals to the threshold value of the
next Classiﬁer it will invoke. Otherwise, it reduces its label
by 2,’% At the end of round log f, p; outputs the join of all
values contained in its current view as its decision value.

C. Proof of Correctness

We now prove the correctness of the proposed algorithm. Let
w] be the value of w at line 6 of the Classifier procedure at
round r. Let G be a group of processes at round r. Let M (G)
and S(G) be the group of processes which are classified as
master and slave, respectively, when they run the Classifier
procedure in group G. The following lemma proves the key
properties of the Classifier procedure.

Lemma 1. Let G be a group at round r with label k. Let L
and R be two nonnegative integers such that L < k < R. If
L < h(vl) < R for every process i € G, and h(U{v] : i €
G}) <R, then

(pl) for each process i € M(G), k < h(v]™') < R

(p2) for each process i € S(G), L < h(vi ™) <k

(p3) h(U{v] ™ i e M(G)}) <R

(p4) h(U{vi ™ 1i € S(G)}) <k, and

(pS) for each process i € M(G), v ™ > U{v] ™ i € S(G)}

Proof. (p1)-(p3): Immediate from the Classifier procedure.

(p4): Proved by contradiction. Let us assume that h(U{v] ™" :
i € S(G)}) > k. Since v] T = o7 for each process i € S(G),
we have h(U{v] : i € S(G)}) > k. Consider execution of the
Classifier at round r. Let process j be the last one in S(G)

Classifier(v, k,r):
v: input view k: threshold value

r: round number

0: acceptVal, := () // set of <view, label> pairs.

/* write */

1: Send write(v, k,r) to all

2: wait for n — f write_ack(—, —,r)
/* read */

3: Send read(r) to all

4: wait for n — f read_ack(—,—,r)

5: Let U be views contained in received acks with label
equals k

/* Classification */

6: Let w:={u:ueU}

7: if h(w) > k

8: Send write(w, k,r) to all

9: wait for n — f write_ack(—, —,r)
10: Let U’ be views contained in received acks with
label equals &

11: Letw :=wU{u:ueU'}

12: return (w’, master)

13: else

14: return (v, slave)

Upon receiving write(v;, kj, ;) from p;
acceptVal,, = acceptVal,., U <wvjk; >
Send write_ack(acceptVal,;,r;) to p;

Upon receiving read(r;) from p;
Send read_ack(acceptVal,,,r;) to p;

Fig. 1. Classifier

to complete l¢ne 2. When process j starts executing line 3,
all other processes which are in S(G) have already written
their values to at least a majority of processes, that is, for any
process i € S(G)Ai # j, a majority of processes have included
< v, k > into their acceptVal, set. Thus, process j would
receive < v;, k > for any process i € S(G) Ai # j, since any
two majority of processes have at least one intersection. Then,
we have w] = U{v] : i € S(G)}. Thus, h(w}) = h(U{v] :
i € S(G)}) > k, which means j € M(G), a contradiction.
From the above proof, we can also see why we need both line
1-2 and line 3-4. If we only have line 1-2, we may not find
such a process j which would learn all the views of processes
in S(G).

(p5): To prove (p5), we need to show for any process i € M(G)
and j € S(G), v] Tt > 11’]’-'“ = vj. Consider 7's execution
interval of line 8-9 and j's execution interval of line 1-2.
There are the following three cases based on the relative order
of the above two execution intervals.

Case 1: when ¢ completes line 9 and j has not started line 1.
In this case, process j would receive < wj,k > from at least

AsyncLA(zx;) for p;:
x;: input value
y;: output value

v; : the view of p; at the beginning of round r
an array of size n. v0[i] = x; and V[j] = L,Vj # i

l; :==n — L // initial label

/* Round 0 */

Send value(vY, 0) to all

wait for n — f messages of form value(-, 0)
Let U denote the set of all received values

/* Round 1 to log f */
v} i={u|ueU}
for r := 1 to log f
(U:+1, class) = Classifier(v],l;,r)
if class = master
li =1+ QT%
else
li = ll — QT%
end for
Let V; := v}o8 /11
yi i= U{Vilj] j € (L]}

Fig. 2. Algorithm AsyncLA

one process at line 4, since any two majority of processes have
at least one process in common. Then j would be in M (G)
instead of S(G), contradiction.

Case 2: when j completes line 2 and i has not started line
8. In this case, ¢ would receive < v7, k > from at least one
process. Then, v/ > o7 1,

%

Case 3: i and j are executing line 1-2 and line 8-9 concurrently.

In this case, there exists a process k which receives both
<wj, k> and <wvj, k> If k receives i first, then j would
receive < w;, k >, contradiction. If &k receives j first, then &
would receive < v}, k >, which indicates oitt > 11;+1. O

Based on the above properties, we can have the following
lemma.

Lemma 2. Let G be a group of processes at round r with
label k. Then

(1) for each process i € G, k — 2L7 < h(]) <k+ 2%

(2) h(U{v! i € GY) <k + &

Proof. By induction on round number r. When r = 1, label
k=n— %, it is straightforward to have n — f < h(v]) <n,
since each process receives at least n — f values and the height
of input lattice is at most n. For the induction step, assume
lemma 2 holds for all groups at round r — 1. Consider an
arbitrary group G at round r > 1 with parameter k. Let G’
be the parent group of G at round r — 1 with parameter k’.
Consider the Classifier procedure executed by all processes in
G’ with parameter k’. By induction hypothesis, we have:

b
or—1

(1) for any process i € G/, k' — QT% < h(vffl) <k +
Q) h(U{v] ™' i€ G'}) <K + .
Let L = k' — 5L and R =k + 5L+, then (1) and (2) are
exactly the conditions of Lemma 1. Consider the following
two cases:
Case I: G = M(G'). Then k = k' + 2L7 From (p1) and (p3)
of Lemma 1, we have:
(1) for any process i € G, k — QLT < h(@l) <k+ QLT
@) h(U{v] si € G}) < h(w)) < k+ &
Case 2: G = S(G"). Then k = k' — . Similarly, from (p2)
and (p4) of Lemma 1, we have the same equations. L]

From Lemma 2, we directly have the following lemma.

Lemma 3. Let ¢ and j be two processes that are within the
same group G at the end of round r = log f. Then vf“ and
U;H are equal.
Proof. Let G’ be the parent of G with parameter k’. Assume
without loss of generality that G = M (G’). The proof for the
case G = S(G') follows in the same manner. Since G’ is a
group at round log f, by Lemma 2, we have:
(1) for each process p € G/, k' —1 < h(vj>s7) < k' + 1, and
) h({vsf :pe G'Y) <K +1

Since © € G’ and 7 € G, (1) and (2) hold for both
process i and j. By the assumption that G = M(G’), at
round log f, process ¢ and j execute the Classifier procedure
with parameter k' in group G’ and be classified as master
and proceed to group G = M(G'). Let L = k' — 1 and
R = k' + 1, then by applying Lemma 1(pl) we have
Ko< h(u ™) < K+ 1and & < h(o®/Hh) <k + 1,
thus h(v}°8 1) = h(v}-og F+1) — I/ + 1. Similarly, by Lemma
1(p3), we have h(l_l{vll»ogfﬂ,véogfﬂ}) = k' + 1. Thus,
viog FHL — e+l Therefore, vf and vj are equal at the
beginning of round r = log f + 1. O

Lemma 4. Let process i decides on y;. Let G be a group at
round 1 such that i € S(G), then y; < U{vi ! i € S(Q)}.

Proof. Tmmediate from p2 and p4 of Lemma 1. O

Lemma 5. Let i and j be any two processes in two different
groups G; and G; at the end of round log f, then y; is
comparable with y;.

Proof. Since G; # G, there must exist a group which contains
both ¢ and j. Let G be such a group with biggest round number
r. Without loss of generality, assume ¢ € S(G) and j € M(G).
From Lemma 1(p5), we have v§r +1) > vl i e S(Q)}.
From Lemma 4, we have y; < Ll{vf'1 1€ S(G)} < U;-H.
Note that the value held by any process is non-decreasing. Thus,
y; > ¥;. Therefore, we have y; is comparable with y;. O

Now, we have the main theorem.

Theorem 1. Algorithm AsyncLA solves the lattice agreement
problem in O(log f) asynchronous round-trips when a majority
of processes is correct.

Proof. Down-Validity holds since the value held by each
process is non-decreasing. Upward-Validity follows because
each learned value must be the join of a subset of all initial
values which is at most U{x1, ..., x,, }. For Comparability, from
Lemma 3, we know that any two processes which are in the

same group at the end of AsyncLA, they must have equals values.

For any two processes which are in two different groups, from
Lemma 5 we know they must have comparable values. [

D. Complexity Analysis

Each invocation of the Classifier procedure takes at most
three round-trips. log f invocation of Classfier results in at
most 3 * log f round-trips. Thus, the total time complexity is
3 x log f + 1 round-trips. For the message complexity, each
process sends out at most 3 write and read messages and at
most 3 x n write_ack and read_ack messages. Therefore, the
message complexity for each process is O(n * log f).

IV. IMPROVED GENERALIZED LATTICE AGREEMENT
PROTOCOL FOR RSM

In this section, we give optimizations for the generalized
lattice agreement protocol proposed in [10] to implement a
linearizable RSM. The optimized protocol, GLAA, is shown
in Fig 3 with the two main changes marked using A. Although
we only have two primary changes compared to the original
algorithm in [10], we claim those changes are the key for its
applicability in building a linearizable RSM.

The basic idea of GLAA is the same as the original
algorithm in [10]. Each process invokes the Agree() procedure,
which is primarily composed of an execution of a lattice
agreement instance to learn new commands. The Agree()
procedure is automatically executed when the guard condition
is satisfied. Inside the Agree() procedure, a process first
updates its acceptVal to be the join of current acceptVal
and buffVal. Then, it starts a lattice agreement instance with
next available sequence number. Since our main goal is to
improve the generalized lattice agreement protocol, we still
adopt the same lattice agreement protocol as [10], which runs in
f + 1 asynchronous round-trips. Replacing it to the algorithm
AsyncLA given in the previous section is straightforward.
Another reason we use the f + 1 round-trips protocol is that
algorithm AsyncL A runs in 3 *log f + 1 rounds, which is not
necessarily better when f is small.

At each round of the lattice agreement, a process sends its

current acceptV al to all processes and waits for n — f ACKs.

If it receives any decide ACK, it decides on the join of all
decide values received. If it receives a majority of accept
ACKs, it decides on its current value. Otherwise, it updates
its acceptV al to be the join of all received values and starts the
next round. When a process receives a proposal from some other
process, if the proposal is associated with a smaller sequence
number, then it sends decide AC K s back with its decided
value for that sequence number and includes the received value
into its own buffer set. Otherwise, it waits until its current
sequence number to reach the sequence number associated
with the proposal. Then, it checks whether the proposed value

contains its current acceptVal. If true, the process sends back
a accept AC'K. Otherwise, it sends back a reject ACK along
with its current acceptV al. When a process completes a lattice
agreement instance for sequence number s, it stores decided
values into LV[s]. Then it removes all the learned values for
sequence number s — 1 from acceptV al.

A. Truncate the Accept and Learned Command Set

Let us first look at the challenges of directly applying the
generalized lattice agreement protocol in [10] or the one in [6]
to implement a linearizable RSM. In a replicated state machine,
each input value is a command from a client. Thus, the input
lattice is a finite boolean lattice formed by the set of all possible
commands. The order in this lattice is defined by set inclusion,
and the join is defined as the union of two sets. This boolean
input lattice poses a challenge for both the algorithms in [6]
and [10]. In these algorithms, for each process (each acceptor
process in [6]) there is an accept value set, which stores the join
of whatever value the process has accepted. Now since the join
is defined as union in the RSM setting, this set keeps increasing.
For example, in Fig. 4, p1, p2 and p3 first receive commands
{a}, {b} and {c}, respectively. They start the lattice agreement
instance with sequence number 0 and learn {a}, {a,b} and
{a,b,c} respectively for sequence number 0. After that, p;,
p2 and ps receive {d}, {e}, and {f} as input, respectively.
Now, they start a lattice agreement instance with the sequence
number 1. In order to ensure comparability and stability of
generalized lattice agreement, the learned command set and
accept command set for sequence number 1 have to include the
largest learned value of sequence 0, which is {a, b, c}, although
each process only proposes a single command. Therefore, the
accept and learned value set keeps increasing. This problem
makes applying lattice agreement to implement a linearizable
RSM impractical.

To tackle the always growing accept command set problem,
we would like to have some way to truncate this set. A naive
way is to remove all learned commands in the accept command
set when proposing for the next available sequence number.
This way does not work. Suppose we have two processes: p1,
p2 and ps. They propose {a}, {b} and {c}, respectively for
sequence number 0. After execution of lattice agreement for
sequence number 0, suppose pi1, p2 and p3 both have learned
value set and accept value set to be {a}, {a,b,c}, and {a, b, c},
respectively. It is easy to verify this case is possible for an
execution of lattice agreement. When completing sequence
number 0, all processes remove learned value set for sequence
number 0 from their accept value set. Thus, the accept value
set of all the three processes becomes to be empty. Now, if py,
p2 and ps start to propose for sequence number 1 with new
commands {d}, {e} and {f}. Since the accept command sets
of po and ps3 do not contain value {b} and {c}, p; will never
be able to learn {b} and {c}. Thus, learned command set of
py for sequence 1 and the learned command set of p; and
ps for sequence 0 are incomparable. Thus, we cannot remove
all learned value set from the accept value set. Instead of
removing all learned commands from the accept command set,

GLAA for p;
s := 0 // sequence number
maxSeq = -1 // largest sequence number seen
buffVal := L // commands buffer
LV := 1 // map from seq to learned commands set
acceptVal := 1 /I current accepted commands set
active = false //proposing status

Procedure Agree():
guard: (active = false) A (buffVal # L V mazxSeq > s)
effect:

active := true

acceptVal := buffVal | acceptVal

buffVal .= L

/* Lattice Agreement with sequence number s */
forr:=1to f+1
val := acceptVal
Send prop(val, r, s) to all
wait for n — f ACK(—, —,r,s)
let V' be values in reject ACKs
let D be values in decide ACKs
let tally be number of accept ACKs
if |D| >0
val :=U{d | d € D}
break
else if tally > 5
break
else
Let tmp = U{v | v €V}
acceptVal := acceptVal Ul tmp
end for

LV[s] = val

acceptVal := acceptVal - LV [s — 1] JAN]
si=s5+1

active = false

on receiving ReceiveValue(v):

buffVal := buffVal Ll v

on receiving prop(v;,r,s’) from p;:

if s <s
buffval := buffVal U v; Aq
Send ACK(“decide”, LV[s'], r,s")
return

maxSeq := max{s’, maxSeq}

wait until ' = s

if acceptVal C v;
Send ACK(“accept”, —,r,5s")
acceptVal := v;

else
Send ACK(“reject”, acceptVal, r,s")

Fig. 3. Algorithm GLAA

seq: 0 seq: 1

a {a) d {abcd}
N A N 2
P1
b {a, b} e {a,b,c,d, e}
P2 > = > =
c {a,b,c} f {ab,c,d e f}
P3 > = ks =

Fig. 4. The Accept and Learned Value Set Keeps Increasing

we propose to remove all learned commands for the sequence
numbers smaller than the largest learned sequence number
from the accepted command set. In order to achieve this, the
line marked by A; in the pseudocode is added, compared
to the original algorithm in [10]. In this line, after a process
has learned a value set for sequence number s, it removes the
learned value set corresponding to sequence number s — 1 from
its accept value set.

Second, as the state machine keeps running, the mapping
of sequence number to learned commands, LV, also keeps
growing. Thus, we propose the following technique to truncate
this map. Let each process record the largest sequence number
for which all replicas have started proposing, denoted as
man_seq. Thus, all replicas have learned commands for any
sequence number smaller than min_seq, since each replica
has to learn commands for each sequence. Besides, each
replica also record the largest sequence number for which
the corresponding learned values have been applied into
state (executed), denote as executed_seq. Then, each replica
removes all learned commands in LV with sequence number
smaller than min of min_seq and executed_seq. In this way,
the learned commands map can be kept small. Since this
improvement is trivial, we do not include it in the algorithm
pseudocode.

B. Remove Forwarding

In both the algorithms of [6] and [10], a process has to
forward all commands it receives to all other processes or
proposers to ensure liveness. This forwarding results in load that
is multiplied many fold, since many processes may propose the
same request. We claim that this blind forwarding is a waste. In
[10], this forwarding is to ensure that the commands proposed
by slow processes can also be learned. However, for the fast
processes, there is no need to forward their requests to others
because they can learn requests quickly. Therefore, instead
of forwarding every request to all servers, we require that
when a process receives some proposal with smaller sequence
number than its current sequence number, it sends back a
decide message and also include the received proposal value
into its own buffer set. These values will be proposed by the
server in its next sequence number. In this way, only when a
process is slow, its value will be proposed by the fast processes.
This change is shown as addition of the line marked by Ay in
the algorithm.

C. Proof of Correctness

In this section, we prove the correctness of algorithm GLAA.
Although we only have two primary changes compared to the
algorithm in [10], the correctness proof is quite different. Let
LearnedVal? denotes the learned value of process p after
completing lattice agreement for sequence number s. Thus,
LearnedVall = U{LVt] : t € [0...s]}. Let accept? denotes
the value of acceptVal of process p at the end of sequence
number s.

The following lemma follows immediately from the Compa-
rability requirement of the lattice agreement problem.

Lemma 6. For any sequence number s, LV,[s] is comparable
with LVy[s] for any two processes p and q.

The following lemma shows Stability.

Lemma 7. For any sequence number s, LearnedVal; C
LearnedValéJrl for any two correct processes p and q.

Proof. Proof by induction on sequence number s.

The base case, s = 0. When p completes sequence number
0, LV,,[0] must be accepted by a majority of processes. That is,
there exists a majority of processes which include LV,[0] into
their accept command set, i.e, into acceptV al. During the ¢'s
execution of lattice agreement 1, it must learn LV, [0] because
any two majority of processes have at least one common
process. Thus, LV, [0] € LV,[1]. So, we have LearnedVal)
- LearnedVal}I.

The induction case. Assume that for sequence number
s, we have LearnedVal; C Lecw“nedVangrl for any two
processes p and ¢q. We need to show that Learned\/al;Jrl -
LearnedVal;”. Equivalently, we show that LearnedVal; U
LVp[s+1] C LearnedVali™ ULV, [s+2]. Thus, we only need
to show that LV, [s+1] C LearnedV ali™ ULV,[s+2], since
we have LearnedVal, C LearnedVal;Jrl by assumption.
Consider any v € LV,[s + 1]. During p's execution of
lattice agreement for sequence number s + 1, v must be
included into acceptVal by a majority of processes. Let)
denotes such a majority of processes. Due to the change
marked by A, there could exist some process j € @
such that v ¢ acceptVal;“. In this case, we must have
v e LVj[s| C LearnedVal; C LearnedVal;;“‘l. In the other
case, if Vj € Q, we have v € acceptVali™". Then during ¢'s
execution of lattice agreement for sequence number s + 2, q
must learn v since v is contained in the acceptV al of a majority
of processes. Thus, v € LV [s + 2|. So, Vv € LV,[s + 1],
we either have v € LearnedValit! or v € LV,[s + 1].
Therefore, we have LV, [s+1] C LearnedV ali™ ULV,[s+2],
which yields LearnedVal, C LearnedV(JLl;‘H for any two
processes p and q. [

Now, let us prove Comparability.

Lemma 8. For any sequence number s and s', LearnedVal,
and LearnedValZ, are comparable for any two correct
processes p and q.

Proof. For s’ > s or s < s, Lemma 7 gives the result. So, we
only need to consider the case s = s’. We prove this case by
induction on sequence number s.

The base case s = 0 immediately follows from Lemma 6.

For the induction case, assume for sequence number s,
LearnedVal;, and LearnedValj are comparable for any
two processes p and ¢. Need to show Learne(ﬂ/al;‘H
and LearnedValZJrl are comparable. Equivalently, we can
show LearnedVal, U LVp[s + 1] and LearnedVal; U
LV,[s+ 1] are comparable. Without loss of generality, assume
LearnedValz - LearnedVal;, the proof for the other case
is similar. Let us consider the following two cases.
Case 1: LV, [s+ 1] C LV,[s + 1]. By the assumption, we have
LearnedVal; U LV, [s + 1] C LearnedValy U LV[s + 1].
Case 2: LV[s + 1] C LV,[s + 1]. From Lemma 7, we have
LearnedValg - LearnedVal;“‘l = LearnedVal;ULVp[s—l—
1]. Therefore, LearnedVal; U LVy[s + 1] C LearnedVals U
LV,[s +1].

Theorem 2. Algorithm GLAA solves the generalized lattice
agreement problem when a majority of processes is correct.

Proof. Validity holds since any learned value is the join of
a subset of values received. Stability follows from Lemma 7.
Comparability follows from Lemma 8. Liveness follows from
the termination of lattice agreement. O

V. IMPROVE THE PROCEDURE FOR IMPLEMENTING A
LINEARIZABLE RSM

The paper [6] gives a procedure to implement a linearizable
RSM by combining CRDT and a protocol for the generalized
lattice agreement problem. The basic idea in [6] is to treat reads
and writes separately. For a write command, say cmd,,, the
receiving proposer invokes a lattice agreement instance with
this write operation as input value and then wait until cmd,, is
included into its learned commands set (The learned command
set stores all learned commands received from learners). Then,
it returns response for c¢md,,. For a read command, say cmd,.,
the receiving proposer creates a null command, which is a
command that has no effect. It invokes a lattice agreement
instance with this null command and waits until its command
is in the learned commands set. Then, it executes all commands
stored in the learned command set and returns the response for
cmd,-. In this paper, we propose some simple optimizations
for this procedure.

To tackle the aforementioned problems, we present the
following two optimizations for the linearizable SMR procedure
proposed in [6].

A. Reduce Burden of Read

In the procedure proposed in [6], the learned commands
are only executed when there is a read command and a read
command can only return when the server completes executing
all current learned commands. This results in high latency of a
read operation. In order to reduce the latency of read operation
and balance between reads and writes, each server applies

newly learned commands whenever it completes a sequence
number.

Besides, for each read command, before returning a response,
a null operation needs to be created and learned. This is not
necessary. We only need to create one null operation for all
read operations in the commands buffer and all those reads
can be executed when that single null operation is learned.

B. Remove Reads from Input Lattice

In procedure proposed in [6], the input lattice is formed by
all update commands and all null commands, which is not
necessary. The null commands are actually read commands.
Since only updates change the state of the server and reads
do not, only the lattice formed by all updates need to be
considered. In the lattice agreement protocol, a basic and highly
frequent operation for a process is to check whether a received
proposal value, i.e, a set of commands, contains its current
accept command set. Since we only need to consider the lattice
formed by all the updates, a process only needs to check
whether the subset of updates in the proposed command set
contains the subset of updates in its current accept command
set.

VI. LARSM vs PAXOS

In this section, we compare LaRSM and Paxos from both
theoretical and engineering perspective.

Table T shows the theoretical perspective. The primary
difference between Paxos and LaRSM lies in their termination
guarantee. In the worst case, Paxos may not terminate (co
message delays), though very unlikely. Whereas, LaRSM
always guarantee termination in at most O(log f) message
delays. This difference is becase Paxos is consensus based
whereas LaRSM is lattice agreement based. In the best case,
both Paxos and LaRSM need three message delays. One
disadvantage of LaRSM is that it is only applicable to UQ
state machines.

For the engineering perspective, since there is no termination
guarantee when multiple proposers exist in the system, Paxos

is typically deployed with only one single proposer (the leader).

Only the leader can handle handle requests from the clients.
Thus, in a typical deployment the leader becomes the bottleneck
and the throughput of the system is limited by the leader’s
resources. Besides, the unbalanced communication pattern
limits the utilization of bandwidth available in all of the network
links connecting the servers. However, there can be multiple
proposers in LaRSM since termination is guaranteed. Multiple
proposers can simultaneously handle requests from clients,
which may yield better throughput. In the failure case, a new
leader needs to be elected in Paxos and there could be multiple
leaders in the system. During this time, the protocol may not
terminate because of conflicting proposals. Even though there
are ways to reduce conflicting proposals, generally it needs
more rounds to learn a command when there are multiple
leaders. However, a failure of a replica in LaRSM has limited
impact on the whole system. This is because other replicas
can still handle requests from clients as long as less than

a majority of replicas has failed. In a typical deployment of
Paxos, pipelining [1] is often applied to increase the throughput
of the system. In pipelining, the leader can concurrently issue
multiple proposals. In LaRSM, however, there can be at most
one proposal for each replica at any given time, because the
Stability and Comparability of generalized lattice agreement
require that next proposal can be issued only when the current
proposal terminates. Thus, LaRSM does not support pipelining.

In summary, compared with Paxos, the main advantage of
LaRSM is that it can have multiple proposers concurrently
handling requests and the main disadvantage is that it does not
support pipelining for each proposer.

TABLE I
PAX0s vs LARSM

Properties Paxos LaRSM
Consistency Linearizability Linearizability
Underlying Protocol Consensus Lattice Agreement
Best Case #Message Delays 3 3
Worse Case #Message Delays 00 O(log f)
Applicable to All Yes Only Update-Query
Sate Machines " State Machines

VII. EVALUATION

In this section, we evaluate the performance of LaRSM and
compare with SPaxos. Although the lattice agreement protocol
proposed in this paper has round complexity of O(log f), it has
large constant, which is only advantageous when the number
of processes is large. In real case, the number of replicas
is usually small, often 3 to 5 nodes. Thus, instead of using
the lattice agreement protocol proposed in this paper, we use
the lattice agreement protocol from [10] which runs in f 4 1
asynchronous round-trips in our implementation. In order to
evaluate LaRSM, we implemented a simple replicated state
machine which stores a Java hash map data structure. We
implement the hash map date structure to be a CRDT by
assigning a timestamp to each update operation and maintain
the last writer wins semantics. We measure the performance
of SPaxos and our implementation in the following three
perspectives: performance in the normal case (no crash failure),
performance in failure case, and performance under different
work loads.

All the experiments are performed in Amazons EC2 infras-
tructure with micro instances. The micro instance has variable
ECUs (EC2 Compute Unit), 1 vCPUs, 1 GBytes memory,
and low to moderate network performance. All servers run
Ubuntu Server 16.04 LTS (HVM) and the socket buffer sizes
are equal to 16 MBytes. All experiments are performed in a
LAN environment with all processes distributed among the
following three availability zones: US-West-2a, US-West-2b
and US-West-2c.

The keys and values of the map are string type. We limit
the range of keys to be within 0 to 1000. Two operations are
support: update and get. The update operation changes the
value of a specific key. The get operation returns the value for

a specific key. A client execute one request per time and only
starts executing next request when it completes the first one.
The request size is 20 bytes. For each request, the server returns
a response to indicates its completeness. In order to compare
with SPaxos, we set its crash model to be CrashStop. In this
model, SPaxos would not write records into stable storage. In
SPaxos, batching and pipelining are implemented to increase
the performance of Paxos. There are some parameters related
to those two modules: the batch size, batch waiting timeout and
the window size. The batch size controls how many requests
the batcher needs to wait before starting proposing for a batch.
The batch waiting timeout controls the maximum time the
batch can wait for a batch. The window size is the maximum
number of parallel proposals ongoing. We set the batch size to
be 64KB, which is the largest message size in a typical system.
We set the batch timeout according to the number of clients
from O to 10 at most. The window size is set to 2 as we found
that increasing the window size further does not increase the
performance in our evaluation.

A. Performance in Normal Case

In this experiment, we build a replicated state machine
system with three instances. We test the throughput of the
system and latency of operations while keep increasing the
number of requesting clients. The load from the clients are
composed of 50% writes and 50% reads. Figure 5 shows the
throughput change of SPaxos and LaRSM. The throughput is
measured by the number of requests handled per second by the
system. The latency is the average time in milliseconds taken
by the clients to complete execution of a request. We can see
from Fig 5, as we increase the number of requesting clients,
the throughput of both SPaxos and LaRSM increase until there
are around 1000 clients. At that point, the system reaches its
maximum handling capability. If we further increase the clients
number, the throughput of both LaRSM and SPaxos does not
change in a certain range and begins to decrease if there are
more requesting clients. This is because both systems do not
limit the number of connections from the client side. A large
number of clients connection results in large burden on IO,
decreasing the system performance. Comparing SPaxos and
LaRSM, we can see that LaRSM always has better throughput
than SPaxos. The maximum gap is around 10000 requests/sec.

Figure 6 shows the latency change as the number of clients
increases. In both LaRSM and SPaxos, read and write perform
the same procedure, thus their latency should be same. So, in
our evaluation, we just say operation latency. From Figure 6,

we find that operation latency of LaRSM is always increasing.

As we increase the number of clients, the latency of SPaxos

decreases first up to some point and then begins to increase.

This performance is due to the fact that the latency of the
average response time of all clients and SPaxos has a batching
module which batches multiple requests from different clients
to propose in a single proposal. Therefore, initially when there
are very few clients, they can only propose a small number
of requests in a single proposal, which makes the latency
relatively higher. While the number of clients increases, more

requests can be proposed in one single batch, thus the average
latency for one client is decreased. Later on, if the number of
clients increases further, the handling capability limit of the
system increases the operation latency. Comparing SPaxos and
LaRSM, we find that the latency of LaRSM is always around
Sms smaller.

—k- LaRSM SRR
40000 { —®- SPaxos ’ b
- A ——
'y 1
’
’
,‘I
et b
30000 - ,’ I Sl SRR Ll -
A - L
o -
b3 A ~
g ! s
i 7
£ 20000 1 f o
o 1 ’
-4 & o
]
i ||
]' !
10000 { 4 ’ﬁ
I
.
o
0
0 250 500 750 1000 1250 1500 1750 2000

#clients

Fig. 5. Throughput of LaRSM and SPaxos with increasing number of clients

—&- LaRSM 1
—_ - I
ggp{ ™ SPaxos ’,
I]
’
s
s
,F
60 4
~ / A
a - o
£ T A
2 a7k
= n r'g
% 40 - - ‘/
- -
" ’/. l"’
1 ._r’._,-:l"
1 - &
2042 e el
o«
-
AW
‘t
T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000

#clients

Fig. 6. Latency of LaRSM and SPaxos with Increasing Number of Clients

B. Performance in Failure Case

In this section, we evaluate the performance of both LaRSM
and SPaxos in the case of failure. In this experiment, the
replicated state machine system is composed of five replicas.
There are 100 clients that keep issuing requests to the system.
In LaRSM, since all replicas perform the same role and can
handle requests from the clients concurrently. Thus, for loading
balancing, each client randomly selects a replica to connect.
Each client has a timeout, unlike SPaxos, this timeout is
typically small. Timeout on an operation does not necessarily

mean failure of the connected replica. It might also due to
overload of the replica. In this case, the client randomly chooses
another replica to connect. However, in SPaxos, the timeout
set for a client is usually used to suspect the leader. That is,
when an operation times out, most likely the leader has failed.
Thus, the timeout in SPaxos is typically large.

We run the simulation for 40 seconds. The first 10 seconds is
for the system to warm up, so we do not record the throughput
and latency data. A crash failure is triggered at 25th second
after the start of the system. For LaRSM, we randomly shut
down one replica since all replicas are performing the same
role. For SPaxos, we shut down the leader, since crash of a
follower does not have much impact on the system. Figure 7
shows the throughput of both LaRSM and SPaxos. Figure 8
shows the latency change. From Figure 7 and Figure 8, for
LaRSM we can see that when the failure occurs, the throughput
drops sharply from around 20K requests/sec to around 15K
requests/sec, but not to 0. However, the throughput of SPaxos
drops to zero when leader fails. The latency of LaRSM only
increases slightly, whereas the latency of SPaxos goes to infinity
(Note that in the figure it is shown as around 500ms). This is
because when leader fails, SPaxos stops ordering requests, thus
no requests are handled by the system. For LaRSM, the clients
which are connected to the failed replica, would have timeout
on their current requests and then randomly connect to another
replica. As discussed before, this timeout is usually much
smaller than the timeout for suspecting a failure in SPaxos.
Thus, the latency of a client in LaRSM only increases by a
small amount. After the failure, the throughput of LaRSM
remains around 16K requests/sec, which is because now there
is one less replica in the system and the handling capability of
the system decreases. For SPaxos, after a new leader is selected,
the throughput increases to be a level slightly smaller than the
throughput before the failure and the latency also decreases to
be slightly higher than the latency before the failure. We also
find that even though the throughput of LaRSM drops when a
failure occurs, it still has better throughput than SPaxos, which
indicates the good performance of LaRSM.

C. Performance under Different Loads

In this part, we evaluate the performance of LaRSM on
different types of work loads. This evaluation is done in a

system of three replicas with 500 clients keep issuing requests.

We measure the throughput and latency as we increase the
ratio of reads in a work load. Figure 9 and Figure 10 give
the throughput and latency change respectively. It is shown
in those two figures that as the ratio of reads increases in
a work load, the throughput of the system increases and the
operation latency decreases. This confirms our optimization
for the procedure to implement a linearizable RSM. As the
reads ratio increases, the writes ratio decreases. Note that in
a lattice agreement instance the input lattice is formed only
by all the writes. When the number of writes is small, the
proposal command set would be small and the message size
would be small as well. Thus, the system can complete a lattice

25000

—— LaRsM
——- SPaxos
20000 4
I}
1)
i3
3
£ 15000 1
=
o
o
#*
=
a
£ 10000 4
o
=1
=
£
[Py ~ ~ N e
5000 N Y A I e i P
I [
1
11
by
LY
0 T T T e T T
4] 5 10 15 20 25 30 35 40
Time(sec)
Fig. 7. Throughput in Case of Failure
500 A 4 —— LaRsM
:: ——- sSPaxos
"
h
400 1
|
I
n
I
'|
@ 300 A (I
= [
= h
4] 1
= i
E] i
T 200 4 i
[
[
L
[
100 A : :
‘l 1
o
o F—————— g b=~ = m = o]
o4
T T T T T T T
0 5 10 15 20 25 30 35 40

Timel(sec)

Fig. 8. Latency in Case of Failure

agreement instance faster. This shows that the performance
LaRSM is even better for settings with fewer writes.

D. Scalability Issue

Although LaRSM achieves good performance when the
number of replicas in the system is small, its performance
degenerates when the number of replicas increases, i.e, it is not
scalable. The bad scalability is due to the fact that the lattice
agreement protocol requires number of rounds that depends on
the maximum number of crash failures the system can tolerate,
which is typically set to be "7’1 In this case, as the number of
replicas increases, the lattice agreement requires more rounds
to complete. Therefore, LaRSM does not scale well.

VIII. CONCLUSION

In this paper, we first give an algorithm to solve the lattice
agreement problem in O(log f) rounds asynchronous rounds,
which is an exponential improvement compared to previous

44000 4

42000 +

40000 4

38000 4

Requests/sec

36000

34000 1

T T T
0.3 0.4 0.5 0.6 0.7 0.8
Reads Ratio

Fig. 9. Throughput under different reads ratio

Latency(ms)
= = = = = [
- w o ~ @ w
L ! L) ! L

—
w
L

—
N
L

0.2

T
0.3 0.4 0.5 0.6 0.7 0.8
Reads Ratio

Fig. 10. Latency under different reads ratio

[1]
[2]
[3]

[4]

[5]
[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

REFERENCES

Leslie Lamport. The part-time parliament. ACM Transactions on Com-
puter Systems (TOCS), v.16 n.2, p.133-169, May 1998

Lamport, L. Paxos made simple. ACM SIGACT News 32, 4 (Dec. 2001),
18-25.

M. Shapiro, N. Pregui Ca, C. Baquero, and M. Zawirski. Convergent and
commutative replicated data types. Bulletin of the European Association
for Theoretical Computer Science (EATCS), (104):6788, 2011.

Xiong Zheng, Vijay Garg, John Kaippallimalil.
able Replicated State Machines with Lattice
http://users.ece.utexas.edu/ garg/dist/larsm.pdf.

L. Lamport. Fast Paxos. Technical Report MSR-TR-2005-112, 2005.
Jose M. Faleiro , Sriram Rajamani , Kaushik Rajan , G. Ramalingam ,
Kapil Vaswani. Generalized lattice agreement. Proceedings of the 2012
ACM symposium on Principles of distributed computing, July 16-18,
2012, Madeira, Portugal.

H. Attiya, M. Herlihy and O. Rachman. Atomic Snapshots Using Lattice
Agreement. Distributed Computing, V. 8, n.3, p.121-132, November
1992.

Fischer, M. J., Lynch, N. A., Paterson, M. S. Impossibility of distributed
consensus with one faulty process. Journal of the ACM. 32 (2): 374382.
Martin Biely, Zarko Milosevic , Nuno Santos , Andre Schiper, S-Paxos:
Offloading the Leader for High Throughput State Machine Replication,
Proceedings of the 2012 IEEE 31st Symposium on Reliable Distributed
Systems, p.111-120, October 08-11, 2012.

Xiong Zheng, Changyong Hu and Vijay K. Garg. Lattice Agreement in
Message Passing Systems. http://arxiv.org/abs/1807.11557.

Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt,
and Nir Shavit. Atomic snapshots of shared memory, Journal of the
ACM (JACM), v.40 n.4, p.873-890, Sept 1993.

M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., v. 12, p. 463492,
July 1990.

H. Attiya and O. Rachman. Atomic snapshots in O(nlogn) operations
SICOMP. 31(2):642-664, Oct. 2001.

Chandra, Tushar; Griesemer, Robert; Redstone, Joshua. Paxos Made Live
An Engineering Perspective. 26th ACM Symposium on Principles of
Distributed Computing, 2007.

Lamport, Leslie, Massa, Mike. Cheap Paxos. Proceedings of the
International Conference on Dependable Systems and Networks, 2004.
Dolev, Danny and Strong, H Raymond. Authenticated algorithms for
Byzantine agreement. SIAM Journal on Computing, v.12 n.4, p.656-666,
1983.

M. Shapiro. Conflict-Free Replicated Data Types. Proc. 13th Int 1 Conf.
Stabilization Safety and Security of Distributed Systems (SSS 11) ACM,
p-386-400, 2011.

Schneider, Fred B. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Computing Surveys (CSUR), V.22,
n.4, p.299-319, 1990.

Lineariz-
Agreement.

O(f) upper bound. This result also indicates that lattice
agreement is a much weaker problem than consensus. In the
second part, we explore the application of lattice agreement
to building linearizable RSM. We first give improvements
for the generalized lattice agreement protocol proposed in
previous work to make it practical to implement a linearizable
RSM. Then we perform experiments to show the effectiveness
of our proposal. Evaluation results show that using lattice
agreement to build a linearizable RSM has better performance
than conventional consensus based RSM technique. Specifically,
our implementation yields around 1.3x times throughput than
SPaxos and incurs smaller latency, in normal case. In the failure
case, LaRSM still continues to handle requests from clients,
although its throughput decreases by some amount, whereas,
SPaxos based protocol stops handling requests during the leader
failure.

