Linearizable Replicated State Machines with Lattice Agreement

1st Xiong Zheng
Electrical and Computer Engineering
The University of Texas at Austin
Austin, USA
zhengxiongym@utexas.edu

2nd Vijay K. Garg
Electrical and Computer Engineering
The University of Texas at Austin
Austin, USA
garg@ece.utexas.edu

3rd John Kaippallimalil
Wireless Access Laboratories
Huawei
Plano, USA
John.Kaippallimalil@huawei.com

Abstract—This paper studies the lattice agreement problem in asynchronous systems and explores its application to building linearizable replicated state machines (RSM). First, we propose an algorithm to solve the lattice agreement problem in $O(\log f)$ asynchronous rounds, where f is the number of crash failures that the system can tolerate. This is an exponential improvement over the previous best upper bound. Second, Faleiro et al have shown in [Faleiro et al. PODC, 2012] that combination of conflict-free data types and lattice agreement protocols can be applied to implement linearizable RSM. They give a Paxos style lattice agreement protocol, which can be adapted to implement linearizable RSM and guarantee that a command can be learned in at most $O(n)$ message delays, where n is the number of proposers. Later on, Xiong et al in [Xiong et al. DISC, 2018] give a lattice agreement protocol which improves the $O(n)$ guarantee to be $O(f)$. However, neither protocols is practical for building a linearizable RSM. Thus, in the second part of the paper, we first give an improved protocol based on the one proposed by Xiong et al. Then, we implement a simple linearizable RSM using the improved protocol and compare our implementation with an open source Java implementation of Paxos. Results show that better performance can be obtained by using lattice agreement based protocols to implement a linearizable RSM compared to traditional consensus based protocols.

Index Terms—Lattice Agreement, Generalized Lattice Agreement, Replicated State Machine, Consensus, Paxos.

I. INTRODUCTION

Lattice agreement, introduced in [7], to solve the atomic snapshot problem [11] in shared memory, is an important decision problem in distributed systems. In this problem, n processes start with input values from a lattice and need to decide values which are comparable to each other in spite of f process failures.

There are two main applications of lattice agreement. First, Attiya et al [13] give a $\log n$ rounds algorithm to solve the lattice agreement problem in synchronous message systems and use it as a building block to solve the atomic snapshot object. Second, Faleiro et al [6] propose the problem of generalized lattice agreement (GLA), which is a generalization of lattice agreement problem for a sequence of inputs, and demonstrate that the combination of conflict-free data types (CRDT) [3], [17] and generalized lattice agreement protocols can implement a special class of RSM that provides linearizability [12]. We call this class of state machines as Update-Query (UQ) state machines. The operations of UQ state machines can be classified into two kinds: updates (operations that modify the state) and queries or reads (operations that only return values and do not modify the state). An operation that both modifies the state and returns a value is not supported. In this paper, when we talk about linearizable replicated state machine, we actually mean UQ state machine. As shown in [6], to implement a linearizable RSM, we can first design the underlying data structure to be a CRDT. This makes all update operations commute. Then, the generalized lattice agreement protocol is invoked for each operation to guarantee linearizability. In this paper, we call a linearizable replicated state machine built by using combination CRDT and generalized lattice agreement protocol as LaRSM.

Replicated state machine [18] is a popular eager technique for fault tolerance in a distributed system. Traditional replicated state machines typically enforce strong consistency among replicas by using a consensus based protocol to order all requests from the clients. In this approach, each replica executes all the request in an identical order to ensure that all replicas are at the same state at any given time. The most popular consensus based protocol for building a replicated state machine is Paxos [1], [2]. In the Paxos protocol, processes are divided into three different roles: proposer, acceptor and learner. Since the initial proposal of Paxos, many variants have been proposed. FastPaxos [5] reduces the typical three message delays in Paxos to two message delays by allowing clients to directly send commands to acceptors. MultiPaxos [14] is the typical deployment of Paxos in the industrial setting. It assumes that usually there is a stable leader which acts as a proposer, so there is no need for the first phase in the basic Paxos protocol. CheapPaxos [15] extends basic Paxos to reduce the requirement in the number of processors. Even though in the Paxos protocol, there could be multiple proposers, usually only one leader (proposer) is used in practice due to its non-termination problem when there are multiple proposers. The system performance is limited by the resources of the leader. Also, the unbalanced communication pattern limits the utilization of bandwidth available in all of the network links connecting the servers. SPaxos [9] is a Paxos variant which tries to offload the leader
by disseminating clients to all replicas. However, the leader is still the only process which can order requests.

Since lattice agreement can be applied to implement a linearizable RSM, if we can solve lattice agreement problem efficiently, we may have better performance than consensus based protocols. From the theoretical perspective, using lattice agreement instead of consensus is promising, since lattice agreement has been shown to be a weaker decision problem than consensus. In synchronous message systems, consensus cannot be solved in fewer than \(f + 1 \) rounds [16], but lattice agreement can be solved in \(\log f + 1 \) rounds [10]. In asynchronous systems, the consensus problem cannot be solved even with one failure [8], whereas lattice agreement can be solved when a majority of processes is correct [6], [10]. The previous upper bound is \(O(f) \) asynchronous round-trips.

The lattice agreement problem in asynchronous message systems is first studied by Faleiro et al in [6]. They present a Paxos style protocol when a majority of processes is correct. Their algorithm needs \(O(n) \) asynchronous round-trips in the worst case. They also propose a protocol for the generalized lattice agreement problem, adapted from their protocol for lattice agreement, which requires \(O(n) \) message delays for a value to be learned. Later, an algorithm which runs in \(O(f) \) asynchronous round-trips was proposed by Xiong et al in [10]. They also give a protocol for the generalized lattice agreement which improves the \(O(n) \) message delays to \(O(f) \). In this work, we improve the upper bound for the lattice agreement problem in asynchronous systems to be \(O(\log f) \).

Although [6] has demonstrated that generalized lattice agreement protocol can be applied to implement a linearizable RSM, both the protocols proposed in [6] and [10] are impractical. This is due to the following reason. In both the two protocols, each process has a accept value which keeps track of all received proposal values. When the protocols are applied to implement a linearizable RSM, this accept value is a set which records all previously proposed commands. When a process \(\text{reject} \) a proposal, it has to send back this whole set. Even worse, this set is keeps increasing as more commands coming from clients. In this work, we propose an improved algorithm for the generalized lattice agreement problem. The improvements in the proposed algorithm are specifically designed to make it practical to build a linearizable RSM. Also, in order to demonstrate the effectiveness of our proposal, we implement a simple linearizable RSM by combining a CRDT map data structure and our improved generalized lattice agreement protocol. We compare our implementation with a linearizable RSM built from conventional consensus based protocol in both the normal case and failure case.

In summary, this paper makes the following contributions:
- We present an algorithm, \(\text{AsyncLA} \), to solve the lattice agreement in asynchronous system in \(O(\log f) \) rounds, where \(f \) is the number of maximum crash failures. This bound is an exponential improvement to the previously known best upper bound of \(O(f) \) by [10].
- We give an improved algorithm for the generalized lattice agreement protocol based on the one proposed in [10] to make it practical to implement a linearizable RSM. We also present optimizations for the procedure proposed in [6] to implement a linearizable RSM from a generalized lattice agreement protocol.
- We implement a simple linearizable RSM in Java by combining a CRDT map data structure and our improved generalized lattice agreement algorithm. We demonstrate its performance by comparing with SPaxos. Our experiments show that LaRSM achieves around 1.3x times throughput than SPaxos and lower operation latency in normal case.

II. SYSTEM MODEL AND PROBLEM DEFINITIONS

A. System Model

We consider a distributed message passing system with \(n \) processes, \(p_1, \ldots, p_n \), in a completely connected topology. We only consider asynchronous systems, which means that there is no upper bound on the time for a message to reach its destination. The model assumes that processes may have crash failures but no Byzantine failures. The model parameter \(f \) denotes the maximum number of processes that may crash in a run. We do not assume that the underlying communication system is reliable. The peer to peer network could be partitioned unpredictably. We need to build a replicated state machine which satisfy partition tolerance and provide as much availability and consistency as possible.

B. Lattice Agreement

In the lattice agreement problem, each process \(p_i \) can propose a value \(x_i \) in a join semi-lattice \((X, \leq, \text{sqcap}) \) and must decide on some output \(y_i \) also in \(X \). An algorithm solves the lattice agreement problem if the following properties are satisfied:
- **Downward-Validity**: For all \(i \in [1..n] \), \(x_i \leq y_i \).
- **Upward-Validity**: For all \(i \in [1..n] \), \(y_i \leq \sqcup \{x_1, \ldots, x_n\} \).
- **Comparability**: For all \(i \in [1..n] \) and \(j \in [1..n] \), either \(y_i \leq y_j \) or \(y_j \leq y_i \).

The definition of height of a value and height of a lattice is given as below:

Definition 1. The height of a value \(v \) in a lattice \(X \) is the length of longest path from any minimal value to \(v \), denoted as \(h_X(v) \) or \(h(v) \) when it is clear.

Definition 2. The height of a lattice \(X \) is the height of its largest value, denoted as \(h(X) \).

C. Generalized Lattice Agreement

In the generalized lattice agreement problem, each process may receive a possibly infinite sequence of values belong to a lattice at any point of time. Let \(x_i^p \) denote the \(i \)th value received by process \(p \). The aim is for each process \(p \) to learn a sequence of output values \(y_j^p \) which satisfies the following conditions:
- **Validity**: any learned value \(y_j^p \) is a join of some set of received input values.
Stability: The value learned by any process \(p \) is non-decreasing: \(j < k \implies y^j_p \leq y^k_p \).

Comparability: Any two values \(y^j_p \) and \(y^k_p \) learned by any two processes \(p \) and \(q \) are comparable.

Liveness: Every value \(x^i_p \) received by a correct process \(p \) is eventually included in some learned value \(y^k_p \) of every correct process \(q \): i.e., \(x^i_p \leq y^k_p \).

III. ASYNCHRONOUS LATTICE AGREEMENT IN \(O(\log f) \) ROUNDS

In this section, we give an algorithm to solve the lattice agreement problem in asynchronous system which only needs \(O(\log f) \) asynchronous rounds. The proposed algorithm is inspired by algorithms in [13] and [10]. The basic idea is to apply a Classifier procedure to divide processes into master and slave groups and ensure that any process in the master group have values greater than or equal to any process in the slave group. Then by constructing a binary tree of Classifier and let each process go through this tree, all processes will have comparable values at the end. However, the height of the input value lattice is unknown. Besides, we cannot agree on comparable failure sets first and then have comparable values as [10]. Since the system is asynchronous. Thus, instead of directly agreeing on the input value lattice, we first agree on a view lattice as defined as follows.

Each process \(p_i \) has a view \(v_i \), which is an array composed of \(n \) segments. Each segment of the view corresponds to the input value of each process known by \(p_i \). Initially, \(v_i[i] = x_i \), and \(\forall j \neq i, v_i[j] = \bot \), where \(x_i \) is the input value of \(p_i \). We say \(\bot \) is smaller that any input value. For any two views \(v \) and \(u \), we say \(v \) dominates \(u \), if for all \(i \), \(v[i] \geq u[i] \). Consider the lattice formed by the initial views of all processes with the order defined by the domination relation, i.e., \(v \leq u \) iff \(u \) dominates \(v \). We call this lattice as the view lattice. This view lattice has meet equals to \(\bot \), and join equals to \([x_1, ..., x_n] \). The height of the view lattice is \(n \). We say \(v \) and \(u \) are comparable if either \(v \leq u \) or \(u \leq v \). The join of any two views is defined as the componentwise maximum. The height of a view \(v \), denoted as \(h(v) \), is defined as the number of components which are not \(\bot \), i.e., the number of processes whose value are contained in this view. Since the \(i \)th segment of any view is either the input value of \(p_i \) or \(\bot \), if a view \(v \leq u \), then view \(u \) contains all input values contained in view \(v \). That is, in the original input lattice, we have \(\sqcup \{ v[i] : i \in [1..n] \} \leq \sqcup \{ u[i] : i \in [1..n] \} \) if \(v \leq u \). Thus, if all correct processes can output comparable views from the view lattice, they can output comparable values from the input value lattice. Therefore, in our algorithm, instead of directly working on the input value lattice, we apply the Classifier tree technique on the view lattice. The Classifier procedure is shown in Figure 1. The main algorithm, AsyncLA, is shown in Figure 2. Before we formally present the algorithm, we give the following two definitions.

Definition 3 (label). Each process has a label, which serves as a knowledge threshold and is passed as the threshold value \(k \) whenever the process calls the Classifier procedure.

Definition 4 (group). A group is a set of processes which have the same label. The label of a group is the label of the processes in this group. Two processes are said to be in the same group if and only if they have the same labels.

A. The Classifier Procedure

Now, let us first look at the Classifier procedure. Note that the main functionality of the Classifier is to divide the processes in the same group into two groups: the master group and the slave group and ensure that processes in master group have views dominate processes in slave group. Details of the Classifier procedure for \(p_i \) at round \(r \) are shown below:

Line 0: \(p_i \) sets its acceptVal\(_r\) to be empty. This acceptVal\(_r\) is used to record all the \(\langle \text{view}, \text{label} \rangle \) pairs received from all processes at round \(r \) via write or read message. Note that this acceptVal\(_r\) also includes \(\langle \text{view}, \text{label} \rangle \) pair received from processes that are not in the same group as \(p_i \).

Line 1-2: \(p_i \) sends a write message containing the input view \(v \) and the threshold value \(k \) to all processes and wait for \(n - f \text{ write acks} \). This step is to ensure the value and label of \(p_i \) is in the acceptVal\(_r\) set of \(n - f \) processes.

Line 3-5: \(p_i \) sends a read message with its current round number \(r \) to all processes and wait for \(n - f \text{ read acks} \). It collects all the received views associated with the same label \(k \) in a set \(U \), i.e., collects all views from processes within the same group. It may seem that line 3-5 are performing the same functionality as line 1-2 and there is no need to have this part, since both are sending a message to all and waiting for \(n - f \) acks. However, this part is actually the key of the Classifier procedure. The reason will be clear in the correctness proof section.

Line 6-14: \(p_i \) performs classification based on the views received from processes in the same group. Let \(w \) be the join of all received views in \(U \). If the size of \(w \) is greater than the threshold value \(k \), then \(p_i \) sends a write message with \(w \) and \(r \) to all and waits for \(n - f \text{ write acks} \) with round number \(r \). Then in line 10-12, it takes the join of \(w \) and all the views contained in the write acks from the same group, denoted as \(w' \). It returns \((w', \text{master}) \) as output of the Classifier procedure in which master indicates its classified into master group in the next round. Otherwise, it returns its own input view \(v \) and slave.

When \(p_i \) receives a write message for round \(r_j \) from \(p_{j'} \), it includes the \(\langle \text{view}, \text{label} \rangle \) pair contained in the message into its acceptVal\(_{r_i}^j\), set and sends a write_ack message containing the current acceptVal\(_{r_i}^j\) back. When \(p_i \) receives a read message for round \(r_j \) from \(p_{j'} \), it sends a read_ack message containing its current acceptVal\(_{r_i}^j\) back.

Note that when a process which is invoking the Classifier at round \(r \) receives a write or read message with a round number \(r' > r \), it buffers this message and delivers it when it reaches round \(r' \).
B. Algorithm AsyncLA

Now let us look at the main algorithm AsyncLA. The basic idea of AsyncLA is to construct a binary tree of Classifiers and let each process go through this binary tree. After a process completes execution of one Classifier node, if it is classified as master, it goes to the right subtree, otherwise, it goes to the left subtree.

In this algorithm, each process has a label, which is equal to the threshold value of the Classifier node it is currently invoking. Let y_i denote the output value of p_i. Let v_i^r denote its view at the beginning of round r. The algorithm for p_i proceeds in asynchronous rounds.

At round 0, p_i sends a view message with its initial view v_i^0 to all and wait for $n - f$ view messages for round 0 from all processes. The purpose of round 0 is to allow us to construct a binary tree of Classifier with height equals to $log f$. The reason is as follows. After round 0, the view of each correct process must have height at least $n - f$ in the view lattice. Since the height of the view lattice is n, the join-closed subset that includes all current views after round 0 (which is also a lattice) has height at most f. Then we can construct a binary Classifier tree with height equals to $log f$ by setting the threshold value of the root Classifier to be $\frac{n+f}{2} = n - \frac{f}{2}$. Thus, we also set the initial label for each process to be $n - \frac{f}{2}$.

At each round r from 1 to $log f$, p_i invokes the Classifier procedure with its current view v_i^r and current label l_i as input. Based on the output of the classifier, p_i adjust its label by some value. If it is classified as master, then it increases its label by $\frac{f}{2^{r-1}}$, which is equals to the threshold value of the next Classifier it will invoke. Otherwise, it reduces its label by $\frac{f}{2^{r-1}}$. At the end of round $log f$, p_i outputs the join of all values contained in its current view as its decision value.

C. Proof of Correctness

We now prove the correctness of the proposed algorithm. Let w_i^r be the value of w at line 6 of the Classifier procedure at round r. Let G be a group of processes at round r. Let $M(G)$ and $S(G)$ be the group of processes which are classified as master and slave, respectively, when they run the Classifier procedure in group G. The following lemma proves the key properties of the Classifier procedure.

Lemma 1. Let G be a group at round r with label k. Let L and R be two nonnegative integers such that $L \leq k \leq R$. If $L < h(v_i^r) \leq R$ for every process $i \in G$, and $h(\cup \{v_i^r : i \in G\}) \leq R$, then

- (p1) for each process $i \in M(G)$, $k < h(v_i^{r+1}) \leq R$
- (p2) for each process $i \in S(G)$, $L < h(v_i^{r+1}) \leq k$
- (p3) $h(\cup \{v_i^{r+1} : i \in M(G)\}) \leq R$
- (p4) $h(\cup \{v_i^{r+1} : i \in S(G)\}) \leq k$, and
- (p5) for each process $i \in M(G)$, $v_i^{r+1} \geq \cup \{v_i^{r+1} : i \in S(G)\}$

Proof. (p1)-(p3): Immediate from the Classifier procedure.

(p4): Proved by contradiction. Let us assume that $h(\cup \{v_i^{r+1} : i \in S(G)\}) > k$. Since $v_i^{r+1} = v_i^r$ for each process $i \in S(G)$, we have $h(\cup \{v_i^r : i \in S(G)\}) > k$. Consider execution of the Classifier at round r. Let process j be the last one in $S(G)$ to complete line 2. When process j starts executing line 3, all other processes which are in $S(G)$ have already written their values to at least a majority of processes, that is, for any process $i \in S(G)$ and $i \neq j$, a majority of processes have included $v_i, k > i$ into their acceptVal_r. Thus, process j would receive $v_i, k > i$ for any process $i \in S(G)$ and $i \neq j$, since any two majority of processes have at least one intersection. Then, we have $w_j = \cup \{v_i^r : i \in S(G)\}$. Thus, $h(w_j) = h(\cup \{v_i^r : i \in S(G)\}) > k$, which means $j \in M(G)$, a contradiction. From the above proof, we can also see why we need both line 1-2 and line 3-4. If we only have line 1-2, we may not find such a process j which would learn all the views of processes in $S(G)$.

(p5): To prove (p5), we need to show for any process $i \in M(G)$ and $j \in S(G)$, $v_i^{r+1} \geq v_j^{r+1} = v_j^r$. Consider i’s execution interval of line 8-9 and j’s execution interval of line 1-2. There are the following three cases based on the relative order of the above two execution intervals.

Case 1: when i completes line 9 and j has not started line 1. In this case, process j would receive $w_i^r, k > i$ from at least

![Fig. 1. Classifier](image-url)
As $\text{AsyncLA}(x_i)$ for p_i:

\[
x_i: \text{input value}
\]

\[
y_i: \text{output value}
\]

\[
v_i^r: \text{the view of } p_i \text{ at the beginning of round } r
\]

\[
\text{an array of size } n. v_i^0[i] = x_i \text{ and } v_i^0[j] = \bot, \forall j \neq i
\]

\[
l_i := n - \frac{f}{2} \text{ // initial label}
\]

/* Round 0 */

Send v_i^0 to all

wait for $n - f$ messages of form $\text{value}(-, 0)$

Let U denote the set of all received values

/* Round 1 to log f */

\[
v_i^1 := \bigcup\{u \mid u \in U\}
\]

for $r := 1$ to log f

\[
(v_i^{r+1}, \text{class}) := \text{Classifier}(v_i^r, l_i, r)
\]

if $\text{class} = \text{master}$

\[
l_i := l_i + \frac{f}{2
\]

else

\[
l_i := l_i - \frac{f}{2
\]

end for

Let $V_i := v_i^{\text{log} f + 1}$

\[
y_i := \bigcup\{V_i[j] \mid j \in [1..n]\}
\]

Fig. 2. Algorithm AsyncLA

one process at line 4, since any two majority of processes have at least one process in common. Then j would be in $M(G)$ instead of $S(G)$, contradiction.

Case 2: when j completes line 2 and i has not started line 8. In this case, i would receive $< v_j^r, k >$ from at least one process. Then, $v_i^{r+1} \geq v_j^r + 1$.

Case 3: i and j are executing line 1-2 and line 8-9 concurrently. In this case, there exists a process k which receives both $< v_i^r, k >$ and $< v_j^r, k >$. If k receives i first, then j would receive $< v_i, k >$, contradiction. If k receives j first, then i would receive $< v_j^r, k >$, which indicates $v_i^{r+1} \geq v_j^{r+1}$. \hfill \Box

Based on the above properties, we can have the following lemma.

Lemma 2. Let G be a group of processes at round r with label k. Then

1. For each process $i \in G$, $k - \frac{f}{2} < h(v_i^r) \leq k + \frac{f}{2}$
2. $h(\bigcup\{v_i^r : i \in G\}) \leq k + \frac{f}{2}$

Proof. By induction on round number r. When $r = 1$, label $k = n - \frac{f}{2}$, it is straightforward to have $n - f < h(v_i^r) \leq n$, since each process receives at least $n - f$ values and the height of input lattice is at most n. For the induction step, assume lemma 2 holds for all groups at round $r - 1$. Consider an arbitrary group G at round $r > 1$ with parameter k. Let G' be the parent group of G at round $r - 1$ with parameter k'. Consider the Classifier procedure executed by all processes in G' with parameter k'. By induction hypothesis, we have:

1. For any process $i \in G'$, $k' - \frac{f}{2} < h(v_i^{r-1}) \leq k' + \frac{f}{2}$
2. $h(\bigcup\{v_i^{r-1} : i \in G'\}) \leq k' + \frac{f}{2}$

Let $L = k' - \frac{f}{2}$ and $R = k' + \frac{f}{2}$, then (1) and (2) are exactly the conditions of Lemma 1. Consider the following two cases:

Case 1: $G = M(G')$. Then $k' = k' + \frac{f}{2}$.

Case 2: $G = S(G')$. Then $k' = k' - \frac{f}{2}$. Similarly, from (p2) and (p4) of Lemma 1, we have the same equations. \hfill \Box

From Lemma 2, we directly have the following lemma.

Lemma 3. Let i and j be two processes that are within the same group G at the end of round $r = \log f$. Then v_i^{r+1} and v_j^{r+1} are equal.

Proof. Let G' be the parent of G with parameter k'. Assume without loss of generality that $G = M(G')$. The proof for the case $G = S(G')$ follows in the same manner. Since G' is a group at round $\log f$, by Lemma 2, we have:

1. For each process $p \in G'$, $k' - 1 < h(v_p^{\log f}) \leq k' + 1$, and
2. $h(\bigcup\{v_p^{\log f} : p \in G'\}) \leq k' + 1$

Since $i \in G'$ and $j \in G'$, (1) and (2) hold for both process i and j. By the assumption that $G = M(G')$, at round $\log f$, process i and j execute the Classifier procedure with parameter k' in group G' and be classified as master and proceed to group $G = M(G')$. Let $L = k' - 1$ and $R = k' + 1$, then by applying Lemma 1(p1) we have $k' < h(v_i^{\log f + 1}) \leq k' + 1$ and $k' < h(v_j^{\log f + 1}) \leq k' + 1$, thus $h(v_i^{\log f + 1}) = h(v_j^{\log f + 1}) = k' + 1$. Similarly, by Lemma 1(p3), we have $h(\bigcup\{v_i^{\log f + 1}, v_j^{\log f + 1}\}) = k' + 1$. Thus, $v_i^{\log f + 1} = v_j^{\log f + 1}$. Therefore, v_i^r and v_j^r are equal at the beginning of round $r = \log f + 1$. \hfill \Box

Lemma 4. Let process i decides on y_i. Let G be a group at round r such that $i \in S(G)$, then $y_i \leq \bigcup\{v_i^{r+1} : i \in S(G)\}$.

Proof. Immediate from p2 and p4 of Lemma 1. \hfill \Box

Lemma 5. Let i and j be any two processes in two different groups G_i and G_j at the end of round $\log f$, then y_i is comparable to y_j.

Proof. Since $G_i \neq G_j$, there must exist a group which contains both i and j. Let G be such a group with biggest round number r. Without loss of generality, assume $i \in S(G)$ and $j \in M(G)$. From Lemma 1(p5), we have $v_i^{r+1} \geq \bigcup\{v_i^{r+1} : i \in S(G)\}$. From Lemma 4, we have $y_i \leq \bigcup\{v_i^{r+1} : i \in S(G)\} \leq v_i^{r+1}$. Note that the value held by any process is non-decreasing. Thus, $y_j \geq y_i$. Therefore, we have y_i is comparable to y_j.

Now, we have the main theorem.

Theorem 1. Algorithm AsyncLA solves the lattice agreement problem in $O(\log f)$ asynchronous round-trips when a majority of processes is correct.
Proof. Down-Validity holds since the value held by each process is non-decreasing. Upward-Validity follows because each learned value must be the join of a subset of all initial values which is at most $\bigcup \{x_1, \ldots, x_n\}$. For Comparability, from Lemma 3, we know that any two processes which are in the same group at the end of AsyncLA, they must have equals values. For any two processes which are in two different groups, from Lemma 5 we know they must have comparable values.

D. Complexity Analysis

Each invocation of the Classifier procedure takes at most three round-trips. $\log f$ invocation of Classifier results in at most $3 \times \log f$ round-trips. Thus, the total time complexity is $3 \times \log f + 1$ round-trips. For the message complexity, each process sends out at most 3 write and read messages and at most $3 \times n$ write_ack and read_ack messages. Therefore, the message complexity for each process is $O(n \times \log f)$.

IV. IMPROVED GENERALIZED LATTICE AGREEMENT PROTOCOL FOR RSM

In this section, we give optimizations for the generalized lattice agreement protocol proposed in [10] to implement a linearizable RSM. The optimized protocol, GLA_Δ, is shown in Fig 3 with the two main changes marked using Δ. Although we only have two primary changes compared to the original algorithm in [10], we claim those changes are the key for its applicability in building a linearizable RSM.

The basic idea of GLA_Δ is the same as the original algorithm in [10]. Each process invokes the Agree() procedure, which is primarily composed of an execution of a lattice agreement instance to learn new commands. The Agree() procedure is automatically executed when the guard condition is satisfied. Inside the Agree() procedure, a process first updates its acceptVal to be the join of current acceptVal and buffVal. Then, it starts a lattice agreement instance with next available sequence number. Since our main goal is to improve the generalized lattice agreement protocol, we still adopt the same lattice agreement protocol as [10], which runs in $f + 1$ asynchronous round-trips. Replacing it to the algorithm AsyncLA given in the previous section is straightforward. Another reason we use the $f + 1$ round-trips protocol is that algorithm AsyncLA runs in $3 \times \log f + 1$ rounds, which is not necessarily better when f is small.

At each round of the lattice agreement, a process sends its current acceptVal to all processes and waits for $n - f$ ACKs. If it receives any decide ACK, it decides on the join of all decide values received. If it receives a majority of accept ACKs, it decides on its current value. Otherwise, it updates its acceptVal to be the join of all received values and starts the next round. When a process receives a proposal from some other process, if the proposal is associated with a smaller sequence number, then it sends decide ACKs back with its decided value for that sequence number and includes the received value into its own buffer set. Otherwise, it waits until its current sequence number to reach the sequence number associated with the proposal. Then, it checks whether the proposed value contains its current acceptVal. If true, the process sends back a accept ACK. Otherwise, it sends back a reject ACK along with its current acceptVal. When a process completes a lattice agreement instance for sequence number s, it stores decided values into $LV[s]$. Then it removes all the learned values for sequence number $s - 1$ from acceptVal.

A. Truncate the Accept and Learned Command Set

Let us first look at the challenges of directly applying the generalized lattice agreement protocol in [10] or the one in [6] to implement a linearizable RSM. In a replicated state machine, each input value is a command from a client. Thus, the input lattice is a finite boolean lattice formed by the set of all possible commands. The order in this lattice is defined by set inclusion, and the join is defined as the union of two sets. This boolean input lattice poses a challenge for both the algorithms in [6] and [10]. In these algorithms, for each process (each acceptor process in [6]) there is an accept value set, which stores the join of whatever value the process has accepted. Now since the join is defined as union in the RSM setting, this set keeps increasing. For example, in Fig. 4, p_1, p_2 and p_3 first receive commands $\{a\}$, $\{b\}$ and $\{c\}$, respectively. They start the lattice agreement instance with sequence number 0 and learn $\{a\}$, $\{a, b\}$ and $\{a, b, c\}$ respectively for sequence number 0. After that, p_1, p_2 and p_3 receive $\{d\}$, $\{e\}$, and $\{f\}$ as input, respectively. Now, they start a lattice agreement instance with the sequence number 1. In order to ensure comparability and stability of generalized lattice agreement, the learned command set and accept command set for sequence number 1 have to include the largest learned value of sequence 0, which is $\{a, b, c\}$, although each process only proposes a single command. Therefore, the accept and learned value set keeps increasing. This problem makes applying lattice agreement to implement a linearizable RSM impractical.

To tackle the always growing accept command set problem, we would like to have some way to truncate this set. A naive way is to remove all learned commands in the accept command set when proposing for the next available sequence number. This way does not work. Suppose we have two processes: p_1, p_2 and p_3. They propose $\{a\}$, $\{b\}$ and $\{c\}$, respectively for sequence number 0. After execution of lattice agreement for sequence number 0, suppose p_1, p_2 and p_3 both have learned value set and accept value set to be $\{a\}$, $\{a, b, c\}$, and $\{a, b, c\}$, respectively. It is easy to verify this case is possible for an execution of lattice agreement. When completing sequence number 0, all processes remove learned value set for sequence number 0 from their accept value set. Thus, the accept value set of all the three processes becomes to be empty. Note, if p_1, p_2 and p_3 start to propose for sequence number 1 with new commands $\{d\}$, $\{e\}$ and $\{f\}$. Since the accept command sets of p_2 and p_3 do not contain value $\{b\}$ and $\{c\}$, p_1 will never be able to learn $\{b\}$ and $\{c\}$. Thus, learned command set of p_1 for sequence 1 and the learned command set of p_2 and p_3 for sequence 0 are incomparable. Thus, we cannot remove all learned value set from the accept value set. Instead of removing all learned commands from the accept command set,
GLAΔ for p_i

\[
\begin{align*}
 &s := 0 \quad \text{// sequence number} \\
 &\text{maxSeq} := -1 \quad \text{// largest sequence number seen} \\
 &\text{buffVal} := \bot \quad \text{// commands buffer} \\
 &\text{LV} := \bot \quad \text{// map from seq to learned commands set} \\
 &\text{acceptVal} := \bot \quad \text{// current accepted commands set} \\
 &\text{active} := \text{false} \quad \text{// proposing status}
\end{align*}
\]

Procedure Agree():

\[
\begin{align*}
 \text{guard:} & \quad (\text{active} = \text{false}) \land (\text{buffVal} \neq \bot \lor \text{maxSeq} \geq s) \\
 \text{effect:} & \quad \text{active} := \text{true} \\
 & \quad \text{acceptVal} := \text{buffVal} \sqcup \text{acceptVal} \\
 & \quad \text{buffVal} := \bot \\
 \end{align*}
\]

/* Lattice Agreement with sequence number s */

\[
\begin{align*}
 \text{for} & \quad r := 1 \text{ to } f + 1 \\
 & \quad \text{val} := \text{acceptVal} \\
 & \quad \text{Send} \; \text{prop}(\text{val}, r, s) \text{ to all} \\
 & \quad \text{wait} \; \text{for} \; n - f \text{ ACK}(-, -, r, s) \\
 & \quad \text{let} \; V \; \text{be values in reject ACKs} \\
 & \quad \text{let} \; D \; \text{be values in decide ACKs} \\
 & \quad \text{let} \; \text{tally} \; \text{be number of accept ACKs} \\
 & \quad \text{if} \; |D| > 0 \\
 & \quad \; \text{val} := \sqcup\{d \mid d \in D\} \\
 & \quad \; \text{break} \\
 & \quad \text{else if tally > } \frac{n}{2} \\
 & \quad \; \text{break} \\
 & \quad \text{else} \\
 & \quad \; \text{Let} \; \text{tmp} := \sqcup\{v \mid v \in V\} \\
 & \quad \; \text{acceptVal} := \text{acceptVal} \sqcup \text{tmp} \\
 \end{align*}
\]

\[
\begin{align*}
 \text{end for} \\
 \text{LV}[s] := \text{val} \\
 \text{acceptVal} := \text{acceptVal} - \text{LV}[s - 1] \\
 s := s + 1 \\
 \text{active} := \text{false}
\end{align*}
\]

on receiving ReceiveValue(v):

\[
\begin{align*}
 &\text{buffVal} := \text{buffVal} \sqcup v
\end{align*}
\]

on receiving prop(v_j, r, s') from p_j:

\[
\begin{align*}
 &\text{if} \; s' < s \\
 &\quad \text{buffVal} := \text{buffVal} \sqcup v_j \\
 &\quad \text{Send} \; \text{ACK}("\text{decide}", \; \text{LV}[s'], \; r, s') \\
 &\quad \text{return} \\
 &\quad \text{maxSeq} := \max\{s', \text{maxSeq}\} \\
 &\quad \text{wait until} \; s' = s \\
 &\text{if} \; \text{acceptVal} \subseteq v_j \\
 &\quad \text{Send} \; \text{ACK}("\text{accept}", \; -, r, s') \\
 &\quad \text{acceptVal} := v_j \\
 &\text{else} \\
 &\quad \text{Send} \; \text{ACK}("\text{reject}", \; \text{acceptVal}, r, s')
\end{align*}
\]

Fig. 3. Algorithm GLAΔ

we propose to remove all learned commands for the sequence numbers smaller than the largest learned sequence number from the accepted command set. In order to achieve this, the line marked by Δ_1 in the pseudocode is added, compared to the original algorithm in [10]. In this line, after a process has learned a value set for sequence number s, it removes the learned value set corresponding to sequence number $s - 1$ from its accept set.

Second, as the state machine keeps running, the mapping of sequence number to learned commands, LV, also keeps growing. Thus, we propose the following technique to truncate this map. Let each process record the largest sequence number for which all replicas have started proposing, denoted as min_seq. Thus, all replicas have learned commands for any sequence number smaller than min_seq, since each replica has to learn commands for each sequence. Besides, each replica also record the largest sequence number for which the corresponding learned values have been applied into state (executed), denote as executed_seq. Then, each replica removes all learned commands in LV with sequence number smaller than min of min_seq and executed_seq. In this way, the learned commands map can be kept small. Since this improvement is trivial, we do not include it in the algorithm pseudocode.

B. Remove Forwarding

In both the algorithms of [6] and [10], a process has to forward all commands it receives to all other processes or proposers to ensure liveness. This forwarding results in load that is multiplied many fold, since many processes may propose the same request. We claim that this blind forwarding is a waste. In [10], this forwarding is to ensure that the commands proposed by slow processes can also be learned. However, for the fast processes, there is no need to forward their requests to others because they can learn requests quickly. Therefore, instead of forwarding every request to all servers, we require that when a process receives some proposal with smaller sequence number than its current sequence number, it sends back a decide message and also include the received proposal value into its own buffer set. These values will be proposed by the server in its next sequence number. In this way, only when a process is slow, its value will be proposed by the fast processes. This change is shown as addition of the line marked by Δ_2 in the algorithm.
C. Proof of Correctness

In this section, we prove the correctness of algorithm GLA₆. Although we only have two primary changes compared to the algorithm in [10], the correctness proof is quite different. Let LearnedVal⁺ denotes the learned value of process p after completing lattice agreement for sequence number s. Thus, LearnedVal⁺ = ∪{LV[t] : t ∈ [0...s]}. Let accept⁺ denotes the value of acceptVal of process p at the end of sequence number s.

The following lemma follows immediately from the Comparability requirement of the lattice agreement problem.

Lemma 6. For any sequence number s, LVₚ[s] is comparable with LV₂[s] for any two processes p and q.

The following lemma shows Stability.

Lemma 7. For any sequence number s, LearnedVal⁺ₚ ⊆ LearnedVal⁺ₚ⁺¹ for any two correct processes p and q.

Proof. Proof by induction on sequence number s.

The base case, s = 0. When p completes sequence number 0, LVₚ[0] must be accepted by a majority of processes. That is, there exists a majority of processes which include LVₚ[0] into their accept command set, i.e., into acceptVal. During the q’s execution of lattice agreement 1, it must learn LVₚ[0] because any two majority of processes have at least one common process. Thus, LVₚ[0] ⊆ LV₂[1]. So, we have LearnedVal⁺₀ₚ ⊆ LearnedVal⁺₁ₚ.

The induction case. Assume that for sequence number s, we have LearnedVal⁺ₚ ⊆ LearnedVal⁺ₚ⁺¹ for any two processes p and q. We need to show that LearnedVal⁺ₚ⁺¹ ⊆ LearnedVal⁺ₚ⁺². Equivalently, we show that LearnedVal⁺ₚ⁺¹ ∪ LVₚ[s+1] ⊆ LearnedVal⁺ₚ⁺¹ ∪ LV₂[s+2]. Thus, we only need to show that LVₚ[s+1] ⊆ LearnedVal⁺ₚ⁺¹ ∪ LV₂[s+2], since we have LearnedVal⁺ₚ ⊆ LearnedVal⁺₂ by assumption. Consider any v ∈ LVₚ[s+1]. During p’s execution of lattice agreement for sequence number s + 1, v must be included into acceptVal by a majority of processes. Let Q denotes such a majority of processes. Due to the change marked by Δ₁, there could exist some process j ∈ Q such that v ∉ acceptVal⁺₁. In this case, we must have v ∈ LVₚ[s] ⊆ LearnedVal⁺ₚ ⊆ LearnedVal⁺ₚ⁺¹. In the other case, if ∀j ∈ Q, we have v ∈ acceptVal⁺¹. Then during q’s execution of lattice agreement for sequence number s + 2, q must learn v since v is contained in the acceptVal of a majority of processes. Thus, v ∈ LV₂[s + 2]. So, ∀v ∈ LVₚ[s + 1], we either have v ∈ LearnedVal⁺₁ or v ∈ LV₂[s + 1]. Therefore, we have LVₚ[s+1] ⊆ LearnedVal⁺₁ ∪ LV₂[s+2], which yields LearnedVal⁺ₚ ⊆ LearnedVal⁺ₚ⁺¹ for any two processes p and q.

Now, let us prove Comparability.

Lemma 8. For any sequence number s and s’, LearnedVal⁺ₚ and LearnedVal⁺ₚ’ are comparable for any two correct processes p and q.

Proof. For s’ > s or s’ < s, Lemma 7 gives the result. So, we only need to consider the case s = s’. We prove this case by induction on sequence number s.

The base case s = 0 immediately follows from Lemma 6.

For the induction case, assume for sequence number s, LearnedVal⁺ₚ and LearnedVal⁺ₚ’ are comparable for any two processes p and q. Need to show LearnedVal⁺₁ and LearnedVal⁺₁’ are comparable. Equivalently, we can show LearnedVal⁺ₚ ↑ LVₚ[s+1] and LearnedVal⁺₁’ ∪ LV₂[s + 1] are comparable. Without loss of generality, assume LearnedVal⁺ₚ’ ⊆ LearnedVal⁺ₚ, the proof for the other case is similar. Let us consider the following two cases.

Case 1: LVₚ[s+1] ⊆ LV₂[s+1]. By the assumption, we have LearnedVal⁺ₚ ↑ LVₚ[s+1] ⊆ LearnedVal⁺ₚ’ ∪ LV₂[s + 1].

Case 2: LV₂[s+1] ⊆ LVₚ[s+1]. From Lemma 7, we have LearnedVal⁺ₚ’ ⊆ LearnedVal⁺₁. Therefore, LearnedVal⁺₁’ ∪ LV₂[s+1] ⊆ LearnedVal⁺₁ ∪ LV₂[s+1].

Theorem 2. Algorithm GLA₆ solves the generalized lattice agreement problem when a majority of processes is correct.

Proof. Validity holds since any learned value is the join of a subset of values received. Stability follows from Lemma 7. Comparability follows from Lemma 8. Liveness follows from the termination of lattice agreement.

V. IMPROVE THE PROCEDURE FOR IMPLEMENTING A LINEARIZABLE RSM

The paper [6] gives a procedure to implement a linearizable RSM by combining CRDT and a protocol for the generalized lattice agreement problem. The basic idea in [6] is to treat reads and writes separately. For a write command, say cmdₜₗ, the receiving proposer invokes a lattice agreement instance with this write operation as input value and then wait until cmdₜₗ is included into its learned commands set (The learned command set stores all learned commands received from learners). Then, it returns response for cmdₜₗ. For a read command, say cmdᵣ, the receiving proposer creates a null command, which is a command that has no effect. It invokes a lattice agreement instance with this null command and waits until its command is in the learned commands set. Then, it executes all commands stored in the learned command set and returns the response for cmdᵣ. In this paper, we propose some simple optimizations for this procedure.

To tackle the aforementioned problems, we present the following two optimizations for the linearizable SMR procedure proposed in [6].

A. Reduce Burden of Read

In the procedure proposed in [6], the learned commands are only executed when there is a read command and a read command can only return when the server completes executing all current learned commands. This results in high latency of a read operation. In order to reduce the latency of read operation and balance between reads and writes, each server applies
newly learned commands whenever it completes a sequence number.

Besides, for each read command, before returning a response, a null operation needs to be created and learned. This is not necessary. We only need to create one null operation for all read operations in the commands buffer and all those reads can be executed when that single null operation is learned.

B. Remove Reads from Input Lattice

In procedure proposed in [6], the input lattice is formed by all update commands and all null commands, which is not necessary. The null commands are actually read commands. Since only updates change the state of the server and reads do not, only the lattice formed by all updates need to be considered. In the lattice agreement protocol, a basic and highly frequent operation for a process is to check whether a received proposal value, i.e., a set of commands, contains its current accept command set. Since we only need to consider the lattice formed by all the updates, a process only needs to check whether the subset of updates in the proposed command set contains the subset of updates in its current accept command set.

VI. LaRSM vs Paxos

In this section, we compare LaRSM and Paxos from both theoretical and engineering perspective.

Table I shows the theoretical perspective. The primary difference between Paxos and LaRSM lies in their termination guarantee. In the worst case, Paxos may not terminate (∞ message delays), though very unlikely. Whereas, LaRSM always guarantee termination in at most O(\(\log f\)) message delays. This difference is because Paxos is consensus based whereas LaRSM is lattice agreement based. In the best case, both Paxos and LaRSM need three message delays. One disadvantage of LaRSM is that it is only applicable to UQ state machines.

For the engineering perspective, since there is no termination guarantee when multiple proposers exist in the system, Paxos is typically deployed with only one single proposer (the leader). Only the leader can handle handle requests from the clients. Thus, in a typical deployment the leader becomes the bottleneck and the throughput of the system is limited by the leader’s resources. Besides, the unbalanced communication pattern limits the utilization of bandwidth available in all of the network links connecting the servers. However, there can be multiple proposers in LaRSM since termination is guaranteed. Multiple proposers can simultaneously handle requests from clients, which may yield better throughput. In the failure case, a new leader needs to be elected in Paxos and there could be multiple leaders in the system. During this time, the protocol may not terminate because of conflicting proposals. Even though there are ways to reduce conflicting proposals, generally it needs more rounds to learn a command when there are multiple leaders. However, a failure of a replica in LaRSM has limited impact on the whole system. This is because other replicas can still handle requests from clients as long as less than a majority of replicas has failed. In a typical deployment of Paxos, pipelining [1] is often applied to increase the throughput of the system. In pipelining, the leader can concurrently issue multiple proposals. In LaRSM, however, there can be at most one proposal for each replica at any given time, because the Stability and Comparability of generalized lattice agreement require that next proposal can be issued only when the current proposal terminates. Thus, LaRSM does not support pipelining.

In summary, compared with Paxos, the main advantage of LaRSM is that it can have multiple proposers concurrently handling requests and the main disadvantage is that it does not support pipelining for each proposer.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Paxos</th>
<th>LaRSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consistency</td>
<td>Linearizability</td>
<td>Linearizability</td>
</tr>
<tr>
<td>Underlying Protocol</td>
<td>Consensus</td>
<td>Lattice Agreement</td>
</tr>
<tr>
<td>Best Case #Message Delays</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Worse Case #Message Delays</td>
<td>∞</td>
<td>O((\log f))</td>
</tr>
<tr>
<td>Applicable to All State Machines</td>
<td>Yes</td>
<td>Only Update-Query State Machines</td>
</tr>
</tbody>
</table>

VII. Evaluation

In this section, we evaluate the performance of LaRSM and compare with SPaxos. Although the lattice agreement protocol proposed in this paper has round complexity of O(\(\log f\)), it has large constant, which is only advantageous when the number of processes is large. In real case, the number of replicas is usually small, often 3 to 5 nodes. Thus, instead of using the lattice agreement protocol proposed in this paper, we use the lattice agreement protocol from [10] which runs in \(f + 1\) asynchronous round-trips in our implementation. In order to evaluate LaRSM, we implemented a simple replicated state machine which stores a Java hash map data structure. We implement the hash map date structure to be a CRDT by assigning a timestamp to each update operation and maintain the last writer wins semantics. We measure the performance of SPaxos and our implementation in the following three perspectives: performance in the normal case (no crash failure), performance in failure case, and performance under different workloads.

All the experiments are performed in Amazons EC2 infrastructure with micro instances. The micro instance has variable ECUs (EC2 Compute Unit), 1 vCPUs, 1 GBytes memory, and low to moderate network performance. All servers run Ubuntu Server 16.04 LTS (HVM) and the socket buffer sizes are equal to 16 MBytes. All experiments are performed in a LAN environment with all processes distributed among the following three availability zones: US-West-2a, US-West-2b and US-West-2c.

The keys and values of the map are string type. We limit the range of keys to be within 0 to 1000. Two operations are support: update and get. The update operation changes the value for
a specific key. A client executes one request per time and only
starts executing the next request when it completes the first one.
The request size is 20 bytes. For each request, the server returns
a response to indicate its completeness. In order to compare
with SPaxos, we set its crash model to be CrashStop. In this
model, SPaxos would not write records into stable storage. In
SPaxos, batching and pipelining are implemented to increase
the performance of Paxos. There are some parameters related
to those two modules: the batch size, batch waiting timeout and
the window size. The batch size controls how many requests
the batcher needs to wait before starting proposing for a batch.
The batch waiting timeout controls the maximum time the
batch can wait for a batch. The window size is the maximum
number of parallel proposals ongoing. We set the batch size to
be 64KB, which is the largest message size in a typical system.
We set the batch timeout according to the number of clients
from 0 to 10 at most. The window size is set to 2 as we found
that increasing the window size further does not increase the
performance in our evaluation.

A. Performance in Normal Case

In this experiment, we build a replicated state machine
system with three instances. We test the throughput of the
system and latency of operations while keep increasing the
number of requesting clients. The load from the clients are
composed of 50% writes and 50% reads. Figure 5 shows the
throughput change of SPaxos and LaRSM. The throughput is
measured by the number of requests handled per second by the
system. The latency is the average time in milliseconds taken
by the clients to complete execution of a request. We can see
from Fig 5, as we increase the number of requesting clients,
the throughput of both SPaxos and LaRSM increase until there
are around 1000 clients. At that point, the system reaches its
maximum handling capability. If we further increase the clients
number, the throughput of both LaRSM and SPaxos does not
change in a certain range and begins to decrease if there are
more requesting clients. This is because both systems do not
limit the number of connections from the client side. A large
number of clients connection results in large burden on IO,
decreasing the system performance. Comparing SPaxos and
LaRSM, we can see that LaRSM always has better throughput
than SPaxos. The maximum gap is around 10000 requests/sec.

Figure 6 shows the latency change as the number of clients
increases. In both LaRSM and SPaxos, read and write perform
the same procedure, thus their latency should be same. So, in
our evaluation, we just say operation latency. From Figure 6,
we find that operation latency of LaRSM is always increasing.
As we increase the number of clients, the latency of SPaxos
decreases first up to some point and then begins to increase.
This performance is due to the fact that the latency of the
average response time of all clients and SPaxos has a batching
module which batches multiple requests from different clients
to propose in a single proposal. Therefore, initially when there
are very few clients, they can only propose a small number
of requests in a single proposal, which makes the latency
relatively higher. While the number of clients increases, more
requests can be proposed in one single batch, thus the average
latency for one client is decreased. Later on, if the number of
clients increases further, the handling capability limit of the
system increases the operation latency. Comparing SPaxos and
LaRSM, we find that the latency of LaRSM is always around
5ms smaller.

B. Performance in Failure Case

In this section, we evaluate the performance of both LaRSM
and SPaxos in the case of failure. In this experiment, the
replicated state machine system is composed of five replicas.
There are 100 clients that keep issuing requests to the system.
In LaRSM, since all replicas perform the same role and can
handle requests from the clients concurrently. Thus, for loading
balancing, each client randomly selects a replica to connect.
Each client has a timeout, unlike SPaxos, this timeout is
typically small. Timeout on an operation does not necessarily
mean failure of the connected replica. It might also due to overload of the replica. In this case, the client randomly chooses another replica to connect. However, in SPaxos, the timeout set for a client is usually used to suspect the leader. That is, when an operation times out, most likely the leader has failed. Thus, the timeout in SPaxos is typically large.

We run the simulation for 40 seconds. The first 10 seconds is for the system to warm up, so we do not record the throughput and latency data. A crash failure is triggered at 25th second after the start of the system. For LaRSM, we randomly shut down one replica since all replicas are performing the same role. For SPaxos, we shut down the leader, since crash of a follower does not have much impact on the system. Figure 7 shows the throughput of both LaRSM and SPaxos. Figure 8 shows the latency change. From Figure 7 and Figure 8, for LaRSM we can see that when the failure occurs, the throughput drops sharply from around 20K requests/sec to around 15K requests/sec, but not to 0. However, the throughput of SPaxos drops to zero when leader fails. The latency of LaRSM only increases slightly, whereas the latency of SPaxos goes to infinity (Note that in the figure it is shown as around 500ms). This is because when leader fails, SPaxos stops ordering requests, thus no requests are handled by the system. For LaRSM, the clients which are connected to the failed replica, would have timeout on their current requests and then randomly connect to another replica. As discussed before, this timeout is usually much smaller than the timeout for suspecting a failure in SPaxos. Thus, the latency of a client in LaRSM only increases by a small amount. After the failure, the throughput of LaRSM remains around 16K requests/sec, which is because now there is one less replica in the system and the handling capability of the system decreases. For SPaxos, after a new leader is selected, the throughput increases to be a level slightly smaller than the throughput before the failure and the latency also decreases to be slightly higher than the latency before the failure. We also find that even though the throughput of LaRSM drops when a failure occurs, it still has better throughput than SPaxos, which indicates the good performance of LaRSM.

C. Performance under Different Loads

In this part, we evaluate the performance of LaRSM on different types of work loads. This evaluation is done in a system of three replicas with 500 clients keep issuing requests. We measure the throughput and latency as we increase the ratio of reads in a work load. Figure 9 and Figure 10 give the throughput and latency change respectively. It is shown in those two figures that as the ratio of reads increases in a work load, the throughput of the system increases and the operation latency decreases. This confirms our optimization for the procedure to implement a linearizable RSM. As the reads ratio increases, the writes ratio decreases. Note that in a lattice agreement instance the input lattice is formed only by all the writes. When the number of writes is small, the proposal command set would be small and the message size would be small as well. Thus, the system can complete a lattice agreement instance faster. This shows that the performance of LaRSM is even better for settings with fewer writes.

D. Scalability Issue

Although LaRSM achieves good performance when the number of replicas in the system is small, its performance degenerates when the number of replicas increases, i.e., it is not scalable. The bad scalability is due to the fact that the lattice agreement protocol requires number of rounds that depends on the maximum number of crash failures the system can tolerate, which is typically set to be \(n - \frac{1}{2} \). In this case, as the number of replicas increases, the lattice agreement requires more rounds to complete. Therefore, LaRSM does not scale well.

VIII. Conclusion

In this paper, we first give an algorithm to solve the lattice agreement problem in \(O(\log f) \) rounds asynchronous rounds, which is an exponential improvement compared to previous
This result also indicates that lattice agreement is a much weaker problem than consensus. In the second part, we explore the application of lattice agreement to building linearizable RSM. We first give improvements for the generalized lattice agreement protocol proposed in previous work to make it practical to implement a linearizable RSM. Then we perform experiments to show the effectiveness of our proposal. Evaluation results show that using lattice agreement to build a linearizable RSM has better performance than conventional consensus based RSM technique. Specifically, our implementation yields around 1.3x times throughput than SPaxos and incurs smaller latency, in normal case. In the failure case, LaRSM still continues to handle requests from clients, although its throughput decreases by some amount, whereas, SPaxos based protocol stops handling requests during the leader failure.