
Copyright

by

Venkataesh Velamuri Murty

����

Controlling the Order of Events in Distributed Systems

by

Venkataesh Velamuri Murty� B�Tech�� M�S�

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Ful�llment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August ����

Controlling the Order of Events in Distributed Systems

Approved by
Dissertation Committee�

In memory of

nana

Acknowledgments

I thank Professor Vijay K� Garg for supervising this research and providing guid�

ance along the way� I also thank Professors Jacob A� Abraham� Craig M� Chase�

Mohamed G� Gouda� and Aleta M� Ricciardi for serving in my committee�

Lastly� I thank my friends� who made my stay in Austin a pleasant one�

Venkataesh Velamuri Murty

The University of Texas at Austin

August ����

v

Controlling the Order of Events in Distributed Systems

Publication No�

Venkataesh Velamuri Murty� Ph�D�

The University of Texas at Austin� ����

Supervisor� Vijay K� Garg

In an asynchronous distributed system� processes communicate only via mes�

sages with unbounded transmission time� Relative process speeds are arbitrary and

processes do not have access to a common clock� In such systems� it is often easier

to develop distributed programs when the underlying system o�ers certain mes�

sage ordering guarantees� The main motivation of this dissertation is to provide a

framework in which a user can specify the desired characteristics of the underly�

ing system� and a protocol layer maps the underlying asynchronous system to the

desired speci�cation�

The main contribution of this dissertation is an understanding of the limita�

tions of inhibition based protocols 	where a protocol operates by delaying events
 in

implementing message orderings� A message ordering speci�cation is characterized

as a set of acceptable runs� We study the problem of determining which message

ordering speci�cations can be implemented in a distributed system� Further� if a

speci�cation can be implemented� we give a technique to determine whether it can

be implemented by tagging information with user messages or if it requires control

messages� To specify the message ordering� we use a novel method called forbidden

vi

predicates� All existing message ordering guarantees such as FIFO� �ush channels�

causal ordering� and logically synchronous ordering� 	as well as many new message

orderings
 can be concisely speci�ed using forbidden predicates� We then present an

algorithm that determines from the forbidden predicate the type of protocol needed

to implement that speci�cation�

We present two algorithms for message orderings� First we give an e�cient

algorithm for synchronous ordering� and second we present a general algorithm to

generate protocols implementing a class of speci�cations that can be implemented

by inhibition based protocols without control messages�

Lastly� we present an implementation of a generator that gives e�cient proto�

cols for speci�cations that can be implemented by inhibition based protocols without

control messages� This provides a framework in which a user speci�es the desired

message ordering and the framework guarantees the speci�cation� insulating the

user from the complexities of message orderings�

vii

Contents

Acknowledgments v

Abstract vi

List of Tables xi

List of Figures xii

Notation xiv

Chapter � Introduction �

��� Motivation �

�� Distributed System �

���� Message Ordering �

��� Protocols �

��� Main Contributions of the Dissertation � � � � � � � � � � � � � � � � � �

��� Outline �

Chapter � Characterization of Message Ordering Speci�cations and

Protocols ��

�� System Model ��

� Protocols ��

�� Speci�cations �

viii

�� Limitations of Protocols �

���� General Protocols �

��� Tagged Protocols �

���� Tagless Protocols �

�� Limit Sets ��

�� Related Work ��

�� Summary �

Chapter � Protocol for Message�Orderings ��

��� Algorithm ��

�� Proof of Correctness ��

���� Proof of Safety �

��� Proof of Liveness ��

��� Related Work ��

��� Summary ��

Chapter � Forbidden Predicates ��

��� Forbidden Predicates ��

�� Speci�cation Graph �

��� Impossibility and Lower�Bounds ��

��� Related Work ��

��� Summary �

Chapter � Algorithm to Implement Message Ordering 	�

��� Extensions to Forbidden Predicates ��

�� Algorithm for a Two Clause Predicate � � � � � � � � � � � � � � � � � ��

���� Detection ��

��� Safety ��

��� Discussion of the General Algorithm � � � � � � � � � � � � � � � � � � ��

��� Proof of the Correctness of the Algorithm � � � � � � � � � � � � � � � ��

ix

��� Discussion ��

����� Garbage Collection ��

���� Induction Argument ��

��� Related Work ��

��� Summary �

Chapter
 Implementation ��

��� Interface to the Protocol ��

�� Code Generator ��

��� Input ��

��� Output ��

Chapter 	 Conclusion and Future Work ���

��� Summary and Discussion ���

�� Future Work ���

Bibliography ���

Vita ��	

x

List of Tables

��� Protocol to send a message from a bigger to a smaller process� � � � ��

�� Protocol to send a message from a smaller to a bigger process� � � � ��

xi

List of Figures

�� Illustration of causal past with respect to a process� � � � � � � � � � ��

� Inhibitory protocol to implement FIFO� � � � � � � � � � � � � � � � � ��

�� Knowledge of concurrent events� ��

�� Di�erences in causality relation between system�s and user�s views� � �

�� Pre�xes of H� �

�� A cut belonging to Hgn� �

�� Numbering scheme for an element H � Xgn� � � � � � � � � � � � � � � �

�� Constructing the next pre�x given Hi� � � � � � � � � � � � � � � � � � �

�� Construction of G given Hi for process j� � � � � � � � � � � � � � � � �

��� Construction of G given Hi for process j� � � � � � � � � � � � � � � � ��

��� Construction of H from 	H� �
� ��

��� Asymmetric property of an algorithm implementing SYNC� � � � � � ��

�� A bigger process sending a message to a smaller process� � � � � � � � ��

��� A smaller process sending a message to a bigger process� � � � � � � � ��

��� Protocol messages to implement SYNC� � � � � � � � � � � � � � � � � ��

��� Construction of a run using a forbidden predicate� � � � � � � � � � � ��

��� Detection of di�erent stages of the predicate� � � � � � � � � � � � � � ��

�� Pseudo�code for an algorithm implementing WC� EC� and UC� � � � �

��� Pseudo�code for an algorithm implementing WC� MEC� and MUC� � ��

xii

��� De�nition of the class Msg� ��

�� Send and Deliver functions� ��

��� Architecture of the implementation� � � � � � � � � � � � � � � � � � � ��

��� An example input �le� ��

��� Syntax for writing Filter and Predicate� � � � � � � � � � � � � � � ��

��� A multicast message fs� ra� rb� rcg� ���

�� A collated message fs� ri� rfg� ���

��� Global event fx�a� x�b� x�c� x�dg to implement Xsync� � � � � � � � � � � ���

xiii

Notation

Z � Set of process indenti�ers

H� G � System run

	H� �
 � System run H as viewed by user

Hi � Events in process i in a system executing H

H � Events in a system executing H� H � �Hi

H � Events in user�s view in a system executing H

F�G�H � Event sets

� Causality relation in system model

� Projection of � to a process

� Causality relation with respect to the user

� �

M � Set of all messages

Mij � Set of messages from process i to j

Msg 	H
 � Set of messages in the event set H

i�e�� x � Msg 	H
� 	x�s� � H
 � 	x�s � H
 � 	x�r� � H
 � 	x�r � H

Msg 	h
 � Message corresponding to the event h

i�e�� x � Msg 	h
� 	x�s� � h
 � 	x�s � h
 � 	x�r� � h
 � 	x�r � h

x� y� z� xi � Free variable used to represent messages

x�s� Invocation of the message x

x�s � Send of the message x

x�r� Receive of the message x

xiv

x�r � Delivery of the message x

a� b� c � Message instances

f� g� h � Events

p� q � Stands for either s or r

i� j� k� l � Indices

n � Number of process

m � Number of free variables in a predicate

or number of vertices in a predicate graph

E � Edge set

V � Vertex set

B � Forbidden Predicate

P � Protocol

X � Set of all partial orders H

Y� Z � Subset of X

X � Set of all partial orders 	H� �

Y� Z � Subset of X

xv

Chapter �

Introduction

Controlling the order of events in a distributed system is necessary to achieve some

desired behavior from the underlying distributed system� The goals of the research

presented here are to provide a framework such that the user can specify the desired

characteristics of a distributed system succinctly and automatically generate an

e�cient protocol to map the underlying system to the desired system�

��� Motivation

The motivation for the research is�

� First� to understand the limitations of inhibition based protocols in imple�

menting message ordering speci�cations

� Second� to provide a framework for the user to specify the characteristics of the

desired distributed system and automatically generate a protocol that maps

the asynchronous distributed system to the speci�cation�

In this section we explore di�erent areas in distributed systems where such a frame�

work is useful�

�

Software Development

Let us consider a system with two processes p� and p�� If p� sends two messages

x and y to p�� then p� can receive the two messages in two possible ways� either x

before y or y before x� Similarly� if p� sends k messages then there are k� possible

computations� If we impose the restriction that� if x is sent before y then x is

received before y 	in other words� FIFO ordering
 the number of possible outcomes

reduces to one� The two cases discussed� one in which the system is completely

asynchronous and the other in which FIFO ordering is imposed� are extremes� In

general� we may be interested in the case which allows some manageable extent

of non�determinism� An obvious question is� �what is meant by manageable���

This is dependent on the problem in question� In addition� during the software

implementation process the programmer may be interested in increasing the non�

determinism gradually� Thus� we are interested in a system that provides us with the

whole range of non�determinism 	between the two extremes
� and in where the user

can set the non�determinism to the required level� It is very bene�cial if the system

can provide a framework to avoid computations which either the programmer does

not care about or wants to postpone until later�

Software Debugging

Selective control of non�determinism is helpful in debugging distributed programs�

The process of debugging consists of monitoring a program in order to learn some�

thing about its behavior� Often the observed behavior of the program di�ers from

what is expected� When this occurs� a debugger can be used to investigate the dis�

crepancy� In the process of debugging a distributed program� non�determinism can

result in a large number of possible runs� The programmer may not be interested in

all the runs� The programmer may conjecture that unexpected behavior occurs only

in a particular class of computations� for example those that exhibit the property �

�when functions f and g execute concurrently�� Thus� the programmer is interested

in a framework in which he can specify the set of computations of interest and avoid

the unnecessary cases�

Software Testing

In the process of software regression test� we are interested in test cases that are

repeatable� producing the same output for a given input� In a distributed system�

there is an additional variable � the non�determinism that plays a part in the output�

Thus� there should be an easy way to control non�determinism to create repeatable

test scenarios� In addition� we are interested in testing under di�erent test environ�

ments � for instance� environments where all messages are causally ordered� or all

messages are synchronous� Thus� a distributed system should provide a framework

to facilitate simulating di�erent environments�

Message Orderings

A fair amount of research has been done in deriving e�cient algorithms to imple�

ment di�erent message orderings� for example� causal ordering� �ush channel prim�

itives� synchronous ordering� marker message algorithms and broadcast�multicast

algorithms� This work uni�es many of the orderings studied in the literature�

Partial Order Services

Current applications that need to communicate objects 	i�e�� packets� frames
 usually

choose between a fully ordered service such as that currently provided by TCP ����

and one that does not guarantee any ordering such as that provided by UDP �����

For some applications a partial order service ���� is more appropriate�

A motivating application for a partial order service is the emerging area of

multimedia communications� These applications have a high degree of tolerance for

less�than�fully�ordered data transport as well as data loss� A second application that

could bene�t from a partial order service involves remote and distributed databases�

�

Consider the case where a database user transmitting queries to a remote server

expects records to be returned in some order� although not necessarily in total

order� In e�ect� a partial order extends the service level from two extremes � ordered

and unordered � to a range of discrete values encompassing both extremes and all

possible partial orderings in between�

Separation of Concerns

Many protocols such as global snapshot algorithms ���� �� ��� check�pointing and

rollback recovery ���� �� ��� and deadlock detection ��� require special messages

to �nd consistent�cuts in a computation� These protocols require some form of

inhibition of the special messages in order to guarantee correctness�

��� Distributed System

The model we use of a distributed system consists of a �nite set of processes

p�� � � � � pn� communicating using reliable messages� A computation is character�

ized by a �nite sequence of events on each process� In general� we assume a system

with unbounded message delivery and without a global clock� Two events in a com�

putation are related under the �happened�before� relation ��� if one of the following

holds�

� The second event happened after the �rst event in the same process�

� One event is a send of a message� and the second is the reception of the same

message�

� If there exists a third event� where the �rst event happened�before the third

event� and the third event happened�before the second event�

�

����� Message Ordering

A distributed computation or a run describes an execution of a distributed program�

At an abstract level� a run can be de�ned as a partially ordered set 	H� �
� where

H is the set of events in the system and � the �happened before� relation between

events� It is often easier to develop distributed programs when the partially or�

dered set 	H� �
 is guaranteed to satisfy certain message ordering properties� For

example� many distributed algorithms work correctly only in the presence of FIFO

channels� This guarantee on the ordering of messages is either provided explicitly �

by communication primitives such as causal ordering ��� and logically synchronous

ordering ���� ���� or is built into the algorithm itself � as with global snapshot ���

and recovery algorithms �����

A message ordering speci�cation is characterized as the set of acceptable

runs� that is� a subset of X� where X is the set of all runs� For example� a system

satisfying causal ordering can be viewed as the set of runs� say Xco� such that for

all runs in Xco� and for all pairs of messages� 	s� � s�
�		r� � r�
� where sj is the

send of a message and rj is its corresponding receive�

����� Protocols

A protocol maps the underlying system to the desired system� The mapping is

achieved by inhibition of events� A protocol for a distributed system speci�es for each

process at every stage of the computation� the set of events that are enabled� Thus�

a protocol has the power to disable an event until the occurrence of prerequisite

events� For example� in the implementation of FIFO� a message is delayed until all

messages with the same source and destination sent earlier have been received�

To facilitate the discussion of inhibition� a event in a user�s view is broken

into two underlying system events� the request of the event and the execution of

the event� For example� the receive event in a user�s view is broken into the receive

and the delivery of the message� and similarly the send event into the invocation

�

and the send of the message�

��� Main Contributions of the Dissertation

The contributions of this work can be divided into three categories � �rst� the theory

of message ordering� second� algorithms for message ordering� and lastly automatic

generation of e�cient algorithms for message orderings�

First� in the theory of message ordering the dissertation�s contributions are�

� A new characterization of inhibition based protocols and classi�cation of them

into three classes� namely protocols that require knowledge of the concurrent

past� protocols that require knowledge of the causal past� and protocols that

require knowledge of the local past�

� A de�nition of a message ordering speci�cation as a set of valid runs� In this

abstract setting we derive�

� the necessary and su�cient conditions for the existence of an inhibition

based protocol� and

� the knowledge required by the protocol to implement the speci�cation�

An asynchronous distributed system can be viewed as a set of all possible runs

X� and a message ordering speci�cation a subset of X�

� In general X is an in�nite set� thus we need a �nite representation for �useful�

speci�cations� We present a method called forbidden predicates and present�

� an e�cient algorithm to determine the existence of an inhibition based

protocol� and

� the knowledge required by the protocol to implement the speci�cation�

This dissertation answers some fundamental questions in the area of mes�

sage orderings� For example� consider the algorithm for causal ordering by Raynal�

Schiper and Toueg ���� In their algorithm a process Pi tags a message with the

�

matrix m where m�j� k� is the knowledge of process Pi about the messages sent from

Pj to Pk� It is natural to ask whether the message ordering can be further restricted

by sending higher�levels of knowledge 	for example� by using three dimensional ma�

trices� what Pi knows that Pj knows about messages sent from Pk to Pl
� It is

an easy consequence of the results of this dissertation that no additional tagging of

information can restrict the message ordering further�

Similarly� we show that there does not exist a protocol to implement any

message ordering more restrictive than synchronous ordering� That is� if the time

diagram of an invalid run can be drawn such that all messages are vertical then such

a speci�cation is not implementable�

Although� there has been a fair amount of research in the area of message

orderings� neither a succinct representation for all the message orderings nor a for�

mal treatment to study the relationship between the orderings has been done� We

present a new method� called forbidden predicates� to specify these message order�

ings� Informally� a forbidden predicate is a conjunction of causality relationships

between events� and a run is valid if there does not exist a set of events that makes

the forbidden predicate true� Forbidden predicates can be used to describe a large

class of message speci�cations� All existing message ordering guarantees such as

FIFO� �ush channels� causal ordering� and logically synchronous ordering� as well

as others� can be concisely speci�ed using forbidden predicates�

Second� in algorithms for message orderings� we explore two main issues

� �rst� e�cient algorithms for synchronous� causal� and asynchronous orderings�

and second generalization of the protocols for a class of speci�cations that can be

implemented by tagging� The two main contributions are�

� An e�cient algorithm to implement synchronous ordering�

� A general algorithm to generate protocols implementing a class of speci�ca�

tions that can be implemented by inhibition based protocols with only knowl�

edge of the causal past�

�

The protocol for synchronous ordering is a more e�cient algorithm than the

existing ones� such as Bagrodia�s rendezvous ��� and the algorithm by Soneoka and

Ibaraki ����� The algorithm presented results in fewer messages with the same or

quicker response time�

The general algorithm generates protocols for the existing message ordering

speci�cations like FIFO� causal ordering� F�channel primitives� and the orderings

induced among the user or control messages in many of the protocols such as global

snapshot algorithms ���� �� ��� check�pointing and rollback recovery ���� �� ���

and deadlock detection ���� The work can be easily extended to include other mes�

sage orderings like FIFO Broadcast and CBCAST�

Lastly� we present an implementation of a protocol generator that generates

e�cient 	with respect to tagged information
 protocols for speci�cations that can be

implemented by inhibition based protocols with only knowledge of the causal past�

This provides a communication framework in which a user speci�es the message

ordering for a run of the distributed program and the framework guarantees the

speci�cation� insulating the user from the complexities of message orderings�

��� Outline

This dissertation consists of seven chapters� The main focus of the dissertation is

a distributed system characterized by point�to�point messages and protocols that

operate by delaying events� The protocols are classi�ed into three types depending

on the amount of knowledge required� local� causal� or concurrent�

Chapter presents a formal speci�cation of a desired distributed system and

de�nes inhibition based protocols� We de�ne the three classes of protocols and

present the necessary and su�cient conditions for the existence of a protocol in a

class for a given speci�cation�

Chapter � discusses implementation of three message orderings� asynchronous

ordering� causal ordering� and synchronous ordering� In this chapter� we also present

�

an e�cient protocol to implement synchronous ordering�

Chapter � introduces a succinct representation called forbidden predicates

for a class of message orderings� All existing message ordering guarantees such as

FIFO� �ush channels� causal ordering� and synchronous ordering as well as others

can be concisely speci�ed using forbidden predicates� We present an algorithm for

the existence of a protocol in a class for a given forbidden predicate�

Chapter � studies the issues for automatic generation of e�cient protocols

for a forbidden predicate�

Chapter � describes the prototype design for an automatic generator of pro�

tocols� We show that the protocols generated are as e�cient as the protocols in the

literature for some of the extensively studied message orderings�

Chapter � examines some extensions to the idea of a global event 	a message

can be thought of as a global event with a send and a receive
 to multicast messages

and other generalizations�

�

Chapter �

Characterization of Message

Ordering Speci�cations and

Protocols

In this chapter� we are interested in characterizing message ordering speci�cations

and protocols that operate by delaying events� Usually an event from the user�s

view is equivalent to two underlying system events� the event request and the event

execution� For example� to implement causal ordering� the receive events of the user

messages are implemented as two underlying system events� receive of the message

and the delivery of the message� Therefore� we di�erentiate between the two views

by de�ning the system�s view of a run and the user�s view of the same run� In

this chapter� each user event h� like send of a message or receive of a message� is

characterized by two system events� that is h� and h� where h� represents the request

of the event and h the execution�

��

��� System Model

A distributed system consists of a set of n processes communicating using messages

from a message set� The basic entity in our model is a message�

De�nition �� A message x consists of four system events� They are invocation

event x�s�� send event x�s� receive event x�r� and delivery event x�r� We say� Msg 	h

is a message x if h is either x�s�� x�s� x�r�� or x�r�

The invocation event represents the request by the origin process to send the message

and the send event the actual send of the message� Similarly� the receive event

represents the destination process�s receiving the message and the delivery event

when the destination process processes the message�

De�nition �� If Z � f�� � � � � � ng is a set of natural numbers used to identify the

processes in a system� then

M �
�

�i�j��Z�Z

Mij �

is the set of messages� where Mij is the set of messages from process i to j� The set

Mii �
 for any i � Z�

The setMij represents the set of all messages that can be sent by process i to process

j� Thus� in any run the messages sent by process i to process j is a subset of Mij �

The restriction Mii �
 states that a process does not send messages to itself�

A cut� de�nes the state of the system� and the state is a function of the

events executed by each process�

De�nition �� Let Hi be the event set of process i� such that

Hi � fx�s�� x�s � x �Mij for all j g � fx�r�� x�r � x �Mki for all k g�

A �nite sequence of events Hi is called the local state of i�

De�nition �� Given an n�vector of local states� H � 	H��H�� � � � �Hn
� where Hi

is the local state of i for each i� event h happened�before event h�� denoted as h � h��

�In this dissertation we use cut to mean consistent cut

��

if any one of the following conditions is true�

�� h and h� are both events in Hi for some i� and h is before h
� in the sequence

Hi� or

� h is the send of a message� i�e�� x�s and h� is the corresponding receive� i�e��

x�r� for some message x �M � or

�� the event h happened�before event h�� and the event h�� happened�before the

event h�� for some event h�� � H� where H � �iHi�

A cut satis�es the usual notions of a computation in a distributed system�

that is� it is a partial order� it has no spurious messages� and it includes the execution

of an event only if it has been requested by the user�

De�nition �� Let Z � f�� � � � � ng be the processes in the system and M the

message set� An n�valued vector of local state H is a cut if the events in H and the

happened�before relation on the set of events satisfy the following conditions�

�� There are no spurious messages� i�e� if the receive event x�r� is in H then the

corresponding send x�s is in H for any message x �M �

� For any local state Hi� if a send event x�s is in Hi then the corresponding

invocation event x�s� is in Hi for any message x �M � Similarly� if a delivery

event x�r is in Hi then the corresponding receive event x�r
� is in Hi for any

message x �M �

�� The happened�before relation on the set of events in H is a partial order� that

is� there are no two events h and h� such that h � h� and h� � h�

De�nition �
 A pre�x of a cut H is any cut G� such that Gi is a subsequence of

Hi for all i � Z�

A pre�x of interest is the causal past of a cut H with respect to a given process i

	denoted by CausalPasti	H

� Figure �� shows the causal past of the cut H with

respect to process � Intuitively� the causal past with respect to a process i consists of

�

r rr

r r r r

r

r

r

�

�

��
�
���

�
�
�
�
�
�
����

�
��R �

�
���

�

�

�

	a
 Cut H

r

r r r r

r

�

�

��
�
���

�
�
��R ���

�

�

�

	b
 CausalPast�	H

Figure ��� Illustration of causal past with respect to a process�

��

all the events that are followed by some event in process i� Let G � CausalPasti	H
�

then

�� Gi � Hi� and

� � j � i � g � Gj � 	�h � Hi � g � h
�

De�nition �	 A distributed system is a ��tuple 	Z�M�X
� where

�� Z � f�� � � � � ng is a set of process identi�ers�

� M is a message set� and

�� X is the set of all cuts over Z andM � i�e� X � f 	H� �
 � 	H� �
 is a cutg �

Given a cut H � X we use the following notation to represent the messages

that have not been requested by process i� messages that have been requested but

not yet sent� messages that have been sent by the process i and are in transit� and

�nally the messages that have been received but not yet delivered�

Ii	H
 � fx�s� � 	x�s� � Hi
 � 	x �Mik
 g �

Si	H
 � fx�s � 	x�s� � Hi
 � 	x�s � Hi
 g �

Ri	H
 � fx�r� � 	x�r� � Hi
 � 	� k � 	x �Mki
 � 	x�s � Hk

 g �

Di	H
 � fx�r � 	x�r� � Hi
 � 	x�r � Hi
 g �

��� Protocols

In this section we de�ne inhibitory protocols� Informally� an inhibitory pro�

tocol speci�es that an event may be delayed until the occurrence of prerequisite

events� For example� in the implementation of FIFO� a message is delayed until all

messages sent earlier have been delivered� In Figure �� the protocol enables the

event r� only after the event r� has been executed�

De�nition �� Given a distributed system 	Z�M�X
� An inhibition based protocol

P speci�es a set of enabled events at each process for a given cut H � X � Thus�

P � f 	P�	H
� P�	H
� � � � � Pn	H

 � H � X g �

��

r
s��

r
s�

r
s��

���
invocation

r
s�

��I
send

r
r��

receive

r
r��

r
r�

r
r�

delivery

�

���
��

��
��

��
��

��
��

�
�
�
�
�
�
��	

Figure �� Inhibitory protocol to implement FIFO�

is a vector of enabled event sets for each cut� where Pi	H
 is the set of enabled

events in process i after the execution of the cut H and

P�	H
 � Ii	H
 � Si	H
 � Ri	H
 � Di	H
�

Now we present some conditions to be satis�ed by the vector of enabled event

sets� The protocols do not have control over star�events� Clearly� a protocol cannot

disable a user from requesting the execution of a message that has not been sent�

Thus� we have

Pi	H
 � Ii	H
 � Ii	H
�

Similarly� a protocol cannot disable the receive of a message that has been already

sent and is in transit� Thus

Pi	H
 � Ri	H
 � Ri	H
�

A protocol can disable or enable the send event and delivery event of a message if

the invocation or the receive has been executed� respectively� Therefore�

Ii	H
 � Ri	H
 � Pi	H
 � Ii	H
 � Ri	H
 � Ci	H
�

where Ci	H
 � Si	H
 � Di	H
� 	Controllability

Notation� The notation C represents controllable events� We use Ci to represent

controllable events in a process i� When the subscript is absent� say C	H
� then

��

we are referring to the union of all Cis� that is� C	H
 �
S

i Ci	H
� We follow

this convention for the sets H�P� I� S�D�R� and C� that is� H �
S

i H� P 	H
 �S
i Pi	H
� and so on�

We de�ne the set of cuts� XP � possible under the protocol P inductively�

based on the events enabled� The base case is the null cut H� in which H �

belongs to the set XP � since this cut is possible even if the protocol does not enable

any event� Let the cut H be possible under the protocol� If some of the processes

simultaneously execute an event enabled in their process� then the resulting cut also

is possible under the protocol�

De�nition �� Given a protocol P the protocol set XP is de�ned inductively using

the following rules�

�� H� � XP �

� Let H � XP � then G � XP � where

	a
 Hi is a pre�x of Gi and they di�er by at most one event� and

	b
 Gi � Hi � Pi	H
�

In the next lemma� we show that G is a cut� that is� it satis�es the three conditions

of a cut�

Lemma �� Let H be a cut� and 	P�	H
� P�	H
� � � � � Pn	H

 a vector of enabled

event sets� such that� for all i

Ii	H
 � Ri	H
 � Pi	H
 � Ii	H
 � Ri	H
 � Ci	H
�

Then G is a cut� where

�� Hi is a pre�x of Gi and they di�er by at most one event� and

� Gi � Hi � Pi	H
�

Proof Outline� Clearly� G satis�es the three conditions of a cut� that is�

�� G is a partial order� since H is a partial order� and if g � G � P 	H
 then

 � g� � G � g � g��

��

� x�r� � G � x�s � G� since a receive event is added only if H contains the send

event� and

�� x�s � G � x�s� � G and x�r � G � x�r� � G � by de�nition of S and R�
�

It is desirable that any protocol allows the system to progress to satisfy the

liveness property� That is� if a user requests a message then it is eventually sent and

delivered� In other words� we want the protocol to eventually execute a cut H such

that� S	H
 � R	H
 � D	H
 �
� that is� all the messages requested by the user

have been sent and delivered and there are no pending events� Thus� the protocol

at each stage enables at least one of the pending events if the pending set is not

empty� This condition can be formally stated as

R	H
 � C	H
 �
 � P 	H
 � 	R	H
 � C	H

 �
� 	Liveness

Consider the case when the above condition is not satis�ed� If the user does not

request any more messages� the system cannot make any progress and the pending

events are never executed�

Next� we classify protocols based on the extent of information exchange pos�

sible among the processes� Consider �rst a protocol which allows processes to ex�

change information only using user messages� Then a process is limited to the causal

past and intuitively� the class of such protocols can be implemented by tagging in�

formation to user messages� Next consider� a protocol which does not allow any

information exchange using either user or control messages� Then a process has to

enable�disable events based only on its local history� Such protocols belong to the

class of tag�less protocols� Finally� consider a protocol that allows processes to ex�

change information using both control messages and user messages� Then a process

is capable of delaying events based on events that appear concurrent� when events

associated with the control messages are deleted� For example� in Figure ��� pro�

cess i knows about the events x�s� and x�s although they appear concurrent when

the control message has been deleted�

��

Process i

s
x�s�

s
x�s

s

x�r�

s

x�r

�

�

�

�
�
�
�R

� Control Message

�
�
�
��

	a
 With Control Message

Process i

s
x�s�

s
x�s

s

x�r�

s

x�r

�

�

�

�
�
�
�R

	b
 Without Control Message

Figure ��� Knowledge of concurrent events�

��

Formally� the types of protocols and the condition satis�ed by each type are�

General Protocols

The class of general protocols characterizes the environment where an action by

a process can be known instantaneously to all processes in the group� Thus� each

process enables and disables events based on the knowledge of both causal and

concurrent events� but a process cannot enable or disable events based on

� future events� or

� timing of the events�

Therefore� a process takes the same action in any two executions� if the partial

orders are the same�

Later� we show that if there exists a general protocol for a given speci�ca�

tion then there exists an inhibitory protocol using control and user messages that

implements the speci�cation�

Tagged Protocols

The class of tagged protocols characterizes the environment where an action by a

process can be known only in its causal future� Thus� each process enables and

disables events based on the knowledge of events in the causal past� Therefore�

if in two di�erent executions� the causal past with respect to a process i� that is

CausalPasti	�
� is the same then the action taken by the process i in the two cases

is same� This can be formally stated as�

CausalPasti	H
 � CausalPasti	G
 � Pi	H
 � Pi	G
� 	Causal

Tagless Protocols

The class of tagless protocols characterizes the environment where an action by

a process can be known only in its local future� Thus� each process enables and

��

disables events based on the knowledge of local events� These protocols cannot tag

information to the user messages and cannot use control messages� The condition

satis�ed by a tagless protocol is�

Hi � Gi � Pi	H
 � Pi	G
� 	Local

The condition states that if the local history is the same then the action taken by

the process is the same�

The above conditions are used to describe the three classes of protocols we

are interested in studying� For instance� the class of general protocols models the

behavior of protocols with control messages in the absence of synchronized clocks

or a global clock� Such a protocol cannot di�erentiate between two cuts that have

the same partial order relation but may di�er in physical global time�

��� Speci�cations

A speci�cation is the behavior as desired by the user� For example� a particular run

may or may not be desirable� In this section� we expand on the concept of user�s

view and formally de�ne a speci�cation�

A user is interested in the send and delivery of a message and the order

relation among them� rather than the invocation and receive events� For example�

causal ordering is stated in terms of the relation between the send and delivery

events� Thus� the causality relation between two events from the user�s view can

be di�erent than the relation from the system�s view� Figure �� illustrates the

di�erence in a system that implements FIFO ordering among the messages� In the

system�s view the event s� happened causally before the event r�� whereas from the

user�s view s� did not happen before the event r�� Thus� we de�ne a relation from

the system�s view to the user�s view of a cut� which is a projection of the events

with the invocation and receive events removed�

�

r

s��

r

s�

r

s��

r

s�

r
r��

r
r��

r
r�

r
r�

�

���
��

��
��

��
��

��
��

�
�
�
�
�
�
��	

	a
 System�s View

r

s�

r

s�

r
r�

r
r�

�

���
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

	b
 User�s View

Figure ��� Di�erences in causality relation between system�s and user�s views�

�

De�nition ��� UserView	H
� a projection of the cutH� is a partial order� denoted

as a tuple 	H� �
� where

H � fh � h � H � 	h is a send or a delivery event
 g�

and � is the order relation on H� For the projected cut 	H� �
� h � h� if and only if

�� � k such that h� h� � Hk and h � h�� or

� �x �M � such that x�s � h and x�r � h�� or

�� � g � H such that h � g and g � h��

The projected cut also satis�es the usual notion of a cut� that is there are no spurious

messages and the relation � is a partial order�

A distributed run is a execution of a program with all messages invoked have

been delivered� since we assume reliable message delivery�

De�nition ��� A run 	H� �
 is a projection of a cut H such that

�� 	H� �
 � UserView	H
� and

� all messages invoked in the cut H have been delivered� that is� x�s� � H �

x�r � H�

We can represent the distributed system 	Z�M�X
 from a user�s view as a ��tuple

	Z�M�X
� where X is the set of all runs possible in user�s view� That is�

X � f 	H� �
 � �H such that

	H � X
 � 		H� �
 � UserView	H

 � 	x�s� � H � x�r � H
 g�

In the rest of the dissertation we use X to represent the above set�

De�nition ��� A speci�cation Y is a subset of X�

A protocol P is characterized by the set of cuts XP that are possible under

the protocol� We say that a protocol P guarantees safety if the projection of a cut

H � XP is valid in the user�s view� In other words� a protocol P guarantees safety if

for all H in the set XP satisfying the condition x�s
� � H � x�r � H� the projection

UserView	H
 belongs to Y�

A protocol P is characterized by the set of cuts XP on a system 	Z�M�X
�

The protocol can be similarly characterized in the user�s view of the system� as a

set of runs XP � that is

XP � f 	H� �
 � �H such that

	H � XP
 � 		H� �
 � UserView	H

 � 	x�s� � H � x�r � H
 g�

Thus� we can state that a protocol P guarantees safety for the speci�cation Y� if

and only if

XP � Y� 	Safety

In summary� given a system 	Z�M�X
 and a speci�cation Y we say a protocol

P implements the speci�cation if and only if

�H � X � R	H
 � C	H
 �
�P 	H
 � 	R	H
 � C	H

 �
� and

XP � Y�

��� Limitations of Protocols

In this section we explore the limitations of each type of protocol� We answer

questions of the form� �If protocol P is a tagless protocol� then does H necessarily

belong to the set XP ��� These questions provide us with insight into the type of

protocol necessary to implement the desired speci�cation� For example� if the cut

H is undesirable and H � XP � then P cannot implement the speci�cation�

Given a protocol P� the set of possible cuts under the protocol XP is de�ned

inductively� Thus� the proof of the inclusion of a cut H in the set XP is also done

inductively� Given a cut H we construct a series of pre�xes H��H�� � � � �Hi� � � � �

such that Hi is a pre�x of H and Hi � Hi�� � H� and H� is an empty cut� that is

H� �
�

�

r
s�

r
s��

r
s��

r
s�

r
s��

r
s�

r
s��

r
s�

r
r��

r
s��

r
s�

r
r��

r
r�

r
r��

r
r��

r
r��

r
r�

r
s��

r
s�

r
r��

�

�

�

A
A
A
A
A
A
A
A
A
AAU

�

�
�
�
�
���

�
�
�
�
�
�
�

Z
Z
Z
Z
Z
Z
Z�

��
��

��
��

��
��

��
���

Hi Hi�j

Figure ��� Pre�xes of H�

Base Case� The base case� that is H� � XP follows� since H
� is an empty cut�

Inductive Case� We have to show that if Hi � XP then H
i�� � XP � Given H

i � XP �

the conditions for Hi�� � XP are given by De�nition ���

for all j � I�

I� � Hi
j is a pre�x of H

i��
j and they di�er by at most one event� and

I� � Hi��
j � Hi

j � Pj	H
i
�

����� General Protocols

In this section� we de�ne a set of cuts that necessarily belong to the set XP � where

P is a general protocol� Let the set be denoted as Xgn� A cut H belongs to the set

Xgn if the following conditions hold�

�� For all messages x in Msg 	H
� x�s� immediately precedes x�s and x�r� imme�

diately precedes x�r�

� All messages requested have been delivered� that is x�s� � H � x�r � H�

�� There exists a numbering scheme Num that assigns a unique number to each

event such that

�

r r

x�s� x�s

r r
x�r� x�r

r r
y�s� y�s

r r
y�r� y�r

r r
z�s� z�s

r r

z�r� z�r

�

�

�

�

�

�

Num	x�s�
 � �
Num	x�s
 �
Num	x�r�
 � �
Num	x�r
 � �
Num	y�s�
 � �
Num	y�s
 � �
Num	y�r�
 � �
Num	y�r
 � �
Num	z�s�
 � �
Num	z�s
 � ��
Num	z�r�
 � ��
Num	z�r
 � �

Figure ��� A cut belonging to Hgn�

	a
 for any two events h� g � H� if h � g then Num	h
 � Num	g
� and

	b
 for any message x � Msg 	H
� Num	x�r
 � Num	x�r�
 � � Num	x�s

 � Num	x�s�
 ��

The time diagram of any element in the set Xgn can be drawn in such a way that

all message arrows are vertical� Figure �� shows an example cut in Xgn�

Lemma �� Let P be a protocol satisfying the liveness property and XP the set of

all cuts possible under the protocol� If P is a general protocol� then Xgn � XP �

Proof� A general protocol P satis�es the following properties�

Controllability � Ii	H
 � Ri	H
 � Pi	H
 � Ii	H
 � Ri	H
 � Ci	H
�

Liveness � R	H
 � C	H
 �
 � P 	H
 � 	R	H
 � C	H

 �
�

Let H � Xgn� By the de�nition of Xgn� there exists a numbering scheme Num that

assigns a unique number to each event� such that

Num	x�r
 � Num	x�r�
 � � Num	x�s
 � Num	x�s�
 �

and 	g � h
� 	Num	g
 � Num	h

� Using this numbering� we can de�ne a total

order in the messages and construct the required pre�xes� that is� H��H�� � � � � as

shown in Figure ��� Since H� � XP it is su�cient to show that H
i�� � XP � given

�

r

s��

r

s�

r

r��

r

r�

r

s��

r

s�

r

r��

r

r�

�

�

�

H� H� H� H� � � � � � �� � � � � �

A
A
A
A
A
A
A
A
A
A
AU

�

Figure ��� Numbering scheme for an element H � Xgn�

Hi � XP � Clearly� H
i�� and Hi di�er at most by one event� Therefore� for each j�

Hi
j is a pre�x of H

i��
j and they di�er by at most one event� Thus� I� is satis�ed for

all j�

We have to show that I� is satis�ed� that is�
�
Hi�� �Hi

�
� P 	Hi
� There

are four possible cases�

� Let i � �m� Then Hi���Hi � f s�m�� g and s
�
m�� � I	Hi
� since only up to m

messages have been executed� Due to controllability property� s�m�� � I	Hi

implies s�m�� � P 	Hi
�

� Let i � �m �� Then Hi���Hi � f sm�� g and S	H
i
 � f sm��g� R	H

i
 �

and D	Hi
 �
� Due to liveness property� the singleton set C	Hi
 � R	Hi

implies S	Hi
 � P 	Hi
� Therefore� sm�� � P 	Hi
�

� Let i � �m � Then Hi�� �Hi � f r�m�� g and S	H
i
 �
� R	Hi
 � fr�m��g

and D	Hi
 �
� Due to controllability property� r�m�� � R	Hi
 implies r�m�� �

P 	Hi
�

�

� Let i � �m �� Then Hi�� �Hi � f rm�� g and S	H
i
 �
� R	Hi
 �
 and

D	Hi
 � frm��g� Due to liveness property� the singleton set C	H
i
 � R	Hi

implies R	Hi
 � P 	Hi
� Therefore� rm�� � P 	Hi
�

Therefore� in each case we have Hi�� � Hi � P 	Hi
� or� for each j � I� we have

Hi��
j � Hi

j � Pj	H
i
� �

����� Tagged Protocols

In this section� we de�ne a set of cuts� denoted as Xtd� that necessarily belong to

the set XP � where P is a tagged protocol� A cut H belongs to the set Xtd if the

following conditions hold�

�� For all messages x in Msg 	H
� x�s� immediately precedes x�s and x�r� imme�

diately precedes x�r�

� All messages requested have been delivered� that is x�s� � H � x�r � H�

�� All pairs of messages are causally ordered� that is� x�s � y�s � 	 	y�r� � x�r�
 �

Lemma �� Let P be a protocol satisfying the liveness property and XP be the set

of all cuts possible under the protocol� If P is a tagged protocol� then Xtd � XP �

Proof� A tagged protocol P satis�es the following properties�

Controllability � Ii	H
 � Ri	H
 � Pi	H
 � Ii	H
 � Ri	H
 � Ci	H
�

Liveness � R	H
 � C	H
 �
 � P 	H
 � 	R	H
 � C	H

 �
�

Causal � CausalPasti	H
 � CausalPasti	G
 � Pi	H
 � Pi	G
�

To prove that a cut H � XP � we have to construct a sequence of cuts H
��H�� � � � �

that are pre�xes of H� We construct the sequence such that if the longest path from

start of the computation to an event h is k� then h � Hk�� and h � Hk�

�

r
s�

r
s��

r
s��

r
s�

r
s��

r
s�

r
s��

r
s�

r
r��

rf
s��

r
s�

r
r��

r
r�

r
r��

r
r��

r
r��

r
r�

r
s��

rf
s�

r
r��

�

�

�

A
A
A
A
A
A
A
A
A
AAU

�

�
�
�
�
���

�
�
�
�
�
�
�

Z
Z
Z
Z
Z
Z
Z�

��
��

��
��

��
��

��
���

Hi

Figure ��� Constructing the next pre�x given Hi�

Let Hi be a pre�x of H� then Hi�� contains the bottom elements among the

events that do not belong to Hi� For example� in Figure ��� Hi�� � Hi � f s�� s
�
� g�

Formally�

Hi��
j � Hi

j � Bj	H�H
i
� for all j

where Bj	H�H
i
 �

n
h � Hj �Hi

j � 	g � h
� g � Hi
o
and satis�es the following

properties�

�� Bj	H�H
i
 is a singleton or an empty set�

� Bj	H�H
i
 � Ij	H

i
 � Rj	H
i
 � Cj	H

i
�

We have to show that if H � Xtd� then H � XP � Clearly� H
� � XP � since it is

the empty cut� Let Hi � XP � we have to show that H
i�� � XP � The pre�xes satisfy

I�� since Bj	H�H
i
 is a singleton or an empty set and Hi��

j � Hi
j � Bj	H�H

i
 for

all j� Further� we have to show that Hi��
j � Hi

j � Pj	H
i
 for all j 	I�
�

GivenHi and j� construct a cut G as shown in Figure ��� Pick CausalPastj	H
i

and extend all messages 	with destination process not being j
 in transit�� There�

fore� CausalPastj	H
i
 � CausalPastj	G
� We make the following claims�

�pick any possible extension

�

r rr

r r r r

r

r

r

�

�

��
�
�
��

�
�
�
�
�
�
����

�
�
�R �

�
�
��

Process j

	a
 Cut Hi

r

r r r r

r

�

�

��
�
�
��

�
�
�
�R ���Process j

	b
 CausalPast�	H
i

r r

r r r r

r

�

�

��
�
�
��

�
�
�
�R �

�
�
��

Process j

	c
 Cut G

Figure ��� Construction of G given Hi for process j�

�

�� Pj	G
 � Pj	H
i
�

Since CausalPastj	H
i
 � CausalPastj	G
 by construction� therefore using the

causal property� we get Pj	H
i
 � Pj	G
�

� Cj	G
 � Cj	H
i
�

For any cut H we have

Sj	H
 � fx�s � 	x�s� � Hj
 � � 	x�s � Hj
 g � and

Dj	H
 � fx�r � 	x�r� � Hj
 � 	x�r � Hj
 g �

By construction of G we have Hi
j � Gj� Therefore Sj	G
 � Sj	H

i
 and

Dj	G
 � Dj	H
i
� Since for any cut Cj	H
 � Sj	H
 �Dj	H
� we have Cj	G
 �

Cj	H
i
�

�� Rk	G
 �
� where k � j�

For any cut H� Rk	H
 represents the messages in transit destined for process

k� By construction of G� we have Rk	G
 �
� where k � j�

�� Rj	G
 �
� 	Proof by contradiction

Let x�r� � Rj	G
� therefore � k � 	x�r� � Gj
 � 	x�s � Gk
 � 	x � Mkj
�

Since 	x�s � Gk
 and 	x � Mkj
� we have by the de�nition of CausalPast

�h � 	x�s � h
 � 	h � Gj
�

Since 	x�s � h
 and x�s� h are in di�erent processes� we have either

	a
 � y �M � 	x�s � y�s
 � 		y�r� � h
 � 	y� r� � h

 � or

	b
 	x�s � x�r�
 � 	x�r� � h
�

But x�r� � G� therefore 		x�r� � h
� Since h� x�r� � Hj� either 	x�r
� � h

or 	h � x�r�
� Therefore�

�x� y �M � 	x�s � y�s
 � 	y�r� � x�r�
�

This implies H � Xtd�

��

�� Ck	G
 �
� where k � j�

Let x�s� � Gk� Since x�s
� immediately precedes x�s� therefore if there exists

an event h such that x�s� � h� then x�s � Gk� From the construction of G� we

have x�s� � Gk� then x�s
� is also an event in the cut CausalPastj	H

i
� From the

de�nition of CausalPastj	�
� if x�s
� � CausalPastj	H

i
� then either x�s� � Hi
j

or there exists an event h such that h � Hi
j and x�s� � h� Therefore�

x�s � Gk � x�s� � Gk�

Since x�s� � Gk � x�s � Gk� we have Sk	G
 �
 for all k � j and by

construction of G� Dk	G
 �
 for all k � j�

�� Cj	G
 is a singleton or an empty set�

Since x�s� immediately precedes x�s and x�r� immediately precedes x�r�

From 	�
� 	�
� 	�
 and 	�
� we have

R	G
 � C	G
 �

��
k

Rk	G

�
�

�
��

k ��j

Ck	G

�
A � Cj	G

is a singleton or empty set� Using liveness property and R	G
�C	G
 being either a

singleton or empty set� we get

Cj	G
 � Pj	G
�

Substituting for Cj	G
 and Pj	G
 from 	�
 and 	
� we get

Cj	H
i
 � Pj	H

i
�

From the controllability property and Cj	H
i
 � Pj	H

i
� we get

Pj	H
i
 � Ij	H

i
 � Rj	H
i
 � Cj	H

i
�

Therefore�

Bj	H�H
i
 � Pj	H

i
�

or

Hi��
j � Hi

j � Bj	H�H
i
 � Hi

j � Pj	H
i
�

Thus� I� is satis�ed� �

��

����� Tagless Protocols

In this section� we de�ne a set of cuts that necessarily belong to the set XP � where

P is a tagless protocol� Let the set be denoted as Xtl� A cut H belongs to the set

Xtl if the following conditions hold�

�� For all messages x in Msg 	H
� x�s� immediately precedes x�s and x�r� imme�

diately precedes x�r�

� All messages requested have been delivered� that is x�s� � H � x�r � H�

Lemma �� Let P be a protocol satisfying the liveness property and XP is the set

of all cuts possible under the protocol� If P is a tagless protocol� then Xtl � XP �

Proof� A tagless protocol P satis�es the following properties�

Controllability � Ii	H
 � Di	H
 � Pi	H
 � Ii	H
 � Di	H
 � Ci	H
�

Liveness � R	H
 � C	H
 �
 � P 	H
 � 	R	H
 � C	H

 �
�

Local � Hi � Gi � Pi	H
 � Pi	G
�

To prove that a cut H � XP � we have to construct a sequence of cuts H
��H�� � � � �

that are pre�xes of H�

We construct the pre�xes as in Lemma ��� The construction satis�es

Hi��
j � Hi

j � Bj	H�H
i
� for all j

where Bj	H�H
i
 �

n
h � Hj �Hi

j � 	g � h
� g � Hi
o
� and satis�es the follow�

ing properties�

�� Bj	H�H
i
 is a singleton or an empty set�

� Bj	H�H
i
 � Ij	H

i
 � Rj	H
i
 � Cj	H

i
�

We have to show that if H � Xtd� then H � XP � Clearly� H
� � XP � since it is

the empty cut� Let Hi � XP � we have to show that H
i�� � XP � The pre�xes satisfy

�

�

�Process j

��
�
���

r r

r r

�
�
�
�
�
�
�R

r r

r

�
�
���

r r

r

�
���

rr

	a
 Cut Hi

�

�Process j

��
�
���

r r

r r �
�
���

r r

r

�
���

rr

	a
 Cut Hi with events removed�

Process j

�

�

��
�
���

r r

r r �
�
���

r r

r r

�
�
���

rr

r r

	a
 Cut G

Figure ���� Construction of G given Hi for process j�

��

I�� since Bj	H�H
i
 is a singleton or an empty set and Hi��

j � Hi
j � Bj	H�H

i
 for

all j� Further� we have to show that Hi��
j � Hi

j � Pj	H
i
 for all j 	I�
�

Given Hi and some j� construct a cut G as shown in Figure ���� Remove

and add events such that Gj � Hi
j using the following two steps�

�� Delete all messages from the cut Hi preserving the condition Gj � Hi
j�

� The messages sent to k 	k � j
 are delivered and received�

Therefore� for all k � j Rk	G
 �
 and Dk	G
 �
� and Gj � Hi
j� We make the

following claims�

�� Pj	H
i
 � Pj	G
�

Since Gj � Hi
j by construction therefore� using the property P�� we get

Pj	H
i
 � Pj	G
�

� Cj	G
 � Cj	H
i
�

For any cut H we have

Sj	H
 � fx�s � 	x�s� � Hj
 � � 	x�s � Hj
 g � and

Dj	H
 � fx�r � 	x�r� � Hj
 � 	x�r � Hj
 g �

By construction of G we have Hi
j � Gj� Therefore Sj	G
 � Sj	Hi
 and

Dj	G
 � Dj	H
i
� Since for any cut Cj	H
 � Sj	H
 �Dj	H
� we have Cj	G
 �

Cj	H
i
�

�� Rk	G
 �
� where k � j�

For any cut H� Rk	H
 represents the messages in transit destined for process

k� By construction of G� we have Rk	G
 �
� where k � j�

�� Rj	G
 �
�

There are no messages with destination process being j� since by step � of the

construction the corresponding invocation and�or send event is removed�

�� Ck	G
 �
� where k � j�

By construction of G� Dk	G
 �
 and Sk	G
 �
 for all k � j�

��

�� Cj	G
 is a singleton or an empty set�

Since x�s� immediately precedes x�s and x�r� immediately precedes x�r�

Following the steps in the proof of Lemma ��� we get

Bj	H�H
i
 � Pj	H

i
�

or

Hi��
j � Hi

j � Bj	H�H
i
 � Hi

j � Pj	H
i
�

Thus� I� is satis�ed� �

��� Limit Sets

In this section� we consider the problem of �nding the type of protocol necessary

and su�cient to implement a given speci�cation�

In Section ��� we investigated the question of whether a cut necessarily

belongs to XP � given a protocol P� In this section� we pose the same question but

in a di�erent setting� that is� given a run 	H� �
 does it necessarily belong to XP �

Given a speci�cation Y� this gives us lower bounds on the speci�cation Y that is

necessary for the existence of a general� a tagged or a tagless protocol� For

example� if a general protocol implements the speci�cation Y then Xn � Y� where

Xn is the lower bound for the class of general protocols� In this section� we present

results in the other direction� that is� does there exist a limit Xs that is su�cient

for the existence of a general protocol�

We de�ne three subsets of X 	or speci�cations
 similar to ones in Section ��

that are used to provide an answer to the problem stated in this section� The three

subsets of X are�

Asynchronous ordering �ASYNC�

This is the same as the ground set X� Therefore� it includes all possible runs� There

exists a tagless algorithm 	i�e�� enable all pending events
 that guarantees safety

��

and liveness for this speci�cation� Formally� we can state Xasync� the set of all partial

orders as

Xasync � f 	H� �
 � 	x�s � H� x�r � H
 and � is a partial order g �

Causal Ordering �CO�

Causal ordering can be stated as s� � s��		r� � r�
� There exists a tagged

algorithm where with each message a matrix of size n�n is tagged to the message ���

���� Formally� we can state Xco� the set of partial orders satisfying causal ordering

as

Xco � f 	H� �
 � 	 	 	x�s � y�s
 � 	y�r � x�r

 �x� y �M g �

Logically Synchronous �SYNC�

A run is logically synchronous if its time diagram can be drawn such that all message

arrows are vertical� Formally� a run 	H� �
 is logically synchronous� that is 	H� �
 �

Xsync� if there exists a function T � Msg 	H
 � f�� � �� � � � g� such that for any two

events h� g � H� if h � g and Msg 	h
 � Msg 	g
 then T	Msg 	h

 � T	Msg 	g

�

De�nition ��� �Crown ����� A crown 	of size k
 in a run is a sequence of mes�

sages hx�� x�� � � � � xki such that

	x��s � x��r
 � 	x��s � x	�r
 � � � 	xk�s � x��r
�

Theorem �� If a run is logically synchronous� that is 	H� �
 � Xsync� then there

does not exist a sequence of messages hx�� x�� � � � � xki belonging to the run� such

that

	x��s � x��r
 � 	x��s � x	�r
 � � � 	xk�s � x��r
�

Proof�

Synchronous �	Crown

Since the run is synchronous there exists a function Te such that for any two events

��

h and g

	h � g
 � Msg 	h
 � Msg 	g
 � Te	h
 � Te	g
� and

	h � g
 � Msg 	h
 � Msg 	g
 � Te	h
 � Te	g
�

Suppose the computation has a crown of size k�

	x��s � x��r
 � 	x��s � x	�r
 � � � 	xk�s � x��r
�

Therefore�

�i � f�� � � � � kg Te	xi�s
 � Te	x�i��� mod k�r
 	�

�i � f� � � � � kg Te	xi�s
 � Te	xi�r
� 	��

Therefore� from equations 	!
 and 	!!
�

Te	x��s
 � Te	x��r
�

which is a contradiction�

	Crown � Synchronous

Given a run 	H� �
� we form a directed graph G	V�E
� as follows� The vertex set

V consists of all messages fx�� x�� � � � g in the computation� Thus� each vertex vi

represents a set of two events� the send event xi�s and the corresponding receive

event xi�r� That is

vi � fxi�s� xi�rg�

There is an edge from vi to vj if there is an event h � vi and an event h � vj such that

h � g� Thus� 	vi� vj
 � E i� 	xi�s � xj �s
 � 	xi�s � xj �r
 � 	xi�r � xj�s
 � 	xi�r � xj �r
� It

is easy to see that each of the four disjuncts implies xi�s � xj �r� Hence� 	vi� vj
 � E i�

xi�s � xj�r� Since the computation does not have any crown� it follows that the graph

G is acyclic and the graph can be topologically sorted� Therefore� if we pick the same

ordering� we get the desired function T � Msg 	H
� f�� � �� � � � g� such that for any

two events h� g � H� if h � g and Msg 	h
 � Msg 	g
 then T	Msg 	h

 � T	Msg 	g

�

Therefore the run 	H� �
 is synchronous� �

��

It is easy to see that ���� ���

Xsync � Xco � Xasync�

The sets Xasync� Xco� and Xsync exhibit an important property� i�e�� they

are the limiting speci�cations� in terms of whether there exists a protocol that can

guarantee safety and liveness� for each of the three classes of protocols� For example�

there exists a tagged protocol 	i�e�� no control messages
 that guarantees safety and

liveness for the speci�cation Xco� Further� given a speci�cation Y� there exists a

tagged protocol that guarantees safety and liveness� if and only if Xco � Y� Thus�

given a speci�cation� i�e�� the set of acceptable runs� the type of protocol necessary

and su�cient can be easily checked by testing the containment of the three limit

sets� Xasync� Xco� and Xsync�

Theorem �� Let Y be a speci�cation� Then

�� A general protocol can guarantee safety and liveness i� Xsync � Y�

� A tagged protocol can guarantee safety and liveness i� Xco � Y�

�� A tagless protocol can guarantee safety and liveness i� Xasync � Y�

Proof� It is easy to show the �if part� in each of the cases� We use the fact that if

a protocol P implements the speci�cation Y� then XP � Y�

�� There exists a general protocol P such that XP � Xsync ��� ���

� There exists a tagged protocol P such that XP � Xco ��� ����

�� There exists a tagless protocol P such that XP � Xasync 	enable all events
�

We now proceed to show the �only if part��

Part �� Let P be a general protocol� From lemma �� we have Xgn � XP � We have

to show that if 	H� �
 � Xsync then �H � Xgn such that 	H� �
 � UserView	H
�

Given 	H� �
 � Xsync we construct H such that 	H� �
 � UserView	H
 and

H � Xsync� as shown in Figure ���� For each event x�s add x�s� such that x�s�

��

�

��
�
�
�
���

s

x�s

r
x�r

�

��
�
�
�
���

r

x�s�

r

x�s

r
x�r�

r
x�r

Figure ���� Construction of H from 	H� �
�

immediately precedes x�s� Similarly� for each event x�r add x�r� such that x�r�

immediately precedes x�r� We claim that H � Xgn� that is� H satis�es the conditions

satis�ed by elements of Xgn�

�� x�s� immediately precedes x�s� and x�r� immediately precedes x�r� by con�

struction of H�

� All messages invoked have been delivered� that is� x�s� � H�x�r � H� since

	H� �
 is a run�

�� Since 	H� �
 � Xsync� there exists a function T � Msg 	H
 � f�� � �� � � � g�

such that for any two events h� g � H� if h � g and Msg 	h
 � Msg 	g

then T	Msg 	h

 � T	Msg 	g

� We can derive the numbering scheme Num�

where for each message x� Num	x�s�
 � � � T	x
� Num	x�s
 � � � T	x
 ��

Num	x�r�
 � ��T	x
 and Num	x�r
 � ��T	x
 �� Thus� we have a num�

bering scheme that assigns a unique number to each event satisfying desired

properties� that is� for any two events h� g if h � g then Num	h
 � Num	g

and for any message x� Num	x�r
 � Num	x�r�
 � � Num	x�s
 �

Num	x�s�
 ��

Thus� if P is a general protocol and 	H� �
 � Xsync then 	H� �
 � XP �

Part � Let P be a tagged protocol� From lemma ��� we have Xtd � XP � We have

to show that if 	H� �
 � Xco then �H � Xtd such that 	H� �
 � UserView	H
� We

claim that H � Xtd� that is� H satis�es the conditions satis�ed by elements of Xtd�

��

The proof is similar to the previous case� We construct H as above and show that

H � Xtd�

�� x�s� immediately precedes x�s� and x�r� immediately precedes x�r� by con�

struction of H�

� All messages invoked have been delivered� that is� x�s� � H�x�r � H� since

	H� �
 is a run�

�� Since 	H� �
 � Xco we have� for any two messages x� y the relation 	x�s � y�s
 �

	y�r � x�r
 is false� By construction� we have 	x�s � y�s
 � 	x�s � y�s
 and

	x�r � y�r
 � 	x�r� � y�r�
� Therefore� in the cut H for any two messages

x� y the relation 	x�s � y�s
 � 	y�r� � x�r�
 is false� In other words� for any

two messages x� y we have 	x�s � y�s
 � 		y�r� � x�r�
�

Thus� if P is a tagged protocol and 	H� �
 � Xco then 	H� �
 � XP �

Part �� Let P be a tagless protocol� From lemma ��� we have Xtl � XP � We have

to show that if 	H� �
 � Xasync then �H � Xtl such that 	H� �
 � UserView	H
� We

claim that H � Xtl� that is� H satis�es the conditions satis�ed by elements of Xtl�

The proof is similar to the previous case� We construct H as above and show that

H � Xtl�

�� x�s� immediately precedes x�s� and x�r� immediately precedes x�r� by con�

struction of H�

� All messages invoked have been delivered� that is� x�s� � H�x�r � H� since

	H� �
 is a run�

Thus� if P is a tagless protocol and 	H� �
 � Xasync then 	H� �
 � XP � �

Corollary �� A speci�cation Y is implementable� that is� there exists a tagless�

tagged� or general protocol� if and only if Xsync � Y�

��

��� Related Work

In ���� Boug"e and Francez studied inhibition 	called freezing
 based protocols as a

superimposition of a set of control processes P on another set of user processes Q�

A user process can send�receive a message only if 	and when
 the corresponding

control process sends�receives a �similar� message� They considered syntactic rep�

resentation of inhibition in CSP� The �rst fundamental work on the properties of

inhibition was done by Taylor and Critchlow ���� ���� They studied the relationships

between inhibition and the existence of speci�c protocols� and distinguished local

versus global inhibition�

The major di�erence between our model of inhibition protocols and the model

used by Taylor and Critchlow is that protocol events in our model are not used to

de�ne enabling relations� They modeled enabling relations as a function of the local

state of the process� where the local state is composed of a sequence of system and

protocol events� We� on the other hand� de�ne enabling relations with respect to the

partial order formed by the system events in the global system thus eliminating the

need to model protocol events� They studied the necessity of inhibition in consistent�

cut protocols and the extent of inhibition � local versus global inhibition� inhibition

of send events versus receive events� and the number of protocol messages�

Our interest is in the existence of protocol with global inhibition to implement

message orderings� We classi�ed global inhibition based on the amount of knowledge

required� that is� local� causal� or concurrent� to describe the enabling relation�

In ����� Charron�Bost� Mattern� and Tel study the structural aspects of three

synchronization schemes � FIFO� causal� and synchronous orderings� and the hier�

archy relation� that is� synchronous � causal � FIFO�

��

��� Summary

In this chapter� we presented a new characterization of inhibition based protocols

and message ordering speci�cations�

An inhibition based protocol for a distributed system speci�es for each pro�

cess the events it can perform� A protocol can delay the normal execution of an event

until the occurrence of prerequisite events� We distinguish three kinds of inhibition

based protocols�

� protocols that require control messages and tagging of user messages� called

general protocols�

� protocols that do not require control messages� but require tagging of user

messages� called tagged protocols� and

� protocols that do not require control messages or tagging of user messages�

called tagless protocols�

A message ordering speci�cation can be characterized as a set of acceptable

runs� that is� a subset of X� where X is the set of all runs� The three speci�cations

that play a key role in determining the existence of each type of protocol are�

Xsync � f 	H� �
 � 	 		x��s � x��r
 � 	x��s � x	�r
 � � � 	xk�s � x��r

 �

for any subset fx�� x�� � � � � xkg of Msg 	H
 g

Xco � f 	H� �
 � 	 		x�s � y�s
 � 	y�r � x�r

 for any subset fx� yg of Msg 	H
 g

Xasync � f 	H� �
 � 	 		x�s � x�s
 � 	x�r � x�r

 for any message x � Msg 	H
 g

Given a speci�cation Y there exists

� a general protocol if and only if Xsync � Y�

� a tagged protocol if and only if Xco � Y� and

� a tagless protocol if and only if Xasync � Y�

Thus� given a speci�cation the type of protocol necessary and su�cient can be easily

checked by the containment of the three sets Xasync� Xco� and Xsync�

�

It is natural to ask about the fourth type of protocols� that is� those that can

use control messages but cannot tag the user messages� There exists a protocol of

this type that can can implement a speci�cation if there exists a general protocol�

A protocol of this type can send a control message before a user message including

all the information that is supposed to be tagged along with the user message� thus

simulating tagging�

��

Chapter �

Protocol for Message�Orderings

In this chapter� we discuss the protocols implementing the three speci�cations�

Asynchronous Ordering Xasync� Causal Ordering Xco� and Synchronous Ordering

Xsync�

Asynchronous Ordering can be provided by a protocol that does not delay

any events� Since any run 	H� �
 is a partial order� thus any run is a valid run under

the Asynchronous Ordering speci�cation�

A fair amount of research has been done for e�cient algorithms to imple�

ment Causal Ordering� Birman and Joseph ���� Raynal� Schiper� and Toueg ����

Schiper� Eggli� and Sandoz ����� have presented algorithms for the causal ordering

of messages� These algorithms tag knowledge of processes about messages sent in

the system with the message� For example� process pi in the algorithm by Ray�

nal� Schiper� and Toueg ��� tags a message with the matrix m where m�j� k� is

the knowledge of process pi about the messages sent from pj to pk� On receiving a

message a process pk delivers the message only if all the messages represented by

m�j� k� for all j have been received and delivered�

Variants of Synchronous Ordering have been studied as guarded statements

in CSP ���� ��� binary interaction problem ���� and logically instantaneous message

passing ����� In the rest of the chapter� we will present an e�cient protocol to

��

implement Synchronous Ordering�

��� Algorithm

An algorithm that implements synchronous ordering must be asymmetric

with respect to the processes� This can be easily demonstrated by a simple example�

Consider a case where each of the two processes p�� p� want to send one message x

and y to the other� respectively� Figure ���	a
 shows the scenario� If the protocols are

symmetric with respect to the processes and the messages� then the only possible

completion of the run is shown in Figure ���	b
 but it violates the synchronous

ordering conditions� Figure ���	c
 shows the only two possible completions that do

not violate synchronous ordering and these can only be achieved by imposing some

order among the processes or the messages� This asymmetry can be imposed either

by ordering the processes ��� �� ��� or by imposing an order among the messages ����

In this chapter� we present an algorithm that breaks the symmetry using the

natural order among the processes� Therefore� the protocol followed by a process to

send a message to a bigger process is di�erent from the protocol followed to send

a message to a smaller process� When a process wants to send a message x to a

smaller process� it sends the message� On the other hand� if the process wants to

send a message x to a bigger process then it has to request permission from the

bigger processes before sending the message�

Figure �� illustrates the messages required to send a message x from a bigger

to a smaller process� The protocol is summarized in Table ���� Figure ��� illustrates

the messages required to send a message x from a smaller to a bigger process� The

protocol is summarized in Table ���

The request message is used to inform the bigger process of the desire for

synchronization� Neither the sending nor the receiving of a request message changes

the state of the process 	from active to passive� or vice�versa
 and the request mes�

sage does not take part in the synchronization� Thus� we can neglect the request

��

r

x�s�

r
y�s�

�

�

	a
 Request of messages by process�

r

x�s�

r
y�s�

r
y�s

r

x�s

�

��
�
�
�
�
�
����

�
�
�
�
�
��R

	b
 Completion of run under a symmetric protocol�

r

x�s�

r
y�s�

r
y�s

r

x�s

�
�
�
�
�
�
��� C

C
C
C
C
C
CCW �

�

r

x�s�

r
y�s�

r
y�s

r

x�s

�

�
C
C
C
C
C
C
CCW �

�
�
�
�
�
���

	c
 Only possible completions valid under synchronous ordering�

Figure ���� Asymmetric property of an algorithm implementing SYNC�

��

t

x�s�
t

x�s

t
x�r� and x�r

�
�
�
�
�
�
�
��	 A

A
A
A
A
A
A
AAU

�
�
��

Acknowledgement

�Control Message�

�

�

Figure ��� A bigger process sending a message to a smaller process�

Bigger Process Smaller Process

wait until active
� Send the message x� and
� turn passive

� Receive the message x�
wait until active
� Send an ack message for x�

� Receive the ack message� and
� turn active�

Table ���� Protocol to send a message from a bigger to a smaller process�

��

tx�s� tx�s

t
x�r� and x�r

�

�

�Request

�Control Message�

�
�
�
�
�
�
�
��	 A

A
A
A
A
A
A
AAU

�
�
�
��R

Request Granted

�Control Message�

Figure ���� A smaller process sending a message to a bigger process�

Smaller Process Bigger Process

� Send a request message

wait until active
� Send grant message for x� and
� turn passive

� Receive the grant message�
wait until active
� Send the message x�

� Receive the message x� and
� turn active�

Table ��� Protocol to send a message from a smaller to a bigger process�

��

messages in our arguments� Both parts of the protocol involve two messages� the

�rst sent from the bigger to the smaller process� and second from the smaller to the

bigger process�

Therefore� synchronization is achieved using two messages� initiation and

acknowledgment messages� The initiation message is always from a bigger process

to a smaller process� The acknowledgment message is sent by the smaller process to a

bigger process in response to the initiation message� A process is in one of two states�

passive or active� Initially all processes are active� In the active state� a process

sends an initiation message and turns passive until it receives the corresponding

acknowledgment� The user message x is tagged along with either the initiation

or the acknowledgment message� Thus� we have two types of protocol messages

denoted by the set Mb and Ms representing the messages from bigger to smaller�

and the messages from smaller to bigger processes respectively�

When a process wants to send a message x to a smaller process it sends

an initiation message� with x tagged to it� and turns passive until it receives the

corresponding acknowledgment message� When a process wants to send a message

x to a bigger process it sends a request message to the bigger process� In turn� the

bigger process sends back an initiation message 	when it is active
 and turns passive

until it receives the corresponding acknowledgment message� The smaller process

tags the user message x along with the acknowledgment message�

During the passive state a process cannot send any message� neither an ini�

tiation nor an acknowledgment message� In addition� if the synchronization is for

a message from a smaller to a bigger process� then the processes involved cannot

receive initiation messages�

��� Proof of Correctness

We have a set of n processes p�� p�� � � � � pn that communicate using three sets

of messages�

��

�Smaller Process

�
Bigger Process

�
�
�
�
�
�
�
�
�
�
�� A

A
A
A
A
A
A
A
A
A
AU

�passive� � active

��si� ri� �Mb
� �sai � r

a
i � �Ms

State is active

State is active

Figure ���� Protocol messages to implement SYNC�

�� User messages M �
S

i fxig�

� Initiation messages Mb �
S

i f	si� ri
g� and

�� Acknowledgment messages Ms �
S

i f	s
a
i � r

a
i
g�

We use xi to represent a user message and 	si� ri
 and 	s
a
i � r

a
i
 for the corresponding

protocol messages� If xi is a message from a bigger to a smaller process then xi

and 	si� ri
 represent the same message� otherwise xi and 	s
a
i � r

a
i
 represent the same

message� Thus�M �Mu
b �M

u
s � whereM

u
b are initiation messages that are also user

messages and Mu
b are acknowledgment message that are also user messages�

We have to show that there exists a function T �M � f�� � � � � g such that

	g � h
� T 	Msg 	g

 � T 	Msg 	h

�

where messages Msg 	g
 and Msg 	h
 belong to M � Alternatively� we have to show

that there exists a function T �Mu
b �M

u
s � f�� � � � � g such that

	g � h
� T 	Msg 	g

 � T 	Msg 	h

�

where� 	g � h
 implies the event g and h happened in the same process and g

��

happened before h� We use the term SYNC to refer to the property of the existence

of such a function for a set of messages�

A process can be in one of the two states� active or passive� The system uses

the following rules�

� A process can send a message belonging to Mb � Ms only if it is active�

� On sending a message 	s� r
 �Mb a process turns passive�

� On receiving a message 	s� r
 � Mb a process acknowledges by sending the

message 	sa� ra
 �Ms�

� On receiving a message 	sa� ra
 �Ms a process turns active�

� If the corresponding user message is from a smaller process to a bigger process�

then during the passive state both the processes cannot receive any message

belonging to Mb�

Using the �rst four rules we show that the protocol messages Mb satisfy the SYNC

condition� that is� there exists a function Tp �Mb � f�� � � � � g such that

	g � h
� Tp	Msg 	g

 � Tp	Msg 	h

�

The �fth rule guarantees that for protocol messages 	si� ri
 �Mb and 	s
a
i � r

a
i
 �Ms

if the corresponding user message xi is from a smaller to a bigger process� then for

any event g 	not the same as si� ri� s
a
i � or r

a
i
�

	g � si
� 	g � rai
 � 	si � g
� 	rai � g
 �

	g � ri
� 	g � sai
 � 	ri � g
� 	sai � g
�

Thus� given the function Tp we get the function T �M
u
b �M

u
s � f�� � � � � g satisfying

the SYNC property� where T 		sai � r
a
i

 � Tp 		si� ri

 and T 		si� ri

 � Tp 		si� ri

�

In the rest of the section we present the properties satis�ed by the protocol

messages and prove the existence of a function Tp satisfying the SYNC property�

The conditions satis�ed by the protocol messages are�

��

Send Condition �SC� � A process can only send a message in active state� If

	s�� r�
 �Mb and 	s�� r�
 �Mb then

	s� � s�
 � 	r� � r�
�

Ack Condition �AC� � A process can only send an acknowledgment in active

state� If 	s�� r�
 �Mb and 	s�� r�
 �Mb then

	s� � r�
 � 		r� � r�
�

Priority Rule �PR� � Symmetry is broken by assuming a total order among the

processes and that protocol messages 	si� ri
 can only be sent to a smaller

process� Let 	s� r
 �Mb then

proc 	s
 � proc 	r
�

����� Proof of Safety

Given a run� we form a directed graph G	V�E
 as follows� The vertex set V consists

of all Mb messages in the computation� Thus� each vertex vi represents a set of two

events� send event si and the corresponding receive ri� That is� vi � fsi� rig� There

is an edge from vi to vj if

	si � sj
 � 	si � rj
 � 	ri � sj
 � 	ri � rj
�

In each of the cases either we have 	si � rj
� Thus� if there exists a cycle in the

graph formed by the vertices v�� v�� � � � � vk then

	s� � r�
 � 	s� � r	
 � � � � � 	sk � r�

is true� The graph can be topologically sorted if and only if there are no cycles in

the graph� The topological ordering satis�es the condition Tp�

Lemma �� Let 	s�� r�
 �Mb and 	s�� r�
 �Mb� If 	s� � r�
 then

	r� � r�
 � 	s� � r�
�

�

Proof� If s� � r� then

	i
 	s� � r�
 �

	ii
 		s� � r�
 � 	r� � r�

 �

	iii
 	� 	s� r
 �Mb � Ms � 	s� � s
 � 	r � r�

 �

The �rst two cases directly satisfy the lemma� In the third case the process sends

the message 	s� r
 only when it is active� Therefore� it would have received an

acknowledgment 	sa�� r
a
�
� Thus�

s� � r� � sa� � ra� � s � r � r��

�

Lemma �� Let 	s�� r�
 �Mb and 	s�� r�
 �Mb� Then

	s� � r�
 � 	s� � r�
 � 	s� � r�
 � 	s� � r�
�

Proof� Let s� � r�� s� � r��

Assume� without loss of generality� 		s� � r�
� From lemma ��� and 	s� �

r�
� we get that 	r� � r�
�

Since 	r� � r�
 and the property AC of the protocol� we get 		s� � r�
�

Applying lemma ��� again to 		s� � r�
 and s� � r�� we get that r� � r�� which

is a contradiction� �

Lemma �� If there exists a sequence of messages belonging to Mb such that

	s� � r�
 � 	s� � r	
 � � � � � 	sk � r�
�

then there also exists a sequence of messages belonging to Mb such that

	s�� � r��
 � 	s
�
� � r�	
 � � � � � 	s

�
k� � r��
�

Proof� If k � � then the lemma follows directly from lemma ��� Assume k � �

Pick any part of the crown starting from any index i mod k�

si�� � ri� si � ri�� 	�

��

such that� 		si � ri��
� such an i exists otherwise we have

	s� � r�
 � 	s� � r	
 � � � � � 	sk � r�
�

Since si � ri�� 	by lemma ���
� ri � ri��� Since si�� � ri and ri � ri���

equation 	!
 can be reduced to si�� � ri��� giving a smaller crown� Therefore� in

the sequence 	k �

	s� � r�
 � 	s� � r	
 � � � � � 	sk � r�
�

if 		si � ri��
 then the sequence can be reduced by removing the 	si� ri
 mes�

sage� On repeating the process the resulting sequence will eventually be one of the

following�

� For some k� � k

	s�� � r��
 � 	s
�
� � r�	
 � � � � � 	s

�
k� � r��
�

� The sequence length k � � that is� 	s�� � r��
 � 	s
�
� � r��
� By lemma ���

	s�� � r��
 � 	s
�
� � r��
 � 	s�� � r��
 � 	s

�
� � r��
�

�

Lemma �� There does not exist a sequence of messages belonging toMb such that

	s� � r�
 � 	s� � r	
 � � � � � 	sk � r�
�

Proof� The proof is by contradiction� If there exists a sequence of events such that

	s� � r�
 � 	s� � r	
 � � � � � 	sk � r�
�

then �	

 �i � f�� � � � � kg � proc 	si
 � proc 	ri�� mod k
� 	�

�i � f� � � � � kg � proc 	si
 � proc 	ri
� 	��
 	by PR

��

Combining 	!
 and 	!!
 we get� proc 	r�
 � proc 	s�
� which is a contradiction to

PR� �

Hence� there exists a function Tp �Mb � f�� � � � � g such that

	g � h
� Tp	Msg 	g

 � Tp	Msg 	h

�

��

����� Proof of Liveness

In a distributed computation 	that implements the algorithm
� we have to show that

every process pk that wants to send a message will eventually be able to send it�

If a process wants to send a message to a bigger process� then it sends a

request message� When the bigger process is active the permission is granted and

the process can send the message� If a process wants to send a message to a smaller

process then it sends the message as soon as it becomes active� Thus� we show

by induction that eventually all processes pk become active and are able to send a

message or grant permission for a message to be sent�

Base Case k � �� The smallest process p� does not send any initiation message

therefore it is always active� It sends the acknowledgment as soon as it gets a

message 	s� r
 �Mg�

Induction Case Now on applying induction� given that k smallest processes will

eventually be in the active state� then the 	k �
th process if passive will eventually

be active� The process pk�� is passive at time t if

�� there exists a send of message 	s� r
 �Mg at time t� � t and

� the process is passive between the time interval from t� to t�

Therefore� there exists an acknowledgment from a process pk� receiving 	s� r
 to pk��

such that�

�� the message 	sa� ra
 �Ms is in transit� or

� send of the message will eventually be executed when the process pk� is active�

where k� � k�

If the message is in transit then process pk�� will eventually receive the acknowledg�

ment and become active� If the second condition is true� then because pk� � pk��� pk�

will eventually turn active and execute the send of an acknowledgment� Therefore�

process pk�� will eventually be active�

��

��� Related Work

The synchronous communication primitives have been extensively studied as binary

rendezvous that have been used in CSP ��� and Ada ���� A number of algorithms

have been suggested to implement rendezvous ���� ��� �� ���� In binary rendezvous

the synchronization takes place with respect to time� i�e�� both processes should

simultaneously commit to an interaction� A similar property� synchronous ordering

has been studied that is weaker than binary rendezvous� In it� the synchronization

takes place with respect to concurrency ���� �� ����

In a binary rendezvous� a communication involves synchronization of exactly

two processes� This kind of primitive was later generalized to allow communica�

tion and synchronization between an arbitrary number of processes ���� ��� This

general setting has been abstracted by Chandy and Misra ��� as the Commit�

tee Coordination problem� Other algorithms for multiway rendezvous have been

suggested in ���� ��� A similar synchronization property weaker than multiway ren�

dezvous has been studied in ��� ��� as ABCAST and in �� as synchronous multicast�

In ��� ��� ���� the main concern is ordering of message in a faulty environment�

The communication mechanisms for asynchronous distributed systems that

can implement synchronous ordering of messages operate either by assuming asym�

metry in the underlying systems� or inducing asymmetry by ordering the messages

or the processes� In Remote Procedure Call 	RPC
 ��� there is an assumption that

the underlying system is a client�server model thus all the initiation messages are

always from the client to the server� In a general asynchronous distributed system

it will result in a deadlock� Bagrodia�s rendezvous algorithm ��� imposed an order

among the messages thus breaking the symmetry� This results in a O	n
 number of

messages and a response time of O	n�
� In the algorithm presented in this chapter

and in ����� the symmetry is broken by using the natural order among the processes�

The message complexity is O	�
 and the response time of O	n
�

The protocol based on the SYNC property resulted in a more e�cient algo�

��

rithm then the existing ones such that Bagrodia�s rendezvous ��� and Soneoka and

Ibaraki ����� The algorithm presented results in or � messages for every user mes�

sage with a time response of O	n
� where n is the number of processes� The message

and time complexity for the rendezvous message passing are O	n
 and O	n�
� and

for the protocol presented by Soneoka and Ibaraki are � and O	n
�

��� Summary

In this chapter� we presented a protocol that guarantees synchronous ordering of

messages� The protocol breaks the symmetry using the natural order among the

processes� Therefore� the protocol followed by a process sending a message to a

bigger process is di�erent from the protocol followed for sending a message to a

smaller process� When a process wants to send a message x to a smaller process

it sends the message� But� if the process wants to send a message x to a bigger

process then it has to request permission from the bigger process before sending the

message�

��

Chapter �

Forbidden Predicates

Generally� a message ordering speci�cation can be charaterized as a set of acceptable

complete runs� that is� a subset of X� where X is the set of all complete runs� In

Chapter � we studied the limitations of the three types of inhibition based protocols�

that is� general� tagged� and tagless� The three speci�cations that play a key

role in determining the existence of each type of protocol were�

Xsync � f 	H� �
 � 	 		x��s � x��r
 � 	x��s � x	�r
 � � � 	xk�s � x��r

 �

for any subset fx�� x�� � � � � xkg of Msg 	H
 g

Xco � f 	H� �
 � 	 		x�s � y�s
 � 	y�r � x�r

 for any subset fx� yg of Msg 	H
 g

Xasync � f 	H� �
 � 	 		x�s � x�s
 � 	x�r � x�r

 for any message x � Msg 	H
 g

That is� given a speci�cation Y there exists�

� a general protocol if and only if Xsync � Y�

� a tagged protocol if and only if Xco � Y� and

� a tagless protocol if and only if Xasync � Y�

Thus� given a speci�cation the type of protocol necessary and su�cient to implement

the speci�cation can be easily checked by the containment of the three sets Xasync�

Xco� and Xsync�

��

Since X is an in�nite set� we need a �nite representation for its subsets that

specify message ordering� We present a method called forbidden predicates that can

be used to describe a large class of message ordering speci�cations� All existing mes�

sage ordering guarantees such as FIFO� �ush channels� causal ordering� and logically

synchronous ordering as well as others can be concisely speci�ed using forbidden

predicates� For example� the speci�cation for causal ordering Xco can be stated as�

for all runs in Xco� and for all pairs of messages� 	 	 	s� � s�
 � 	r� � r�

� The

forbidden predicate for Xco is � 	s�� r�
� 	s�� r�
 � 	s� � s�
 � 	r� � r�
� In general� a

forbidden predicate can be stated as a conjunction of causality relationships between

the events 	send and receive
�

��� Forbidden Predicates

In this chapter we describe forbidden predicates and present an algorithm to address

the necessary and su�cient conditions for the existence of a protocol of each type�

De�nition �� A forbidden predicate B is de�ned as

B � �x�� x�� � � � � xm �M � B	x�� x�� � � � � xm

where
B	x�� x�� � � � � xm
 �

�
�j�k��J�K

	xj �p � xk�q
�

p and q represent s or r� and J�K are subsets of f�� � � � � �mg�

De�nition �� Given a forbidden predicate B� the corresponding speci�cation set

XB � X is de�ned as

XB � f 	H� �
 � 	B	x�� � � � � xm
� �x�� x� � � � � xm �Mg �

Notation� Let B � �x� y �M � 	x�s � y�s
� We write the predicate B as 	x�s � y�s

dropping the quanti�er � for ease of use� B	a� b
 implies the evaluation of 	x�s � y�s

for the instances a and b in M � Therefore� B	a� b
 is true if and only if a�s � b�s� In

case of ambiguity we express the predicate as B � �x� y �M � B	x� y
�

��

Given two forbidden predicates B and B� for the sets XB and XB� � respec�

tively� B� � B i� XB � XB� � If a protocol for B guarantees that all the allowable

partial orders belong to the set XB � then the same protocol guarantees that all the

allowable partial orders belong to the set XB� �

Consider the example of causal ordering� The predicate can be stated as

B � 	x�s � y�s
 � 	y�r � x�r
� For each element 	H� �
 of Xco 	the corresponding

speci�cation set
�

� x� y �M � � 	 		x�s � y�s
 � 	y�r � x�r

 �

Further� we can de�ne three attributes for each message� receiving process� sending

process� and color� We can use these attributes to de�ne a range for the variables

of the predicate� For example� we may be interested in runs where messages should

not overtake the red marker message� that is

� x� y �M � color 	y
 � red � 	 		x�s � y�s
 � 	y�r � x�r

 �

In this chapter we are interested in predicates where the variables range over all

messages�

Now� we characterize limit sets using forbidden predicates� For example� Xco

corresponds to the forbidden predicate B � 	x�s � y�s
 � 	y�r � x�r
�

Lemma ��

�� The speci�cation set for each of the following predicates contain Xsync�

a
 B � 		x��s � x��r
 � 	x��s � x	�r
 � � � 	xk�s � x��r

 for any k � � � � � �

� The speci�cation set for the following predicates is Xco�

a
 B� � 	x�s � y�r
 � 	y�r � x�r
�

b
 B� � 	x�s � y�s
 � 	y�r � x�r
�

c
 B	 � 	x�s � y�s
 � 	y�s � x�r
�

��

�� The speci�cation set for the following predicates is Xasync�

a
 B � 	x�s � y�s
 � 	y�s � x�s
� b
 B � 	x�s � y�s
 � 	y�r � x�s
�

c
 B � 	x�s � y�r
 � 	y�r � x�s
� d
 B � 	x�r � y�s
 � 	y�r � x�s
�

e
 B � 	x�r � y�r
 � 	y�r � x�s
� f
 B � 	x�r � y�r
 � 	y�r � x�r
�

Proof� In the �rst part� the intersection of all speci�cation sets is Xsync� folows

from Theorem ��� For the third part� each of the predicates implies the existence

of an event h � H such that h � h� No run in Xasync satis�es such a predicate�

Therefore� the speci�cation set for the predicates is Xasync�

In the second part� B� corresponds to Xco by de�nition� We will show B� �

B�� the proof of B� � B	 is similar� Let the corresponding speci�cation sets

be X� and X�� respectively� We have to show that X� � X�� It is easy to see

that B� � B�� Since B� � 	x�s � y�s
 � 	y�r � x�r
 and y�s � y�r is true� B� �

	x�s � y�s
 � 	y�r � x�r
 � 	y�s � y�r
� Combining the �rst and third conjuncts� we

get B�� 	x�s � y�r
 � 	y�r � x�r
 � B�� Therefore� X� � X��

We now show that X� � X� where� X� � X�X�� Using the de�nition of X��

we get the complement of X� as

X� � f 	H� �
 � �x� y �M such that B�	x� y
 g �

Let 	H� �
 � X�� We have to show 	H� �
 � X�� In the run 	H� �
� we have at least

two messages x and y such that 	x�s � y�s
 � 	y�s � x�r
�

�� Let x�s and y�s be in di�erent processes�

Since 	x�s � y�s
� and x�s and y�s are in di�erent processes� there exists a

message z such that 	x�s � z�s
� 	z�s � z�r
� and 	z�r � y�s
� Since 	y�s � x�r

and 	z�r � y�s
� z�r � x�r� Therefore� x�s � z�s and z�r � x�r� thus B�	x� z
 is

true�

� Assume x�s and y�s are in the same process 	therefore� x�r and y�s are in

di�erent processes
�

��

Since 	y�s � x�r
 and x�r and y�s are in di�erent processes� y�r � x�r or � z �M �

such that 	y�s � z�s
� 	z�s � z�r
� and 	z�r � x�r
�

	a
 If y�r � x�r� then 	x�s � y�s
 and 	y�r � x�r
� Thus B�	x� y
 is true�

	b
 If � z � 	y�s � z�s
� 	z�s � z�r
� and 	z�r � x�r
� then 	x�s � y�s
 � 	y�s �

z�s
� 	x�s � z�s
 and 	z�r � x�r
� thus B�	x� z
 is true�

Therefore� �x� z �M such that B�	x� z
 is true� Thus� 	H� �
 � X�� �

��� Speci�cation Graph

In this section we classify the forbidden predicates to determine the type of algorithm

necessary and su�cient to guarantee safety and liveness�

De�nition �� Let B � �x�� � � � � xm � M � B	x�� � � � � xm
 be a forbidden predi�

cate� A predicate graph GB	V�E
 is a multi�graph such that

V � fx�� � � � � xmg

E � f	xj � xk
 j 	xj�p � xk�q
 is a conjunct of B where each p� q is s or r g

Example �� Let a predicate be

B �

�	

 	x��r � x��s
 � 	x��s � x	�s
 � 	x	�r � x
�r
 �

	x
�s � x��r
 � 	x
�s � x��r
 � 	x��s � x
�r

��
 �

then GB	V�E
 is

V � fx�� x�� x�� x	� x
� x�� x�g� and

E � f	x�� x�
� 	x�� x	
� 	x	� x

� 	x
� x�
� 	x
� x�
� 	x�� x

g� e

e

e

e

� �

�
e

Q
Q
Qs
x�

x� x�

x� x�

Using the graph� we can determine whether the speci�cation is implementable�

and if it is� the type of protocol necessary and su�cient to guarantee safety and live�

ness�

�

Theorem �� A speci�cation XB 	or forbidden predicate B
 is implementable if

and only if there exists a cycle in the predicate graph GB	V�E
�

Proof� We �rst prove the �only if� part� Let the predicate be B � �x�� � � � � xm �

M � B	x�� � � � � xm
 such that the predicate graph GB	V�E
 does not have a cycle

and let the corresponding speci�cation set be XB � Consider a run 	H� �
 such that

the set of messages is Msg 	H
 � fx�� � � � � xmg� The run is constructed such that if

xj �p � xk�q is a conjunct of B	x�� � � � � xm
 then 	xj �p� xk�q
 � � � For each message

x � Msg 	H
� 	x�s� x�r
 � � � Now take the transitive closure 	�
 to make it a run�

Therefore� 	h� h�
 � � if one of the following conditions hold�

�� The events h and h� are xj�p and xk�q� respectively� and xj�p � xk�q is a conjunct

of P 	x�� x�� � � � � xm
�

� The events h and h� are send and delivery events of a message� that is� there

exists a message y � Msg 	H
 such that h � y�s and h� � y�r�

�� There exists another event g � H such that 	h� g
 � � and 	g� h�
 � � �

It is easy to see that the predicate B is true in the run 	H� �
� therefore� 	H� �
 �

XB � We claim that 	H� �
 � Xsync� hence the theorem 	only if
 follows� Since the

predicate graph does not have any cycles� it can be linearly ordered� Using the

same ordering we de�ne a function T � Msg 	H
 � f�� � �� � � � g� such that for any

two events h� g � H� if h � g and Msg 	h
 � Msg 	g
 then T	Msg 	h

 � T	Msg 	g

�

Therefore� 	H� �
 � Xsync and 	H� �
 � XB � From corollary ��� we have that there

exists a protocol only if Xsync � XB �

The �if� part follows from theorem �� which will be proved in Section ����

�

Since a speci�cation graph without cycles is not implementable� thus we are

interested in the speci�cation graphs with cycles� Pick any cycle Gc	V
c� Ec
 �

G	V�E
 in the speci�cation graph and let the corresponding forbidden predicate be

Bc�

��

Example �� Consider the forbidden predicate and the graph from example ����

A possible cycle and the corresponding predicate is shown below� It is easy to see

that B�Bc� since Bc is the same as B with some conjuncts removed�

h

ht

h� �

�
h

x� x�

x� x�

V c � f x�� x�� x	� x
 g

Ec � f 	x�� x�
� 	x�� x	
� 	x	� x

� 	x
� x�
 g

Pc �

�	

 	x��r � x��s
 � 	x��s � x	�s
�

	x	�r � x
�r
 � 	x
�s � x��s

��

The speci�cation graphs can contain a number of cycles� We classify a cycle

into di�erent categories based on the number of � vertices 	de�ned next
 it contains�

De�nition �� Given a cycle Gc	V
c� Ec
 in the graph G	V�E
� we say x � V c is a

� vertex with respect to the cycle Gc	V
c� Ec
 if the incoming edge is � � x�r where

� is either y�s or y�r and the outgoing edge is x�s � � where � is either z�s or z�r�

The order of a cycle is equal to the number of � vertices it contains�

Example �� 	Continuing with the previous example�
 With respect to the cycle

Gc	V
c� Ec
� only x
 is a � vertex� thus the order of the cycle is �� Consider a non��

vertex� say x	� Consider the conjuncts that result in the input and output edges of

the vertex x	� They are� x��s � x	�s and x	�r � x
�r� Since x	�s � x	�r� combining

the three conjuncts we get� x��s � x
�r� We can get a predicate B
��

B� � 	x��r � x��s
 � 	x��s � x
�r
 � 	x
�s � x��r
�

such that Bc�B�� Since B�Bc and Bc�B�� B�B�� If we consider the predicate

graph GB�	V �� E�
� it is a cycle of order � and the � vertex is x
� thus maintaining

the order and the � vertex of the cycle�

Lemma �� Let B be a predicate and GB	V�E
 be the corresponding predicate

graph with a cycle of order k� Then there exists a predicate B� weaker than B

whose predicate graph GB�	V �� E�
 is a cycle of order k such that

��

�� jV �j � � or

� all the vertices are � vertices�

Proof� Let G	V c� Ec
 � G	V�E
 be a cycle in the predicate graph with the corre�

sponding predicate Bc� We know that B�Bc�

If the graph G	V �� E�
 � G	V c� Ec
 and predicate B� � Bc satisfy the condi�

tion of the lemma� we are done� If not� pick a vertex� say y� that is not a � vertex�

Then one of the following is true� with x � z�

�� B� � � � � 	x�p � y�s
 � 	y�s � z�q
 � � � � � or

� B� � � � � 	x�p � y�s
 � 	y�r � z�q
 � � � � � or

�� B� � � � � 	x�p � y�r
 � 	y�r � z�q
 � � � � �

Such a vertex exists since the graph 	cycle
 has more then two vertices and has at

least one non�� vertex� In each case� B��B��� where B�� � � � � � 	x�p � z�q
 � � � � �

Since B�B� and B��B��� B�B��� Let the graph predicate for B�� be G	V ��� E��
�

The graph G	V ��� E��
 satis�es the condition jV ��j � jV �j � �� and the number of �

vertices in G	V ��� E��
 is k�

If the graph G	V ��� E��
 and the corresponding predicate B�� satisfy the con�

ditions of the lemma� we are done� otherwise repeat the above process� �

��� Impossibility and Lower	Bounds

In this section we prove the necessary and su�cient conditions for a speci�cation

to be implementable by a protocol of a given class� The next theorem proves the

su�cient condition for a protocol to implement a given speci�cation� Theorem ���

presents the necessary conditions to be satis�ed by the speci�cations to be imple�

mentable by a protocol of a given class�

Theorem �� �Su�cient Conditions� Let XB be a speci�cation with B as the

corresponding forbidden predicate� Let the predicate graph be GB	V�E
 with a

��

cycle Gc	V
c� Ec
 � GB	V�E
�

�� If there exists a cycle Gc	V
c� Ec
 � GB	V�E
 of order �� then Xasync � XB �

� If there exists a cycle Gc	V
c� Ec
 � GB	V�E
 of order �� then Xco � XB �

�� If there exists a cycle Gc	V
c� Ec
 � GB	V�E
 of order k 	� �
� then Xsync �

XB �

Proof�

Part �� Let Gc	V
c� Ec
 � GB	V�E
 be a cycle of order �� Then from Lemma ���

there exists a predicateB� such that B�B� and the corresponding graphGB�	V �� E�

is a cycle of order � with jV �j � � Since B�B�� XB� � XB �

Since the graph is a cycle with two vertices 	both non��
� the predicate B� �

�x� y � B�	x� y
 can only be one of the predicates in the statement of Lemma ������

From Lemma ��� we have that the speci�cation corresponding to the above predi�

cates are equivalent to Xasync� Therefore� Xasync � XB� � and Xasync � XB �

Part � We have to show Xco � XB � Let Gc	V
c� Ec
 � GB	V�E
 be a cycle of order

�� Then from Lemma ��� there exists a predicate B�B�� The corresponding graph

GB�	V �� E�
 is a cycle of order �� such that jV �j � � Since B�B�� XB� � XB �

Since the graph is a cycle with two vertices 	one �
� the predicate B� �

�x� y � B�	x� y
 can only be one of the predicates in the statement of Lemma �����

From Lemma ���� the speci�cation corresponding to the above predicates is equiv�

alent to Xco� Therefore� Xco � XB� � and Xco � XB �

Part �� We have to show Xsync � XB � Let Gc	V
c� Ec
 � GB	V�E
 be a cycle of order

k 	� �
� Then from Lemma ��� there exists a predicate B�B�� The corresponding

graph GB�	V �� E�
 is a cycle of order k� such that jV �j � k� Since B�B�� XB� � XB �

Since the graph is a cycle with k � vertices� the predicate B� is

B� � 	x��s � x��r
 � 	x��s � x	�r
 � � � 	xk�s � x��r
�

��

r
x�s

r
y�s

r
y�r

r
z�s

r
z�r

r
x�r �

�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
���

�

�

Figure ���� Construction of a run using a forbidden predicate�

This implies the predicate in the statement of Lemma ������ Therefore� Xsync �

XB� � XB � �

The next theorem employs a technique of contructing a run 	H� �
 using a

forbidden predicate� We illustrate the methodology used by considering the following

example�

Example �� Let us consider the following forbidden predicate

B	x� y� z
 � 	x�s � y�s
 � 	y�r � z�s
 � 	z�r � x�r
�

We contruct a run 	H� �
 such that the set of messages is Msg 	H
 � fx� y� zg� The

causality relation � is a transitive closure of the following set�

f 	x�s � y�s
� 	y�r � z�s
� 	z�r � x�r
� 	x�s � x�r
� 	y�s � y�r
� 	z�s � z�r
 g �

Note that the �rst three elements are conjuncts of the forbidden predicate and next

three elements are the causality induced by the fact that x� y� and z are messages�

Figure ��� shows one possible run given by the above construction� In the �gure�

the thick lines correspond to the conjuncts of B�

Now consider the two events x�s and z�s� clearly 	x�s � z�s
� Which can be

rewritten as

	x�s � y�s
 � 	y�s � y�r
 � 	y�r � z�s
�

��

or C� � C� � C	� where

C� � 	x�s � y�s
� C� � 	y�s � y�r
� and C	 � 	y�r � z�s
�

Each of the Cs is either a conjunct of B or is of the form 	a�s � a�r
� In the above

case� C� and C	 are conjuncts of B and C� is of the form 	a�s � a�r
�

Theorem �� �Necessary Conditions� Let XB be a speci�cation with B as the

corresponding forbidden predicate� Let the predicate graph be GB	V�E
 with a

cycle Gc	V
c� Ec
 � GB	V�E
�

�� If there does not exist a cycle Gc	V
c� Ec
 � GB	V�E
 of order �� � or n� then

Xsync � XB �

� If there does not exist a cycle Gc	V
c� Ec
 � GB	V�E
 of order � or �� then

Xco � XB �

�� If there does not exist a cycle Gc	V
c� Ec
 � GB	V�E
 of order �� then Xasync �

XB �

Proof�

Part �� If there does not exist a cycle of order �� �� or n� then there does not exist

a cycle� From theorem ��� it follows that Xsync � XB �

Part � We have to show that Xco � XB � given there does not exist a cycle of

order � or � in the predicate graph� We will construct a run 	H� �
 and show that

	H� �
 � XB � but 	H� �
 � Xco�

Let the forbidden predicate beB	x�� � � � xm
 with the corresponding predicate

graph having no cycles of order � or �� Consider a run 	H� �
 such that the set of

messages is Msg 	H
 � fx�� � � � � xmg� The run is constructed such that if 	xj �p �

xk�q
 is a conjunct of B	x�� � � � � xm
 then 	xj �p� xk�q
 � � � For each message

x � Msg 	H
� 	x�s� x�r
 � � � Now take the transitive closure 	�
 to make it a run�

Therefore� 	h� h�
 � � if one of the following conditions hold�

��

�� The events h and h� are xj�p and xk�q� respectively� and 	xj �p � xk�q
 is a

conjunct of B	x�� x�� � � � � xm
�

� The events h and h� are send and delivery events of a message� that is� there

exists a message y � Msg 	H
 such that h � y�s and h� � y�r�

�� There exists another event g � H such that 	h� g
 � � and 	g� h�
 � � �

Since for this run B	x�� � � � xn
 is true� 	H� �
 � XB � The claim is 	H� �
 � Xco� We

will show 	H� �
 � Xco by contradiction�

Assume 	H� �
 � Xco� From the de�nition of Xco�

Xco � f 	H� �
 � 	 		x�s � y�s
 � 	y�r � x�r

 ��x� y � Msg 	H
 g �

Therefore� �xi� xj �Msg 	H
 such that 	xi�s � xj�s
 � 	xj �r � xi�r
 is true�

We can rewrite 	xi�s � xj �s
 � 	xj �r � xi�r
 as

	C�
� � C�

� � � � � � C�
p

�
	C�

� � C�
� � � � � � C�

q
�

where Ci
js are either a conjunct of B or of the form 	xk�s � xk�r
 for some k� The

�rst group of Cs� i�e�� 	C�
� � C�

� � � � � � C�
p
 is equal to 	xi�s � xj �s
 and the second

group of Cs� i�e�� 	C�
� � C�

� � � � � � C�
q
 is equal to 	xj�r � xi�r
�

We form a graph 	cycle
 from the Cs� Drop all the Cs which are not conjuncts

of B� since they do not contribute to the cycle� Since the remaining C are conjuncts

of the predicate B� every edge in the graph formed by the Cs has a corresponding

edge in the predicate graph GB	V�E
�

Consider the predicate graph formed by the resulting Cs� Let the predicate

be Bc and GBc
	V c� Ec
� It is a cycle and GBc

	V c� Ec
 � GB	V�E
� For each C

remaining there is an edge� We have to analyze the vertex formed by two Cs� If Ci

is of form 	x�s � x�r
 	thus dropped
 then Ci�� � 	� � x�s
 and Ci�� � 	x�r � �
�

thus the vertex formed by Ci�� and Ci�� is not a � vertex�

Let us consider the case when Ci and Ci�� are parts of the conjunct� Then�

Ci � 	� � x�h
 and Ci�� � 	x�h � �
� Thus the vertex formed by Ci and Ci�� is not

a � vertex�

��

Therefore the vertices formed by the Cs in the same group do not result in

any � vertex� There are two more vertices to be considered � the vertices formed

by the group joining� Note that C�
p and C�

� are conjuncts of B since they cannot

be of the form 	x�s � x�r
� The conjuncts are of the form 	� � xj�s
 and 	xj �r � �
�

respectively� Therefore� the vertex formed by joining C�
p and C

�
� results in a non��

vertex�

Therefore� the number of vertices left to be considered is one 	it may or may

not be a � vertex
� Thus the resulting graph is of order � or �� Thus� there exists a

cycle GBc
	V c� Ec
 in the predicate graph of the predicate B of order � or �� which

is a contradiction�

Part �� We have to show that Xasync � XB given that there does not exist a cycle

of order � in the predicate graph GB	V�E
�

Let us assume that the predicate graph does not have a cycle of order �� We

construct a run 	H� �
 and show that 	H� �
 � XB but 	H� �
 � Xasync�

Let the forbidden predicate be B	x�� � � � xn
� Consider a run 	H� �
 such that

the set of messages is Msg 	H
 � fx�� � � � � xmg� The run is constructed such that

if 	xj �p � xk�q
 is a conjunct of B	x�� � � � � xm
 then 	xj �p� xk�q
 � � � For each

message x � Msg 	H
� 	x�s� x�r
 � � � Now take the transitive closure 	�
 to make

it a run� Therefore� 	h� h�
 � � if one of the following conditions hold�

�� The events h and h� are xj�p and xk�q� respectively� and 	xj �p � xk�q
 is a

conjunct of B	x�� x�� � � � � xm
�

� The events h and h� are send and delivery events of a message� that is� there

exists a message y � Msg 	H
 such that h � y�s and h� � y�r�

�� There exists another event g � H such that 	h� g
 � � and 	g� h�
 � � �

Since for this run B	x�� � � � xn
 is true� 	H� �
 � XB � The claim is 	H� �
 � Xasync�

We will show 	H� �
 � Xasync by contradiction�

��

Assume 	H� �
 � Xasync� From the de�nition of Xasync�

Xasync � f 	H� �
 � �h � H such that h � h g �

Therefore� �h � H such that 	h � h
�

We can rewrite 	h � h
 as 	C� � C� � � � �� Cp
 where C is either a conjunct

of B or of the form 	xk�s � xk�r
 for some k�

We form a graph 	cycle
 from the Cs� Drop all the Cs which are not a

conjunct of B� since they do not contribute to the cycle�

Consider the predicate graph formed by the resulting Cs� Let the predicate

be Bc and Gc	V
c� Ec
� It is a cycle and Gc	V

c� Ec
 � G	V�E
� By similar reasoning

as in the previous case the only � vertex that can be possible is between C� and Cp�

�� C� is of the form 	x�s � x�r
 	thus dropped
� then Cp and C� are of the form

	� � x�s
 and 	x�r � �
� respectively� The vertex formed by Cp and C� is not

a � vertex�

� Cp is of the form 	x�s � x�r
 	thus dropped
� then Cp�� and C� are of the form

	� � x�s
 and 	x�r � �
� respectively� The vertex formed by Cp�� and C� is not

a � vertex�

�� C� and Cp are not of the form 	x�s � x�r
� Then Cp and C� are of the form

	� � x�f
 and 	x�f � �
� respectively� The vertex formed by Cp and C� is not

a � vertex�

Thus the resulting graph is of order �� Thus� there exist a cycle GBc
	V c� Ec

in the predicate graph of the predicate B of order �� which is a contradiction� �

��� Related Work

Many communication and synchronization schemes for distributed systems have

been proposed in the literature� Examples include� various broadcast and multicast

schemes like ABCAST� CBCAST� FBCAST ��� ��� ��� �ush channels as weakening

��

of the FIFO�protocol ��� global �ush channels as weakening of causal ordering ����

causal ordering ��� �� ���� and synchronous ordering ���� ��� ��� In addition�

many protocols induce some message orderings among the user messages or control

messages ���� �� �� ��� �� �� ��� Although there has been a fair amount of

research in the area of message orderings� neither a succinct representation for all

the message orderings nor a formal treatment to study the relationship between the

orderings has been done� The method of forbidden predicates characterizes these

and many new orderings�

��� Summary

A distributed computation or run describes an execution of a distributed program�

At an abstract level a run is a partial order 	H� �
� where H is the set of events in the

system and � the happened�before relation between events� Generally� a message

ordering speci�cation can be characterized as a set of acceptable complete runs� that

is� a subset of X� where X is the set of all complete runs�

Since X is an in�nite set� we presented a method called forbidden predicates

that can be used to describe a large class of message ordering speci�cations� All

existing message ordering guarantees such as FIFO� �ush channels� causal ordering�

and logically synchronous ordering as well as others can be concisely speci�ed using

forbidden predicates� For example� the speci�cation for causal ordering Xco can be

stated as� for all runs in Xco� and for all pairs of messages� 	 	 	s� � s�
 � 	r� � r�

�

The forbidden predicate for Xco is � 	s�� r�
� 	s�� r�
 � 	s� � s�
 � 	r� � r�
� In gen�

eral� a forbidden predicate can be stated as a conjunction of causality relationships

between the events 	send and receive
�

Given a message ordering speci�cation using forbidden predicates� we present

an algorithm that determines the type of protocol necessary to implement that

speci�cation� The algorithm converts the forbidden predicate into a predicate graph�

It is shown that the speci�cation can be implemented if and only if there is a cycle

�

in this graph� Further� to determine the nature of the protocol required for the

speci�cation� it is su�cient to examine vertices of the graph� We de�ne the notion

of � vertices� If the cycle has two or more � vertices with respect to that cycle�

then control messages are necessary� If the cycle has one � vertex� then tagging

user messages is su�cient� If the cycle has no � vertex� then no action from the

protocol is required� Thus� given any message ordering speci�cation using forbidden

predicates� the nature of the protocol necessary for implementing it can easily be

determined� This can be summed up by the following table which is a consequence

of the last two theorems proved in this chapter�

Speci�cation graph has a cycle � speci�cation is implementable

and if there exists a cycle with

� zero or more � vertices � tagging and control messages are su�cient�

� zero or one � vertex � tagging is su�cient� and

� zero � vertices � trivial protocol is su�cient�

��

Chapter �

Algorithm to Implement

Message Ordering

The focus of this chapter is to �nd a general algorithm that can implement a large

class of message orderings without using control messages� In the previous chapter

we showed that this is possible only if the predicate graph� derived from the forbidden

predicate� has a cycle with zero or one � vertices� We will not consider the trivial

case where there exists a cycle with zero � vertices�

��� Extensions to Forbidden Predicates

In this chapter� we extend the concept of forbidden predicates by de�ning three

attributes for each message x� they are� color 	x
 � the color of a message� proc 	x�s

� the process identi�er of the sending process� and proc 	x�r
 � the process identi�er

of the receiving process�

The predicate graph for the speci�cations considered in this chapter are

cycles with one � vertex� Without loss of generality� let V � fx�� x�� � � � � xmg

and E � f 	xi� x�imodm���
 � i � �� � � � � �mg be the vertex and edge set of the

resulting graph� with x� being the � vertex� In addition� each message xi has to

��

satisfy ci	xi
 where ci	�
 is a trivial predicate� i�e�� a function of color or the sending

process identi�er of the message� Thus a general forbidden predicate can be written

as�

B � �x�� � � � � xm �M � c�	x�
 � � � � � cm	xm

� 	x��s � x��p
 �

�
� �

i������m��

	xi�p
� � xi���q

�

�
A � 	xm�q � x��r
�

where each p� p�� q� and q stand for either s or r� The 	i � �
th and ith clauses in

the predicate can be written as

	� � xi�s
 � 	xi�s � �
� 	� � xi�s
 � 	xi�r � �
� or 	� � xi�r
 � 	xi�r � �
�

otherwise� xi is a � vertex� and we say� the vertex xi is of the type 	s� s
� 	s� r
�

or 	r� r
� We introduce a shorthand to represent the 	i � �
th and ith clauses as

� � li	xi
 � �� where

li	a
 �

����	
���

a�s if vertex xi is of type 	s� s

a�s � a�r if vertex xi is of type 	s� r

a�r if vertex xi is of type 	r� r
�

Thus� if a run 	H� �
 is invalid under a speci�cation B� then there exists a set of

messages fa�� a�� � � � � amg � Msg 	H
 such that ci	ai
 is true for all i and

a��s � l�	a�
 � l		a	
 � � � � � lm	am
 � a��r�

Some examples of forbidden predicates that can be implemented without

using control messages are�

FIFO� Messages are received in the order that they are sent between any pair of

processes�

�x� y �

	proc 	x�s
 � proc 	y�s

 � 	proc 	x�r
 � proc 	y�r

 �

	x�s � y�s
 � 	y�r � x�r
�

��

Colored FIFO� Messages of di�erent kinds 	or di�erent colors
 are received in the

same order that they are sent between any pair of processes�

�x� y �

	proc 	x�s
 � proc 	y�s

 � 	proc 	x�r
 � proc 	y�r

 � 	color 	x
 � color 	y

 �

	x�s � y�s
 � 	y�r � x�r
�

Causal Ordering� A series of messages cannot overtake another message�

�x� y � 	x�s � y�s
 � 	y�r � x�r
�

Colored Causal Ordering� Ordering among messages with di�erent colors is

maintained�

�x� y � 	color 	x
 � color 	y

 � 	x�s � y�s
 � 	y�r � x�r
�

Similar predicates are used in many consistent�cut protocols�

k�Weaker Causal Ordering� Messages can be out of order by at most k messages�

�x�� � � � xk�� � 	x��s � x��s
 � 	x��s � x	�s
 � � � � � 	xk���r � x��r
�

Local Forward�Flush� All messages sent before a red message are received before

the red message between any pair of processes�

�x� y �

	proc 	x�s
 � proc 	y�s

 � 	proc 	x�r
 � proc 	y�r

 � 	color 	y
 � red
 �

	x�s � y�s
 � 	y�r � x�r
�

Local Backward�Flush � All messages sent after a red message are received after

the red message between any pair of processes�

�x� y �

	proc 	x�s
 � proc 	y�s

 � 	proc 	x�r
 � proc 	y�r

 � 	color 	x
 � red
 �

	x�s � y�s
 � 	y�r � x�r
�

��

Global Forward�Flush� All messages sent before a red message are received before

the red message�

�x� y � 	color 	y
 � red
 � 	x�s � y�s
 � 	y�r � x�r
�

Global Backward�Flush� All messages sent after a red message are received after

the red message�

�x� y � 	color 	x
 � red
 � 	x�s � y�s
 � 	y�r � x�r
�

��� Algorithm for a Two Clause Predicate

Consider the following speci�cation�

a red message sent before a green message should not be received after

the green message� i�e��

	x�s � y�s
�		y�r � x�r
�

where color 	x
 � red and color 	y
 � green�

In this case� upon receiving a green message a process waits for only those red

messages in transit that were sent before the green message� Thus a process has

to keep track of two types of red messages� �rst� those red messages in transit that

were sent before a green message� and second those red messages that might precede

a future green message� This is done by keeping two level sets L� and L�� where

L� � set of all red messages� and

L� � set of red messages that are preceded by a past green message�

The above condition can be rewritten using forbidden predicates as�

B � �x� y � color 	x
 � red � color 	y
 � green � 	x�s � y�s
 � 	y�r � x�r
�

Informally� a forbidden predicate states that a run is illegal if a set of events satis�es

certain causality relations� Therefore using sets L� and L�� the algorithm tracks all

��

� x� y � color �x� � red � color �y� � green � �x�s � y�s� � �y�r � x�r�

L� L�

For any event g�
a � L��g� � 	a�s � g
� where color 	a
 � red
a � L��g� � � b � 	a�s � b�s
 � 	b�r � g
� where color 	b
 � green

Figure ���� Detection of di�erent stages of the predicate�

possible combinations of events that may eventually satisfy the causality relations�

To guarantee safety a process delays an event until it has received all messages in L��

This ensures the second clause of the predicate is never true for any x� y� Therefore�

the two steps in the algorithm are�

�� Detection of di�erent stages of the predicate�

� Avoidance of one of the clauses of the predicate�

	���� Detection

The predicate can be viewed as a causality chain� and the �rst step keeps

track of all events that have satis�ed part of the causality chain� Figure ��� illustrates

the �rst step for the above speci�cation� In this chapter� the notation � stands

for �� �� that is� if h � h� then either h and h� are the same events or h � h�� Set

L� tracks the messages that satisfy the causality relation left of the perpendicular

line associated with L� in the �gure� that is a � L��g� if 	a�s � g
 and a is a red

message� Similarly� set L� tracks the messages that satisfy the causality relation left

of the perpendicular line associated with L�� that is� a � L��g� implies there exists a

message b such that 	a�s � b�s
� 	b�r � g
� where a is a red message and b is a green

message�

Whenever a process sends a message x it tags its local information along with

the message� The new local information of the receiving process is a function of its

old local information 	Lis
� and the information tagged along with the message x

��

	x�Lis
� The value of the set Li just after the event g is Li�g�� The detection of the

predicate is done in stages� For example� in the above predicate the two stages are�

�� Detection of the �rst part of the predicate� Therefore�

a � L��g�� 		color 	a
 � red
 � 	a�s � g

 �

Thus� L� keeps track of all messages that are red� Therefore� whenever a process

sends or receives a red message it adds the message to the set L��

� Detection of the �rst part followed by the second part� i�e��

a � L��g�� 	�b � color 	a
 � red � color 	b
 � green � 	a�s � b�s
 � 	b�r � g

 �

Note that part of the predicate is the same as the de�nition of L�� Using the identity�

	a�s � b�s
 � � an event f � 	a�s � f
 � 	f � b� s
�

we can rewrite L� using L� as�

a � L��g� � � an event f� and a message b �

	color 	b
 � green
 � 	f � b�s
 � 	b�r � g
 � 	a � L��f �
�

The condition speci�es when a message from any level set is added to a higher level

set 	e�g�� from L� to L�
�

If a process executes a message b such that color 	b
 � green then the sending

process can update the level sets L� and L� using its old values and the knowledge

that message b satis�es the condition� Similarly� the receiving process can update

its level sets based on its level sets and the level sets tagged with the message b�

	���� Safety

The second step guarantees the safety property� The algorithm maintains the safety

property by the following invariant�

wait	g
 � 	a � L��g�
 � 	proc 	a�r
 � proc 	g

 � 	a�r � g
�

��

Informally� this states the waiting condition for the event g� That is� the execution

of g should wait until all the messages have been received that will belong to the

set L��g��

Let us consider the above forbidden predicate� The Lis are

a � L��g� � color 	a
 � red � 	a�s � g
�

a � L��g� � �f� b � color 	b
 � green � 	f � b�s
 � 	b�r � g
 � 	a � L��f �
�

Consider the case when the invariant wait	g
 is not maintained� That is�

a � L��g� � 	proc 	a�r
 � proc 	g
 � 		a�r � g
�

Since the events a�r and g are in the same process� 		a�r � g
� 	g � a�r
� From

	g � a�r
 and a � L��g�� that is�

� b � 	color 	a
 � red
 � 	color 	b
 � green
 � 	a�s � b�s
 � 	b�r � g
�

we have � a� b � 	a�s � b�s
 � 	b�r � g
 � 	g � a�r
� Therefore�

� a� b �M � 	color 	a
 � red
 � 	color 	b
 � green
 � 	a�s � b�s
 � 	b�r � a�r
�

Thus� B	a� b
 is true and the run is illegal�

��� Discussion of the General Algorithm

Consider a predicate B with the corresponding graph GB	V�E
� Let the vertex set

be V � fx�� x�� � � � � xmg and the edge set be E � f 	xi� x�imodm���
 � i � �� � � �m g�

Without loss of generality we will assume x� is the � vertex� The conditions satis�ed

by messages are fc�� c�� � � � � cmg� The forbidden predicate can be written as�

�x�� � � � xm �M � c�	x�
 � � � � � cm	xm
 � 	x��s � x��p
 � � � � � 	xm�q � x��r
�

We will drop the quanti�er � for ease of use� For example� consider the forbidden

predicate from the last section��

color 	x�
 � red � color 	x�
 � green � 	x��s � x��s
 � 	x��r � x��r
�

�Instead of using x� y as free variables we are using x�� x� respectively�

��

the vertex set V � fx�� x�g and E � f	x�� x�
� 	x�� x�
g� The conditions satis�ed

by the messages are c�	x
 � 	color 	x
 � red
 and c�	x
 � 	color 	x
 � green
�

The de�nition for the level set L� for the example predicate is�

a � L��g�� color 	a
 � red � 	a�s � g
�

For the general predicate we get�

a � L��g�� c�	a
 � 	a�s � g
�

The de�nition of the level set L� for the example predicate is�

a � L��g�� � f� b � 	color 	b
 � green
 � 	f � l�	b
 � g
 � 	a � L��f �
�

Similarly� for the general predicate we get�

a � L��g�� � f� b � c�	b
 � 	f � l�	b
 � g
 � 	a � L��f �
�

This can be generalized to other level sets and we get�

a � Li�g�� � f� b � ci	b
 � 	f � li	b
 � g
 � 	a � Li���f �
�

Informally� Li�g� is a set of messages where a � Li�g� if there exists a set of messages

fb�� b	� � � � � big� such that a�s � l�	b�
 � l�	b�
 � � � � � li	bi
 � g and c�	a
 � c�	b�
 �

c		b	
 � � � � � ci	bi
� A message a is moved up the level sets from L� to L� and

so forth� Eventually a � Lm and an event g has to wait for the message a before

executing� satisfying the waiting condition

wait	g
 � 	x � Lm�g�
 � 	proc 	x�r
 � proc 	g

� 	x�r � g
�

The conditions met by the algorithm are as follows�

Waiting Condition �WC� � When is an event delayed �

	x � Lm�g�
 � 	proc 	x�r
 � proc 	g

� 	x�r � g
�

��

Enabling condition for event g �
E� 	x � Lm�g�
 � 	proc 	a�r
 � proc 	g

� 	x�r � g
�

sending message x �
S� Message Tag � fL�� L�� � � � � Lmg
S for i in fm�m� �� � � � � g do
S� if 	ci	x

 then
S� if vi is of type 	s� s
 then
S� Li � Li � Li���
S� if 	c�	x

 then
S� L� � L� � fxg

Receiving message x �
R� Li � Li � x�Li

R for i in fm�m� �� � � � � g do
R� if 	ci	x

 then
R� if vi is of type 	s� s
 then
R� Li � Li � x�Li���
R� if vi is of type 	s� r
 then
R� Li � Li � x�Li���
R� if vi is of type 	r� r
 then
R� Li � Li � Li�� � x�Li���
R�� if 	c�	x

 then
R�� L� � L� � fxg

Figure ��� Pseudo�code for an algorithm implementing WC� EC� and UC�

Entry Condition �EC� � Which messages are of interest �

c�	a
 � 	a�s � h
� a � L��h��

Update Condition �UC� � When does a message a become a member of level

set Li� i � � �

	a � Li�g�
� � b� f � ci	b
 � 	f � li	b
 � g
 � 	a � Li���f �
�

The algorithm satisfying the above conditions 	WC� EC� and UC
 is given

in Figure ��� Here we give an informal argument to show that the algorithm

�

satis�es the above three properties� Statement E� implements WC� Statements S��

S� for the sending process and R���R�� for the receiving process implement EC�

and statements S�S� for the sending process and R��R� for the receiving process

implement UC�

��� Proof of the Correctness of the Algorithm

Lemma �� �Monotonic Property �MP�� UC and EC � MP where MP is

x � Li�g�� �h � g � h � x � Li�h��

Proof� Let a � L��g� and g � h�

a � L��g� � c�	a
 � 	a�s � g
 Using EC

� c�	a
 � 	a�s � h
 Using g � h

� a � L��h� Using EC

Let a � Li�g�� i � � and g � h�

a � Li�g� � � b� f � ci	b
 � 	f � li	b
 � g
 � 	a � Li���f �
 Using UC

� � b� f � ci	b
 � 	f � li	b
 � h
 � 	a � Li���f �
 Using g � h

� a � Li�h� Using UC

�

Lemma �� Given a forbidden predicate B� data structures Lis satisfying UC and

EC� and an event g and a message a such that 	a � Lm�g�
 � 	g � a�r
� Then

� a�� a�� � � � � am � B	a�� a�� � � � � am
 is true�

Proof� We use the following properties of UC and EC�

Prop� �� x � Li�g� � 	� b� f � ci	b
 � 	f � li	b
 � g
 � 	x � Li���f �

 � and

Prop� � x � L��g� � 	x�s � g
 � c�	x
�

��

Let a� � a� then from the statement of this lemma a� � Lm�g�� On expanding Lm�g�

using Prop� �� we have

a� � Lm�g� � � am� f � cm	am
 � 	f � lm	am
 � g
 � 	a� � Lm���f �
�

On expanding Lm���f � we get

a� � Lm�g� � � am� f � cm	am
 � 	f � lm	am
 � g
 �

	� am��� h � cm��	am��
 � 	h � lm��	am��
 � f
 � 	a� � Lm���h�

 �

On simpli�cation we get

a� � Lm�g� � � am� am��� h � cm	am
 � cm��	am��
 �

	h � lm��	am��
 � lm	am
 � g
 �

	a� � Lm���h�
�

After repeatedly expanding Lis we eventually get

a� � Lm�g� � � am� am��� � � � a�� h � cm	am
 � cm��	am��
 � � � � � c�	a�
 �

	h � l�	a�
 � � � � � lm��	am��
 � lm	am
 � g
 �

	a� � L��h�
�

If 	a� � L��h�
 then from Prop� � we have 	a��s � h
 � c�	a�
� Therefore�

a� � Lm�g� � � am� am��� � � � a� � cm	am
 � cm��	am��
 � � � � � c�	a�
 �

	a��s � l�	a�
 � � � � � lm��	am��
 � lm	am
 � g

Since it is given that 	a� � Lm�g�
 � 	g � a��r
� therefore

� am� am��� � � � a� � cm	am
 � cm��	am��
 � � � � � c�	a�
 �

	a��s � l�	a�
 � � � � � lm��	am��
 � lm	am
 � a��r

Therefore P 	a�� a�� � � � � am
 is true� �

��

Lemma �� Given a forbidden predicate B� data structures Lis satisfying UC and

EC� and messages a�� a�� � � � � am such that B	a�� a�� � � � � am
 is true� Then � g �

wait	g
 is false�

Proof� We use the following properties satis�ed by EC� UC� and MP�

Prop� �� c�	a
� a � L��a�s��

Prop� � � b� f � ci	b
 � 	f � li	b
 � g
 � 	a � Li���f �
 � 		a�r � g
� a � Lj �g��

Prop� �� a � Lm�g���h � 	g � h
 � 		h � a�r
 � a � Lm�h��

Since B	a�� a�� � � � � am
� we have

c�	a�
 � c�	a�
 � � � � � cm	am
� and

	a��s � l�	a�
 � � � � � lm��	am��
 � lm	am
 � a��r
�

Let ti	x
 represent the top element of li	x
� that is�

ti	x
 �

����	
���

x�s if li	x
 � x�s

x�r if li	x
 � x�s � x�r

x�r if li	x
 � x�r

Prop� � and c�	a�
� a� � L��a��s��

Since c�	a�
 � 	a��s � l�	a�
 � t�	a�
 � a��r
 � 	a� � L��a��s�
� therefore from Prop� �

we have a� � L��t�	a�
��

Similarly� c�	a�
 � 	t�	a�
 � l�	a�
 � t�	a�
 � a��r
 � 	a� � L��t�	a�
�
� therefore

from Prop� � we have a� � L	�t�	a�
��

By repeated application of Prop� � we eventually get

a� � Lm�tm	am
��

Since 	tm�am� � a��r
 and 	a��s � tm	am

 we get

proc 	tm�am�
 � proc 	a��r
 �

� g � 	tm�am� � g � a��r
 � 	proc 	g
 � proc 	a��r

�

��

From a� � Lm�tm	am
� and Prop� �� we have a� � Lm�g� for all g such that

tm	am
 � g and 		a�r � g
� Therefore�

� g � 	a� � Lm�g�
 � 	proc 	a��r
 � proc 	g

 � 	g � a��r
�

Therefore wait	g
 is false� �

Theorem �� �Safety� Let the data structures Lis satisfy UC and EC� Then there

exists a set of messages fa�� a�� � � � � amg such that B	a�� � � � � am
 is true if and only

if � g � wait	g
 is false�

Proof� Follows from Lemma �� and Lemma ���� �

Lemma �� If UC and EC are true� then

�� x � Li�g�� x � Li���g��

� x � Li�g�� 	x�s � g
 � c�	x
�

Proof� The �rst statement follows from MP and UC�

a � Li�g� � � f � 	f � g
 � 	a � Li���f �
 Using UC

� a � Li���g� Using g � f and MP

The second statement follows from the �rst statement and EC�

a � Li�h�� a � Li���h�� � � � �L��h�� 	x�s � h
 � c�	x
�

�

Theorem �� �Liveness� Every event is eventually executed�

Proof� An event g is delayed only if a � Ln�g� and proc 	a�r
 � proc 	g
 and a has

not been received� Since a � Li�g� 	from Lemma ���
� a�s � g� Therefore either a�r

has been received or the message is in transit� �

��

��� Discussion

In this chapter we presented a general optimal algorithm to implement a class of

message ordering speci�cations� The algorithm is optimal in the sense that it is

least restrictive� it delays an event if and only if it will result in safety violation� In

this section we present some ideas on implementing space e�cient algorithms� In

particular�

� The level sets satisfy the monotonic condition� Thus� a message identi�er once

added to a level set is never purged� even after that information is of no use�

� The general algorithm results in passing information along with the message

that is either not necessary or can easily be reduced� For example� in case of

causal ordering a n� n matrix 	that is� n� message identi�ers
 is su�cient�

We will study the �rst issue in the following subsection� Garbage Collection� and

the next issue in the next subsection under the heading Induction Argument�

	�	�� Garbage Collection

In the algorithm there is no way to purge an entry from any of the level sets� In

this section we discuss two methods to purge an entry from a level set�

In the algorithm an event g is delayed until it receives all the messages in

the set Lm�g�� If a process knows that a message has been already received then the

level sets Lis need not keep track of the message in the causal future� Secondly� if

a message x � Lj �g� it is redundant for a level set Li�g� where i � j to keep track of

that information� since the waiting condition of any event depends on the messages

in the level set Lm� Thus� taking these ideas into consideration we get the following

conditions to be met by the algorithm�

Waiting Condition �WC� � When is an event delayed �

	x � Lm�g�
 � 	proc 	x�r
 � proc 	g

� 	x�r � g
�

��

Modi�ed Entry Condition �MEC� � Which messages are of interest �

ci	a
 � 	a�s � h
 � 		a�r � h
 �� 	a � L��h�
�

Modi�ed Update Condition �MUC� � When does a message a become a mem�

ber of level set Li� i � � �

� b� f � ci	b
 � 	f � li	b
 � g
 � 	a � Li���f �
 � 		a�r � g
 �� a � Lj�g��

We can prove similar results using WC� MEC� and MUC as was done for WC� EC�

and UC�

Lemma �� If MUC and MEC are true� then

�� x � Li�g�� x � Li���g��

� x � Li�g�� 	x�s � g
 � c�	x
�

�� a � Li�h��		a�r � h
�

Proof Outline� Similar to proof of lemma ���� The third part follows from MUC

and MEC� �

Theorem �� �Safety� Let the data structures Lis satisfy MUC and MEC� Then

there exists a set of messages fa�� a�� � � � � amg such that B	a�� � � � � am
 is true if and

only if � g � wait	g
 is false�

Proof Outline� To prove �if� part show that MUC� MEC� and � g � wait	g
 is

false� implies the two properties stated in the proof of lemma ���

To prove �only if� part show that MUC� MEC and � ais � P 	a�� a�� � � � � am

is true� implies the three properties stated in the proof of lemma ���� �

Theorem �� �Liveness� Every event is eventually executed�

��

Proof Outline� Similar to earlier liveness proof� �

It is interesting to note that if x � Li�g� then x � Li���g� 	from lemma ���
�

therefore� it is su�cient to maintain x as an element of the largest indexed set�

Therefore� an e�cient algorithm maintains the following properties�

Uniqueness Property � x � Li�g�� x � Lj�g�� � j � i�

Purge Condition � x�r � g�x � Li�g�� � i�

To maintain the uniqueness property is trivial� We present an algorithm 	in Fig�

ure ���
 to maintain the purge condition� This is done by keeping vector clocks� and

assigning a number in increasing order to each message sent by a process�

	�	�� Induction Argument

Many implementations for speci�cations� like causal ordering� FIFO and some marker

type algorithms implicitly use the induction arguments� That is� say message xmust

be received after fy� zg and message y must be received after fzg� then the desired

objective is achieved even if we say message x should be received after fyg and

message y must be received after fzg� Thus� in the case of causal ordering� we get a

n�n matrix� where each element is just a message identi�er of the previous message

that should have been received� This idea can be implemented using the following

two steps�

�� De�ning an order� for any two messages x� y� x is less than y if

	x � Lm�y�r�
 � 	proc 	x�r
 � proc 	y�r

�

� Keeping only the maximal elements in Li�

We illustrate the procedure in the following example�

Example �� Consider FIFO in the following run�

��

Enabling condition for event g �
E� 	x � Lm�g�
 � 	proc 	a�r
 � proc 	g

� 	x�r � g
�

sending message x �
S� Message Tag � fL�� L�� � � � � Lm� V g
S for i in fm�m� �� � � � � g do
S� if 	ci	x

 then
S� if vi is of type 	s� s
 then
S� Li � Li � Li��� Li�� �

S� if 	c�	x

 then
S� V �proc 	x�s
�
S� L� � L� � f	x� V �proc 	x�s
�g

Receiving message x �
R� for i in fm�m� �� � � � � �g do
R if 		y� n
 � Li
 � 		y� n
 � �j x�Lj
 � 	n � x�V �proc 	x�s
�
 then
R� Li � Li � f	y� n
g
R� if 		y� n
 � x�Li
 � 		y� n
 � �j Lj
 � 	n � V �proc 	x�s
�
 then
R� x�Li � x�Li � f	y� n
g
R� if 		y� n
 � Li
 � 		y� n
 � �j�i x�Lj
 then
R� Li � Li � f	y� n
g
R� if 		y� n
 � x�Li
 � 		y� n
 � �j�iLj
 then
R� x�Li � x�Li � f	y� n
g
R�� for i in fm�m� �� � � � � �g do
R�� Li � Li � x�Li

R� for i in fm�m� �� � � � � g do
R�� if 	ci	x

 then
R�� if vi is of type 	s� s
 then
R�� Li � Li � x�Li��� Li�� � Li�� � x�Li��

R�� if vi is of type 	s� r
 then
R�� Li � Li � x�Li��� Li�� � Li�� � x�Li��

R�� if vi is of type 	r� r
 then
R�� Li � Li � Li�� � x�Li��� Li�� �

R� if 	c�	x

 then
R� Li � Li � f	x� n
g
R V �proc 	x�s
�

Figure ���� Pseudo�code for an algorithm implementing WC� MEC� and MUC�

��

�

�

�
�
�
�
�
��

�
�
�
�
�
��

�
�
�
�
�
��

x�s y�s z�s

x�r y�r z�r

The level set Lm has the following values�

L��x�r� � fg that is� message should be received after fg�

L��y�r� � fxg that is� message should be received after fxg�

L��z�r� � fx� yg that is� message should be received after fx� yg�

Since x � L��y�r� therefore x � y� and if we take only the maximal element in Lm

we get�

L��x�r� � fg that is� message should be received after fg�

L��y�r� � fxg that is� message should be received after fxg�

L��z�r� � fyg that is� message should be received after fyg�

��� Related Work

A fair amount of research has been done for e�cient algorithms to implement di�er�

ent message orderings� Birman and Joseph ���� Raynal� Schiper and Toueg ���� and

Schiper� Eggli and Sandoz ����� have presented algorithms for the causal ordering

of messages� These algorithms tag knowledge of processes about messages sent in

the system with the message� Variants of FIFO ordering have been studied un�

der F�channels ��� The implementation of F�channels provides us with some basic

synchronization primitives for sending messages� two�way��ush send� forward��ush

send� backward��ush send� and ordinary send� Similar �ush primitives can be de�

�ned for causal ordering� These message orderings can be speci�ed using forbidden

predicates� By constructing predicate graphs of these predicates it can be shown

that these orderings can be implemented without using any control messages�

��

Many asynchronous consistent�cut protocols ���� such as global snapshot al�

gorithms ���� �� ��� check�pointing and rollback recovery ���� �� ��� and dead�

lock detection ��� require special messages to �nd consistent�cuts in a computation�

These protocols require some form of inhibition of the special messages in order to

guarantee correctness�

��� Summary

In this chapter� we extended the concept of forbidden predicates by de�ning three

attributes for each message� color� sending process� and receiving process� All

existing message ordering speci�cations such as FIFO� �ush channels� and causal

ordering as well as many new message orderings can be concisely speci�ed using

forbidden predicates�

We presented a general algorithm to implement the message orderings that

can be speci�ed using forbidden predicate and that are implementable without con�

trol messages� We further presented techniques to generate e�cient protocols for a

given speci�cation�

�

Chapter �

Implementation

In the previous chapter we presented a general algorithm to implement an optimal

protocol for a class of message orderings� The protocol generated is optimal in the

sense that it is least restrictive� We considered two techniques � Garbage Collection

and Induction Argument � to make the protocol space e�cient�

In this chapter we discuss automatic generation of e�cient protocols for the

class of speci�cations studied in the previous chapter� The implementation consists

of three layers� a distributed simulator modeling a distributed program that commu�

nicates using messages� the protocol layer automatically generated given a forbidden

predicate� and the lowest layer facilitating the interprocess communication�

��� Interface to the Protocol

The protocol layer 	being the middle layer
 interfaces with the user program

and the interprocess communication layer� The interface to the user program uses

two functions� They are�

� void send �const Msg� m� � a function used by the user to send a message�

and

� Msg� deliver �� � a function used by the user to receive a message�

��

class Msg f
public�

virtual int sendProc �� � ��

virtual int recvProc �� � ��

virtual int color �� f throw g�

virtual void� data �� � ��

virtual unsigned int length �� � ��

g�

Figure ���� De�nition of the class Msg�

These functions are written in C and the de�nition of the class Msg is given

in Figure ���� The parameter passed to the send function is an instance of a class

derived from class Msg� Similarly� the return value of the function deliver is an

instance of a class derived from class Msg� The de�nition of the functions send ��

and deliver �� is given in Figure ���

The protocol interfaces with the communication layer through two functions�

They are�

� SEND �int port� const Data� d� � transfers the information d	data�� of

length d	length�� to the destination process given by the �rst argument� and

� Data RECV �� � receives the information sent by another process using SEND ���

The function RECV �� is a blocking receive function� we assume that the underlying

system provides a reliable message delivery guarantee�

Figure ��� shows the interaction of the protocol with the user program and

the communication layer�

��� Code Generator

We considered the following issues when writing the code generator�

��

Info local�

list
DataPacket� msgQueue�

void send �const Msg� m�

f
SEND �m� local�� �� send the message

updateOnSend �m� local�� �� update local info

g

const Msg� deliver ��

f
list
DataPacket���iterator i � msgQueue	begin ���

for �� i � msgQueue	end ��� i���

f
Info� remote � ��i�	info ���

Msg� msg � ��i�	msg ���

if �wait �msg� remote� local� �� false�

f
static MsgPacket m�

m � msg�

updateOnRecv �m� remote� local��

msgQueue	erase �i��

return �m��

g
g
msgQueue	push back �DataPacket �RECV �����

return �deliver ����

g

Figure ��� Send and Deliver functions�

��

Process i

Send and Delivery Functions

Communication Layer

Protocol

User Program

� �

� �

�

RECV ��

�

deliver ��

�

send ��

�

SEND ��

Figure ���� Architecture of the implementation�

Induction � We exploit the induction argument 	explained in Section ����
 when

the conditions imposed on the �rst variable and the last variable are symmetric

with respect to each other�

Large N � The existing algorithms for causal ordering usually tag control infor�

mation as a n � n matrix with the messages� If the number of processes is

large then the amount of control information can be very large and may not

be all necessary� An alternative is to keep sparse matrices thus reducing the

size of the control information� The protocol generator when invoked with a

�n option generates code with sparse matrices�

Use of Counters � Consider the case of the marker message speci�cation given

in Figure ���� When a process sends a red message z after sending � green

messages e�g�� fa� b� c� d� eg� the process tags the red message with one of the

following�

��

� Receive the following green messages� fa� b� c� d� eg before receiving this

red message�

� Receive � green of type �a� before receiving this red message� where all

the �ve messages fall in the equivalence class �a��

The use of counters� as in the latter case� can result in space e�cient protocols�

We have not implemented this optimization in our protocol generator�

Dimensions of Level Sets � In many cases� for example FIFO� the complete local

information need not be tagged along with a message� In the case of FIFO�

the local information consists of N integers� while only one integer is tagged

along with every message� Similarly� in the following predicate�

proc 	x�s
 � proc 	y�s
 � 	x�s � y�s
 � 	y�r � � � � �

each process tags the level set L� with a message� but at the receiving end all

the messages are moved up to a higher level� Thus� each process tracks only

the messages sent by itself in the level set L��

��� Input

Input to the protocol generator is a forbidden predicate as discussed in the

previous chapter� Figure ��� shows an input �le for the forbidden predicate�

�x� y �M � color 	x
 � color 	y
 � 	x�s � y�s
 � 	y�r � x�r
�

In an input speci�cation� the process identi�ers are given in the Process �eld� and

the color identi�ers for the messages are given in the Colors �eld� The forbidden

predicate is speci�ed by the two �elds Predicate and Filter� The name in the

Specification �eld is used to generate the output �les containing the protocols�

The �les for the example in Figure ��� are�

� the header �le is Example	h � represents the internal data structure� and

� the c��le is Example	cc � contains the protocol generated�

��

Specification� Example

Processes� a� b� c� d� e

Variables� x� y

Colors� red� green

Filter�

color �x� � color �y�

Predicate�

�x	s � y	s� and

�y	r � x	r�

Figure ���� An example input �le�

Predicate � PredicateClause � and PredicateClause ��

Filter � �FilterClause � and FilterClause �� �

PredicateClause � 	event � event

FilterClause � ProcessF ilter j ColorF ilter

ProcessF ilter � process �event� op process �event� j

process �event� op Processes

event � Variables�s j Variables�r

ColorF ilter � color �Variables� op color �Variables� j

color �Variables� op Colors

op � �� j ��

Variables � Identi�er given in Variables �eld

Colors � Identi�er given in Colors �eld

Processses � Identi�er given in Processses �eld

Figure ���� Syntax for writing Filter and Predicate�

��

��� Output

The output for the speci�cation given in Figure ��� are two �les Example	h and

Example	cc� The header �le Example	h is�

#define N 4

enum Color {Red, Green};

class Info
{

int LevelOne[2][N][N];
int LevelTwo[2][N][N];

friend bool wait (const Msg&, const Info&, const Info&);
friend void updateOnRecv (const Msg&, Info&, Info&);
friend void updateOnSend (const Msg&, Info&);
friend void unionInfo (Info& local, const Info& remote);

public:
Info ();
Info (const void *data, const int len);

const void *data () const;
int length () const;

};

class RecvdMsgQueue {

static list<int> ids[2][N];

friend class Info;
public:

static bool contains (const Element& e);
static void received (const Msg& m, unsigned int id);

static void init ();
};

inline int max (int x, int y){ return (x > y) ? x : y; }

bool wait (const Msg&, const Info&, const Info&);
void updateOnRecv (const Msg&, Info&, Info&);
void updateOnSend (const Msg&, Info&);
void unionInfo (Info& local, const Info& remote);

��

The c��le Example	cc is�

bool wait (const Msg& m, const Info& remote, const Info& local)
{

int k;
RecvdMsgQueue::init ();

for (int i = 0; i < N; i++)
{

for (int color = 0; color < 2; color++)
{

int id = remote.LevelTwo[color][i][procId ()];
Element e (i, procId (), id, color);
if (RecvdMsgQueue::contains (e) == false)
{

return (true);
}

}
}

switch (m.color ())
{

case Red :
for (k = 0; k < 2; k++)
{

if (k == 0) continue;
for (int i = 0; i < N; i++)
{

int id = remote.LevelOne[k][i][procId ()];
Element e (m.sendProc (), procId (), id, k);
if (RecvdMsgQueue::contains (e) == false)
{

return (true);
}

}
}

break;
case Green :

for (k = 0; k < 2; k++)
{

if (k == 1) continue;
for (int i = 0; i < N; i++)
{

int id = remote.LevelOne[k][i][procId ()];
Element e (m.sendProc (), procId (), id, k);
if (RecvdMsgQueue::contains (e) == false)
{

return (true);
}

}
}

break;
}

���

return (false);
}
void updateOnSend (const Msg& m, Info& local)
{

RecvdMsgQueue::init ();

//**
//* Entry Condition(x)
//**
switch (m.color ())
{

case Red :
local.LevelOne[Red][m.sendProc ()][m.recvProc ()]++;

break;
case Green :

local.LevelOne[Green][m.sendProc ()][m.recvProc ()]++;
break;

}
}

void updateOnRecv (const Msg& m, Info& remote, Info& local)
{

RecvdMsgQueue::init ();
int k;

//**
//* Entry Condition(x)
//**
int id = 0;
switch (m.color ())
{

case Red :
id = ++(remote.LevelOne[Red][m.sendProc()][m.recvProc ()]);

break;
case Green :

id = ++(remote.LevelOne[Green][m.sendProc()][m.recvProc ()]);
break;

}
RecvdMsgQueue::received (m, id);

unionInfo (local, remote);

switch (m.color ())
{

case Red :
for (k = 0; k < 2; k++)
{

if (k == 0) continue;
for (int i = 0; i < N; i++)
{

for (int j = 0; j < N; j++)

���

{
local.LevelTwo[k][i][j] =

max (local.LevelTwo[k][i][j],
remote.LevelOne[k][i][j]);

}
}

}
break;
case Green :

for (k = 0; k < 2; k++)
{

if (k == 1) continue;
for (int i = 0; i < N; i++)
{

for (int j = 0; j < N; j++)
{

local.LevelTwo[k][i][j] =
max (local.LevelTwo[k][i][j],

remote.LevelOne[k][i][j]);
}

}
}

break;
}

}
void unionInfo (Info& local, const Info& remote)
{

int k;
for (k = 0; k < 2; k++)
{

for (int i = 0; i < N; i++)
{

for (int j = 0; i < N; i++)
{

local.LevelOne[k][i][j] =
max (local.LevelOne[k][i][j],

remote.LevelOne[k][i][j]);
}

}
}
for (k = 0; k < 2; k++)
{

for (int i = 0; i < N; i++)
{

for (int j = 0; i < N; i++)
{

local.LevelTwo[k][i][j] =
max (local.LevelTwo[k][i][j],

remote.LevelTwo[k][i][j]);
}

}
}

}

��

Acknowledgments

I would like to thank Mom�Ping Ng and Roger Mitchell for their help in implement�

ing the distributed simulator modeling a distributed program and the communica�

tion layer facilitating in the interprocess communication�

���

Chapter �

Conclusion and Future Work

��� Summary and Discussion

In this dissertation� we presented a new characterization of message ordering speci�

�cations� A message ordering speci�cation is characterized as the set of acceptable

runs� that is� a subset of X where X is the set of all runs� In this broad setting�

where each message ordering is a subset of X� we �rst determine whether a given

speci�cation can be implemented using an inhibition based protocol� We show that

a message ordering speci�cation can be implemented if and only if it includes all

logically synchronous runs� Further� if it can be implemented then we determine the

type of protocol necessary and su�cient to implement it� where the protocols are

classi�ed into three types� 	�
 general� those that can tag information and have

control messages� 	
 tagged� those that can tag information� and 	�
 tagless�

those that do nothing� For example� we show that a message speci�cation can be

implemented by tagging user messages with some additional information if and only

if it includes all causally ordered runs� It is an easy consequence of the results of

this work that no additional tagging of information can restrict the message ordering

further�

Formally� we de�ne three subsets of X� namely� Xasync� Xco� and Xsync� We

���

show that given a speci�cation Y � X� it is implementable 	there exists a protocol

with control messages
 if and only if Xsync � Y� Similarly� there is a protocol without

control messages if and only if Xco � Y� The �do nothing� protocol is su�cient to

implement if and only if Xasync � Y� Thus� given a speci�cation 	that is the set of

acceptable runs
 the type of protocol necessary and su�cient can be easily checked

by testing the containment of the three limit sets Xasync� Xco� and Xsync�

Since X is an in�nite set� we also need a �nite representation for its subsets

that specify message ordering� We present a method called forbidden predicates

that can be used to describe a large class of message ordering speci�cations� All

existing message ordering guarantees such as FIFO� �ush channels� causal ordering�

and logically synchronous ordering as well as others can be concisely speci�ed using

forbidden predicates� Given a message ordering speci�cation using forbidden pred�

icates� we present an algorithm that determines the type of protocol necessary to

implement that speci�cation�

Lastly� we presented a general algorithm for a class of message orderings that

can be implemented without control messages�

��� Future Work

In this chapter we present some generalizations to message ordering speci�cations�

In the usual model of a distributed run 	H� �
� a message x � Msg 	H
 is a pair

of local events� that is� fx�s� x�rg� These events are causally related� x�s � x�r

irrespective of the other events in the run� The order relation � among the events

in H is the transitive closure of the local ordering along a process and the relation

between the send event and the corresponding receive event� Thus� we can view a

message x as a global event with two local events x�s and x�r along with an order

imposed on them� In general� a global event can be any set of local events� for

example a broadcast x can be viewed as a global event� that is� a set of local events

fx�s� x�r�� x�r�� � � � � x�rng and the relation � where� for all i � �� �� � � � � n� x�s � x�ri

���

�

�

�

�

�
�
�
�
�
�
��R

HHHHHHHHj

�
�
�
��
s

s

s

s

ra

s

rb

rc

Figure ���� A multicast message fs� ra� rb� rcg�

�

�

��
�
�
�
�
�
��

s
s

�
�
�
�
���

s
ri

s
rf

Figure ��� A collated message fs� ri� rfg�

holds� In general� we can view a distributed run as an execution of global events�

where each global event is isomorphic to an element in S 	a set of partial orders
�

For example� for a system with only two kinds of messages� point�to�point and

broadcast� the set is

S � ffs � rg� fs � ri � i � �� � � � � � ngg �

Thus� in general a distributed system is a ��tuple 	Z� S�M�X
� where Z is a set of

processor identi�ers� S the types of global events� M is set of global events each

isomorphic to an element in S� and X is the set of all runs over Z and M �

In the rest of this section� we present three applications of global events�

illustrating some of the solved and open issues� First� we consider the case when the

���

system consists of point�to�point messages and multicast messages 	see Figure ���
�

The work done on point�to�point messages can be easily extended to provide us with

the answers� Second� we consider the case where the system consists 	in addition

to point�to�point messages
 of messages where a message has an intermediate event

that is nothing but a receive and send immediately following� We call such a message

a collated message� Figure �� shows one such message� The work presented in this

dissertation does not address the basic issues in this framework� Third� we represent

the implementation of protocols with control messages using global events�

In the rest of the section� a run 	H� �
 is de�ned as an n�valued local state

and the happened�before relation on the set of events satis�ng the following condi�

tions�

�� Two events occur in the same process�

� The two events are part of the same global event� and one happens before the

other� For example� s � ri 	or s � ri
 and s � rf 	or s � rf
 in Figure ���

�� If there exists a third event� where the �rst event happened�before the third

event� and the third happened�before the second event then the �rst event

happened�before the second event�

Similarly� we extend X as the set of all runs over Z and M and the projection of H

is 	H� �
�

Multicast Messages

In the case of multicast messages� we get the same results as in the case of point�to�

point messages� We de�ne three limit sets similar to the ones in Section ��� The

three subsets of X are�

Asynchronous ordering 	ASYNC
� This is the same as the ground set X� There�

fore� it includes all possible runs� There exists a tagless algorithm 	i�e�� enable all

pending events
 that guarantees safety and liveness for this speci�cation�

���

Causal Ordering 	CO
� Causal ordering can be stated as b��s � b��s�		b��ri � b��rj

for all i� j� There exists a tagged algorithm� CBCAST ��� that implements the spec�

i�cation�

Logically Synchronous 	SYNC
� A run is logically synchronous if its time diagram

can be drawn such that all message arrows are vertical� Formally� a run 	H� �
 is

logically synchronous� that is 	H� �
 � Xsync� if there exists a function T � Msg 	H
�

f�� � �� � � � g� such that for any two events h� g � H� if h � g and Msg 	h
 � Msg 	g

then T	Msg 	h

 � T	Msg 	g

� A protocol very similar to ABCAST ��� can imple�

ment the speci�cation�

Using similar arguments as in Chapter � we get to the same theorem�

Theorem 	� Let Y be a speci�cation� Then

�� A general protocol can guarantee safety and liveness i� Xsync � Y�

� A tagged protocol can guarantee safety and liveness i� Xco � Y�

�� A tagless protocol can guarantee safety and liveness i� Xasync � Y�

Thus� given a speci�cation the type of protocol necessary and su�cient can be easily

checked by the containment of the three sets Xasync� Xco and Xsync�

Given a message ordering speci�cation using forbidden predicates� we present

an algorithm that determines the type of protocol necessary to implement that

speci�cation� The algorithm converts the forbidden predicate into a predicate graph�

It is shown that the speci�cation can be implemented if and only if there is a cycle

in this graph� Further� to determine the nature of the protocol required for the

speci�cation� it is su�cient to examine vertices of the graph� We de�ne the notion

of � vertices� If the cycle has two or more � vertices with respect to that cycle�

then control messages are necessary� If the cycle has one � vertex� then tagging

user messages is su�cient� If the cycle has no � vertex� then no action from the

protocol is required� Thus� given any message ordering speci�cation using forbidden

predicates� the nature of the protocol necessary for implementing it can easily be

determined� The above results can be summarized using the following two theorems�

���

Theorem 	� �Su�cient Conditions� Let XB be a speci�cation with B as the

corresponding forbidden predicate� Let the predicate graph be GB	V�E
 with a

cycle Gc	V
c� Ec
 � GB	V�E
�

�� If there exists a cycle Gc	V
c� Ec
 � GB	V�E
 of order �� then Xasync � XB �

� If there exists a cycle Gc	V
c� Ec
 � GB	V�E
 of order �� then Xco � XB �

�� If there exists a cycle Gc	V
c� Ec
 � GB	V�E
 of order k 	� �
� then Xsync �

XB �

Theorem 	� �Necessary Conditions� Let XB be a speci�cation with B as the

corresponding forbidden predicate� Let the predicate graph be GB	V�E
 with a

cycle Gc	V
c� Ec
 � GB	V�E
�

�� If there does not exist a cycle Gc	V
c� Ec
 � GB	V�E
 of order �� � or n� then

Xsync � XB �

� If there does not exist a cycle Gc	V
c� Ec
 � GB	V�E
 of order � or �� then

Xco � XB �

�� If there does not exist a cycle Gc	V
c� Ec
 � GB	V�E
 of order �� then Xasync �

XB �

The reason for the similar results between point�to�point and multicast messages

is the consequence of the longest chain in a global event being one� In the next

example� the results do not carry over to collated messages since the longest chain

in a global event is two�

Collated Messages

In the case of collated messages� we cannot extend the results presented in this

work� Although the question of the existence of a protocol can be answered� given

a speci�cation Y the existence of a protocol that only tags information to user

���

�Smaller Process

�
Bigger Process

�
�
�
�
�
�
�
�
�
�
��

x�a x�d

A
A
A
A
A
A
A
A
A
A
AU

x�cx�b

��si� ri� �Mb
� �sai � r

a
i � �Ms

Figure ���� Global event fx�a� x�b� x�c� x�dg to implement Xsync�

messages remains to be answered� Using arguments similar to the ones in the proofs

of Lemma � and Theorem �� we get

Theorem 	� Let Y be a speci�cation� Then a general protocol can guarantee

safety and liveness i� Xsync � Y�

Protocols with control messages

We have seen that there are speci�cations for example Xsync that require control

messages� The protocols implementing these speci�cations use a sequence of protocol

messages to send one user message� Another way to view the sequence of protocol

message is as a global event� For example� to implement Xsync we had two messages�

the initiation message and the acknowledgment message as shown in Figure ���� The

protocol messages 	si� ri
 and 	s
a
i � r

a
i
 can be viewed as a part of a global event shown

in Figure ���� Then the conditions 	SC� AC� and PR
 satis�ed by the global events

can be stated as

	proc 	x�a
 � proc 	y�a

 � PR	x
 � PR	y
 � 	x�a � y�a
 � 	y�a � x�d
� and

	proc 	x�a
 � proc 	y�b

 � PR	x
 � PR	y
 � 	x�a � y�b
 � 	y�b � x�b
�

where PR	x
 � proc 	x�a
 � proc 	x�b
 � proc 	x�c
 � proc 	x�d
�

���

Thus� a protocol with control massages maps a speci�cationB in a system 	Z� S�M�X

to a speci�cation B� in a system 	Z� S��M ��X �
�

���

Bibliography

��� Reference Manual for the Ada Programming Language� ����

�� M� Ahuja� An implementation of F�channels� IEEE Transactions on Parallel

and Distributed Systems� �	�
��������� June �����

��� R� Bagrodia� Process synchronization� Design and performance evalua�

tion of distributed algorithms� IEEE Transactions on Software Engineering�

��	�
����������� September �����

��� R� Bagrodia� Synchronization of asynchronous processes in CSP� ACM Trans�

actions on Programming Language Systems� ��	�
��������� October �����

��� K� P� Birman and T� A� Joseph� Reliable communication in the presence of

failures� ACM Transactions on Computer Systems� �	�
������� January �����

��� K� P� Birman and R� V� Renesse� editors� Reliable Distributed Computing with

Isis Toolkit� IEEE Computer Society Press� �����

��� A� D� Birrel and B� J� Nelson� Implementing remote procedure calls� ACM

Transactions on Computer Systems� 	�
������� Febuary� �����

��� L� Boug"e and N� Francez� A compositional approach to superimposition� In

Proceedings of the Fifteenth Annual ACM Symposium on Principles of Pro�

gramming Languages� pages ������ ACM� �����

��� G� Bracha and S� Toeug� Distributed deadlock detection� Distributed Comput�

ing� 	�
�������� January �����

��

���� G� Buckley and A� Silbershatz� An e�ective implementation of the generalized

input�output construct of CSP� ACM Transactions on Programming Language

Systems� 	
������ April �����

���� K� M� Chandy and L� Lamport� Distributed snapshots� Determining global

states of distributed systems� ACM Transactions on Computer Systems�

�	�
������� Febuary� �����

��� K� M� Chandy and J� Misra� Parallel Program Design� A Foundation� Addison�

Wesley� �����

���� J� Chang and N� Maxemchuk� Reliable broadcast protocols� ACM Transactions

on Computer Systems� 	�
������� August �����

���� B� Charron�Bost� F� Mattern� and G� Tel� Synchronous� asynchronous� and

causally ordered communication� Distributed Computing� �	�
��������� �����

���� M� Choy and S� Ambuj K� E�cient implementation of synchronous communi�

cation over asynchronous networks� Journal of Parallel and Distributed Com�

puting� ���������� July �����

���� T� Connolly� P� Amer� and P� Conrad� An extension to TCP� Partial Order

Service� Technical Report RFC ����� Network Working Group� November �����

���� F� Cristian� H� Aghili� R� Strong� and D� Dolev� Atomic broadcast� From

simple message di�usion to Byzantine agreement� Technical Report RJ ����

	�����
� IBM� October �����

���� C� Critchlow� On inhibition and atomicity in asynchronous consistent�cut pro�

tocols� Technical Report TR �������� Department of Computer Science� Cornell

University� December �����

���� O� P� Damani and V� K� Garg� How to recover e�ciently and asynchronously

when optimism fails� In Proceedings of the ��th International Conference on

Distributed Computing Systems� pages �������� IEEE� �����

���

��� E� W� Dijkstra� The distributed snapshot of K�M Chandy and L� Lamport�

In M� Broy� editor� Control Flow and Data Flow� Concepts of Distributed Pro�

gramming� Springer�Verlag� �����

��� A� Gahlot� M� Ahuja� and T� Carlson� Global �ush communication prim�

itive for interprocess communication� In Proceedings of the Thirteenth An�

nual ACM Symposium on Principles of Distributed Computing� pages �������

ACM� �����

�� K� J� Goldman� Highly concurrent logically synchronous multicast� Techni�

cal Report MIT�LCS�TM����� M�I�T� Laboratory for Computer Science� July

�����

��� C� A� R� Hoare� Communicating sequential processes� Communications of the

ACM� �	�
��������� August �����

��� D� B� Johnson and W� Zwaenepeol� Recovery in distributed systems using

optimistic message logging and checkpointing� In Proceedings of the �th An�

nual ACM Symposium on Principles of Distributed Computing� pages ��������

ACM� �����

��� R� Koo and S� Toueg� Checkpointing and rollback�recovery for distributed

systems� IEEE Transactions on Software Engineering� ��	�
������ January

�����

��� L� Lamport� Time� clocks and the ordering of events in a distributed system�

Communications of the ACM� �	�
�������� July �����

��� F� Mattern� E�cient distributed snapshots and global virtual time algorithms

for non�FIFO systems� Draft Version� March �����

��� V� V� Murty and V� K� Garg� Limits of protocols based on inhibition to imple�

ment message ordering speci�cations� Submitted to Distributed Computing�

���

��� V� V� Murty and V� K� Garg� An algorithm to gaurantee synchronous ordering

of messages� In Proceedings of Second International Symposium on Autonomous

Decentralized Systems� pages ������ IEEE Computer Society Press� �����

���� V� V� Murty and V� K� Garg� Characterization of message ordering speci�ca�

tions and protocols� To appear in the Proceedings of the ��th International

Conference on Distributed Computing Systems 	ICDCS���
� May �����

���� V� V� Murty and V� K� Garg� Message ordering based on colorful forbidden

predicates� Technical Report TR�PDS���������� Parallel and Distributed Sys�

tems Laboratory� The University of Texas at Austin� April �����

��� M� Raynal� A� Schiper� and S� Toueg� The causal ordering abstraction and a

simple way to implement it� Inf� Process� Lett�� ��	�
��������� July �����

���� A� Schiper� J� Eggli� and A� Sandoz� A new algorithm to implement causal

ordering� In Proceedings of the Third International Workshop on Distributed

Algorithms� pages ����� Springer�Verlay� �����

���� F� Schmuck� E�cient broadcast primitives in asynchronous distributed systems�

In K� P� Birman and R� V� Renesse� editors� Reliable Distributed Computing

with the Isis Toolkit� pages ������ IEEE Computer Society Press� �����

���� A� P� Sistla� Distributed algorithms for ensuring fair interprocess communica�

tion� In Proceedings of the Third Annual ACM Symposium on Principles of

Distributed Computing� pages ������ ACM� �����

���� T� Soneoka and T� Ibaraki� Logically instantaneous message passing in asyn�

chronous distributed systems� IEEE Transactions on Computers� ��	�
�����

��� May �����

���� K� Taylor� The role of inhibition in asynchronous consistent�cut protocols� In

J��C� Bermond and M� Raynal� editors� Proc� of the 	rd International Workshop

on Distributed Algorithms� pages ������ Springer�Verlag� �����

���

���� G� R� Wright and W� R� Stevens� TCP
IP Illustrated� Volume �� Addison�

Wesley� �����

���

Vita

Venkataesh Murty was born on the ��th day of December ���� in Hyderabad� India�

After completing high school at Hartmann High School� Bareilly� he entered the

Indian Institute of Technology� Madras� He started his undergraduate program

with the hopes of graduating with a degree in Electrical Engineering� After a year

disillusioned with electrical engineering� he dabbled with industrial and systems

engineering� Eventually� he graduated in four years with a B�Tech� in Mechanical

Engineering� His interests were now focused on control theory� neural networks� and

applications of neural networks in control systems� He entered University of Texas

at Austin in the Mechanical Engineering Department and graduated with an M�S�

in the Spring of ����� His main focus there was the use of neural networks in the

area of system identi�cation� In addition� while searching for a �eld of interest for

his further studies he explored control theory� mathematics� and computer science�

Finally� he entered the Electrical and Computer Engineering Department in the Fall

of ���� and earned his Ph�D� in August �����

This dissertation was typeset with LATEX�
� by the author�

�LATEX�� is an extension of LATEX� LATEX is a collection of macros for TEX� TEX is a trademark of

the American Mathematical Society� The macros used in formatting this dissertation were written

by Dinesh Das� Department of Computer Sciences� The University of Texas at Austin�

���

