Copyright
by
Venkataesh Velamuri Murty

1997

Controlling the Order of Events in Distributed Systems

by

Venkataesh Velamuri Murty, B.Tech., M.S.

Dissertation
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 1997

Controlling the Order of Events in Distributed Systems

Approved by
Dissertation Committee:

In memory of

nana

Acknowledgments

I thank Professor Vijay K. Garg for supervising this research and providing guid-
ance along the way. I also thank Professors Jacob A. Abraham, Craig M. Chase,

Mohamed G. Gouda, and Aleta M. Ricciardi for serving in my committee.

Lastly, I thank my friends, who made my stay in Austin a pleasant one.

VENKATAESH VELAMURI MURTY

The University of Texas at Austin
August 1997

Controlling the Order of Events in Distributed Systems

Publication No.

Venkataesh Velamuri Murty, Ph.D.
The University of Texas at Austin, 1997

Supervisor: Vijay K. Garg

In an asynchronous distributed system, processes communicate only via mes-
sages with unbounded transmission time. Relative process speeds are arbitrary and
processes do not have access to a common clock. In such systems, it is often easier
to develop distributed programs when the underlying system offers certain mes-
sage ordering guarantees. The main motivation of this dissertation is to provide a
framework in which a user can specify the desired characteristics of the underly-
ing system, and a protocol layer maps the underlying asynchronous system to the
desired specification.

The main contribution of this dissertation is an understanding of the limita-
tions of inhibition based protocols (where a protocol operates by delaying events) in
implementing message orderings. A message ordering specification is characterized
as a set of acceptable runs. We study the problem of determining which message
ordering specifications can be implemented in a distributed system. Further, if a
specification can be implemented, we give a technique to determine whether it can
be implemented by tagging information with user messages or if it requires control

messages. To specify the message ordering, we use a novel method called forbidden

vi

predicates. All existing message ordering guarantees such as FIFO, flush channels,
causal ordering, and logically synchronous ordering, (as well as many new message
orderings) can be concisely specified using forbidden predicates. We then present an
algorithm that determines from the forbidden predicate the type of protocol needed
to implement that specification.

We present two algorithms for message orderings. First we give an eflicient
algorithm for synchronous ordering, and second we present a general algorithm to
generate protocols implementing a class of specifications that can be implemented
by inhibition based protocols without control messages.

Lastly, we present an implementation of a generator that gives efficient proto-
cols for specifications that can be implemented by inhibition based protocols without
control messages. This provides a framework in which a user specifies the desired
message ordering and the framework guarantees the specification, insulating the

user from the complexities of message orderings.

vii

Acknowledgments

Abstract

List of Tables

List of Figures

Notation

Chapter 1 Introduction
1.1 Motivation
1.2 Distributed System
1.2.1 Message Ordering
1.2.2 Protocols
1.3 Main Contributions of the Dissertation

1.4 Outline

Contents

vi
xi
xii

xiv

co o Ot Ut

Chapter 2 Characterization of Message Ordering Specifications and

Protocols
2.1 System Model
2.2 Protocols

2.3 Specifications

viii

2.4

2.5
2.6
2.7

Limitations of Protocols,
2.4.1 General Protocols L.
2.4.2 Tagged Protocols
243 Tagless Protocols
Limit Sets
Related Work

Summary e e e e

Chapter 3 Protocol for Message-Orderings

3.1
3.2

3.3
3.4

Algorithm L
Proof of Correctness oL
3.2.1 ProofofSafety
3.2.2 Proofof Liveness
Related Work

SUMMATY . . . o o v o et e e e e e e e

Chapter 4 Forbidden Predicates

4.1
4.2
4.3
4.4
4.5

Forbidden Predicates
Specification Graph Lo Lo
Impossibility and Lower-Bounds
Related Work

Summary . ..o oo . e e e

Chapter 5 Algorithm to Implement Message Ordering

5.1
5.2

5.3
5.4

Extensions to Forbidden Predicates
Algorithm for a Two Clause Predicate
5.2.1 Detection
5.22 Safety
Discussion of the General Algorithm

Proof of the Correctness of the Algorithm

ix

44
45
49
52
95
o6
o7

58
99
62
65
71
72

5.0 Discussion
5.5.1 Garbage Collection
5.5.2 Induction Argument L.

5.6 Related Work Lo

0.7 Summaryo e e

Chapter 6 Implementation

6.1 Interface to the Protocol
6.2 Code Generatoro
6.3 Input.
6.4 Output e
Chapter 7 Conclusion and Future Work
7.1 Summary and Discussion Lo,
7.2 Future Work
Bibliography
Vita

93
93
94
97
99

104
104
105

112

117

List of Tables

3.1 Protocol to send a message from a bigger to a smaller process.

3.2 Protocol to send a message from a smaller to a bigger process.

x1

47
48

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2
3.3
3.4

4.1

5.1
5.2
5.3

List of Figures

Illustration of causal past with respect to a process.
Inhibitory protocol to implement FIFO.
Knowledge of concurrent events.
Differences in causality relation between system’s and user’s views. .
Prefixesof H.
A cut belonging to Hgp.o oo
Numbering scheme for an element H € Xy,
Constructing the next prefix given H®.
Construction of G given H* for process 7.
Construction of G given H* for process 5.

Construction of H from (H,>).

Asymmetric property of an algorithm implementing SYNC.
A bigger process sending a message to a smaller process.
A smaller process sending a message to a bigger process.

Protocol messages to implement SYNC.
Construction of a run using a forbidden predicate.

Detection of different stages of the predicate.
Pseudo-code for an algorithm implementing WC, EC, and UC.
Pseudo-code for an algorithm implementing WC, MEC, and MUC. .

xii

67

78
82
90

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3

Definition of the class Msg., 94

Send and Deliver functions. Lo oL 95
Architecture of the implementation. 96
An example input file. o0 Lo 98
Syntax for writing Filter and Predicate. 98
A multicast message {s,7q,Th, e} -« - o oo 106
A collated message {s,75,7¢}.o oL 106
Global event {z.a,z.b,z.c,z.d} to implement Xgype. 110

xiii

Notation

/PP Set of process indentifiers
G o e System run
(Hy D) e System run H as viewed by user
Hi oo Events in process ¢ in a system executing H
H o Events in a system executing H, H = U H;
3 Events in user’s view in a system executing H
B G H e Event sets
P Causality relation in system model
e Projection of — to a process
D e Causality relation with respect to the user
D e e >U =
M Set of all messages
M oo Set of messages from process i to j
Msg (H) e Set of messages in the event set H
ie,z€Msg (H) < (z.s*€c H)V(z.s€ H)V(z.r* € H)V (z.r € H)

Msg (h) oo Message corresponding to the event h
ie, z =Msg (h) & (z.s*=h)V(x.s=h)V (z.r* =h)V (z.r = h)

Ty Yy Zy L eeeee e e Free variable used to represent messages
TS e Invocation of the message x
B8 ettt Send of the message «
R Receive of the message =

xiv

7 Delivery of the message z

7 Message instances
A0S 5 £ Events
223 AP Stands for either s or r
TR T Indices
£ Number of process
12 S Number of free variables in a predicate

or number of vertices in a predicate graph

A Edge set
PP Vertex set
B o Forbidden Predicate
P Protocol
X e Set of all partial orders H
Y e Subset of X
X Set of all partial orders (H, >)
Y, e e Subset of X

XV

Chapter 1

Introduction

Controlling the order of events in a distributed system is necessary to achieve some
desired behavior from the underlying distributed system. The goals of the research
presented here are to provide a framework such that the user can specify the desired
characteristics of a distributed system succinctly and automatically generate an

efficient protocol to map the underlying system to the desired system.

1.1 Motivation

The motivation for the research is:

e First, to understand the limitations of inhibition based protocols in imple-

menting message ordering specifications

e Second, to provide a framework for the user to specify the characteristics of the
desired distributed system and automatically generate a protocol that maps

the asynchronous distributed system to the specification.

In this section we explore different areas in distributed systems where such a frame-

work is useful.

Software Development

Let us consider a system with two processes p; and ps. If p; sends two messages
z and y to pg, then po can receive the two messages in two possible ways, either x
before y or y before z. Similarly, if p; sends k messages then there are k! possible
computations. If we impose the restriction that, if z is sent before y then z is
received before y (in other words, FIFO ordering) the number of possible outcomes
reduces to one. The two cases discussed, one in which the system is completely
asynchronous and the other in which FIFO ordering is imposed, are extremes. In
general, we may be interested in the case which allows some manageable extent
of non-determinism. An obvious question is: ‘what is meant by manageable?’.
This is dependent on the problem in question. In addition, during the software
implementation process the programmer may be interested in increasing the non-
determinism gradually. Thus, we are interested in a system that provides us with the
whole range of non-determinism (between the two extremes), and in where the user
can set the non-determinism to the required level. It is very beneficial if the system
can provide a framework to avoid computations which either the programmer does

not care about or wants to postpone until later.

Software Debugging

Selective control of non-determinism is helpful in debugging distributed programs.
The process of debugging consists of monitoring a program in order to learn some-
thing about its behavior. Often the observed behavior of the program differs from
what is expected. When this occurs, a debugger can be used to investigate the dis-
crepancy. In the process of debugging a distributed program, non-determinism can
result in a large number of possible runs. The programmer may not be interested in
all the runs. The programmer may conjecture that unexpected behavior occurs only
in a particular class of computations, for example those that exhibit the property -

“when functions f and g execute concurrently”. Thus, the programmer is interested

in a framework in which he can specify the set of computations of interest and avoid

the unnecessary cases.

Software Testing

In the process of software regression test, we are interested in test cases that are
repeatable, producing the same output for a given input. In a distributed system,
there is an additional variable - the non-determinism that plays a part in the output.
Thus, there should be an easy way to control non-determinism to create repeatable
test scenarios. In addition, we are interested in testing under different test environ-
ments — for instance, environments where all messages are causally ordered, or all
messages are synchronous. Thus, a distributed system should provide a framework

to facilitate simulating different environments.

Message Orderings

A fair amount of research has been done in deriving efficient algorithms to imple-
ment different message orderings, for example, causal ordering, flush channel prim-
itives, synchronous ordering, marker message algorithms and broadcast/multicast

algorithms. This work unifies many of the orderings studied in the literature.

Partial Order Services

Current applications that need to communicate objects (i.e., packets, frames) usually
choose between a fully ordered service such as that currently provided by TCP [38]
and one that does not guarantee any ordering such as that provided by UDP [38].
For some applications a partial order service [16] is more appropriate.

A motivating application for a partial order service is the emerging area of
multimedia communications. These applications have a high degree of tolerance for
less-than-fully-ordered data transport as well as data loss. A second application that

could benefit from a partial order service involves remote and distributed databases.

Consider the case where a database user transmitting queries to a remote server
expects records to be returned in some order, although not necessarily in total
order. In effect, a partial order extends the service level from two extremes — ordered
and unordered — to a range of discrete values encompassing both extremes and all

possible partial orderings in between.

Separation of Concerns

Many protocols such as global snapshot algorithms [11, 20, 27|, check-pointing and
rollback recovery [19, 25, 24|, and deadlock detection [9] require special messages
to find consistent-cuts in a computation. These protocols require some form of

inhibition of the special messages in order to guarantee correctness.

1.2 Distributed System

The model we use of a distributed system consists of a finite set of processes
P1,--.,Pn, communicating using reliable messages. A computation is character-
ized by a finite sequence of events on each process. In general, we assume a system
with unbounded message delivery and without a global clock. Two events in a com-
putation are related under the “happened-before” relation [26] if one of the following

holds.
e The second event happened after the first event in the same process.

e One event is a send of a message, and the second is the reception of the same

message.

e If there exists a third event, where the first event happened-before the third

event, and the third event happened-before the second event.

1.2.1 Message Ordering

A distributed computation or a run describes an execution of a distributed program.
At an abstract level, a run can be defined as a partially ordered set (H, >), where
H is the set of events in the system and > the “happened before” relation between
events. It is often easier to develop distributed programs when the partially or-
dered set (H, >) is guaranteed to satisfy certain message ordering properties. For
example, many distributed algorithms work correctly only in the presence of FIFO
channels. This guarantee on the ordering of messages is either provided explicitly —
by communication primitives such as causal ordering [5] and logically synchronous
ordering [10, 14]; or is built into the algorithm itself — as with global snapshot [20]
and recovery algorithms [19].

A message ordering specification is characterized as the set of acceptable
runs, that is, a subset of X, where X is the set of all runs. For example, a system
satisfying causal ordering can be viewed as the set of runs, say X.,, such that for
all runs in X,,, and for all pairs of messages, (s1 > s2) = —(r2 > r1), where s; is the

send of a message and r; is its corresponding receive.

1.2.2 Protocols

A protocol maps the underlying system to the desired system. The mapping is
achieved by inhibition of events. A protocol for a distributed system specifies for each
process at every stage of the computation, the set of events that are enabled. Thus,
a protocol has the power to disable an event until the occurrence of prerequisite
events. For example, in the implementation of FIFO, a message is delayed until all
messages with the same source and destination sent earlier have been received.

To facilitate the discussion of inhibition, a event in a user’s view is broken
into two underlying system events: the request of the event and the execution of
the event. For example, the receive event in a user’s view is broken into the receive

and the delivery of the message, and similarly the send event into the invocation

and the send of the message.

1.3 Main Contributions of the Dissertation

The contributions of this work can be divided into three categories — first, the theory
of message ordering, second, algorithms for message ordering, and lastly automatic
generation of efficient algorithms for message orderings.

First, in the theory of message ordering the dissertation’s contributions are:

e A new characterization of inhibition based protocols and classification of them
into three classes, namely protocols that require knowledge of the concurrent
past, protocols that require knowledge of the causal past, and protocols that

require knowledge of the local past.
e A definition of a message ordering specification as a set of valid runs. In this
abstract setting we derive:

— the necessary and sufficient conditions for the existence of an inhibition

based protocol, and

— the knowledge required by the protocol to implement the specification.

An asynchronous distributed system can be viewed as a set of all possible runs

X, and a message ordering specification a subset of X.
e In general X is an infinite set, thus we need a finite representation for “useful”
specifications. We present a method called forbidden predicates and present:

— an efficient algorithm to determine the existence of an inhibition based

protocol, and

— the knowledge required by the protocol to implement the specification.

This dissertation answers some fundamental questions in the area of mes-
sage orderings. For example, consider the algorithm for causal ordering by Raynal,

Schiper and Toueg [32]. In their algorithm a process P; tags a message with the

matrix m where m|j, k] is the knowledge of process P; about the messages sent from
Pj to Py. It is natural to ask whether the message ordering can be further restricted
by sending higher-levels of knowledge (for example, by using three dimensional ma-
trices: what P; knows that P; knows about messages sent from P, to F;). It is
an easy consequence of the results of this dissertation that no additional tagging of
information can restrict the message ordering further.

Similarly, we show that there does not exist a protocol to implement any
message ordering more restrictive than synchronous ordering. That is, if the time
diagram of an invalid run can be drawn such that all messages are vertical then such
a specification is not implementable.

Although, there has been a fair amount of research in the area of message
orderings, neither a succinct representation for all the message orderings nor a for-
mal treatment to study the relationship between the orderings has been done. We
present a new method, called forbidden predicates, to specify these message order-
ings. Informally, a forbidden predicate is a conjunction of causality relationships
between events, and a run is valid if there does not exist a set of events that makes
the forbidden predicate true. Forbidden predicates can be used to describe a large
class of message specifications. All existing message ordering guarantees such as
FIFO, flush channels, causal ordering, and logically synchronous ordering, as well
as others, can be concisely specified using forbidden predicates.

Second, in algorithms for message orderings, we explore two main issues
— first, efficient algorithms for synchronous, causal, and asynchronous orderings,
and second generalization of the protocols for a class of specifications that can be

implemented by tagging. The two main contributions are:
e An efficient algorithm to implement synchronous ordering.

e A general algorithm to generate protocols implementing a class of specifica-
tions that can be implemented by inhibition based protocols with only knowl-

edge of the causal past.

The protocol for synchronous ordering is a more efficient algorithm than the
existing ones, such as Bagrodia’s rendezvous [4] and the algorithm by Soneoka and
Ibaraki [36]. The algorithm presented results in fewer messages with the same or
quicker response time.

The general algorithm generates protocols for the existing message ordering
specifications like FIFO, causal ordering, F-channel primitives, and the orderings
induced among the user or control messages in many of the protocols such as global
snapshot algorithms [11, 20, 27], check-pointing and rollback recovery [19, 25, 24],
and deadlock detection [9]. The work can be easily extended to include other mes-
sage orderings like FIFO Broadcast and CBCAST.

Lastly, we present an implementation of a protocol generator that generates
efficient (with respect to tagged information) protocols for specifications that can be
implemented by inhibition based protocols with only knowledge of the causal past.
This provides a communication framework in which a user specifies the message
ordering for a run of the distributed program and the framework guarantees the

specification, insulating the user from the complexities of message orderings.

1.4 Outline

This dissertation consists of seven chapters. The main focus of the dissertation is
a distributed system characterized by point-to-point messages and protocols that
operate by delaying events. The protocols are classified into three types depending
on the amount of knowledge required: local, causal, or concurrent.

Chapter 2 presents a formal specification of a desired distributed system and
defines inhibition based protocols. We define the three classes of protocols and
present the necessary and sufficient conditions for the existence of a protocol in a
class for a given specification.

Chapter 3 discusses implementation of three message orderings: asynchronous

ordering, causal ordering, and synchronous ordering. In this chapter, we also present

an efficient protocol to implement synchronous ordering.

Chapter 4 introduces a succinct representation called forbidden predicates
for a class of message orderings. All existing message ordering guarantees such as
FIFO, flush channels, causal ordering, and synchronous ordering as well as others
can be concisely specified using forbidden predicates. We present an algorithm for
the existence of a protocol in a class for a given forbidden predicate.

Chapter 5 studies the issues for automatic generation of efficient protocols
for a forbidden predicate.

Chapter 6 describes the prototype design for an automatic generator of pro-
tocols. We show that the protocols generated are as efficient as the protocols in the
literature for some of the extensively studied message orderings.

Chapter 7 examines some extensions to the idea of a global event (a message
can be thought of as a global event with a send and a receive) to multicast messages

and other generalizations.

Chapter 2

Characterization of Message
Ordering Specifications and

Protocols

In this chapter, we are interested in characterizing message ordering specifications
and protocols that operate by delaying events. Usually an event from the user’s
view is equivalent to two underlying system events: the event request and the event
execution. For example, to implement causal ordering, the receive events of the user
messages are implemented as two underlying system events: receive of the message
and the delivery of the message. Therefore, we differentiate between the two views
by defining the system’s view of a run and the user’s view of the same run. In
this chapter, each user event h, like send of a message or receive of a message, is
characterized by two system events, that is h* and h, where h* represents the request

of the event and h the execution.

10

2.1 System Model

A distributed system consists of a set of n processes communicating using messages
from a message set. The basic entity in our model is a message.

Definition 2.1 A message = consists of four system events. They are invocation
event z.s*, send event x.s, receive event x.r* and delivery event z.r. We say, Msg (h)

is a message x if h is either z.s*, z.s, z.r*, or x.r.

The invocation event represents the request by the origin process to send the message
and the send event the actual send of the message. Similarly, the receive event
represents the destination process’s receiving the message and the delivery event
when the destination process processes the message.

Definition 2.2 If Z = {1,2,...,n} is a set of natural numbers used to identify the

processes in a system, then

M= |J My,
(i,J)EZXZ

is the set of messages, where M;; is the set of messages from process i to j. The set

M;; = () for any i € Z.

The set M;; represents the set of all messages that can be sent by process ¢ to process
J. Thus, in any run the messages sent by process 4 to process j is a subset of M;;.
The restriction M;; = () states that a process does not send messages to itself.
A cut! defines the state of the system, and the state is a function of the
events executed by each process.
Definition 2.3 Let H; be the event set of process 4, such that
H; C{z.s*z.s : x€ Mjjforall j} U {zr*,zr : x € My forall k}.

A finite sequence of events H; is called the local state of i.

Definition 2.4 Given an n-vector of local states, H = (H;, Ho, ..., Hy), where H;

is the local state of ¢ for each 7, event h happened-before event h', denoted as h — h’,

n this dissertation we use cut to mean consistent cut

11

if any one of the following conditions is true:

1. h and h' are both events in H; for some 4, and h is before h' in the sequence

H;, or

2. h is the send of a message, i.e., z.s and h' is the corresponding receive, i.e.,

z.r* for some message x € M, or

3. the event h happened-before event h” and the event h” happened-before the

event h', for some event h" € H, where H = U; H;.

A cut satisfies the usual notions of a computation in a distributed system,
that is, it is a partial order, it has no spurious messages, and it includes the execution
of an event only if it has been requested by the user.

Definition 2.5 Let Z = {1,...,n} be the processes in the system and M the
message set. An n-valued vector of local state # is a cut if the events in H and the

happened-before relation on the set of events satisfy the following conditions:

1. There are no spurious messages, i.e. if the receive event z.r* is in H then the

corresponding send z.s is in H for any message © € M.

2. For any local state H;, if a send event z.s is in H; then the corresponding
invocation event z.s* is in H; for any message x € M. Similarly, if a delivery
event x.r is in H; then the corresponding receive event z.r* is in H; for any

message © € M.
3. The happened-before relation on the set of events in H is a partial order, that

is, there are no two events h and b’ such that h — A’ and ' — h.

Definition 2.6 A prefiz of a cut H is any cut G, such that G; is a subsequence of
H; for all ¢ € Z.

A prefix of interest is the causal past of a cut H with respect to a given process i
(denoted by CausalPast;(H)). Figure 2.1 shows the causal past of the cut H with

respect to process 2. Intuitively, the causal past with respect to a process ¢ consists of

12

(a) Cut H

(b) Causal Pasts(H)

Figure 2.1: Illustration of causal past with respect to a process.

13

all the events that are followed by some event in process i. Let G = CausalPast;(H),

then
1. Gz = HZ', and

2.Vj#i:9€G; = (3heH; : g = h).

Definition 2.7 A distributed system is a 3-tuple (Z, M, X'), where
1. Z={1,...,n} is a set of process identifiers,
2. M is a message set, and

3. X istheset of all cutsover Z and M,ie. X ={ (H, =) : (H, =) is a cut}.

Given a cut H € X we use the following notation to represent the messages
that have not been requested by process 7, messages that have been requested but
not yet sent, messages that have been sent by the process ¢+ and are in transit, and

finally the messages that have been received but not yet delivered.

Li(H) = {=zs" : (z.s"¢€H;) N (z € My)}.
SiH) = {zs: (z.s"€H) AN (z.s¢€H;)}.

()

H) = {(I,‘.’f'* : ((I}.’f'* QHZ) A (E”{Z : ((IIEM]“) VAN ((II.S EHk)) }

(H)
(H)
R;(H)
Di(H) = {ar : (wr* € H) A (wr g Hy)}.

2.2 Protocols

In this section we define inhibitory protocols. Informally, an inhibitory pro-
tocol specifies that an event may be delayed until the occurrence of prerequisite
events. For example, in the implementation of FIFO, a message is delayed until all
messages sent earlier have been delivered. In Figure 2.2, the protocol enables the
event ry only after the event r; has been executed.

Definition 2.8 Given a distributed system (Z, M, X). An inhibition based protocol

‘P specifies a set of enabled events at each process for a given cut H € X. Thus,
P:{ (Pl(H)7P2(H)77PTL(H)) tHe X }7

14

receive delivery

* *
L) T n 79

ST 81 53 89
invocation send
Figure 2.2: Inhibitory protocol to implement FIFO.

is a vector of enabled event sets for each cut, where P;j(#) is the set of enabled

events in process 4 after the execution of the cut H and
Pi(H) CLi(H) U Si(H) U Ri(H) U Di(H).

Now we present some conditions to be satisfied by the vector of enabled event
sets. The protocols do not have control over star-events. Clearly, a protocol cannot
disable a user from requesting the execution of a message that has not been sent.
Thus, we have

Pi(H) N Li(H) = Li(H).

Similarly, a protocol cannot disable the receive of a message that has been already

sent and is in transit. Thus
Pi(H) N Ri(H) = Ri(H).

A protocol can disable or enable the send event and delivery event of a message if

the invocation or the receive has been executed, respectively. Therefore,

Li(H) U Ri(H) C Pi(H) C Li(H) U Ri(H) U Ci(H),
where C;(H) = Si(H) U D;(H). (Controllability)

Notation: The notation C represents controllable events. We use C; to represent

controllable events in a process i. When the subscript is absent, say C(#), then

15

we are referring to the union of all Cjs, that is, C(H) = |J; Ci(H). We follow
this convention for the sets H, P, 1,S,D,R, and C, that is, H = |J, H, P(H) =
U; Pi(H), and so on.

We define the set of cuts, X'p, possible under the protocol P inductively,
based on the events enabled. The base case is the null cut Hy in which H =
belongs to the set X'p, since this cut is possible even if the protocol does not enable
any event. Let the cut H be possible under the protocol. If some of the processes
simultaneously execute an event enabled in their process, then the resulting cut also
is possible under the protocol.

Definition 2.9 Given a protocol P the protocol set Xp is defined inductively using
the following rules:
1. Hy € Xp.
2. Let H € Xp, then G € Xp, where
(a) H; is a prefix of G; and they differ by at most one event, and
(b) G; CH; U P(H).

In the next lemma, we show that G is a cut, that is, it satisfies the three conditions
of a cut.
Lemma 2.1 Let H be a cut, and (Py (#H), P2(H),...,P,(H)) a vector of enabled

event sets, such that, for all 4
I;(H) U Ri(H) C P(H) C L;(H) U Ri(H) U Ci(H).
Then @G is a cut, where
1. H; is a prefix of G; and they differ by at most one event, and
2. G; C H; U P(H).
Proof Outline: Clearly, G satisfies the three conditions of a cut, that is,

1. G is a partial order, since # is a partial order, and if ¢ € G N P(H) then

AgdeG:g—4,

16

2. x.r* € G = z.s € G, since a receive event is added only if H contains the send

event, and

3. z.s€ G = x.s" € Gand z.r € G = x.r* € G, by definition of S and R.
O

It is desirable that any protocol allows the system to progress to satisfy the
liveness property. That is, if a user requests a message then it is eventually sent and
delivered. In other words, we want the protocol to eventually execute a cut H such
that, S(#) U R(H) U D(H) = 0, that is, all the messages requested by the user
have been sent and delivered and there are no pending events. Thus, the protocol
at each stage enables at least one of the pending events if the pending set is not

empty. This condition can be formally stated as

RH)UCH) £0 = P(H) N (R(H) U C(H)) # 0. (Liveness)

Consider the case when the above condition is not satisfied. If the user does not
request any more messages, the system cannot make any progress and the pending
events are never executed.

Next, we classify protocols based on the extent of information exchange pos-
sible among the processes. Consider first a protocol which allows processes to ex-
change information only using user messages. Then a process is limited to the causal
past and intuitively, the class of such protocols can be implemented by tagging in-
formation to user messages. Next consider, a protocol which does not allow any
information exchange using either user or control messages. Then a process has to
enable/disable events based only on its local history. Such protocols belong to the
class of tag-less protocols. Finally, consider a protocol that allows processes to ex-
change information using both control messages and user messages. Then a process
is capable of delaying events based on events that appear concurrent, when events
associated with the control messages are deleted. For example, in Figure 2.3, pro-
cess ¢ knows about the events z.s* and z.s although they appear concurrent when

the control message has been deleted.

17

Process ¢

— Control Message

z.r* x.r

(a) With Control Message

Process ¢

z.r* x.r

(b) Without Control Message

Figure 2.3: Knowledge of concurrent events.

18

Formally, the types of protocols and the condition satisfied by each type are:

General Protocols

The class of general protocols characterizes the environment where an action by
a process can be known instantaneously to all processes in the group. Thus, each
process enables and disables events based on the knowledge of both causal and

concurrent events, but a process cannot enable or disable events based on
e future events, or

e timing of the events.

Therefore, a process takes the same action in any two executions, if the partial
orders are the same.

Later, we show that if there exists a general protocol for a given specifica-
tion then there exists an inhibitory protocol using control and user messages that

implements the specification.

Tagged Protocols

The class of tagged protocols characterizes the environment where an action by a
process can be known only in its causal future. Thus, each process enables and
disables events based on the knowledge of events in the causal past. Therefore,
if in two different executions, the causal past with respect to a process 4, that is
CausalPast;(+), is the same then the action taken by the process i in the two cases

is same. This can be formally stated as,

CausalPast;(H) = CausalPast;(G) = Pi(H) = P;(G). (Causal)

Tagless Protocols

The class of tagless protocols characterizes the environment where an action by

a process can be known only in its local future. Thus, each process enables and

19

disables events based on the knowledge of local events. These protocols cannot tag
information to the user messages and cannot use control messages. The condition

satisfied by a tagless protocol is,
H;,=G; = P;(H)=P(9). (Local)

The condition states that if the local history is the same then the action taken by
the process is the same.

The above conditions are used to describe the three classes of protocols we
are interested in studying. For instance, the class of general protocols models the
behavior of protocols with control messages in the absence of synchronized clocks
or a global clock. Such a protocol cannot differentiate between two cuts that have

the same partial order relation but may differ in physical global time.

2.3 Specifications

A specification is the behavior as desired by the user. For example, a particular run
may or may not be desirable. In this section, we expand on the concept of user’s
view and formally define a specification.

A user is interested in the send and delivery of a message and the order
relation among them, rather than the invocation and receive events. For example,
causal ordering is stated in terms of the relation between the send and delivery
events. Thus, the causality relation between two events from the user’s view can
be different than the relation from the system’s view. Figure 2.4 illustrates the
difference in a system that implements FIFO ordering among the messages. In the
system’s view the event so happened causally before the event r{, whereas from the
user’s view so did not happen before the event . Thus, we define a relation from
the system’s view to the user’s view of a cut, which is a projection of the events

with the invocation and receive events removed.

20

(a) System’s View

S1 52

(b) User’s View

Figure 2.4: Differences in causality relation between system’s and user’s views.

Definition 2.10 UserView(H), a projection of the cut H, is a partial order, denoted

as a tuple (H, >), where
H={h : h€ H A (hisa send or a delivery event) },

and > is the order relation on H. For the projected cut (H, >), h > h' if and only if
1. 3k such that h,h' € Hy and h — A/, or
2. dx € M, such that z.s = h and z.r = h/, or

3. dg € H such that h > g and g > h'.

The projected cut also satisfies the usual notion of a cut, that is there are no spurious
messages and the relation > is a partial order.

A distributed run is a execution of a program with all messages invoked have
been delivered, since we assume reliable message delivery.

Definition 2.11 A run (H, >) is a projection of a cut H such that
1. (H,>) = UserView(H), and
2. all messages invoked in the cut H have been delivered, that is, z.s* € H <

z.r € H.

We can represent the distributed system (Z, M, X') from a user’s view as a 3-tuple

(Z, M, X), where X is the set of all runs possible in user’s view. That is,

X={(H,>) : 3IH such that
(He X) A ((H,>) = UserView(H)) A (z.s* € H<ezre H) }.

In the rest of the dissertation we use X to represent the above set.

Definition 2.12 A specification Y is a subset of X.

A protocol P is characterized by the set of cuts X'p that are possible under
the protocol. We say that a protocol P guarantees safety if the projection of a cut

‘H € Xp is valid in the user’s view. In other words, a protocol P guarantees safety if

22

for all H in the set X'p satisfying the condition z.s* € H < z.r € H, the projection
UserView(#) belongs to Y.

A protocol P is characterized by the set of cuts Xp on a system (Z, M, X).
The protocol can be similarly characterized in the user’s view of the system, as a

set of runs Xp, that is

Xp={(H,>) : IH such that
(H € Xp) A ((H,>) = UserView(H)) N (z.s* € H<e zor € H) }.
Thus, we can state that a protocol P guarantees safety for the specification Y, if

and only if

Xp CY. (Safety)

In summary, given a system (Z, M, X') and a specification Y we say a protocol

‘P implements the specification if and only if

VHEX : RH)UCH)#0=PH) N (RH) UCH) £0, and

Xp CY.

2.4 Limitations of Protocols

In this section we explore the limitations of each type of protocol. We answer
questions of the form, ‘If protocol P is a tagless protocol, then does H necessarily
belong to the set Xp?’. These questions provide us with insight into the type of
protocol necessary to implement the desired specification. For example, if the cut
‘H is undesirable and ‘H € Xp, then P cannot implement the specification.

Given a protocol P, the set of possible cuts under the protocol Xp is defined
inductively. Thus, the proof of the inclusion of a cut H in the set X’p is also done
inductively. Given a cut H we construct a series of prefixes HO, H', ..., Hi, ...,

such that H’ is a prefix of # and H* C H**' C H, and H° is an empty cut, that is
HO =.

23

[

|
| |

|
Hi Hi+I

Figure 2.5: Prefixes of H.

Base Case: The base case, that is H? € Xp follows, since H’ is an empty cut.

Inductive Case: We have to show that if #¢ € Xp then H't! € Xp. Given H' € Xp,

the conditions for #'t! € Xp are given by Definition 2.9,
for all j € I,

11 : H; is a prefix of H;"'l and they differ by at most one event, and
12 : H*' C HI U Pj(H).

2.4.1 General Protocols

In this section, we define a set of cuts that necessarily belong to the set Xp, where
P is a general protocol. Let the set be denoted as X,,. A cut H belongs to the set
Xgn if the following conditions hold.

1. For all messages x in Msg (H), z.s* immediately precedes z.s and x.r* imme-

diately precedes z.r.
2. All messages requested have been delivered, that is z.s* € H = z.r € H.
3. There exists a numbering scheme Num that assigns a unique number to each

event such that

24

Num(z.s*) = 1
yre yr Num(z.s) = 2
* Num(z.r*) = 3
Num(z.r) = 4
Num(y.s*) = 5
ot xor z.8" 2. Num(y.s) = 6
Tyt s i Num(y.r*) = 7
Num(yr) = 8
Num(z.s*) = 9
Num(z.s) = 10
x s*. x.8 z.r* z-r Num(z.r*) = 11
Num(z.r) = 12

Figure 2.6: A cut belonging to H,.

(a) for any two events h,g € H, if h — ¢ then Num(h) < Num(g), and
(b) for any message z € Msg (H), Num(z.r) = Num(z.r*)+1 = Num(z.s)+
2 = Num(z.s*) + 3.

The time diagram of any element in the set &), can be drawn in such a way that
all message arrows are vertical. Figure 2.6 shows an example cut in Xg,.
Lemma 2.2 Let P be a protocol satisfying the liveness property and Xp the set of

all cuts possible under the protocol. If P is a general protocol, then X, C Xp.

Proof: A general protocol P satisfies the following properties:
Controllability : I;(H) U R;(H) C Pi(H) C Li(H) U Ri(H) U Ci(H).

Liveness : R(H) UC(H)#0 = P(H) N (R(H) U C(H)) #0.

Let H € Xy,. By the definition of &}, there exists a numbering scheme Num that

assigns a unique number to each event, such that
Num(z.r) = Num(z.r*) + 1 = Num(z.s) + 2 = Num(z.s*) + 3

and (g — h)= (Num(g) < Num(h)). Using this numbering, we can define a total
order in the messages and construct the required prefixes, that is, H%, H', ..., as

shown in Figure 2.7. Since H? € Xp it is sufficient to show that H'*! € Xp, given

25

*
T2 T2

...... fHS fHG fH7 fHS

Figure 2.7: Numbering scheme for an element H € Xy,.

H! € Xp. Clearly, H'*! and H* differ at most by one event. Therefore, for each j,
H ; is a prefix of H;"'l and they differ by at most one event. Thus, I1 is satisfied for
all j.

We have to show that I2 is satisfied, that is, (H“‘1 - HZ) C P(H?). There

are four possible cases:

e Leti=4m. Then H"'—H* = {s¥ | } and s}, € I(H"), since only up to m
messages have been executed. Due to controllability property, sy, ., € T (HY)
implies s%, ,, € P(H').

e Leti=4m+ 1. Then H*' — H' = {5,,,1 } and S(H*) = {51}, R(H') =0
and D(H?) = (). Due to liveness property, the singleton set C(H?) U R(H?)
implies S(H') C P(H?). Therefore, s,,11 € P(H').

e Let i=4m+2. Then H*' — H' = {r} ., } and S(H') =0, R(H") = {r},,}
and D(H') = 0. Due to controllability property, %, ., € R(H') implies 7, ., €
P(HY).

26

e Let i =4m +3. Then H' — H' = {r;, .1} and S(H') = 0, R(H') = 0 and
D(H?) = {rm1}. Due to liveness property, the singleton set C(H’) U R(H?')
implies R(H') C P(H?). Therefore, 7,11 € P(H?).

Therefore, in each case we have Ht! = H' U P(H'), or, for each j € I, we have

HI*' C HI U Pj(HY). O

2.4.2 Tagged Protocols

In this section, we define a set of cuts, denoted as X4, that necessarily belong to
the set X'p, where P is a tagged protocol. A cut H belongs to the set &}y if the

following conditions hold.

1. For all messages x in Msg (H), z.s* immediately precedes z.s and z.r* imme-

diately precedes z.r.
2. All messages requested have been delivered, that is z.s* € H = xz.r € H.

3. All pairs of messages are causally ordered, that is, z.s — y.s = = (y.r* — z.r*).

Lemma 2.3 Let P be a protocol satisfying the liveness property and Xp be the set
of all cuts possible under the protocol. If P is a tagged protocol, then Ay C Xp.
Proof: A tagged protocol P satisfies the following properties:

Controllability : I;(#) U R;(H) C Pi(H) C Li(H) U Ri(H) U Ci(H).
Liveness : R(H) U C(H) #0 = P(H) N (R(H) U C(H)) # 0.

Causal : CausalPast;(H) = CausalPast;(G) = Pi(H) = P;i(G).

To prove that a cut H € Xp, we have to construct a sequence of cuts H°, H!, ...,

that are prefixes of H. We construct the sequence such that if the longest path from

start of the computation to an event h is k, then h ¢ H*~! and h € HF.

27

Figure 2.8: Constructing the next prefix given H°.

Let #H’ be a prefix of H, then H#**! contains the bottom elements among the
events that do not belong to H®. For example, in Figure 2.8, H**! = H' U { 55, 5§ }.
Formally,

HI*' = H} U Bj(H,H'), forallj
where Bj(H,H') = {h €H;— H]l : (g = h)y=geH } and satisfies the following

properties:
1. Bj(H,H") is a singleton or an empty set.
2. B](H,Hz) - Ij(Hi) U Rj(Hz) U Cj(’Hl)

We have to show that if H € X4, then H € Xp. Clearly, H? € Xp, since it is
the empty cut. Let H* € Xp, we have to show that H'*! € X'p. The prefixes satisfy
I1, since B;(H,H") is a singleton or an empty set and H;'H = H; U Bj(H,H') for
all j. Further, we have to show that H:*' C H} U Pj(H') for all j (12).

Given H' and j, construct a cut G as shown in Figure 2.9. Pick CausalPast;(H?)
and extend all messages (with destination process not being 5) in transit?. There-

fore, CausalPastj(H') = CausalPast;(G). We make the following claims:

2pick any possible extension

28

— N
i

(a) Cut H*

Process j . » /

(b) Causal Pasty(H?)

N
/.

(c) Cut G

Figure 2.9: Construction of G given H* for process j.

29

L. P,(0) = Py(3).
Since CausalPast;(H') = CausalPast;j(G) by construction, therefore using the
causal property, we get Pj(H') = P;(G).

2. G4(G) = Gy ().

For any cut H we have

Si(H) = {z.s: (x.s" € Hj) N;(z.s € Hj)}, and

DiH) = {zr : (zr*€ H;) N (z.r € Hj) }.

By construction of G we have H; = G,. Therefore S;(G) = S;(H') and
D;(G) = Dj(H?). Since for any cut C;(H) = Sj(H) U D;(H), we have C;(G) =
Cj(HY).

3. Ri(G) =0, where k # j.
For any cut H, Ry (H) represents the messages in transit destined for process

k. By construction of G, we have Ry (G) = (), where k # j.

4. R;j(G) = 0. (Proof by contradiction)
Let z.r* € R;j(G), therefore 3k : (z.r* € Gj) A (z.s € Gi) A (x € My;).
Since (z.s € Gj) and (z € My;), we have by the definition of CausalPast
dh : (z.s = h) A (h € Gj).
Since (z.s — h) and x.s, h are in different processes, we have either
(a) dye M : (z.s = y.8) A ((yr* = h) V (y,7* = h)), or
(b) (z.s = z.r*) A (xz.r* — h).
But z.r* € G, therefore ~(z.r* — h). Since h,z.r* € Hj, either (z.r* — h)

or (h — z.r*). Therefore,
dz,ye M : (x.s — y.s) A (yr* — z.r’).

This implies H & Xyq.

30

5. Cx(G) = 0, where k # 5.
Let x.s* € Gg. Since z.s* immediately precedes z.s, therefore if there exists
an event h such that z.s* — h, then z.s € G§. From the construction of G, we
have z.5* € Gy, then z.s* is also an event in the cut CausalPast;(H'). From the
definition of CausalPast;(-), if z.s* € CausalPast;(H'), then either z.s* € HJl
or there exists an event h such that h € H]Z and z.s* — h. Therefore,

r.8 € G = x.5" € Gg.

Since z.s* € G & wz.s € G, we have Sp(G) = 0 for all k¥ # j and by
construction of G, D(G) = 0 for all k # j.

6. C;(G) is a singleton or an empty set.

Since z.s* immediately precedes z.s and z.r* immediately precedes z.r.

From (3), (4), (5) and (6), we have

R(G) U C(G) = (U Rk(g>> u | UJa@)] uee)
k k#j

is a singleton or empty set. Using liveness property and R(G) U C(G) being either a

singleton or empty set, we get
C1(9) € Pi(G).
Substituting for C;(G) and P;(G) from (1) and (2), we get
€, () C P,
From the controllability property and C;(H') C P;(H"), we get

Pj(H") = I;(H") U Rj(H") U Cj(H).

Therefore,
Bj(H,H') C Pi(H'),
or
HI*' = H} U Bj(H,H') C H; U P;(H).
Thus, I2 is satisfied. O

31

2.4.3 Tagless Protocols

In this section, we define a set of cuts that necessarily belong to the set Xp, where
P is a tagless protocol. Let the set be denoted as X};. A cut H belongs to the set

Xy if the following conditions hold.

1. For all messages x in Msg (H), z.s* immediately precedes z.s and z.r* imme-

diately precedes z.r.

2. All messages requested have been delivered, that is z.s* € H = z.r € H.
Lemma 2.4 Let P be a protocol satisfying the liveness property and Xp is the set
of all cuts possible under the protocol. If P is a tagless protocol, then Xy C Xp.
Proof: A tagless protocol P satisfies the following properties:

Controllability : I;(#) U D;(H) C Pi(H) C Li(H) U D;(H) U Ci(H).
Liveness : R(H) U C(H) #0 = P(H) N (R(H) U C(H)) # 0.

Local : H; = G; = P;(H) = Pi(9).

To prove that a cut H € Xp, we have to construct a sequence of cuts H°, H',...,

that are prefixes of H.

We construct the prefixes as in Lemma 2.3. The construction satisfies
HI*' = H} U Bj(H,H'), forallj

where Bj(H,H') = {h € Hj — H]l : (g > h)y=geH } , and satisfies the follow-
ing properties:
1. Bj(H,H") is a singleton or an empty set.
2. Bj(H,H') C I;(H') U R;j(H') U C;(HY).
We have to show that if H € X, then # € Xp. Clearly, H° € Xp, since it is

the empty cut. Let H* € Xp, we have to show that H'! € X'p. The prefixes satisfy

32

VRN

(a) Cut H'

/

(a) Cut H' with events removed.

ave

(a) Cut G

Process j /

Figure 2.10: Construction of G given H* for process j.

33

I1, since B;(H,H") is a singleton or an empty set and H;'H = H]Z U Bj(H,H') for
all j. Further, we have to show that H:*' C H% U P;(H") for all j (I2).
Given ' and some j, construct a cut G as shown in Figure 2.10. Remove

and add events such that G; = H]Z using the following two steps.
1. Delete all messages from the cut ¢ preserving the condition G j= HJl

2. The messages sent to k (k # j) are delivered and received.

Therefore, for all k # j Ri(G) = 0 and Dy(G) = 0, and G; = H]l We make the
following claims:
L P(H) = Py(G).
Since G} = H; by construction therefore, using the property P3, we get
Pj(H') = P;(G).
2. Cj(G) = Cj(H).
For any cut H we have
Si(H) = {z.s: (z.s" € Hj) N;(z.s € Hj) }, and
DiH) = {zr : (zr*€ H;) N (z.r € Hj) }.
By construction of G we have sz = G,. Therefore S;(G) = S;(H') and
D;(G) = Dj(H"). Since for any cut Cj(H) = Sj(H) U D;(H), we have C;(G) =
Cj(HY).
3. Ri(G) =0, where k # j.
For any cut #H, Ry (H) represents the messages in transit destined for process
k. By construction of G, we have Ry (G) = (), where k # j.
4. R;(G) =0.
There are no messages with destination process being j, since by step 1 of the

construction the corresponding invocation and/or send event is removed.

5. Ck(G) = 0, where k # j.
By counstruction of G, Di(G) = 0 and Si(G) = 0 for all k # j.

34

6. C;(G) is a singleton or an empty set.

Since z.s* immediately precedes z.s and z.r* immediately precedes z.r.

Following the steps in the proof of Lemma 2.3, we get
Bj(H,H') C P;(H"),
or
H{*' = H} U Bj(H,H') C H; U P;(H).

Thus, I2 is satisfied. O

2.5 Limit Sets

In this section, we consider the problem of finding the type of protocol necessary
and sufficient to implement a given specification.

In Section 2.4, we investigated the question of whether a cut necessarily
belongs to Xp, given a protocol P. In this section, we pose the same question but
in a different setting; that is, given a run (H, >) does it necessarily belong to Xp?
Given a specification Y, this gives us lower bounds on the specification Y that is
necessary for the existence of a general, a tagged or a tagless protocol. For
example, if a general protocol implements the specification Y then X;, C Y, where
Xy is the lower bound for the class of general protocols. In this section, we present
results in the other direction, that is, does there exist a limit X that is sufficient
for the existence of a general protocol?

We define three subsets of X (or specifications) similar to ones in Section 2.4
that are used to provide an answer to the problem stated in this section. The three

subsets of X are:

Asynchronous ordering (ASYNC)

This is the same as the ground set X. Therefore, it includes all possible runs. There

exists a tagless algorithm (i.e., enable all pending events) that guarantees safety

35

and liveness for this specification. Formally, we can state X,syn., the set of all partial

orders as

Xasyne ={ H,>) : (z.s €eH& z.r € H) and > is a partial order }.

Causal Ordering (CO)

Causal ordering can be stated as sy > sy = —(r9 > 7). There exists a tagged
algorithm where with each message a matrix of size nxn is tagged to the message [32,
33]. Formally, we can state X, the set of partial orders satisfying causal ordering
as

Xeo={H,>) : =((zs>y.s) AN (yr>zr)) Ve,ye M }.

Logically Synchronous (SYNC)

A run is logically synchronous if its time diagram can be drawn such that all message
arrows are vertical. Formally, a run (H, >) is logically synchronous, that is (H, >) €
Xsyne, if there exists a function T : Msg (H) — {1,2,3,... }, such that for any two
events h,g € H, if h > g and Msg (h) # Msg (g) then T(Msg (h)) < T(Msg (g)).

Definition 2.13 (Crown [14]) A crown (of size k) in a run is a sequence of mes-

sages (Z1,%2,...,2x) such that
(21.8 > 22.7) A (2.8 > x3.7) -+ - (T).8 > X1.7).

Theorem 2.1 If a run is logically synchronous, that is (H, >) € Xy, then there
does not exist a sequence of messages (z1,Z2,..., k) belonging to the run, such
that

(1.8 > z9.7) A (T2.8 > x3.7) -+ - (T).S > X1.7).

Proof:
Synchronous = —-Crown

Since the run is synchronous there exists a function T such that for any two events

36

h and g

(h > g) A Msg (h) # Msg (g) = Te(h) < Te(g), and

(h > g) A Msg (h) = Msg (9) = Te(h) = Te(g)-
Suppose the computation has a crown of size k,
(1.8 > z9.7) A (T2.8 > x3.7) -+ - (T).S > X1.7).
Therefore,

Vie{l,... .k} Te(wi-s) < Te(F(i+1) mod k1) (%)

Vie{2,...,k} Te(x;.8) = Te(z;.1). (xx)
Therefore, from equations (*) and (**),
Te(z1.5) < Te(zy.1).

which is a contradiction.

—Crown = Synchronous

Given a run (H, >), we form a directed graph G(V, E), as follows. The vertex set
V' consists of all messages {x1,x2,...} in the computation. Thus, each vertex v;
represents a set of two events: the send event x;.s and the corresponding receive
event x;.r. That is

v; = {zj.s, x5}

There is an edge from v; to v; if there is an event h € v; and an event h € v; such that
h>g. Thus, (vi,v;) € Eiff (x;.s02;.5) V (zj.s>25.r) V (50> 2;.8) V (250 >zjr). It
is easy to see that each of the four disjuncts implies z;.s > z;.r. Hence, (v;,v;) € E iff
x;.s > xj.r. Since the computation does not have any crown, it follows that the graph
G is acyclic and the graph can be topologically sorted. Therefore, if we pick the same
ordering, we get the desired function T : Msg (H) — {1,2,3,... }, such that for any
two events h,g € H, if h > g and Msg (h) # Msg (g) then T(Msg (h)) < T(Msg (g)).

Therefore the run (H, >) is synchronous. O

37

It is easy to see that [14, 36]
Xsync C Xeo C Xasync-

The sets Xgsyne, Xeo, and Xgype exhibit an important property, i.e., they
are the limiting specifications, in terms of whether there exists a protocol that can
guarantee safety and liveness, for each of the three classes of protocols. For example,
there exists a tagged protocol (i.e., no control messages) that guarantees safety and
liveness for the specification X.,. Further, given a specification Y, there exists a
tagged protocol that guarantees safety and liveness, if and only if X., C Y. Thus,
given a specification, i.e., the set of acceptable runs, the type of protocol necessary
and sufficient can be easily checked by testing the containment of the three limit
sets, Xosynes Xeos and Xgype.

Theorem 2.2 Let Y be a specification. Then
1. A general protocol can guarantee safety and liveness iff X,,,. C Y.
2. A tagged protocol can guarantee safety and liveness iff X,, C Y.

3. A tagless protocol can guarantee safety and liveness iff Xz, C Y.

Proof: It is easy to show the “if part” in each of the cases. We use the fact that if

a protocol P implements the specification Y, then Xp C Y.
1. There exists a general protocol P such that Xp = Xyyn. [4, 29].
2. There exists a tagged protocol P such that Xp = X, [32, 33].

3. There exists a tagless protocol P such that Xp = X,4yn. (enable all events).

We now proceed to show the “only if part”.

Part 1. Let P be a general protocol. From lemma 2.2, we have X, C A'p. We have
to show that if (H, >) € Xyyn. then IH € Xy, such that (H, >) = UserView(H).
Given (H, >) € Xyyne we construct H such that (H, >) = UserView(H) and

H € Xsyne, as shown in Figure 2.11. For each event z.s add z.s* such that z.s*

38

Figure 2.11: Construction of H from (H,).

immediately precedes z.s. Similarly, for each event z.r add z.r* such that z.r*
immediately precedes z.r. We claim that H € X, that is, H satisfies the conditions

satisfied by elements of X,.

1. z.s* immediately precedes z.s, and z.r* immediately precedes x.r, by con-

struction of H.

2. All messages invoked have been delivered, that is, z.s* € H = z.r € H, since

(H, >) is a run.

3. Since (H,>) € Xgyne, there exists a function T : Msg (H) — {1,2,3,...},
such that for any two events h,g € H, if h > g and Msg (h) # Msg (g)
then T(Msg (h)) < T(Msg (g)). We can derive the numbering scheme Num,
where for each message z, Num(x.s*) = 4« T(z), Num(z.s) = 4 x T(x) + 1,
Num(z.r*) = 4« T(xz)+2 and Num(z.r) = 4« T(x)+3. Thus, we have a num-
bering scheme that assigns a unique number to each event satisfying desired
properties, that is, for any two events h,g if h — ¢ then Num/(h) < Num(g)
and for any message z, Num(x.r) = Num(z.r*) +1 = Num(z.s) + 2 =

Num(z.s*) + 3.

Thus, if P is a general protocol and (H, >) € Xyype then (H, >) = Xp.

Part 2. Let P be a tagged protocol. From lemma 2.3, we have X}y C Xp. We have
to show that if (H, >) € X, then AH € Xy such that (H, >) = UserView(H). We
claim that H € AXyq, that is, H satisfies the conditions satisfied by elements of Xjg.

39

The proof is similar to the previous case. We construct H as above and show that

H e Xy

1. z.s* immediately precedes z.s, and z.r* immediately precedes x.r, by con-

struction of H.

2. All messages invoked have been delivered, that is, z.s* € H = z.r € H, since

(H, >) is a run.

3. Since (H, >) € X, we have, for any two messages x,y the relation (z.s > y.s) A
(y.r > z.r) is false. By construction, we have (z.s > y.s) < (z.s — y.s) and
(x.r > yr) & (z.r* — y.r*). Therefore, in the cut H for any two messages
x,y the relation (z.s — y.s) A (y.r* — z.r*) is false. In other words, for any

two messages z,y we have (z.s — y.s) = —(y.r* — z.r%).

Thus, if P is a tagged protocol and (H, >) € X, then (H, >) = Xp.

Part 3. Let P be a tagless protocol. From lemma 2.4, we have X} C Xp. We have
to show that if (H, >) € X,4ync then 3H € Ay such that (H, >) = UserView(H). We
claim that H € Ay, that is, H satisfies the conditions satisfied by elements of A};.
The proof is similar to the previous case. We construct H as above and show that

H e Xy.

1. z.s* immediately precedes z.s, and z.r* immediately precedes x.r, by con-

struction of H.
2. All messages invoked have been delivered, that is, z.s* € H = z.r € H, since

(H, >) is a run.

Thus, if P is a tagless protocol and (H, >) € Xggyne then (H, >) = Xp. O
Corollary 2.1 A specification Y is implementable, that is, there exists a tagless,

tagged, or general protocol, if and only if X,,,. C Y.

40

2.6 Related Work

In [8], Bougé and Francez studied inhibition (called freezing) based protocols as a
superimposition of a set of control processes P on another set of user processes Q).
A user process can send/receive a message only if (and when) the corresponding
control process sends/receives a “similar” message. They considered syntactic rep-
resentation of inhibition in CSP. The first fundamental work on the properties of
inhibition was done by Taylor and Critchlow [18, 37]. They studied the relationships
between inhibition and the existence of specific protocols, and distinguished local
versus global inhibition.

The major difference between our model of inhibition protocols and the model
used by Taylor and Critchlow is that protocol events in our model are not used to
define enabling relations. They modeled enabling relations as a function of the local
state of the process, where the local state is composed of a sequence of system and
protocol events. We, on the other hand, define enabling relations with respect to the
partial order formed by the system events in the global system thus eliminating the
need to model protocol events. They studied the necessity of inhibition in consistent-
cut protocols and the extent of inhibition — local versus global inhibition, inhibition
of send events versus receive events, and the number of protocol messages.

Our interest is in the existence of protocol with global inhibition to implement
message orderings. We classified global inhibition based on the amount of knowledge
required, that is, local, causal, or concurrent, to describe the enabling relation.

In [14], Charron-Bost, Mattern, and Tel study the structural aspects of three
synchronization schemes — FIFO, causal, and synchronous orderings, and the hier-

archy relation, that is, synchronous = causal = FIFO.

41

2.7 Summary

In this chapter, we presented a new characterization of inhibition based protocols
and message ordering specifications.

An inhibition based protocol for a distributed system specifies for each pro-
cess the events it can perform. A protocol can delay the normal execution of an event
until the occurrence of prerequisite events. We distinguish three kinds of inhibition

based protocols:

e protocols that require control messages and tagging of user messages, called

general protocols.

e protocols that do not require control messages, but require tagging of user

messages, called tagged protocols, and
e protocols that do not require control messages or tagging of user messages,

called tagless protocols.

A message ordering specification can be characterized as a set of acceptable
runs, that is, a subset of X, where X is the set of all runs. The three specifications
that play a key role in determining the existence of each type of protocol are:

Koyne ={H, >) : 2 ((x1.5 > z2.7) A (22.5 > 23.7) -+ (T).8 > T1.7))
for any subset {x1,z2,...,x;} of Msg (H) }
Xeo ={H,>):=((z.s >y.s) A (y.r > z.r)) for any subset {z,y} of Msg (H) }
Xasyne ={(H, >) : = ((x.s > z.5) A (z.r > z.r)) for any message x € Msg (H) }
Given a specification Y there exists
e a general protocol if and only if Xy, C Y,

e a tagged protocol if and only if X, C Y, and

e a tagless protocol if and only if X,syn. C Y.

Thus, given a specification the type of protocol necessary and sufficient can be easily

checked by the containment of the three sets X,syn¢, Xeo, and Xyype.

42

It is natural to ask about the fourth type of protocols, that is, those that can
use control messages but cannot tag the user messages. There exists a protocol of
this type that can can implement a specification if there exists a general protocol.
A protocol of this type can send a control message before a user message including
all the information that is supposed to be tagged along with the user message, thus

simulating tagging.

43

Chapter 3

Protocol for Message-Orderings

In this chapter, we discuss the protocols implementing the three specifications:
Asynchronous Ordering Xysync, Causal Ordering X.,, and Synchronous Ordering
Xsyne-

Asynchronous Ordering can be provided by a protocol that does not delay
any events. Since any run (H, >) is a partial order, thus any run is a valid run under
the Asynchronous Ordering specification.

A fair amount of research has been done for efficient algorithms to imple-
ment Causal Ordering. Birman and Joseph [5], Raynal, Schiper, and Toueg [32],
Schiper, Eggli, and Sandoz [33], have presented algorithms for the causal ordering
of messages. These algorithms tag knowledge of processes about messages sent in
the system with the message. For example, process p; in the algorithm by Ray-
nal, Schiper, and Toueg [32] tags a message with the matrix m where m[j, k| is
the knowledge of process p; about the messages sent from p; to pi. On receiving a
message a process py delivers the message only if all the messages represented by
m/[j, k] for all j have been received and delivered.

Variants of Synchronous Ordering have been studied as guarded statements
in CSP [10, 4], binary interaction problem [3], and logically instantaneous message

passing [36]. In the rest of the chapter, we will present an efficient protocol to

44

implement Synchronous Ordering.

3.1 Algorithm

An algorithm that implements synchronous ordering must be asymmetric
with respect to the processes. This can be easily demonstrated by a simple example.
Consider a case where each of the two processes pi, p2 want to send one message z
and y to the other, respectively. Figure 3.1(a) shows the scenario. If the protocols are
symmetric with respect to the processes and the messages, then the only possible
completion of the run is shown in Figure 3.1(b) but it violates the synchronous
ordering conditions. Figure 3.1(c) shows the only two possible completions that do
not violate synchronous ordering and these can only be achieved by imposing some
order among the processes or the messages. This asymmetry can be imposed either
by ordering the processes [29, 5, 36] or by imposing an order among the messages [4].

In this chapter, we present an algorithm that breaks the symmetry using the
natural order among the processes. Therefore, the protocol followed by a process to
send a message to a bigger process is different from the protocol followed to send
a message to a smaller process. When a process wants to send a message = to a
smaller process, it sends the message. On the other hand, if the process wants to
send a message x to a bigger process then it has to request permission from the
bigger processes before sending the message.

Figure 3.2 illustrates the messages required to send a message x from a bigger
to a smaller process. The protocol is summarized in Table 3.1. Figure 3.3 illustrates
the messages required to send a message = from a smaller to a bigger process. The
protocol is summarized in Table 3.2.

The request message is used to inform the bigger process of the desire for
synchronization. Neither the sending nor the receiving of a request message changes
the state of the process (from active to passive, or vice-versa) and the request mes-

sage does not take part in the synchronization. Thus, we can neglect the request

45

T.s*

(a) Request of messages by process.

y.s* y.s

r.s* x.s

(b) Completion of run under a symmetric protocol.

Y.s Y.s y.s* y.s

r.s* .8 .8

(c) Only possible completions valid under synchronous ordering.

Figure 3.1: Asymmetric property of an algorithm implementing SYNC.

46

Acknowledgement

er* and o (Control Message)

/

Figure 3.2: A bigger process sending a message to a smaller process.

‘ Bigger Process ‘ Smaller Process

wait until active
e Send the message z, and
e turn passive

e Receive the message x.

wait until active
e Send an ack message for x.

e Receive the ack message, and
e turn active.

Table 3.1: Protocol to send a message from a bigger to a smaller process.

47

Request Granted
(Control Message)

’ N\

Request
(Control Message)

z.r* and z.r

Figure 3.3: A smaller process sending a message to a bigger process.

‘ Smaller Process ‘ Bigger Process

e Send a request message

wait until active
e Send grant message for =, and
e turn passive

e Receive the grant message.

wait until active
e Send the message .

e Receive the message z, and
e turn active.

Table 3.2: Protocol to send a message from a smaller to a bigger process.

48

messages in our arguments. Both parts of the protocol involve two messages, the
first sent from the bigger to the smaller process, and second from the smaller to the
bigger process.

Therefore, synchronization is achieved using two messages: initiation and
acknowledgment messages. The initiation message is always from a bigger process
to a smaller process. The acknowledgment message is sent by the smaller process to a
bigger process in response to the initiation message. A process is in one of two states:
passive or active. Initially all processes are active. In the active state, a process
sends an initiation message and turns passive until it receives the corresponding
acknowledgment. The user message x is tagged along with either the initiation
or the acknowledgment message. Thus, we have two types of protocol messages
denoted by the set M and M, representing the messages from bigger to smaller,
and the messages from smaller to bigger processes respectively.

When a process wants to send a message x to a smaller process it sends
an initiation message, with = tagged to it, and turns passive until it receives the
corresponding acknowledgment message. When a process wants to send a message
z to a bigger process it sends a request message to the bigger process. In turn, the
bigger process sends back an initiation message (when it is active) and turns passive
until it receives the corresponding acknowledgment message. The smaller process
tags the user message = along with the acknowledgment message.

During the passive state a process cannot send any message, neither an ini-
tiation nor an acknowledgment message. In addition, if the synchronization is for
a message from a smaller to a bigger process, then the processes involved cannot

receive initiation messages.

3.2 Proof of Correctness

We have a set of n processes p1,ps, ..., p, that communicate using three sets

of messages:

49

State is active

Smaller Process

(si,r;) € My —— st ri) € M,
Bigger Process

ﬂ ~————— passive active

Figure 3.4: Protocol messages to implement SYNC.

State is active

1. User messages M = |, {zi},
2. Initiation messages My = |J, {(si,7)}, and

3. Acknowledgment messages M, = J; {(s},7])}.

We use x; to represent a user message and (s;,r;) and (s%,r¢%) for the corresponding

l) l
protocol messages. If z; is a message from a bigger to a smaller process then z;
and (s;, ;) represent the same message, otherwise z; and (s{,r?) represent the same
message. Thus, M = M;'UM, where M, are initiation messages that are also user

messages and M;' are acknowledgment message that are also user messages.

We have to show that there exists a function 7 : M — {1,2,... } such that

(g > h) = T(Msg (g9)) < T(Msg (h)),

where messages Msg (g) and Msg (h) belong to M. Alternatively, we have to show
that there exists a function T': M* U MY — {1,2,...} such that

(9 < h) = T(Msg (g9)) <T(Msg (h)),
where, (¢ < h) implies the event g and h happened in the same process and ¢

50

happened before h. We use the term SYNC to refer to the property of the existence
of such a function for a set of messages.
A process can be in one of the two states: active or passive. The system uses

the following rules:
e A process can send a message belonging to M;, U M; only if it is active.
e On sending a message (s,7) € M, a process turns passive.

e On receiving a message (s,7) € M, a process acknowledges by sending the

message (s%,r%) € M.
e On receiving a message (s%,r%) € My a process turns active.

e [fthe corresponding user message is from a smaller process to a bigger process,
then during the passive state both the processes cannot receive any message

belonging to M.

Using the first four rules we show that the protocol messages M, satisfy the SYNC

condition, that is, there exists a function T}, : M, — {1,2,...} such that

(g < h) = Tp(Msg (g9)) < Tp(Msg (h)).

The fifth rule guarantees that for protocol messages (s;,7;) € My and (s¢,7¢) € M,
if the corresponding user message z; is from a smaller to a bigger process, then for

any event g (not the same as s;, 4, s¢, or rf),

(g=s)e@=r]) N (si<g & (rf=<g) A

(g=<ri)e(g=sf) AN (n=<g) e (sf<9).

Thus, given the function T}, we get the function 7' : M UM — {1,2,... } satisfying

the SYNC property, where T' ((s¢,r{)) = T}, ((si, i) and T ((s4,75)) = Tpp ((si,74))-
In the rest of the section we present the properties satisfied by the protocol

messages and prove the existence of a function 7T}, satisfying the SYNC property.

The conditions satisfied by the protocol messages are:

o1

Send Condition (SC) : A process can only send a message in active state. If

(s1,71) € My and (s2,72) € M}, then

(81 < 82) = (7"1 — 7‘2).

Ack Condition (AC) : A process can only send an acknowledgment in active

state. If (s1,71) € My and (s2,7r2) € M} then

(81 < ’)”2) = —I(’I“Q — Tl).

Priority Rule (PR) : Symmetry is broken by assuming a total order among the
processes and that protocol messages (s;,7;) can only be sent to a smaller

process. Let (s,r) € Mj then
proc (s) > proc (r).
3.2.1 Proof of Safety

Given a run, we form a directed graph G(V, E) as follows. The vertex set V consists
of all My messages in the computation. Thus, each vertex v; represents a set of two
events: send event s; and the corresponding receive r;. That is, v; = {s;,7;}. There

is an edge from v; to v; if
(5i <85) V(si =1j)V(ri <s5)V(ri <rj).

In each of the cases either we have (s; — r;). Thus, if there exists a cycle in the

graph formed by the vertices vy, vo, ..., v, then
(s1 = r2) A (s2 = 13) Ao+ A(sp — T1)

is true. The graph can be topologically sorted if and only if there are no cycles in
the graph. The topological ordering satisfies the condition Tj,.

Lemma 3.1 Let (s;,71) € My and (s2,72) € M. If (s; — r2) then
(r1 = 12) V (81 < 19).

52

Proof: If sy — ry then

(Z) (81 =< 7’2) V
(’LZ) ((81 — 7‘1) A\ (7‘1 — 7"2)) Vv

(441 (F(s,r) € My U Mg : (81 <8) AN (r = 12)).

The first two cases directly satisfy the lemma. In the third case the process sends
the message (s,7) only when it is active. Therefore, it would have received an

acknowledgment (s{,r{). Thus,

s1 =1 > st =1 > s = r =

Lemma 3.2 Let (s1,71) € My and (s9,72) € M. Then
(s1 = 12) A (s2 = 1) = (81 <712) A (82 <71).

Proof: Let s1 — 19, s9 — 71.

Assume, without loss of generality, —(s1 < r2). From lemma 3.1 and (s; —
r9), we get that (r; — 19).

Since (r; — 792) and the property AC of the protocol, we get —(se2 < 71).
Applying lemma 3.1 again to —(sy < r1) and so — r1, we get that ro — 7y, which
is a contradiction. O

Lemma 3.3 If there exists a sequence of messages belonging to M such that
(s1 = 12) A (82 = 73) A== A (8 = 71),
then there also exists a sequence of messages belonging to M} such that
(81 =< 75) A (sh<71h) A A (s < 1Y)
Proof: If k < 2, then the lemma follows directly from lemma 3.2. Assume k& > 2.
Pick any part of the crown starting from any index ¢ mod k,
Si1 = Ti,Si — Tit1 (%)

93

such that, =(s; < r;+1), such an 7 exists otherwise we have
(s1 <7m2) A (s2 <73) A=+ A (s <T1).

Since s; — r;y1 (by lemma 3.1), r; — r;4q1. Since s;_1 — r; and r; — 741,
equation (*) can be reduced to s;_1 — 741, giving a smaller crown. Therefore, in

the sequence (k > 2)
(s1 = 12) A (82 = 13) Ao+ A (8 = 71),

if =(s; < r;y1) then the sequence can be reduced by removing the (s;,r;) mes-
sage. On repeating the process the resulting sequence will eventually be one of the

following;:

e For some k' < k
(81 = 75) A (sh<rh) A=+ A (s < 1))
e The sequence length k£ = 2, that is, (s} — 75) A (s} — r]). By lemma 3.2,

(8] =) A (sh =) = (s] <7h) A (sh <))
O

Lemma 3.4 There does not exist a sequence of messages belonging to M, such that
(s1 <12) A (82 <13) Av- A (8 <T1).

Proof: The proof is by contradiction. If there exists a sequence of events such that
(s1 <7r2) A (s2 =<13) A=+ A (8 <71),

then
Vie{l,...,k} : proc(s;) = proc (7i+1 mod k), (%)
Vie{2,...,k} : proc(s;) > proc(r;). (xx) (by PR)
Combining (*) and (**) we get, proc(ry) > proc(s1), which is a contradiction to
PR. O

Hence, there exists a function 7), : M, — {1,2,...} such that

(g < h) = Tp(Msg (g9)) < Tp(Msg (h)).

54

3.2.2 Proof of Liveness

In a distributed computation (that implements the algorithm), we have to show that
every process pr that wants to send a message will eventually be able to send it.

If a process wants to send a message to a bigger process, then it sends a
request message. When the bigger process is active the permission is granted and
the process can send the message. If a process wants to send a message to a smaller
process then it sends the message as soon as it becomes active. Thus, we show
by induction that eventually all processes p; become active and are able to send a
message or grant permission for a message to be sent.

Base Case kK = 1. The smallest process p; does not send any initiation message
therefore it is always active. It sends the acknowledgment as soon as it gets a
message (s,7) € M,.

Induction Case Now on applying induction, given that k smallest processes will
eventually be in the active state, then the (k4 1)th process if passive will eventually

be active. The process px1 is passive at time t if

1. there exists a send of message (s,r) € M, at time t; < ¢ and

2. the process is passive between the time interval from ¢y to ¢.
Therefore, there exists an acknowledgment from a process py receiving (s,7) to pri1
such that,

1. the message (s%, %) € My is in transit, or

2. send of the message will eventually be executed when the process py is active,

where k' < k.

If the message is in transit then process py1 will eventually receive the acknowledg-
ment and become active. If the second condition is true, then because pyr < pgy1, Prr
will eventually turn active and execute the send of an acknowledgment. Therefore,

process piy1 will eventually be active.

95

3.3 Related Work

The synchronous communication primitives have been extensively studied as binary
rendezvous that have been used in CSP [23] and Ada [1]. A number of algorithms
have been suggested to implement rendezvous [10, 35, 4, 15]. In binary rendezvous
the synchronization takes place with respect to time, i.e., both processes should
simultaneously commit to an interaction. A similar property, synchronous ordering
has been studied that is weaker than binary rendezvous. In it, the synchronization
takes place with respect to concurrency [14, 29, 36].

In a binary rendezvous, a communication involves synchronization of exactly
two processes. This kind of primitive was later generalized to allow communica-
tion and synchronization between an arbitrary number of processes [15, 3]. This
general setting has been abstracted by Chandy and Misra [12] as the Commit-
tee Coordination problem. Other algorithms for multiway rendezvous have been
suggested in [15, 3]. A similar synchronization property weaker than multiway ren-
dezvous has been studied in [5, 17] as ABCAST and in [22] as synchronous multicast.
In [5, 13, 17], the main concern is ordering of message in a faulty environment.

The communication mechanisms for asynchronous distributed systems that
can implement synchronous ordering of messages operate either by assuming asym-
metry in the underlying systems, or inducing asymmetry by ordering the messages
or the processes. In Remote Procedure Call (RPC) [7] there is an assumption that
the underlying system is a client/server model thus all the initiation messages are
always from the client to the server. In a general asynchronous distributed system
it will result in a deadlock. Bagrodia’s rendezvous algorithm [4] imposed an order
among the messages thus breaking the symmetry. This results in a O(n) number of
messages and a response time of O(n?). In the algorithm presented in this chapter
and in [36], the symmetry is broken by using the natural order among the processes.
The message complexity is O(1) and the response time of O(n).

The protocol based on the SYNC property resulted in a more efficient algo-

o6

rithm then the existing ones such that Bagrodia’s rendezvous [4] and Soneoka and
Ibaraki [36]. The algorithm presented results in 2 or 3 messages for every user mes-
sage with a time response of O(n), where n is the number of processes. The message
and time complexity for the rendezvous message passing are O(n) and O(n?), and

for the protocol presented by Soneoka and Ibaraki are 3 and O(n).

3.4 Summary

In this chapter, we presented a protocol that guarantees synchronous ordering of
messages. The protocol breaks the symmetry using the natural order among the
processes. Therefore, the protocol followed by a process sending a message to a
bigger process is different from the protocol followed for sending a message to a
smaller process. When a process wants to send a message = to a smaller process
it sends the message. But, if the process wants to send a message x to a bigger
process then it has to request permission from the bigger process before sending the

message.

o7

Chapter 4

Forbidden Predicates

Generally, a message ordering specification can be charaterized as a set of acceptable
complete runs, that is, a subset of X, where X is the set of all complete runs. In
Chapter 2, we studied the limitations of the three types of inhibition based protocols,
that is, general, tagged, and tagless. The three specifications that play a key

role in determining the existence of each type of protocol were:

Koyne ={H, >) : 2 ((x1.5 > z2.7) A (22.5 > 23.7) -+ (T).8 > T1.7))
for any subset {z1,z2,...,z;} of Msg (H) }
Xeo ={H,>):=((z.s>y.s) A (y.r > z.r)) for any subset {z,y} of Msg (H) }

Xasyne ={ (H, >) : = ((x.s > z.5) A (z.r > z.r)) for any message x € Msg (H) }
That is, given a specification Y there exists:
e a general protocol if and only if Xy, C Y,
e a tagged protocol if and only if X, C Y, and
e a tagless protocol if and only if X,syn. C Y.
Thus, given a specification the type of protocol necessary and sufficient to implement

the specification can be easily checked by the containment of the three sets X,syne,

Xeos and Xgype.

o8

Since X is an infinite set, we need a finite representation for its subsets that
specify message ordering. We present a method called forbidden predicates that can
be used to describe a large class of message ordering specifications. All existing mes-
sage ordering guarantees such as FIFO, flush channels, causal ordering, and logically
synchronous ordering as well as others can be concisely specified using forbidden
predicates. For example, the specification for causal ordering X., can be stated as:
for all runs in Xy, and for all pairs of messages, = ((s1 > s2) A (r2 > r1)). The
forbidden predicate for X, is 3 (s1,71), (s2,72) @ (s1 > s2) A (re > r1). In general, a
forbidden predicate can be stated as a conjunction of causality relationships between

the events (send and receive).

4.1 Forbidden Predicates

In this chapter we describe forbidden predicates and present an algorithm to address
the necessary and sufficient conditions for the existence of a protocol of each type.

Definition 4.1 A forbidden predicate B is defined as

B=3z,29,...,e;m €M : B(x1,x9, " ,T,)
where _
B(z1,22,+ ,m) = /\ (j-p > Tk.q),
(j.k)ETx K
p and ¢ represent s or r, and J, K are subsets of {1,2,...,m}.

Definition 4.2 Given a forbidden predicate B, the corresponding specification set

Xp C X is defined as
Xp={H,>) : =B(z1,-- ,zm), Ya1,29 - 2y, € M} .

Notation: Let B=3xz,y € M : (z.s>y.s). We write the predicate B as (z.s > y.S)
dropping the quantifier 3 for ease of use. B(a,b) implies the evaluation of (z.s > y.s)
for the instances a and b in M. Therefore, B(a,b) is true if and only if a.s > b.s. In

case of ambiguity we express the predicate as B =3z,y € M : B(z,y).

99

Given two forbidden predicates B and B’ for the sets Xp and Xp/, respec-
tively, B’ = B iff Xp C Xps. If a protocol for B guarantees that all the allowable
partial orders belong to the set Xp, then the same protocol guarantees that all the
allowable partial orders belong to the set Xp:.

Consider the example of causal ordering. The predicate can be stated as
B = (xz.s > y.s) A (yr > z.r). For each element (H, >) of X, (the corresponding

specification set),
Ve,ye M 2 = ((x.s > y.s) A (yr > zr)).

Further, we can define three attributes for each message: receiving process, sending
process, and color. We can use these attributes to define a range for the variables
of the predicate. For example, we may be interested in runs where messages should

not overtake the red marker message, that is
Vaz,ye M : color(y)=red : —((x.s>y.s) A (yr>zr)).

In this chapter we are interested in predicates where the variables range over all
messages.

Now, we characterize limit sets using forbidden predicates. For example, X,
corresponds to the forbidden predicate B = (z.s > y.s) A (y.r > z.1).

Lemma 4.1

1. The specification set for each of the following predicates contain Xy,
a) B=((z1.s > z9.1) A (z2.8 > x3.7) - (Tk.5 > x1.7)) for any k =2,3...

2. The specification set for the following predicates is Xc,.
a) Bi=(z.s>yr)A(yr>zr).
b) By =(z.s > y.s) A(y.r > z.r).
c) Bs=(xz.s>y.8)A(y.s> zr).

60

3. The specification set for the following predicates is Xgsyne-
a) B=(z.sp>uys) A (y.s>x.s). b) B=(z.s>y.s) A (yr > z.s).
c) B=(zsv>uyr) A (yr>z.s). d) B=(zr>ys) A (yr>z.s).
e) B=(zrov>yr) A (yr>zs). f) B=(zr>yr) A (yr>zr).

Proof: In the first part, the intersection of all specification sets is Xy, folows
from Theorem 2.1. For the third part, each of the predicates implies the existence
of an event h € H such that h > h. No run in X, ,. satisfies such a predicate.
Therefore, the specification set for the predicates is Xqsynec.

In the second part, Bs corresponds to X, by definition. We will show B; <
By; the proof of By < Bj is similar. Let the corresponding specification sets
be X; and X, respectively. We have to show that X; = X,. It is easy to see
that By = Bj. Since By = (z.s > y.s) A (y.r > z.r) and y.s > y.r is true, By =
(z.s > y.s) A (y.r > z.r) A (y.s > y.r). Combining the first and third conjuncts, we
get By = (z.s > y.r) A (y.r > x.r) = By. Therefore, X; C Xo.

We now show that X; C X; where, X; = X — Xj. Using the definition of Xy,

we get the complement of X as

X1 ={ () : Iz,y € M such that By(z,y) }.
Let (H, >) € X;. We have to show (H, >) € Xo. In the run (H,), we have at least
two messages x and y such that (z.s > y.s) A (y.s > z.1).

1. Let z.s and y.s be in different processes.

Since (z.s > y.s), and z.s and y.s are in different processes, there exists a
message z such that (z.s > z.s), (z.s > z.r), and (z.r > y.s). Since (y.s > x.r)
and (z.r > y.s), z.r > x.r. Therefore, x.s > z.s and z.r > x.r, thus By(z, z) is

true.

2. Assume z.s and y.s are in the same process (therefore, z.r and y.s are in

different processes).

61

Since (y.s > z.r) and x.r and y.s are in different processes, y.r>z.r or 3z € M,

such that (y.s > z.s), (z.s > z.1r), and (z.r > z.7).
(a) If y.r > x.r, then (z.s > y.s) and (y.r > x.r). Thus By(z,y) is true.

(b) If3z: (y.s > z.s),(z.s > z.r), and (z.r > x.r); then (z.s > y.s) A (y.s >

z.8) = (z.s > z.s) and (z.r > z.r), thus By(z, z) is true.

Therefore, 3,z € M such that By(z, z) is true. Thus, (H, ») € Xs. O

4.2 Specification Graph

In this section we classify the forbidden predicates to determine the type of algorithm
necessary and sufficient to guarantee safety and liveness.
Definition 4.3 Let B = 3xy,...,2, € M : B(zy,...,z,) be a forbidden predi-

cate. A predicate graph Gg(V, E) is a multi-graph such that

V = {z1,...,xm}

= {(zj,zx) | (zj.p > zk.q) is a conjunct of B where each p,q is s or r }

Example 4.1 Let a predicate be

xr1.r > x2.8) N (2.8 > x3.8) N\ (3.7 > 24.7) N
B —_—

(4.8 > 21.7) A (x4.5 > z5.7) A (21.8 > T4.7)

then Gg(V, E) is

V ={xg, 1,22, 23, 24, 75,26}, and O

E = {(z1,29), (z2,3), (x3,24), (T4, 21), (x4,%5), (x1,24) }. o -

Using the graph, we can determine whether the specification is implementable,
and if it is, the type of protocol necessary and sufficient to guarantee safety and live-

ness.

62

Theorem 4.1 A specification Xp (or forbidden predicate B) is implementable if
and only if there exists a cycle in the predicate graph Gp(V, E).

Proof: We first prove the “only if” part. Let the predicate be B =3z, - ,x,, €
M : B(x1,--+ ,%;,) such that the predicate graph Gg(V, E) does not have a cycle
and let the corresponding specification set be Xp. Consider a run (H, >) such that
the set of messages is Msg (H) = {z1,...,2Zmn}. The run is constructed such that if
xj.p > Z.q is a conjunct of B(xy,- -+, %) then (z;.p, £4.q) € >. For each message
x € Msg (H), (z.s, x.r) € >. Now take the transitive closure (*) to make it a run.

Therefore, (h,h') € > if one of the following conditions hold.

1. Theevents h and ' are z;.p and z.q, respectively, and z;.p > z.q is a conjunct

of P(z1,z9,...,Ty).

2. The events h and h' are send and delivery events of a message, that is, there

exists a message y € Msg (H) such that h = y.s and b’ = y.r.

3. There exists another event g € H such that (h,g) € > and (g,h) € .

It is easy to see that the predicate B is true in the run (H, >), therefore, (H, >) &
Xp. We claim that (H, >) € X,yne, hence the theorem (only if) follows. Since the
predicate graph does not have any cycles, it can be linearly ordered. Using the
same ordering we define a function T : Msg (H) — {1,2,3,...}, such that for any
two events h,g € H, if h > g and Msg (h) # Msg (g) then T(Msg (h)) < T(Msg (g)).
Therefore, (H, >) € Xgyne and (H, >) ¢ Xp. From corollary 2.1, we have that there
exists a protocol only if Xy, C Xp.

The “if” part follows from theorem 4.2 which will be proved in Section 4.3.

Since a specification graph without cycles is not implementable, thus we are
interested in the specification graphs with cycles. Pick any cycle G.(V¢, E¢) C
G(V, E) in the specification graph and let the corresponding forbidden predicate be
B..

63

Example 4.2 Consider the forbidden predicate and the graph from example 4.1.
A possible cycle and the corresponding predicate is shown below. It is easy to see

that B = B,, since B, is the same as B with some conjuncts removed.

1 T4

\/

Ve = {$1,x2,x3,x4}

B¢ = {($1,$2),($2,x3),($3,x4),(x4,x1)}
(1.7 > T9.8) A (£2.8 > T3.5) A

P. =

(x3.7 > za.m) A (4.5 > T1.5)
o xrs3

The specification graphs can contain a number of cycles. We classify a cycle
into different categories based on the number of 3 vertices (defined next) it contains.
Definition 4.4 Given a cycle G.(V¢, E) in the graph G(V, E), we say x € V° is a
[vertex with respect to the cycle G.(V¢, E€) if the incoming edge is { > z.r where
¢ is either y.s or y.r and the outgoing edge is z.s > & where § is either z.s or z.r.

The order of a cycle is equal to the number of § vertices it contains.

Example 4.3 (Continuing with the previous example.) With respect to the cycle
G.(V¢ E°), only x4 is a 3 vertex, thus the order of the cycle is 1. Consider a non-g3
vertex, say 3. Consider the conjuncts that result in the input and output edges of
the vertex z3. They are, z9.s > x3.5 and z3.r > x4.r. Since z3.s > z3.r, combining

the three conjuncts we get, zo.s > x4.7. We can get a predicate B,
B' = (1.7 b 29.8) A (22.5 > 4.7) A (T4.8 > T1.7),

such that B.= B'. Since B = B, and B.= B’, B = B’. If we consider the predicate
graph Gg/(V' E'), it is a cycle of order 1 and the /3 vertex is z4, thus maintaining

the order and the 3 vertex of the cycle.

Lemma 4.2 Let B be a predicate and Gg(V, E) be the corresponding predicate
graph with a cycle of order k. Then there exists a predicate B’ weaker than B
whose predicate graph Gp/(V', E') is a cycle of order k such that

64

1. |V|=2,0r

2. all the vertices are 3 vertices.

Proof: Let G(V¢, E¢) C G(V, E) be a cycle in the predicate graph with the corre-
sponding predicate B.. We know that B = B..

If the graph G(V', E') = G(V¢, E¢) and predicate B’ = B, satisfy the condi-
tion of the lemma, we are done. If not, pick a vertex, say y, that is not a 3 vertex.

Then one of the following is true, with x # z,

1. B=--- (zp>y.s) A(ys>2.q) N---, or
2.B'=---(zp>ys)A(yr>zqg) A---,or
3. BB=---(zpv>yr) Alfyrp>z.q) N

Such a vertex exists since the graph (cycle) has more then two vertices and has at
least one non-3 vertex. In each case, B'= B", where B" =--- A (z.p> z.q) A---.
Since B= B’ and B'= B", B= B". Let the graph predicate for B” be G(V", E").
The graph G(V", E") satisfies the condition |V"| = |V'| — 1, and the number of
vertices in G(V", E") is k.

If the graph G(V", E") and the corresponding predicate B” satisfy the con-

ditions of the lemma, we are done, otherwise repeat the above process. O

4.3 Impossibility and Lower-Bounds

In this section we prove the necessary and sufficient conditions for a specification
to be implementable by a protocol of a given class. The next theorem proves the
sufficient condition for a protocol to implement a given specification. Theorem 4.3
presents the necessary conditions to be satisfied by the specifications to be imple-
mentable by a protocol of a given class.

Theorem 4.2 (Sufficient Conditions) Let Xp be a specification with B as the

corresponding forbidden predicate. Let the predicate graph be Gg(V, E) with a

65

cycle G.(V¢, E°) C Gp(V,E).
1. If there exists a cycle G.(V¢, E¢) C Gp(V, E) of order 0, then X5y, C Xp.
2. If there exists a cycle G.(V¢, E°) C Gg(V, E) of order 1, then X, C Xp.

3. If there exists a cycle G.(V¢, E¢) C Gg(V, E) of order k (> 1), then Xy, C
Xg.

Proof:
Part 1. Let G.(V¢, E¢) C Gp(V, E) be a cycle of order 0. Then from Lemma, 4.2,
there exists a predicate B’ such that B = B’ and the corresponding graph G/ (V', E')
is a cycle of order 0 with |V'| = 2. Since B= B’, Xp C Xp.

Since the graph is a cycle with two vertices (both non-03), the predicate B’ =
dz,y : B'(z,y) can only be one of the predicates in the statement of Lemma 4.1.3.
From Lemma 4.1 we have that the specification corresponding to the above predi-

cates are equivalent to X,syne. Therefore, Xoyne = Xpr, and Xygyne C Xp.

Part 2. We have to show X, C Xp. Let G.(V¢ E¢) C Gp(V, E) be a cycle of order
1. Then from Lemma 4.2, there exists a predicate B = B’. The corresponding graph
Gp (V',E') is a cycle of order 1, such that |V'| = 2. Since B= B’, Xp' C Xp.
Since the graph is a cycle with two vertices (one (), the predicate B’ =
dz,y : B'(z,y) can only be one of the predicates in the statement of Lemma 4.1.2.
From Lemma 4.1, the specification corresponding to the above predicates is equiv-

alent to X.,. Therefore, X., = Xp/, and X, C Xp.

Part 3. We have to show Xy, C Xp. Let G.(V¢, E°) C G(V, E) be a cycle of order
k(> 1). Then from Lemma 4.2, there exists a predicate B = B’. The corresponding
graph Gg/(V', E') is a cycle of order k, such that |V'| = k. Since B= B’, Xp C Xp.

Since the graph is a cycle with k& (3 vertices, the predicate B’ is
B' = (z1.5 > 12.7) A (z2.5 > 23.7) - (T).5 > T1.7).

66

T.s Y.s

Figure 4.1: Construction of a run using a forbidden predicate.

This implies the predicate in the statement of Lemma 4.1.1. Therefore, X,,,. C
Xp CXp. O

The next theorem employs a technique of contructing a run (H, >) using a
forbidden predicate. We illustrate the methodology used by considering the following
example.

Example 4.4 Let us consider the following forbidden predicate
B(z,y,2z) = (z.s > y.s) A (y.r > z.8) A (z.r > z.1).

We contruct a run (H, >) such that the set of messages is Msg (H) = {z,y,z}. The

causality relation > is a transitive closure of the following set.
{(z.s > y.5), (yr > 2.8), (z.r > z.1), (.5 > x.7), (y.8 > y.r), (2.5 > 2.7) }.

Note that the first three elements are conjuncts of the forbidden predicate and next
three elements are the causality induced by the fact that z,y, and z are messages.
Figure 4.1 shows one possible run given by the above construction. In the figure,
the thick lines correspond to the conjuncts of B.

Now consider the two events z.s and z.s, clearly (z.s > z.s). Which can be
rewritten as

(x.s > y.8) A (y.s > y.r) A (y.r > 2.5),

67

or C1 A Cy A C3, where
Cy = (z.s > y.s), Cy = (y.s > y.r), and C3 = (y.r > z.5).

Each of the Cs is either a conjunct of B or is of the form (a.s > a.r). In the above

case, C1 and C3 are conjuncts of B and C is of the form (a.s > a.r).

Theorem 4.3 (Necessary Conditions) Let Xz be a specification with B as the
corresponding forbidden predicate. Let the predicate graph be Gg(V, E) with a
cycle G.(V¢, E°) C Gp(V, E).
1. If there does not exist a cycle G.(V¢, E) C Gg(V, E) of order 0, 1 or n, then
Xsyne € Xp.
2. If there does not exist a cycle G.(V¢, E°) C Gg(V, E) of order 0 or 1, then
Xeo € Xp.
3. If there does not exist a cycle G.(V¢, E¢) C Gg(V, E) of order 0, then Xysyn.
XB.

Proof:
Part 1. If there does not exist a cycle of order 0, 1, or n, then there does not exist

a cycle. From theorem 4.1 it follows that X, € Xp.

Part 2. We have to show that X.,, € Xp, given there does not exist a cycle of
order 0 or 1 in the predicate graph. We will construct a run (H, >) and show that
(H,>) & Xp, but (H,>) € Xg.

Let the forbidden predicate be B(z1, - - - Z,) with the corresponding predicate
graph having no cycles of order 0 or 1. Consider a run (H, >) such that the set of
messages is Msg (H) = {z1,..., 2 }. The run is constructed such that if (z;.p >
zk.q) is a conjunct of B(z1,---,zy,) then (z;.p, z5.q) € >. For each message
x € Msg (H), (z.s, x.r) € >. Now take the transitive closure (*) to make it a run.

Therefore, (h,h') € > if one of the following conditions hold.

68

1. The events h and h' are z;.p and zj.q, respectively, and (z;.p > w(.q) is a

conjunct of B(z1,z2,...,Tm).

2. The events h and h' are send and delivery events of a message, that is, there

exists a message y € Msg (H) such that h = y.s and b/ = y.r.

3. There exists another event g € H such that (h,g) € > and (g,h') € >.

Since for this run B(zy,---z,) is true, (H, >) &€ Xp. The claim is (H, >) € X,,. We
will show (H, >) € X, by contradiction.
Assume (H, >) & X,,. From the definition of X,

Xeo={H,>) : = ((z.s >y.s) A (yr>zr)),Ya,y € Msg (H) }.

Therefore, z;,2; € Msg (H) such that (z;.s > zj.s) A (z;.r > z;.r) is true.

We can rewrite (z;.5 > zj.5) A (j.r > z;.r) as
(CI A Cy Ao Cy) \(CTACE AN CY),

where C]l:s are either a conjunct of B or of the form (zj.s > zj.r) for some k. The
first group of Cs, i.e., (Cf A C3 A---A C}) is equal to (z;.s > z;.5) and the second
group of Cs, i.e., (C2 A C2 A--- A Cg) is equal to (zj.r > x;.1).

We form a graph (cycle) from the C's. Drop all the C's which are not conjuncts
of B, since they do not contribute to the cycle. Since the remaining C' are conjuncts
of the predicate B, every edge in the graph formed by the Cs has a corresponding
edge in the predicate graph Gp(V, E).

Consider the predicate graph formed by the resulting Cs. Let the predicate
be B, and Gp, (V¢ E°). It is a cycle and G, (V¢ E°) C Gg(V,E). For each C
remaining there is an edge. We have to analyze the vertex formed by two C's. If C;
is of form (z.s > z.r) (thus dropped) then C;_; = (¢ > z.s) and Cj41 = (z.r >),
thus the vertex formed by C;_; and C;4 is not a (§ vertex.

Let us consider the case when C; and Cj4; are parts of the conjunct. Then,
C; = (¢ > z.h) and Cj11 = (z.h > 0). Thus the vertex formed by C; and Cjy; is not

a [vertex.

69

Therefore the vertices formed by the Cs in the same group do not result in
any [vertex. There are two more vertices to be considered — the vertices formed
by the group joining. Note that C’I} and C? are conjuncts of B since they cannot
be of the form (z.s > z.r). The conjuncts are of the form ({ > z;.s) and (z;.r > §),
respectively. Therefore, the vertex formed by joining CI} and C? results in a non-3
vertex.

Therefore, the number of vertices left to be considered is one (it may or may
not be a (vertex). Thus the resulting graph is of order 0 or 1. Thus, there exists a
cycle G, (V¢ E€) in the predicate graph of the predicate B of order 0 or 1, which

is a contradiction.

Part 3. We have to show that X,syn. € Xp given that there does not exist a cycle
of order 0 in the predicate graph Gg(V, E).

Let us assume that the predicate graph does not have a cycle of order 0. We
construct a run (H, >) and show that (H, >) & Xp but (H, >) € Xgeyne-

Let the forbidden predicate be B(x1,- - - xy,). Consider a run (H, >) such that
the set of messages is Msg (H) = {z1,...,2;}. The run is constructed such that
if (zj.p > x}.q) is a conjunct of B(z1, - ,zy) then (z;.p, 5.q) € >. For each
message z € Msg (H), (z.s, z.r) € >. Now take the transitive closure (7) to make

it a run. Therefore, (h,h') € > if one of the following conditions hold.

1. The events h and h' are z;.p and zj.q, respectively, and (z;.p > z%.q) is a

conjunct of B(z1, %2, ..., Tm)-

2. The events h and h' are send and delivery events of a message, that is, there

exists a message y € Msg (H) such that h = y.s and b/ = y.r.

3. There exists another event g € H such that (h,g) € > and (g,h') € >.

Since for this run B(zq,---zy) is true, (H, >) € Xp. The claim is (H, >) € X,sync-

We will show (H, >) € X,5yne by contradiction.

70

Assume (H, >) & Xgsync. From the definition of X,gyne,
Xasyne ={ (H,>) : Ah € Hsuch that h > h }.

Therefore, 3h € H such that (h > h).

We can rewrite (h > h) as (C; A Cz A---A C)) where C' is either a conjunct
of B or of the form (x.s > zj.r) for some k.

We form a graph (cycle) from the Cs. Drop all the Cs which are not a
conjunct of B, since they do not contribute to the cycle.

Consider the predicate graph formed by the resulting C's. Let the predicate
be B. and G.(V¢, E°). 1t is a cycle and G.(V¢, E€) C G(V, E). By similar reasoning

as in the previous case the only [vertex that can be possible is between C; and C),.

1. C, is of the form (z.s > z.r) (thus dropped), then C), and C5 are of the form
(¢ > z.s) and (z.r > §), respectively. The vertex formed by C), and C5 is not

a (3 vertex.

2. C, is of the form (z.s > z.r) (thus dropped), then C,_; and C| are of the form
(¢ > z.s) and (z.r > 0), respectively. The vertex formed by C,_; and C; is not

a (3 vertex.

3. Cy and C) are not of the form (z.s > z.r). Then C, and C; are of the form
(¢ > z.f) and (z.f > 0), respectively. The vertex formed by C, and C; is not

a (3 vertex.
Thus the resulting graph is of order 0. Thus, there exist a cycle G, (V¢, E¢)

in the predicate graph of the predicate B of order 0, which is a contradiction. O

4.4 Related Work

Many communication and synchronization schemes for distributed systems have
been proposed in the literature. Examples include: various broadcast and multicast

schemes like ABCAST, CBCAST, FBCAST [5, 34, 6]; flush channels as weakening

71

of the FIFO-protocol [2]; global flush channels as weakening of causal ordering [21];
causal ordering [5, 32, 33]; and synchronous ordering [36, 14, 29]. In addition,
many protocols induce some message orderings among the user messages or control
messages [11, 20, 27, 19, 25, 24, 9]. Although there has been a fair amount of
research in the area of message orderings, neither a succinct representation for all
the message orderings nor a formal treatment to study the relationship between the
orderings has been done. The method of forbidden predicates characterizes these

and many new orderings.

4.5 Summary

A distributed computation or run describes an execution of a distributed program.
At an abstract level a run is a partial order (H, >), where H is the set of events in the
system and > the happened-before relation between events. Generally, a message
ordering specification can be characterized as a set of acceptable complete runs, that
is, a subset of X, where X is the set of all complete runs.

Since X is an infinite set, we presented a method called forbidden predicates
that can be used to describe a large class of message ordering specifications. All
existing message ordering guarantees such as FIFO, flush channels, causal ordering,
and logically synchronous ordering as well as others can be concisely specified using
forbidden predicates. For example, the specification for causal ordering X., can be
stated as: for all runs in X,, and for all pairs of messages, = ((s1 > s2) A (r2 > 1)).
The forbidden predicate for X, is 3 (s1,71), (s2,72) : (51> s2) A (r2 > 71). In gen-
eral, a forbidden predicate can be stated as a conjunction of causality relationships
between the events (send and receive).

Given a message ordering specification using forbidden predicates, we present
an algorithm that determines the type of protocol necessary to implement that
specification. The algorithm converts the forbidden predicate into a predicate graph.

It is shown that the specification can be implemented if and only if there is a cycle

72

in this graph. Further, to determine the nature of the protocol required for the
specification, it is sufficient to examine vertices of the graph. We define the notion
of § vertices. If the cycle has two or more 3 vertices with respect to that cycle,
then control messages are necessary. If the cycle has one 8 vertex, then tagging
user messages is sufficient. If the cycle has no g vertex, then no action from the
protocol is required. Thus, given any message ordering specification using forbidden
predicates, the nature of the protocol necessary for implementing it can easily be
determined. This can be summed up by the following table which is a consequence

of the last two theorems proved in this chapter:

Specification graph has a cycle < specification is implementable

and if there exists a cycle with

— zero or more (3 vertices & tagging and control messages are sufficient,
— zero or one (3 vertex & tagging is sufficient, and
— zero (3 vertices < trivial protocol is sufficient.

73

Chapter 5

Algorithm to Implement
Message Ordering

The focus of this chapter is to find a general algorithm that can implement a large
class of message orderings without using control messages. In the previous chapter
we showed that this is possible only if the predicate graph, derived from the forbidden
predicate, has a cycle with zero or one [vertices. We will not consider the trivial

case where there exists a cycle with zero [vertices.

5.1 Extensions to Forbidden Predicates

In this chapter, we extend the concept of forbidden predicates by defining three
attributes for each message x, they are: color () — the color of a message, proc (z.s)
— the process identifier of the sending process, and proc (z.r) — the process identifier
of the receiving process.

The predicate graph for the specifications considered in this chapter are
cycles with one [vertex. Without loss of generality, let V = {x1,z9,...,2mn}
and E = {(Ti,T(imodm)+1) ¢ ¢ = 1,2,...,m} be the vertex and edge set of the

resulting graph, with x; being the [vertex. In addition, each message z; has to

74

satisfy ¢;(x;) where ¢;(+) is a trivial predicate, i.e., a function of color or the sending
process identifier of the message. Thus a general forbidden predicate can be written

as:
B=3z,....,e;m €M : ci(z1) A -+ Aep(zm)

i (z1.8 > z2.p) A /\ (zip' > zi1.4) | A (Tm-q > z1.7),

i=2,...m—1

where each p,p’, ¢ and ¢ stand for either s or r. The (i — 1)th and ith clauses in

the predicate can be written as
(¢ > xi.s) A (5.8 > 0), (> xi.s) A (zjr >), or (C > x.r) A (5.0 > 0),

otherwise, z; is a [vertex, and we say, the vertex z; is of the type (s,s), (s,7),
or (r,r). We introduce a shorthand to represent the (i — 1)th and ith clauses as

¢ > li(z;) > J, where

a.s if vertex z; is of type (s, s)
lifa) = ¢ a.s > ar if vertex z; is of type (s,r)
a.r if vertex z; is of type (r,r).

Thus, if a run (H, >) is invalid under a specification B, then there exists a set of

messages {a1,a2,- - ,an} € Msg (H) such that ¢;(a;) is true for all ¢ and
ay.s > la(ag) > l3(az) > -+ > Iyp(am) > ay.r.

Some examples of forbidden predicates that can be implemented without
using control messages are:
FIFO: Messages are received in the order that they are sent between any pair of

processes:

dz,y :

(proc (z.s) = proc (y.s)) A (proc (z.r) = proc (y.r)) :
(z.s > y.5) A (y.r > z.r).

75

Colored FIFO: Messages of different kinds (or different colors) are received in the

same order that they are sent between any pair of processes:

dz,y :

(proc (z.s) = proc (y.s)) A (proc (z.r) = proc (y.r)) A (color (z) # color (y)) :
(x.s > y.8) A (y.r > x.1).

Causal Ordering: A series of messages cannot overtake another message:
dz,y : (z.s > y.s) A (yr > z.r).

Colored Causal Ordering: Ordering among messages with different colors is

maintained:
dz,y : (color (z) # color (y)) : (xz.s > y.s) A (y.r > x.1).

Similar predicates are used in many consistent-cut protocols.

k—Weaker Causal Ordering: Messages can be out of order by at most k& messages:
21, xpy ¢ (T1.8 > x9.8) A (2.8 > 23.8) A -+ A (Tpyo.r > z1.7).

Local Forward—Flush: All messages sent before a red message are received before

the red message between any pair of processes:
Jz,y :
(proc (z.s) = proc (y.s)) A (proc (z.r) = proc (y.r)) A (color (y) = red) :
(z.s > y.s) A (yr > z.r).

Local Backward—Flush : All messages sent after a red message are received after

the red message between any pair of processes:

dx,y :
(proc (z.s) = proc (y.s)) A (proc (xz.r) = proc (y.r)) A (color (z) = red) :

(z.s > y.s) A (yr > z.r).

76

Global Forward—Flush: All messages sent before a red message are received before

the red message:
dz,y : (color (y) = red) : (z.s > y.s) A (y.r > z.r).

Global Backward—Flush: All messages sent after a red message are received after

the red message:

dz,y : (color (z) = red) : (x.s > y.s) A (y.r > z.1).

5.2 Algorithm for a Two Clause Predicate

Consider the following specification:
a red message sent before a green message should not be received after
the green message, i.e.,

(x.s > y.s) = (y.r > x.1),

where color () = red and color (y) = green.

In this case, upon receiving a green message a process waits for only those red
messages in transit that were sent before the green message. Thus a process has
to keep track of two types of red messages: first, those red messages in transit that
were sent before a green message, and second those red messages that might precede

a future green message. This is done by keeping two level sets Ly and Lo, where

Ly = set of all red messages, and

Lo = set of red messages that are preceded by a past green message.

The above condition can be rewritten using forbidden predicates as,
B=3z,y : color () =red A color(y) = green : (z.s > y.s) A (y.r > z.1).

Informally, a forbidden predicate states that a run is illegal if a set of events satisfies

certain causality relations. Therefore using sets L; and Ls, the algorithm tracks all

77

dz,y : color (z) = red A color (y) = green : (x.s D‘ y.s) A (yr D‘ x.1)
Ly Lo
For any event g,

a€Llilg] = (as>g), where color (a) = red
a € Lolg] = 3b: (a.s>b.s)A(borr>g), where color(b) = green

Figure 5.1: Detection of different stages of the predicate.

possible combinations of events that may eventually satisfy the causality relations.
To guarantee safety a process delays an event until it has received all messages in Lo.
This ensures the second clause of the predicate is never true for any z,y. Therefore,

the two steps in the algorithm are:
1. Detection of different stages of the predicate.

2. Avoidance of one of the clauses of the predicate.

5.2.1 Detection

The predicate can be viewed as a causality chain, and the first step keeps
track of all events that have satisfied part of the causality chain. Figure 5.1 illustrates
the first step for the above specification. In this chapter, the notation > stands
for >U =, that is, if h > A’ then either h and A’ are the same events or h > h'. Set
Ly tracks the messages that satisfy the causality relation left of the perpendicular
line associated with L; in the figure, that is a € Ly[g] if (a.s > g) and a is a red
message. Similarly, set Ly tracks the messages that satisfy the causality relation left
of the perpendicular line associated with Lo, that is, a € Ls[g] implies there exists a
message b such that (a.s > b.s) A (b.r > g), where a is a red message and b is a green
message.

Whenever a process sends a message x it tags its local information along with
the message. The new local information of the receiving process is a function of its

old local information (L;s), and the information tagged along with the message

78

(z.Lis). The value of the set L; just after the event g is L;[g]. The detection of the

predicate is done in stages. For example, in the above predicate the two stages are:

1. Detection of the first part of the predicate. Therefore,
a € L1[g] & ((color (a) = red) A (a.sv g)).

Thus, L; keeps track of all messages that are red. Therefore, whenever a process

sends or receives a red message it adds the message to the set L.

2. Detection of the first part followed by the second part, i.e.,

a € La[g] < (3b : color (a) = red A color (b) = green : (a.s > b.s) A (b.r > g)).
Note that part of the predicate is the same as the definition of L. Using the identity,
(a.s > b.s) = Janevent f : (a.s> f) A (f > b,s),

we can rewrite Lo using L; as,

a € Lolg] & Janevent f, and a message b :

(color (b) = green) A (f > b.s) A (b.r>g) A (a € L1[f]).

The condition specifies when a message from any level set is added to a higher level

set (e.g., from L to Lo).

If a process executes a message b such that color (b)) = green then the sending
process can update the level sets L; and Lo using its old values and the knowledge
that message b satisfies the condition. Similarly, the receiving process can update
its level sets based on its level sets and the level sets tagged with the message b.

5.2.2 Safety

The second step guarantees the safety property. The algorithm maintains the safety

property by the following invariant:
wait(g) = (a € L2[g]) A (proc (a.r) = proc(g)) = (a.r > g).

79

Informally, this states the waiting condition for the event g. That is, the execution
of g should wait until all the messages have been received that will belong to the
set Lsg].

Let us consider the above forbidden predicate. The L;s are

a € Li[g] < color(a)=red : (a.s> g),

a € Lolg] < 3f,b : color(b) = green : (f > b.s) A (br > g) A (a € Li[f]).
Consider the case when the invariant wait(g) is not maintained. That is,
a € Lolg] A (proc(a.r) = proc(g) A —(a.r > g).

Since the events a.r and g are in the same process, =(a.r > g) = (g > a.r). From

(g > a.r) and a € Lo[g], that is,
3b : (color (a) = red) A (color (b) = green) A (a.s > b.s) A (b.r > g),
we have Ja,b : (a.s > b.s) A (b.r > g) A (g > a.r). Therefore,
Ja,be M : (color (a) = red) A (color (b) = green) A (a.s > b.s) A (b.r > a.r).

Thus, B(a,b) is true and the run is illegal.

5.3 Discussion of the General Algorithm

Consider a predicate B with the corresponding graph Gg(V, E). Let the vertex set
be V = {z1,72, -+ ,zm} and the edge set be E = { (zi, T(j moam)+1) : 1 =1,-+-m }.
Without loss of generality we will assume z; is the § vertex. The conditions satisfied
by messages are {c1,c2, - ,¢n}. The forbidden predicate can be written as:

x1,.. .y €M :cr(z1) Ao A eplTm) ¢ (1.8 > 29.p) Ao A (Typoq > x1.7).
We will drop the quantifier 3 for ease of use. For example, consider the forbidden

predicate from the last section':

color (z1) = red A color (z2) = green : (z1.s > x2.s) A (2.1 > T1.7),

nstead of using z,y as free variables we are using 1, z» respectively.

80

the vertex set V = {z1,22} and E = {(z1,22), (z2,z1)}. The conditions satisfied
by the messages are ¢;(z) = (color (z) = red) and cz(x) = (color (z) = green).

The definition for the level set L; for the example predicate is:
a € Ly[g] < color (a) = red : (a.s > g).
For the general predicate we get:
a € Lh[g] & ci(a) : (aspg).
The definition of the level set Lo for the example predicate is:
a € La[g] & 3 f,b : (color (b) = green) A (f > l2(b) > g) A (a € Li[f]).

Similarly, for the general predicate we get:

a € Lylgl & 3f,b: ca(b) A (f > 12(b) 2 g) A (a € La[f]).
This can be generalized to other level sets and we get:

a€Lilgl e 3f,b: cib) A (f > L) &) A (a € Lii[f]).

Informally, L;[g] is a set of messages where a € L;[g] if there exists a set of messages
{ba,b3, ..., b;}, such that a.s > I1(b1) > la(b2) > -+ > [;(b;) > g and ¢1(a) A ca(b2) A
c3(b3) A -+ A ci(b;). A message a is moved up the level sets from Ly to Ly and
so forth. Eventually a € L,, and an event g has to wait for the message a before

executing, satisfying the waiting condition

wait(g) = (z € Ly[g]) A (proc(z.r) = proc(g)) = (z.r > g).

The conditions met by the algorithm are as follows:

Waiting Condition (WC) : When is an event delayed ?

(x € Li[g]) A (proc (z.r) = proc(g)) = (z.r > g).

81

Enabling condition for event g :
E1l (x € Lplg]) A (proc(a.r) = proc(g)) = (z.r > g).

sending message « :
S1 Message Tag = {Ly, Lo,..., Ly}
S2 foriin {m,m—1,---,2} do

S3 if (ci(z)) then

S4 if v; is of type (s, s) then
S5 L;=L;UL;_;.

S6 if (¢1(z)) then

S7 Ly=L1U {:E}

Receiving message = :
R1 L,=L;Ux.L;
R2 foriin {m,m—1,---,2} do

R3 if (ci(z)) then

R4 if v; is of type (s, s) then
R5 L;=L;Ux.L;_;.

R6 if v; is of type (s,r) then
R7 L;=L;Ux.L;_;.

R8 if v; is of type (r,7) then
R9 Li=L;UL;_1Ux.L;_;.
R10 if (¢1(z)) then

R11 Li=L1U {:E}

Figure 5.2: Pseudo-code for an algorithm implementing WC, EC, and UC.
Entry Condition (EC) : Which messages are of interest ?

ci(a) A (a.s> h) < a € Lih].

Update Condition (UC) : When does a message a become a member of level

set L;,1>17

(a € Lilg]) & 3b,f = ci(b) A (f > Li(b) & g) A (a € Lia[f]).

The algorithm satisfying the above conditions (WC, EC, and UC) is given

in Figure 5.2. Here we give an informal argument to show that the algorithm

82

satisfies the above three properties. Statement E1 implements WC. Statements S6-
S7 for the sending process and R10-R11 for the receiving process implement EC,
and statements S2-S5 for the sending process and R1-R9 for the receiving process

implement UC.

5.4 Proof of the Correctness of the Algorithm
Lemma 5.1 (Monotonic Property (MP)) UC and EC = MP where MP is

z € Li[g] =Yh : gv> h : € Lih].

Proof: Let a € L[g] and g > h.

a€ Lilg] = ci(a) A (a.s>g) Using EC
= ci(a) A (a.s > h) Usingg > h
= a€ L[h] Using EC

Let a € Li[g],s > 1 and g > h.
a€Lilgl = 3bf :ci(b) A(f>1lLi(d)>g) A(a€Li[f]) Using UC
= 3b,f : ¢i(b) A (f > 1;(b) > h) A (a € Li—1[f]) Usingg > h
= a € L;[h] Using UC
a
Lemma 5.2 Given a forbidden predicate B, data structures L;s satisfying UC and

EC, and an event g and a message a such that (a € Ly[g]) A (g > a.r). Then

da1,a2,... 0, : Blai,as,...,ay) is true.

Proof: We use the following properties of UC and EC:
Prop. 1: z € Li[g] = (3b,f : ¢i(b) A (f > 1;(b) > g) A (z € L;i—1[f])), and

Prop. 2: z € Li[g] = (z.s> g) A c1(z).

83

Let a; = a, then from the statement of this lemma a; € L,,[g]. On expanding L,,[g]

using Prop. 1, we have

a1 € Ln[g] = Fam, [: cmlam) A (f > lm(am) & g) A (a1 € Lina[f])-

On expanding Ly, 1[f] we get

ai € Lm[g] = dapm, f : Cm(am) A (f > lm(am) > g) A

(3 Gm—1,h : cm_l(am_l) A (h > lm_l(am_l) > f) A (a1 € Lm_g[h])) .
On simplification we get

a1 € Ly[g] = Fam,am-1,h : cplam) A cpm—i(am-1) A
(h > lm—1(am=1) > lpm(am) > g) A

(a1 € Lip—2lh]).
After repeatedly expanding L;s we eventually get

a1 € Lfgl = Fam,am—1,--- a2, h : cplam) A cpo1(am—1) A -+ Aca(az) A
(h > la(az) > -+ > lyp—1(@m=1) > lm(am) > g) A

(a1 € Ll[h]).
If (a1 € L1[h]) then from Prop. 2, we have (a;.s > h) A ci(a1). Therefore,

a1 € Lp[g] = Fam,am—1,--- a2 : cm(am) A cm—i(@m=1) A ==+ Aci(ar) A

(a1.s > la(az) > - > lyp—i(am=1) > In(am) > g)

Since it is given that (a; € Ly[g]) A (g > ay.r), therefore

3 am,m-1, a1 : cplam) A em_1(am—1) A -+ Aci(ar) A
(a1.s > la(az) > -+ > Ip—1(am—1) > Ip(am) > a1.1)
Therefore P(ay,as,...,an) is true. O

84

Lemma 5.3 Given a forbidden predicate B, data structures L;s satisfying UC and
EC, and messages ay,asg,...,a, such that B(ai,as,...,a,) is true. Then Jg :

wait(g) is false.

Proof: We use the following properties satisfied by EC, UC, and MP:

Prop. 1: ¢1(a) = a € Li|a.s].

Prop. 2: 3b,f : ¢i(b) A (f > 1;(b) > g) A (a € Li—1[f]) A —~(a.r > g)=a € L[g].
Prop. 3: a € Lyy[g]=Vh : (9> h) A =(h > ar) : a€ Lylhl

Since B(a1,as9,...,an), we have

ci(ar) A ea(az) A -+ A eplap), and

(a1.3 > lg(aQ) > oo D lm_l(am_l) > lm(am) > al.r).
Let t;(x) represent the top element of ;(x), that is,

x.s if lj(z) =25

ti(r) =q zor if j(z)=2.5> z7

Prop. 1 and ¢i(a1) = a1 € Li[a;.s].

Since ca(az) A (ar.s > la(az) > ta(az) > ay.r) A (a1 € Li]a;.s]), therefore from Prop. 2,
we have a; € La[t2(a2)].

Similarly, ca(a2) A (t2(a2) > l2(a2) > ta(az) > a1.r) A (a1 € La[ta(az)]), therefore
from Prop. 2, we have a; € Ls[ta(as)].

By repeated application of Prop. 2, we eventually get
a1 € Lip[tm(am)]-
Since (ty[am] > a1.r) and (a1.s > tp(am)) we get

proc (tm|am]) = proc(a1.r) VvV

dg : (tmlam] > g > a1.7) A (proc(g) = proc(ay.r)).

85

From a; € Ly[tm(an)] and Prop. 3, we have a; € Ly;[g] for all g such that

tm(am) > g and —(a.r > g). Therefore,

dg : (a1 € Lplg]) A (proc(ai.r) = proc(g)) A (g > a1.r).

Therefore wait(g) is false. O

Theorem 5.1 (Safety) Let the data structures L;s satisfy UC and EC. Then there
exists a set of messages {ai,as,...,an} such that B(ay,...,an) is true if and only

if 3¢ : wait(g) is false.

Proof: Follows from Lemma 5.2 and Lemma 5.3. d

Lemma 5.4 If UC and EC are true, then
1. z € Lijl[g] = = € Li_1[g]
2. z € Li[g]= (z.s> g) A ci1(z).
Proof: The first statement follows from MP and UC.

a€Ligl = 3f:(f>g) A (a€Li—1[f]) Using UC
= a€ Lj4|g] Using g > f and MP

The second statement follows from the first statement and EC.

a € Lilh|=a € Li_1[h]= --- = Li[h] = (z.s > h) A c1(z).

Theorem 5.2 (Liveness) Every event is eventually executed.

Proof: An event g is delayed only if a € L,[g] and proc (a.r) = proc (g) and a has
not been received. Since a € L;[g] (from Lemma 5.4), a.s > g. Therefore either a.r

has been received or the message is in transit. O

86

5.5 Discussion

In this chapter we presented a general optimal algorithm to implement a class of
message ordering specifications. The algorithm is optimal in the sense that it is
least restrictive, it delays an event if and only if it will result in safety violation. In
this section we present some ideas on implementing space efficient algorithms. In

particular:

e The level sets satisfy the monotonic condition. Thus, a message identifier once

added to a level set is never purged, even after that information is of no use.

e The general algorithm results in passing information along with the message
that is either not necessary or can easily be reduced. For example, in case of

causal ordering a n x n matrix (that is, n? message identifiers) is sufficient.

We will study the first issue in the following subsection, Garbage Collection, and

the next issue in the next subsection under the heading Induction Argument.

5.5.1 Garbage Collection

In the algorithm there is no way to purge an entry from any of the level sets. In
this section we discuss two methods to purge an entry from a level set.

In the algorithm an event ¢ is delayed until it receives all the messages in
the set L,,[g]. If a process knows that a message has been already received then the
level sets L;s need not keep track of the message in the causal future. Secondly, if
a message x € L;[g] it is redundant for a level set L;[g] where i < j to keep track of
that information, since the waiting condition of any event depends on the messages
in the level set L,,. Thus, taking these ideas into consideration we get the following

conditions to be met by the algorithm:

Waiting Condition (WC) : When is an event delayed ?

(z € Lp[g]) A (proc(z.r) = proc(g)) = (z.r > g).

87

Modified Entry Condition (MEC) : Which messages are of interest ?

ci(a) A (a.s > h) A =(a.r > h) < (a € L1]h]).

Modified Update Condition (MUC) : When does a message a become a mem-

ber of level set L;, ¢ > 17

b, f (b)) A(feli(b)>g) A (a€Li—i[f]) A ~(ar > g) < a€ Ljg].

We can prove similar results using WC, MEC, and MUC as was done for WC, EC,
and UC.
Lemma 5.5 If MUC and MEC are true, then

1. z € Lij[g] = = € Li_1[g]-
2. z € Li[g]= (z.s> g) A ci1(z).
3. a € Lilh|= —(a.r > h).

Proof Outline: Similar to proof of lemma 5.4. The third part follows from MUC
and MEC. O

Theorem 5.3 (Safety) Let the data structures L;s satisfy MUC and MEC. Then
there exists a set of messages {a1,as, ..., an} such that B(ai,...,ap) is true if and

only if 3g : wait(g) is false.

Proof Outline: To prove “if” part show that MUC, MEC, and 3¢ : wait(g) is
false, implies the two properties stated in the proof of lemma 5.2.
To prove “only if” part show that MUC, MEC and Ja;s : P(ay,az,...,an)

is true, implies the three properties stated in the proof of lemma 5.3. O

Theorem 5.4 (Liveness) Every event is eventually executed.

88

Proof Outline: Similar to earlier liveness proof. O

It is interesting to note that if x € L;[g] then z € L;_1[g] (from lemma 5.5),
therefore, it is sufficient to maintain x as an element of the largest indexed set.

Therefore, an efficient algorithm maintains the following properties:

Uniqueness Property : z € Li[g]= 2 & Lj[g], Vj <.

Purge Condition : z.r > g=z & L;[g], Vi.

To maintain the uniqueness property is trivial. We present an algorithm (in Fig-

ure 5.3) to maintain the purge condition. This is done by keeping vector clocks, and

assigning a number in increasing order to each message sent by a process.

5.5.2 Induction Argument

Many implementations for specifications, like causal ordering, FIFO and some marker
type algorithms implicitly use the induction arguments. That is, say message z must
be received after {y, 2z} and message y must be received after {z}, then the desired
objective is achieved even if we say message x should be received after {y} and
message y must be received after {z}. Thus, in the case of causal ordering, we get a
n X n matrix, where each element is just a message identifier of the previous message
that should have been received. This idea can be implemented using the following

two steps.

1. Defining an order: for any two messages x,y: z is less than y if
(x € LpJy.r]) A (proc (z.r) = proc (y.r)).

2. Keeping only the maximal elements in L;.

We illustrate the procedure in the following example.

Example 5.1 Consider FIFO in the following run:

89

Enabling condition for event g :
El (x € Lplg]) A (proc(a.r) = proc(g)) = (z.r > g).

sending message z :
S1 Message Tag = {Ly, Lo,..., Ly, V}
S2 foriin {m,m—1,---,2} do

S3 if (ci(z)) then

S4 if v; is of type (s, s) then

S5 Li=L;UL; {,L; = 0
S6 if (¢1(z)) then

S7 Vproc (z.s)] + +

S8 L, = Ly U{(z,V]proc (z.s)]}

Receiving message z :
R1 foriin {m,m—1,---,1} do

R2 if ((y,n) € L) A ((y,n) €Ujz.Lj) A (n < z.V[proc(z.s)]) then
R3 Li=L;—{(y,n)}

R4 if ((y,n) € z.L;) A ((y,n) € Uj Lj) A (n < Viproc(z.s)]) then
R5 z.Li =x.Li — {(y,n)}

R6 if ((y,n) € L) A ((y,n) € Ujs;z.L;) then

R7 Li=L;—{(y,n)}

R8 if ((y,n) € z.L;) A ((y,n) € Uj>; L;) then

R9 z.Li =x.Li — {(y,n)}

R10 foriin {m,m—1,---,1} do

R11 L,=L;Ux.L;

R12 foriin {m,m—1,---,2} do

R13 if (¢i(z)) then

R14 if v; is of type (s, s) then

R15 Li=L;VUx.L; 1, Li 1 =L;_1—x.L;_4
R16 if v; is of type (s,r) then

R17 Li=L;VUx.L; 1, Li 1 =L;_1—x.L;_4
R18 if v; is of type (r,7) then

R19 Li=L;,UL; Ux.L;,_y, Li_1 = 0

R20 if (¢1(z)) then

R21 Li=L;—{(z,n)}

R22 Viproc (z.s)] + +

Figure 5.3: Pseudo-code for an algorithm implementing WC, MEC, and MUC.

90

The level set L, has the following values:

Lo[xzr) = {} that is, message should be received after {}.
Loly.r] = {x} that is, message should be received after {z}.
Lo[z.r] = {z,y} that is, message should be received after {z,y}.

Since z € Lo[y.r] therefore x < y, and if we take only the maximal element in L,,

we get:
Lo[z.r] = {} that is, message should be received after {}.
Loly.r] = {x} that is, message should be received after {z}.
Lo[z.r] = {y} that is, message should be received after {y}.

5.6 Related Work

A fair amount of research has been done for efficient algorithms to implement differ-
ent message orderings. Birman and Joseph [5], Raynal, Schiper and Toueg [32], and
Schiper, Eggli and Sandoz [33], have presented algorithms for the causal ordering
of messages. These algorithms tag knowledge of processes about messages sent in
the system with the message. Variants of FIFO ordering have been studied un-
der F-channels [2]. The implementation of F-channels provides us with some basic
synchronization primitives for sending messages: two-way-flush send, forward-flush
send, backward-flush send, and ordinary send. Similar flush primitives can be de-
fined for causal ordering. These message orderings can be specified using forbidden
predicates. By constructing predicate graphs of these predicates it can be shown

that these orderings can be implemented without using any control messages.

91

Many asynchronous consistent-cut protocols [37] such as global snapshot al-
gorithms [11, 20, 27], check-pointing and rollback recovery [19, 25, 24], and dead-
lock detection [9] require special messages to find consistent-cuts in a computation.
These protocols require some form of inhibition of the special messages in order to

guarantee correctness.

5.7 Summary

In this chapter, we extended the concept of forbidden predicates by defining three
attributes for each message: color, sending process, and receiving process. All
existing message ordering specifications such as FIFO, flush channels, and causal
ordering as well as many new message orderings can be concisely specified using
forbidden predicates.

We presented a general algorithm to implement the message orderings that
can be specified using forbidden predicate and that are implementable without con-
trol messages. We further presented techniques to generate efficient protocols for a

given specification.

92

Chapter 6

Implementation

In the previous chapter we presented a general algorithm to implement an optimal
protocol for a class of message orderings. The protocol generated is optimal in the
sense that it is least restrictive. We considered two techniques — Garbage Collection
and Induction Argument — to make the protocol space efficient.

In this chapter we discuss automatic generation of efficient protocols for the
class of specifications studied in the previous chapter. The implementation consists
of three layers: a distributed simulator modeling a distributed program that commu-
nicates using messages, the protocol layer automatically generated given a forbidden

predicate, and the lowest layer facilitating the interprocess communication.

6.1 Interface to the Protocol

The protocol layer (being the middle layer) interfaces with the user program
and the interprocess communication layer. The interface to the user program uses

two functions. They are:

e void send (const Msg& m) — a function used by the user to send a message,

and

e Msg& deliver () — a function used by the user to receive a message.

93

class Msg {
public:
virtual int sendProc ()
virtual int recvProc ()

0;
0;

virtual int color () { throw };

virtual void* data () = 0;
virtual unsigned int length () = 0;

Figure 6.1: Definition of the class Msg.

These functions are written in C4++ and the definition of the class Msg is given
in Figure 6.1. The parameter passed to the send function is an instance of a class
derived from class Msg. Similarly, the return value of the function deliver is an
instance of a class derived from class Msg. The definition of the functions send ()
and deliver () is given in Figure 6.2.

The protocol interfaces with the communication layer through two functions.

They are:

e SEND (int port, const Data& d) — transfers the information d.data() of

length d.length() to the destination process given by the first argument, and

e Data RECV () —receives the information sent by another process using SEND ().

The function RECV () is a blocking receive function, we assume that the underlying
system provides a reliable message delivery guarantee.
Figure 6.3 shows the interaction of the protocol with the user program and

the communication layer.

6.2 Code Generator

We considered the following issues when writing the code generator.

94

Info local;
list<DataPacket> msgQueue;

void send (const Msg& m)

{

}

SEND (m, local); // send the message
updateOnSend (m, local); // update local info

const Msg& deliver ()

{

list<DataPacket>::iterator i = msgQueue.begin ();
for (; i !'= msgQueue.end (); i++)

{

Info& remote = (*i).info ();
Msg& msg = (*i).msg ();

if (wait (msg, remote, local) == false)

{

static MsgPacket m;

m = msg;
updateOnRecv (m, remote, local);

msgQueue.erase (i);
return (m);

}
}
msgQueue .push back (DataPacket (RECV ()));
return (deliver ());

Figure 6.2: Send and Deliver functions.

95

Process ¢

User Program

i |

send () deliver ()
| !
Send and Delivery Functions < > Protocol
SENI O RECL O
| !
- Communication Layer ——————————

Figure 6.3: Architecture of the implementation.

Induction : We exploit the induction argument (explained in Section 5.5.2) when
the conditions imposed on the first variable and the last variable are symmetric

with respect to each other.

Large N : The existing algorithms for causal ordering usually tag control infor-
mation as a n X n matrix with the messages. If the number of processes is
large then the amount of control information can be very large and may not
be all necessary. An alternative is to keep sparse matrices thus reducing the
size of the control information. The protocol generator when invoked with a

-n option generates code with sparse matrices.

Use of Counters : Consider the case of the marker message specification given
in Figure 6.4. When a process sends a red message z after sending 5 green
messages e.g., {a,b,c,d, e}, the process tags the red message with one of the

following;:

96

e Receive the following green messages: {a,b,c,d,e} before receiving this
red message.
e Receive 5 green of type [a] before receiving this red message, where all
the five messages fall in the equivalence class [a].
The use of counters, as in the latter case, can result in space efficient protocols.

We have not implemented this optimization in our protocol generator.

Dimensions of Level Sets : In many cases, for example FIFO, the complete local
information need not be tagged along with a message. In the case of FIFO,
the local information consists of IV integers, while only one integer is tagged
along with every message. Similarly, in the following predicate:

proc (z.s) = proc (y.s) : (z.s > y.8) A (yr> -+,

each process tags the level set L; with a message, but at the receiving end all
the messages are moved up to a higher level. Thus, each process tracks only

the messages sent by itself in the level set L.

6.3 Input

Input to the protocol generator is a forbidden predicate as discussed in the

previous chapter. Figure 6.4 shows an input file for the forbidden predicate:
dx,y € M : color (z) # color (y) : (z.s > y.s) A (y.r > z.r).

In an input specification, the process identifiers are given in the Process field, and
the color identifiers for the messages are given in the Colors field. The forbidden
predicate is specified by the two fields Predicate and Filter. The name in the
Specification field is used to generate the output files containing the protocols.

The files for the example in Figure 6.4 are:
e the header file is Example.h — represents the internal data structure, and

e the c-file is Example.cc — contains the protocol generated.

97

Specification: Example

Processes: a, b, ¢, d, e
Variables: X, ¥y
Colors: red, green
Filter:

color (x) != color (y)
Predicate:

(x.s < y.s) and
(y.r < x.1)

Figure 6.4: An example input file.

Predicate < PredicateClause [and PredicateClause |*
Filter <« [FilterClause [and FilterClause |*|
PredicateClause < (event < event)
FilterClause < ProcessFilter | ColorFilter
ProcessFilter <+ process (event) op process (event)

process (event) op Processes
event < Variables.s | Variables.r
ColorFilter <« color (Variables) op color (Variables)

color (Variables) op Colors

op +— == |!=
Variables < Identifier given in Variables field
Colors < Identifier given in Colors field
Processses < Identifier given in Processses field

Figure 6.5: Syntax for writing Filter and Predicate.

98

6.4 QOutput

The output for the specification given in Figure 6.4 are two files Example.h and

Example.cc. The header file Example.h is:

#define N 4
enum Col or {Red, Green};

class Info

{
int Level One[2][NI[N];
int Level Two[2][NI[N];
friend bool wait (const Msg& const Info& const |nfog&);
friend void updateOnRecv (const Msg& |nfo& |nfo&);
friend void updateOnSend (const Msg&, |nfog&);
friend void unionlnfo (Info& | ocal, const |Info& renote);
public:
Info ();
Info (const void *data, const int len);
const void *data () const;
i nt I ength () const;
s

cl ass RecvdMsgQueue ({
static list<int> ids[2][N];

friend class |nfo;
public:
static bool contains (const Elenent& e);
static void received (const Msg& m unsigned int id);
static void init ();
b
inline int max (int x, int y){ return (x >y) ? x : vy; }
bool wait (const Msg& const |Info& const Info&);
voi d updat eOnRecv (const Msg&, |nfo& |nfo&);

voi d updat eOnSend (const Msg&, |nfog&);
voi d unionlnfo (Info& |ocal, const Info& renote);

99

The c-file Example.cc is:

bool wait (const Msg& m const Info& renpte, const |Info& |ocal)

{

int k;
RecvdMsgQueue: :init ();
for (int i =0; i <N i++)

for (int color = 0; color < 2; color++)
int id = renote. Level Two[color][i][procld ()];
El ement e (i, procld (), id, color);
i f (RecvdMsgQueue::contains (e) == fal se)

return (true);

}
}
}
switch (mcolor ())
{
case Red :
for (k = 0; k < 2; k++)
if (k == 0) continue;
for (int i =0; i <N i++)
{
int id = remote. Level One[k][i][procld ()];
El ement e (msendProc (), procld (), id, k);
i f (RecvdMsgQueue::contains (e) == fal se)
return (true);
}
}
}
br eak;
case Green :
for (k = 0; k < 2; k++)
if (k == 1) continue;
for (int i =0; i <N i++)
int id = remote. Level One[k][i][procld ()];
El ement e (msendProc (), procld (), id, k);
i f (RecvdMsgQueue::contains (e) == fal se)
return (true);
}
}
}
br eak;
}

100

return (false);

}
voi d updat eOnSend (const Msg& m Info& | ocal)

{

}

RecvdMsgQueue: :init ();

//**

/1> Entry Condition(x)

//**

switch (mcolor ())

{
case Red :
| ocal . Level One[Red] [m sendProc ()][mrecvProc ()] ++;
br eak;
case Geen :
| ocal . Level One[Green] [m sendProc ()][mrecvProc ()] ++;
br eak;
}

voi d updat eOnRecv (const Msg& m Info& remote, Info& |ocal)

{

RecvdMsgQueue: :init ();
int k;

//**
I1* Entry Condition(x)
//**
int id=0;
switch (mcolor ())
{
case Red :
id = ++(renote. Level One[Red] [m sendProc()][mrecvProc ()]);
br eak;
case Geen :
id = ++(renote. Level One[G een][m sendProc()][mrecvProc ()]);
br eak;

RecvdMsgQueue: :received (m id);

unionlnfo (local, renote);

switch (mcolor ())

{

case Red :
for (k = 0; k < 2; k++)

if (k == 0) continue;
for (int i =0; i <N i++)
{
for (int j =0; j <N j++)

101

| ocal . Level Two[k] [i]1[j]

max (IocaI.LeveITV\o[E][l][J'],
renote. Level One[K][i][j]);
}
}
}
br eak;
case Green :
for (k =0, k <2; k+4)
if (k == 1) continue;
for (int i =0; i <N i++)
for (int j =0; j <N j++)
| ocal . Level Two[k] [i][j] =
max (local . Level Two[K][i][]j],
renote. Level One[K][i][j]);
}
}
}
br eak;

}
oo
voi d unionlnfo (Info& | ocal, const |Info& renote)

{
int k;
for (k = 0; k <2; k++)
for (int i =0; i <N i++)
for (int j =0; i <N i++)

| ocal . Level One[k] [i][j]

max (| ocal . LeveIOwe[E][l][J'].
remote. Level One[k][i][j]);
}
} }
for (k = 0; k < 2; k++)
for (int i =0; i <N i++)
for (int j =0, i <N, i++)
{
| ocal . Level Two[K] [i][j] =
max (local . Level Two[K][i][]j],
renot e. Level Two[K] [i][j]);
}

102

Acknowledgments

I would like to thank Mom-Ping Ng and Roger Mitchell for their help in implement-
ing the distributed simulator modeling a distributed program and the communica-

tion layer facilitating in the interprocess communication.

103

Chapter 7

Conclusion and Future Work

7.1 Summary and Discussion

In this dissertation, we presented a new characterization of message ordering speci-
fications. A message ordering specification is characterized as the set of acceptable
runs, that is, a subset of X where X is the set of all runs. In this broad setting,
where each message ordering is a subset of X, we first determine whether a given
specification can be implemented using an inhibition based protocol. We show that
a message ordering specification can be implemented if and only if it includes all
logically synchronous runs. Further, if it can be implemented then we determine the
type of protocol necessary and sufficient to implement it, where the protocols are
classified into three types, (1) general: those that can tag information and have
control messages, (2) tagged: those that can tag information, and (3) tagless:
those that do nothing. For example, we show that a message specification can be
implemented by tagging user messages with some additional information if and only
if it includes all causally ordered runs. It is an easy consequence of the results of
this work that no additional tagging of information can restrict the message ordering
further.

Formally, we define three subsets of X, namely, X,sync, Xeo, and Xgype. We

104

show that given a specification Y C X it is implementable (there exists a protocol
with control messages) if and only if Xy, C Y. Similarly, there is a protocol without
control messages if and only if X, C Y. The “do nothing” protocol is sufficient to
implement if and only if X4y C Y. Thus, given a specification (that is the set of
acceptable runs) the type of protocol necessary and sufficient can be easily checked
by testing the containment of the three limit sets X,yne, Xeo, and Xgype.

Since X is an infinite set, we also need a finite representation for its subsets
that specify message ordering. We present a method called forbidden predicates
that can be used to describe a large class of message ordering specifications. All
existing message ordering guarantees such as FIFO, flush channels, causal ordering,
and logically synchronous ordering as well as others can be concisely specified using
forbidden predicates. Given a message ordering specification using forbidden pred-
icates, we present an algorithm that determines the type of protocol necessary to
implement that specification.

Lastly, we presented a general algorithm for a class of message orderings that

can be implemented without control messages.

7.2 Future Work

In this chapter we present some generalizations to message ordering specifications.
In the usual model of a distributed run (H, >), a message x € Msg (H) is a pair
of local events, that is, {x.s,z.r}. These events are causally related, z.s > z.r
irrespective of the other events in the run. The order relation > among the events
in H is the transitive closure of the local ordering along a process and the relation
between the send event and the corresponding receive event. Thus, we can view a
message z as a global event with two local events z.s and z.r along with an order
imposed on them. In general, a global event can be any set of local events, for
example a broadcast = can be viewed as a global event, that is, a set of local events

{z.s,z.r9,2.71,...,2.7,} and the relation > where, for alli =0,1,...,n, z.s > z.r;

105

AN
N

Figure 7.1: A multicast message {s,74,7p,7¢}

rf

i

S

Figure 7.2: A collated message {s,r;,7}.

holds. In general, we can view a distributed run as an execution of global events,
where each global event is isomorphic to an element in S (a set of partial orders).
For example, for a system with only two kinds of messages: point-to-point and

broadcast, the set is
S={{svrh{svr:i=12,...,n}}.

Thus, in general a distributed system is a 4-tuple (Z, S, M, X), where Z is a set of
processor identifiers, S the types of global events, M is set of global events each
isomorphic to an element in S, and X is the set of all runs over Z and M.

In the rest of this section, we present three applications of global events,

illustrating some of the solved and open issues. First, we consider the case when the

106

system consists of point-to-point messages and multicast messages (see Figure 7.1).
The work done on point-to-point messages can be easily extended to provide us with
the answers. Second, we consider the case where the system consists (in addition
to point-to-point messages) of messages where a message has an intermediate event
that is nothing but a receive and send immediately following. We call such a message
a collated message. Figure 7.2 shows one such message. The work presented in this
dissertation does not address the basic issues in this framework. Third, we represent
the implementation of protocols with control messages using global events.

In the rest of the section, a run (H, —) is defined as an n-valued local state
and the happened-before relation on the set of events satisfing the following condi-

tions:
1. Two events occur in the same process.

2. The two events are part of the same global event, and one happens before the

other. For example, s > r; (or s — r;) and s > 7y (or s — ;) in Figure 7.2.

3. If there exists a third event, where the first event happened-before the third
event, and the third happened-before the second event then the first event

happened-before the second event.

Similarly, we extend X as the set of all runs over Z and M and the projection of H

is (H, >).

Multicast Messages

In the case of multicast messages, we get the same results as in the case of point-to-
point messages. We define three limit sets similar to the ones in Section 2.5. The
three subsets of X are:

Asynchronous ordering (ASYNC): This is the same as the ground set X. There-

fore, it includes all possible runs. There exists a tagless algorithm (i.e., enable all

pending events) that guarantees safety and liveness for this specification.

107

Causal Ordering (CO): Causal ordering can be stated as by.s > by.s = =(ba.7; > by.1§)

for all 4, j. There exists a tagged algorithm, CBCAST [5] that implements the spec-
ification.

Logically Synchronous (SYNC): A run is logically synchronous if its time diagram

can be drawn such that all message arrows are vertical. Formally, a run (H, >) is
logically synchronous, that is (H, >) € Xyy., if there exists a function T : Msg (H) —
{1,2,3,...}, such that for any two events h,g € H, if h > g and Msg (h) # Msg (g)
then T(Msg (h)) < T(Msg (g)). A protocol very similar to ABCAST [5] can imple-
ment the specification.

Using similar arguments as in Chapter 2, we get to the same theorem,

Theorem 7.1 Let Y be a specification. Then
1. A general protocol can guarantee safety and liveness iff X, C Y.
2. A tagged protocol can guarantee safety and liveness iff X,, C Y.

3. A tagless protocol can guarantee safety and liveness iff X,syn. C Y.

Thus, given a specification the type of protocol necessary and sufficient can be easily
checked by the containment of the three sets X,sync, Xeo and Xgype.

Given a message ordering specification using forbidden predicates, we present
an algorithm that determines the type of protocol necessary to implement that
specification. The algorithm converts the forbidden predicate into a predicate graph.
It is shown that the specification can be implemented if and only if there is a cycle
in this graph. Further, to determine the nature of the protocol required for the
specification, it is sufficient to examine vertices of the graph. We define the notion
of 3 vertices. If the cycle has two or more (3 vertices with respect to that cycle,
then control messages are necessary. If the cycle has one (3 vertex, then tagging
user messages is sufficient. If the cycle has no § vertex, then no action from the
protocol is required. Thus, given any message ordering specification using forbidden
predicates, the nature of the protocol necessary for implementing it can easily be

determined. The above results can be summarized using the following two theorems:

108

Theorem 7.2 (Sufficient Conditions) Let Xp be a specification with B as the
corresponding forbidden predicate. Let the predicate graph be Gp(V, E) with a
cycle G.(V¢, E°) CGp(V,E).

1. If there exists a cycle G.(V¢, E¢) C Gp(V, E) of order 0, then X5y, C Xp.
2. If there exists a cycle G.(V¢, E°) C Gg(V, E) of order 1, then X, C Xp.

3. If there exists a cycle G.(V*¢, E¢) C Gg(V, E) of order k (> 1), then Xy, C
Xg.

Theorem 7.3 (Necessary Conditions) Let Xp be a specification with B as the
corresponding forbidden predicate. Let the predicate graph be Gp(V, E) with a
cycle G.(V¢, E°) C Gp(V,E).
1. If there does not exist a cycle G.(V¢, E€) C Gg(V, E) of order 0, 1 or n, then
Xsyne € Xp.
2. If there does not exist a cycle G.(V¢ E¢) C Gp(V,E) of order 0 or 1, then
Xeo € Xp.
3. If there does not exist a cycle G.(V¢, E¢) C Gg(V, E) of order 0, then X,syn. €
XB.

The reason for the similar results between point-to-point and multicast messages
is the consequence of the longest chain in a global event being one. In the next
example, the results do not carry over to collated messages since the longest chain

in a global event is two.

Collated Messages

In the case of collated messages, we cannot extend the results presented in this
work. Although the question of the existence of a protocol can be answered, given

a specification Y the existence of a protocol that only tags information to user

109

Smaller Process z.b T.c

(si,Ti) € My ———» -~ (s%,r%) € M,

Bigger Process

r.a x.d

Figure 7.3: Global event {z.a,z.b,z.c,z.d} to implement X,y,,..

messages remains to be answered. Using arguments similar to the ones in the proofs
of Lemma, 2.2 and Theorem 2.2, we get
Theorem 7.4 Let Y be a specification. Then a general protocol can guarantee

safety and liveness iff Xy, C Y.

Protocols with control messages

We have seen that there are specifications for example X, that require control
messages. The protocols implementing these specifications use a sequence of protocol
messages to send one user message. Another way to view the sequence of protocol
message is as a global event. For example, to implement X, we had two messages:
the initiation message and the acknowledgment message as shown in Figure 3.4. The
protocol messages (s;,7;) and (s¢,r{) can be viewed as a part of a global event shown

in Figure 7.3. Then the conditions (SC, AC, and PR) satisfied by the global events

can be stated as

(proc(z.a) = proc (y.a)) A PR(z) A PR(y) : (z.a > y.a) A (y.a > z.d), and
(proc (z.a) = proc (y.b)) A PR(z) A PR(y) : (z.a > y.b) A (y.b > x.b),

where PR(x) = proc (z.a) > proc (z.b) A proc (z.c) < proc (z.d).

110

Thus, a protocol with control massages maps a specification B in a system (Z, S, M, X)

to a specification B’ in a system (Z,S", M', X").

111

1]
2]

3]

[6]

7]

Bibliography

Reference Manual for the Ada Programming Language, 1982.

M. Ahuja. An implementation of F-channels. IEEE Transactions on Parallel
and Distributed Systems, 4(6):658-667, June 1993.

R. Bagrodia. Process synchronization: Design and performance evalua-
tion of distributed algorithms. IEEE Transactions on Software Engineering,

15(9):1053-1065, September 1989.

R. Bagrodia. Synchronization of asynchronous processes in CSP. ACM Trans-

actions on Programming Language Systems, 11(4):585-597, October 1989.

K. P. Birman and T. A. Joseph. Reliable communication in the presence of

failures. ACM Transactions on Computer Systems, 5(1):47-76, January 1987.

K. P. Birman and R. V. Renesse, editors. Reliable Distributed Computing with
Isis Toolkit. IEEE Computer Society Press, 1994.

A. D. Birrel and B. J. Nelson. Implementing remote procedure calls. ACM
Transactions on Computer Systems, 2(1):39-59, Febuary. 1984.

L. Bougé and N. Francez. A compositional approach to superimposition. In
Proceedings of the Fifteenth Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 240-249. ACM, 1988.

G. Bracha and S. Toeug. Distributed deadlock detection. Distributed Comput-
ing, 2(3):127-138, January 1987.

112

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

G. Buckley and A. Silbershatz. An effective implementation of the generalized
input-output construct of CSP. ACM Transactions on Programming Language

Systems, 2(2):223-235, April 1980.

K. M. Chandy and L. Lamport. Distributed snapshots: Determining global
states of distributed systems. ACM Transactions on Computer Systems,

3(1):63-75, Febuary. 1985.

K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-
Wesley, 1988.

J. Chang and N. Maxemchuk. Reliable broadcast protocols. ACM Transactions
on Computer Systems, 2(3):251-273, August 1984.

B. Charron-Bost, F. Mattern, and G. Tel. Synchronous, asynchronous, and

causally ordered communication. Distributed Computing, 9(4):173-191, 1996.

M. Choy and S. Ambuj K. Efficient implementation of synchronous communi-
cation over asynchronous networks. Journal of Parallel and Distributed Com-

puting, 26:166-180, July 1995.

T. Connolly, P. Amer, and P. Conrad. An extension to TCP: Partial Order
Service. Technical Report RFC 1693, Network Working Group, November 1994.

F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic broadcast: From
simple message diffusion to Byzantine agreement. Technical Report RJ 4540

(48668), IBM, October 1984.

C. Critchlow. On inhibition and atomicity in asynchronous consistent-cut pro-
tocols. Technical Report TR 89-1069, Department of Computer Science, Cornell
University, December 1989.

O. P. Damani and V. K. Garg. How to recover efficiently and asynchronously
when optimism fails. In Proceedings of the 16th International Conference on

Distributed Computing Systems, pages 108-115. IEEE, 1996.

113

[20]

[21]

[22]

[26]

[27]

E. W. Dijkstra. The distributed snapshot of K.M Chandy and L. Lamport.
In M. Broy, editor, Control Flow and Data Flow: Concepts of Distributed Pro-

gramming. Springer-Verlag, 1985.

A. Gahlot, M. Ahuja, and T. Carlson. Global flush communication prim-
itive for interprocess communication. In Proceedings of the Thirteenth An-
nual ACM Symposium on Principles of Distributed Computing, pages 111-120.
ACM, 1994.

K. J. Goldman. Highly concurrent logically synchronous multicast. Techni-
cal Report MIT/LCS/TM-401, M.I.T. Laboratory for Computer Science, July
1989.

C. A. R. Hoare. Communicating sequential processes. Communications of the

ACM, 21(8):666-677, August 1978.

D. B. Johnson and W. Zwaenepeol. Recovery in distributed systems using
optimistic message logging and checkpointing. In Proceedings of the 8th An-
nual ACM Symposium on Principles of Distributed Computing, pages 171-181.
ACM, 1988.

R. Koo and S. Toueg. Checkpointing and rollback-recovery for distributed
systems. IEEE Transactions on Software Engineering, 13(1):23-31, January
1987.

L. Lamport. Time, clocks and the ordering of events in a distributed system.

Communications of the ACM, 21(7):95-114, July 1978.

F. Mattern. Efficient distributed snapshots and global virtual time algorithms
for non-FIFO systems. Draft Version, March 1990.

V. V. Murty and V. K. Garg. Limits of protocols based on inhibition to imple-

ment message ordering specifications. Submitted to Distributed Computing.

114

[29]

[34]

V. V. Murty and V. K. Garg. An algorithm to gaurantee synchronous ordering
of messages. In Proceedings of Second International Symposium on Autonomous

Decentralized Systems, pages 208-214. IEEE Computer Society Press, 1995.

V. V. Murty and V. K. Garg. Characterization of message ordering specifica-
tions and protocols. To appear in the Proceedings of the 17th International

Conference on Distributed Computing Systems (ICDCS‘97), May 1997.

V. V. Murty and V. K. Garg. Message ordering based on colorful forbidden
predicates. Technical Report TR-PDS-1997-005, Parallel and Distributed Sys-

tems Laboratory, The University of Texas at Austin, April 1997.

M. Raynal, A. Schiper, and S. Toueg. The causal ordering abstraction and a
simple way to implement it. Inf. Process. Lett., 39(6):343-350, July 1991.

A. Schiper, J. Eggli, and A. Sandoz. A new algorithm to implement causal
ordering. In Proceedings of the Third International Workshop on Distributed
Algorithms, pages 219-232. Springer-Verlay, 1989.

F. Schmuck. Efficient broadcast primitives in asynchronous distributed systems.
In K. P. Birman and R. V. Renesse, editors, Reliable Distributed Computing
with the Isis Toolkit, pages 263-283. IEEE Computer Society Press, 1993.

A. P. Sistla. Distributed algorithms for ensuring fair interprocess communica-
tion. In Proceedings of the Third Annual ACM Symposium on Principles of
Distributed Computing, pages 266-277. ACM, 1984.

T. Soneoka and T. Ibaraki. Logically instantaneous message passing in asyn-
chronous distributed systems. IEEE Transactions on Computers, 43(5):513—
527, May 1994.

K. Taylor. The role of inhibition in asynchronous consistent-cut protocols. In
J.-C. Bermond and M. Raynal, editors, Proc. of the 3rd International Workshop
on Distributed Algorithms, pages 280-291. Springer-Verlag, 1989.

115

[38] G. R. Wright and W. R. Stevens. TCP/IP Illustrated, Volume 2. Addison-
Wesley, 1995.

116

Vita

Venkataesh Murty was born on the 10th day of December 1969 in Hyderabad, India.
After completing high school at Hartmann High School, Bareilly, he entered the
Indian Institute of Technology, Madras. He started his undergraduate program
with the hopes of graduating with a degree in Electrical Engineering. After a year
disillusioned with electrical engineering, he dabbled with industrial and systems
engineering. Eventually, he graduated in four years with a B.Tech. in Mechanical
Engineering. His interests were now focused on control theory, neural networks, and
applications of neural networks in control systems. He entered University of Texas
at Austin in the Mechanical Engineering Department and graduated with an M.S.
in the Spring of 1993. His main focus there was the use of neural networks in the
area of system identification. In addition, while searching for a field of interest for
his further studies he explored control theory, mathematics, and computer science.
Finally, he entered the Electrical and Computer Engineering Department in the Fall
of 1993 and earned his Ph.D. in August 1997.

This dissertation was typeset with IATRX 2! by the author.

'ATEX 2¢ is an extension of BTEX. I4TEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin.

117

