
On-Line Chain Partitions of OrdersStefan FelsnerFreie Universit�at Berlin,Fachbereich Mathematik und Informatik,Takustr. 9, 14195 Berlin, GermanyE-mail: felsner@inf.fu-berlin.deAbstract. We analyze the on-line chain partitioning problem as a two-persongame. One person builds an order one point at a time. The other person respondsby making an irrevocable assignment of the new point to a chain of a chain parti-tion. Kierstead gave a strategy showing that width k orders can be on-line chainpartitioned into (5k � 1)=4 chains. We �rst prove that width two orders can bepartitioned on-line into 5 chains. Secondly, we introduce a variant of the game.We impose the restriction that the new point presented by the �rst player has tobe a maximum element in the present order. For this up-growing variant we provematching upper and lower bounds of �k+12 � on orders of width k.1 IntroductionAn on-line chain partitioning algorithm receives as input an on-line order, thismeans the elements of the order are taken one by one from some externallydetermined list. With a new element the algorithm learns the comparabilitystatus of previously presented elements to the new one. Based on this knowledgethe algorithm must make an irrevocable assignment of the new element to achain. The performance of an on-line chain partitioning algorithm is measuredby comparing the number of chains used with the number of chains used by anoptimal o�-line algorithm, i.e., with the width of the order. For order theoreticterminology we refer the reader to [4].An on-line chain partitioning can be viewed as a two-person game. We callthe players Alice and Bob. Alice represents an on-line algorithm an Bob repre-sents an adaptive adversary. In the on-line chain partitioning game for width korders Bob builds an on-line order of width at most k and Alice maintains achain partition of the order. The game is played in rounds. During round iBob introduces a new point x to the order and describes the comparabilitiesbetween x and the points from previous rounds. Alice responds by assigning xto a chain. The value of the game for width k orders is the largest integer val(k)so that Bob has a strategy that forces Alice to use val(k) chains. Note that by1



On-Line Chain Partitions of Orders 2game theoretic duality we may as well de�ne val(k) as the least integer so thatthere is an algorithm for Alice that never uses more chains.An argument of Szemer�edi shows val(k) � (k+12 ). On the other hand Kier-stead [1] has proven that val(k) � (5k � 1)=4. In the next section we deal withthe chain partitioning game for k = 2. It was known that 5 � val(2) � 6.We propose an algorithm that only needs 5 chains thus proving val(2) = 5. Insection three we introduce a variant of the game. We restrict the legal movesof Bob by the rule that the sequence in which elements are released is a linearextension of the order, i.e, a comparability of a new element x to an older yhas to be of the form y < x. On-line orders with this property will be calledup-growing on-line orders. In this variant we are able to determine the valueof the game exactly. Finally, in section four we discuss the on-line dimensionproblem for up-growing on-line orders.2 On-line chain partitions for width twoKierstead [1] proves lower and upper bounds of 5 and 6 for the value of the chainpartitioning game for orders of width two and asks for the precise value. In thissection we propose a strategy for Alice that never uses more then 5 chains.Consider the serial decomposition of an order P of width two. This decom-position may be viewed as the �nest partition of the ground set of P with theproperty that a pair of incomparable points always belongs to the same blockof the partition. A component of this decomposition that contains more thenone element will be called rigid. Note that a rigid component has two maximaland two minimal elements. These at most four elements are called the cornersof the component, maximal elements are top corners and minimal elements arebottom corners.Given a new point x we classify how the point operates on the componentsof the serial decomposition of P . We distinguish �ve possibilities.(1) Element x forms a new component by its own, i.e., x is comparable toall previously introduced points.(2) Element x together with two rigid components and possibly severalsingleton components form a new rigid component.(3) Element x together with some singleton components form a new rigidcomponent.(4) Element x together with one rigid component and possibly severalsingleton components form a new rigid component with x as a cornerelement.(5) Element x extends a rigid component and x is not a corner of thiscomponent.For the description of the invariant the algorithm maintains it is convenientto identify the chains of the partition with the colors 1; 2; 3; 4 and g. As invariantwe formulate three properties:



On-Line Chain Partitions of Orders 3(A) If y is a corner of a rigid component then y has an associated set vc(y)of two virtual colors from f1; 2; 3; 4g.(B) Every color class forms a chain, i.e., f z : color(z) =  or  2 vc(z)gis a chain for  = 1; :: ; 4.(C) The sets of virtual colors used for the top corners of a rigid componentR and for the bottom corners of the next rigid component above R aredi�erent. In particular if t is a top corner of R and b a bottom cornerof the next component above then jvc(t) \ vc(b)j = 1.We are ready to state the rules guiding the assignment of a color to a newelement x.Case 1. If element x is of type 1 then color(x) = g. This assignment is certainlylegal and the invariant remains true.Case 2. Element x is of type 2. Let ft1; t2g be the top corners of the lowerand fb1; b2g be the bottom corners of the higher of the two components meltby x. Note that x is comparable with exactly one of t1; t2 say with t1 and withexactly one of b1; b2 say with b1. In this case the unique color of vc(t1)\ vc(b1)is assigned to x. By invariance property B this assignment is legal and theinvariant remains trivially true.Case 3. Element x is of type 3, i.e., x generates a new rigid component.There may be a chain x1; :: ; xh of g-colored points incomparable to x. From theinvariance assumption it follows that up to a permutation of colors the virtualcolors of the bottom corners of the rigid component above x are f1; 2g; f3; 4gand the virtual colors of the top corners of the rigid component below x aref1; 3g; f2; 4g. De�ning vc(x) = f1; 4g and vc(x1) = vc(xh) = f2; 3g it is easilythat the invariant remains true. Finally, we assign to x a color from vc(x).Case 4. Suppose that x is a new corner of component R. By duality it su�cesto deal with the case of x being a bottom corner. Let b1; b2 be the old bottomcorners of R and let x and y be the bottom corners of the enlarged component.Assuming x < b1 we note that xjjb2. Since y is incomparable to x the relationy < b2 is necessary to avoid a 3 antichain. We de�ne vc(x) = vc(b1) andvc(y) = vc(b2) and assign to x a color from vc(x). This is easily seen to beconsistent with the invariance.For the last case we need a lemma. Loosely speaking the lemma tells us thatthe chain partition of a rigid component is `rigid' with respect to enlargements.Lemma 1 Let R be a rigid component and let C1; C2 be a chain partition of R.If x is a point extending R then either C1 + x or C2 + x is a chain.Proof. The incomparability graph of a rigid component is a connected bipartitegraph. As R and R + x are rigid we see that the unique bipartition of theincomparability graph of R + x is obtained from the unique bipartition of theincomparability graph of R by extending one of the sides with x. 4Case 5. Element x falls into the interior of a component R. Assume thatC1 + x;C2 is the chain partition of R + x. Let y be the �rst element below x



On-Line Chain Partitions of Orders 4in C1 that was ever a corner of a rigid component and let z be the �rst elementabove x in C1 that was ever a corner. These two elements exist since C1 isbounded by corners of R. We claim that there is a color  in vc(y)\ vc(z) andwe may legally assign c to x. We leave it to the reader to use the above lemmaand supply the proof of this claim.This concludes the description of the rules of the algorithm. As shown theserules are applicable if the invariance properties hold and they leave the validityof these properties untouched. This proves the theorem.Theorem 1 An on-line order of width two can be partitioned on-line into 5chains. 23 Chain partitions of up-growing orders3.1 A strategy for BobAs already noted there is a lower bound of �k+12 � for the value of the unrestrictedon-line chain partitioning game on orders of width k. We restate the originalresult of Szemer�edi.Theorem 2 For every positive integer k the value of the on-line chain parti-tioning game on the class of on-line orders of width at most k is at least �k+12 �.This remains true if the on-line order is speci�ed by an on-line 2-realizer.The on-line order constructed in the proof of this theorem as given in [2] isnot up-growing. Next we proof that the same bound holds true for up-growingon-line orders.Theorem 3 For every positive integer k the value of the on-line chain parti-tioning game on the class of up-growing on-line orders of width at most k is atleast �k+12 �.Proof. As in the previous section we identify chains and colors. The chaincorresponding to color  is denoted by C and top() is the maximum elementof this chain. If x is a maximal element of an order partitioned into chains(colors) then private(x) is the set of colors  with top() � x and top() 6� yfor all maximal elements y 6= x.Claim . For every positive integer k there is a strategy S(k) for Bob so thatafter a �nite number nk of rounds: The order P given so far is of width k and hasexactly k maximal elements. Moreover, the maximal elements can be numberedx1; : : : ; xk so that for each i = 1; :: ; k the size of private(xi) is at least i.As the sets private(xi) are pairwise disjoint the theorem is an immediateconsequence of this claim. We show the existence of strategy S(k+1) by induc-tion. Strategy S(1) is trivial. Bob exhibits as single point and any assignmentof a color to this point leads to the desired situation.



On-Line Chain Partitions of Orders 5Strategy S(k+ 1) is a threefold iteration of strategy S(k). We describe andanalyze S(k + 1) as a sequence of phases.Phase 1. Bob runs strategy S(k). This phase ends with an order Q1 withmaximum elements x1; : : : ; xk and jprivate(xi)j � i for i = 1; :: ; k.Phase 2. Bob again runs strategy S(k). This time every new element is madegreater than each of x1; : : : ; xk�1 and their predecessors in Q1 but incomparableto all other points of Q1. In particular, every new element is incomparable withall elements top() for  2 private(xk). The phase ends with an order Q2 withk + 1 maximal elements y1; : : : ; yk; xk. Note that we have at least i colors inprivate(yi) for i = 1; :: ; k and additional k colors in private(xk). At this pointBob has already forced the use of at least �k+22 �� 1 colors.Phase 3. Bob adds a new element z so that z is greater than all elements ofQ2. For the color  assigned to z it holds  62 private(xk) or  62 private(yk).We assume that  62 private(xk), otherwise interchange the role of xk and yk inthe remainder of the argument. The set private(z) now contains the color of zand all of private(xk), these k+1 colors will be the �nal private set of z = zk+1.Phase 4. In this �nal phase Bob runs strategy S(k) with all new elementsgreater than y1; : : : ; yk and their predecessors. The phase ends with maximalelements z1; : : : ; zk; zk+1 = z so that private(zi) � i for i = 1; :: ; k + 1.This completes the proof of the claim and hence of the theorem. 2It would be interesting to know the value of the game if we simultaneouslyimpose the restrictions from Theorem 2 and Theorem 3. That is, if Bob has tobuild an up-growing order by means of an on-line 2-realizer.3.2 A strategy for AliceIn this section we develop a strategy for Alice showing that every up-growing on-line order of width k can be partitioned on-line into �k+12 � chains. It was shownby Kierstead [2] that the greedy strategy (First-Fit) may need an unboundednumber of chains to partition an up-growing on-line order of width 2 into chains.Hence, we will have to develop a somewhat more sophisticated algorithm. Againthe classes of the partition will be identi�ed with colors. We assume that a set� of �k+12 � colors is partitioned into k classes �1; : : : ;�k so that �i has exactlyi elements for i = 1; :: ; k.Recall a classical theorem of Dilworth. The set of maximum antichains of anorder P forms a lattice. The order relation of this lattice is given by A � B formaximum antichains A;B of P i� for all a 2 A there is a b 2 B with a � b inP . We will use the notation HMA(P ) to denote the highest maximum antichainof P , i.e., HMA(P ) is the unique maximal element of the lattice of maximumantichains of P .During the game Alice maintains an auxiliary structure S depending on Pand the coloring of P . When Box expands P to P+ by adding a new maximalpoint x then Alice constructs the new structure S+ for P+. If S+ is constructed



On-Line Chain Partitions of Orders 6a legal color for x will be read of from this structure. The invariant gives theproperties of S.Invariant. If width(P ) = l structure S = S(P ) is an l-tuple (Sl; Sl�1; :: ; S1)where each Si a triple (Ai; ai; �i) so that(1) Al = HMA(P ) and if i < l then Ai = HMA(Ti) where Ti is the set ofelements y with y � a for some a 2 Ai+1 � ai+1.(2) ai is an element of Ai for i = 1; :: ; l.(3) �i :Ai ! �i is a bijection such that top(�i(a)) � a for all a 2 Ai andi = 1; :: ; l.Let Tl = P then Al = HMA(Tl). With this convention the induction of thelemma below shows that for i = 1; :: ; l the size of Ai is indeed i as required byproperty (3).Lemma 2 If Ai = HMA(Ti) is an i-antichain and ai 2 Ai then width(Ti�1) =i� 1, hence, Ai�1 = HMA(Ti�1) is an (i� 1)-antichain.Proof. Removing ai from Ai leaves an (i � 1)-antichain in Ti�1, therefore,width(Ti�1) � i � 1. For the converse assume that there is an i-antichainA in Ti�1. Since Ti�1 � Ti antichain A is an i-antichain in Ti. Obviously,A � HMA(Ti) but ai 62 A, hence, A > HMA(Ti) a contradiction. 2Let x be a new element, recall that x is a maximal element and denote thenew order P + x by P+. The main task of the algorithm is the update of theauxiliary structure, i.e, the de�nition of the new set S+ of triples (A+i ; a+i ; �+i )satisfying invariance conditions (1), (2) and (3). The color for element x is thenchosen to be �+i (x) where i is the unique index, so that, in S+ the i-th triplecontains x as special element, i.e., S+i = (A+i ; x; �+i ).Below we give an algorithm for the construction of S+. The sequence S+ =(S+l ; S+l�1; :: ; S+1 ) is constructed term by term. Therefore, when it comes to thede�nition of S+i the set T+i and, hence, also A+i = HMA(T+i ) is already known.Let j be the size of a maximum antichain containing x. For all i > j weleave Si unchanged, i.e., S+i = Si, this corresponds to Case A in the algorithm.The highest maximum j-antichain A+j in T+j = Tj + x contains x and is higherthen Aj . Continuing there may be some indices i � j with fx; aig � A+i andA+i is higher then Ai, this is Case B, we let a+i = ai and de�ne �+i by pushing�i up along a matching between Ai and A+i . After iterating in Case B there willbe a unique index ic with the situation of Case C. This is x 2 A+ic but aic 62 A+ic ,we let a+ic = x and de�ne �+ic as in Case B. It can be shown that in Case CA+ic = Aic�1 + x. Hence for ic � 1 and all remaining indices i we again leave Siunchanged.



On-Line Chain Partitions of Orders 7Step 1if width(P+) = l + 1 thenlet �+l+1 be an arbitrary bijection �+l+1:Al + x! �l+1,S+l+1 = (Al + x; x; �+l+1)T+l = f y 2 P : there is an a 2 Al with y � agelseT+l = P+Step 2for i = l downto 1 doswitch to caseCase A T+i = Ti + x and x 62 HMA(Ti + x)then S+i = SiCase B HMA(T+i ) = HMA(Ti + x) andx 2 HMA(T+i ) and ai 2 HMA(T+i )then S+i = (HMA(T+i ); ai; �+i )Case C HMA(T+i ) = HMA(Ti + x) andx 2 HMA(T+i ) and ai 62 HMA(T+i )then S+i = (HMA(T+i ); x; �+i )Case D T+i � Tithen S+i = SiT+i�1 = f y 2 T+i : there is an a 2 A+i � a+i with y � agendforIt remains to specify how to choose the bijection �+i Cases B and C. LetQi denote the order induced by A+i [ Ai. Assume that for all i = 1; :: ; l thefollowing two claims hold.Claim 1. The width of Qi is i.Claim 2. A+i � Ai in the lattice of maximum antichains of Qi.These two claims will be proved later. Claim 1 implies that a minimumchain partition of Qi de�nes a bijection between A+i and Ai. Let  i : A+i ! Aibe such a bijection and de�ne �+i =  i ��i. Clearly �+i :A+i ! �i is a bijection.Claim 3. top(�+i (a)) � a for all a 2 A+i .Proof. Rephrasing Claim 2 we obtain  i(a) � a for all a 2 A+i . By inductiontop(�i(a0)) � a0 for all a0 2 Ai. The claim follows from a combination of thetwo inequalities. 4Hence, property (3) from the invariant holds for S+ and the assignment ofcolor �+i (x) to x is a legal move.



On-Line Chain Partitions of Orders 8Lemma 3 Let A and B be maximal antichains of an order T and let A � Bin the lattice of antichains. If x is a new maximal element and B + x is anantichain in T + x then A+ x is an antichain in T + x and A+ x � B + x.Proof. Suppose x is comparable with an a 2 A since x is maximal a < x. Bythe maximality of B there is a b 2 B comparable with a. From A � B it followsthat a � b, hence, x > b a contradiction. 2We now come to an analysis of the algorithm for the construction of S+.With induction from l to 1 we are going to show Claims 1 and 2. Note thatif x 2 T+i then HMA(T+i ) = HMA(Ti + x) immediately implies HMA(T+i ) �HMA(Ti), i.e, Claim 2. Claim 1 follows if we additionally have width(Ti+x) = i.Hence, as long as x 2 T+i we assume for the induction that width(Ti + x) = iand HMA(T+i ) = HMA(Ti+x) and show that the same holds for i�1. Actuallywe prove some more details that will be necessary for the proof of invarianceproperties (1) and (2).Fact A. If S+i is determined by Case A then Ai = HMA(T+i ) and T+i�1 =Ti�1 + x.Proof. From x 62 HMA(Ti + x) we obtain with Lemma 3 that there is nomaximum antichain of Ti +x containing x. Therefore, the lattices of maximumantichains of Ti and Ti + x coincide. This proves HMA(T+i ) = HMA(Ti) = Ai.Since x is a maximal element we obtain from x 62 HMA(Ti) that x is greaterthan at least two elements of HMA(Ti). This shows x 2 T+i�1 and hence T+i�1 =Ti�1 + x. 4Fact B. If S+i is determined by Case B then x 2 HMA(T+i�1) = HMA(Ti�1+x).Proof. We �st note that width(Ti�1+x) = i�1: The existence of an i-antichainA in Ti�1+ x would contradict the assumption ai 2 HMA(T+i ) = HMA(Ti +x).By the inductive assumption A+i � Ai. Since a+i = ai we obtain T+i�1 �Ti�1 + x. Observe that T+i�1 and Ti�1+ x are upward closed sets of width i� 1and both contain the (i � 1)-antichain A � ai hence their respective highest(i � 1)-antichains coincide. Since x 2 A � ai the element x is contained in thehighest (i� 1)-antichain of T+i�1 by Lemma 3. 4Fact C. If S+i is determined by Case C then HMA(T+i ) = Ai�1+x, consequentlyAi�1 � T+i�1 � Ti�1.Proof. Let A = HMA(T+i ) = HMA(Ti + x) then A � x is an (i� 1)-antichainin Ti. The assumption A� x 6= Ai�1 is contradictory by Lemma 3. 4Fact D. If S+i is determined by Case D then Ai = HMA(Ti) and T+i�1 = Ti�1.Proof. Obvious. 4Lemma 4 Let S satisfy the invariance properties for P and let P+ = P + xwith x maximal in P+. The algorithm de�nes a structure S+ satisfying theinvariance properties.



On-Line Chain Partitions of Orders 9Proof. Note that for i = 1; :: ; l the set T+i matches the condition of at mostone of cases A{D It remains to show that there is always a matching condition.If width(P+) = l + 1 then Al � T+l � P = Tl, hence, after Step 1 wecontinue with Case D. If width(P+) = l then T+l = Tl + x and after Step 1 wecontinue with one of the Cases A,B or C. Suppose that S+j for j � i have beende�ned. If S+i was de�ned in Case A then T+i�1 = Ti�1 + x by Fact A and wecontinue with one of the Cases A,B or C. If S+i was de�ned in Case B then byFact B x 2 HMA(T+i�1) = HMA(Ti�1 + x) and we continue with Case B or C.If S+i was de�ned in Case C then by Fact C Ai�1 � T+i�1 � Ti�1 this is thecondition for continuation with Case D. Finally, if S+i was de�ned in Case Dthen as consequence of Fact D all S+j with j < i will be de�ned in Case D.With Fact A and Fact D we have shown that in all cases A+i = HMA(T+i )and a+i 2 A+i , i.e., invariance properties (1) and (2) hold. 2We summarize the result.Theorem 4 An up-growing on-line order of width at most k can be partitionedon-line into �k+12 � chains.4 The on-line dimension of up-growing ordersKierstead, McNulty and Trotter [3] investigate the on-line dimension of orders.In the corresponding game Bob builds an on-line order of given width k whileAlice maintains a realizer of the order. The minimum number of linear exten-sions in an on-line realizer of an order P is called the on-line dimension of P .Since the dimension of an order never exceeds its width it is natural to comparethe on-line dimension of an order to the width of the order. The main negativeresult of [3] is.Theorem 5 For every positive integer n there are on-line orders of width threewhose on-line dimension exeeds n.If the on-line order is up-growing we obtain a di�erent result as an easycorollary of Theorem 4.Theorem 6 The on-line dimension of an up-growing on-line order of width kis at most �k+12 �.Proof. Construct an on-line chain partition with at most �k+12 � chains. Witheach chain c associate a linear extension Lc according to two rules. (1) If thenew element belongs to c then put it on top of Lc. (2) If the new element x isnot in c then let x go as deep in Lc as possible, i.e., x is positioned immediatelyabove the highest y in Lc with y < x. For every pair x; y of incomparable



On-Line Chain Partitions of Orders 10elements with x 2 c and y 62 c we have x above y in Lc. Therefore, the familyof linear extensions Lc forms an on-line realizer. 2For the above proof to work it is not really necessary that c is a chain.Consider the following chain covering game in which the rules governing themoves of Alice are relaxed compared to the chain partitioning game of theprevious section: It is allowed to assign a set C(x) of colors to the new elementx, i.e., assign x to several chains. Moreover, colors may be removed from C(x)in subsequent moves subject to two conditions. C(x) 6= ; for all elements x andfor every color  the set fx :  2 C(x)g is a chain. Call a game where Aliceobeys these rules an adaptive chain covering game.Theorem 7 For up-growing on-line orders the value of the adaptive chain cov-ering game and the on-line dimension equal each other.Proof. The idea for converting an on-line chain covering into an on-line realizeris exactly as in Theorem 6.For the converse let fL1; :: ; Ltg be an on-line realizer. We use the numbers1; :: ; t as colors and assign to an element x the set C(x) = fi : all elements abovex in Li are greater then x in the on-line order g. It is clear that the set C(x)can only shrink during the game. It remains to show C(x) 6= ;. This followsfrom the fact that the algorithm constructing the on-line realizer has to be ableto handle an element z with y < z exactly if x 6� y. Such an element y can gobelow x in Li only if i 2 C(x). 2It would be very interesting to have good bounds for this on-line chaincovering game. The author has not been able to make progress towards thisgoal. However, there are some indications that the on-line dimension for up-growing orders is substantially smaller than their on-line width, i.e., the numberof chains in an on-line chain partition. This would complement the situation forgeneral on-line orders and somehow tell us that having a linear extension helpsmore for dimension then for chain partitioning.References[1] H.A. Kierstead. An e�ective version of dilworth theorem. Transact. Amer.Math. Soc., 268(1):63{77, 1981.[2] H.A. Kierstead. Recursive ordered sets. Contemp Math., 57:75{102, 1986.[3] H.A. Kierstead, G.F. McNulty, and W.T. Trotter. A theory of recursivedimension for ordered sets. Order, 1:67{82, 1984.[4] W.T. Trotter. Combinatorics and Partially Ordered Sets: Dimension The-ory. Johns Hopkins Press, 1992.


