
Detecting Temporal Logic Predicates in Distributed Programs Using
Computation Slicing ∗

Alper Sen and Vijay K. Garg
Department of Electrical and Computer Engineering

The University of Texas at Austin, Austin, TX, 78712, USA
{sen,garg}@ece.utexas.edu

Abstract

Detecting whether a finite execution trace (or a computation) of a distributed program satisfies a given predicate, called
predicate detection, is a fundamental problem in distributed systems. It finds applications in many domains such as testing,
debugging, and monitoring of distributed programs. However predicate detection suffers from the state explosion problem –
the number of possible global states of the program increases exponentially with the number of processes.

To solve this problem, we generalize an effective abstraction technique called computation slicing. We present polynomial-
time algorithms to compute slices with respect to temporal logic predicates from a “regular” subset of CTL, that contains
temporal operators EF, EG, and AG. Furthermore, we show that these slices contain precisely those global states of the
original computation that satisfy the predicate.

Using temporal predicate slices, we give an efficient (polynomial in the number of processes) predicate detection algorithm
for a subset of CTL that we call regular CTL. Regular CTL contains nested temporal predicates for which, to the best of
our knowledge, there did not previously exist efficient predicate detection algorithms. Then we show that we can enlarge
the subset of CTL and still obtain effective results. Our algorithm has been implemented as part of a tool for analysis of
distributed programs. We illustrate the effectiveness of our techniques on several protocols achieving speedups of over three
orders of magnitude in one example, compared to partial order state-space search of SPIN. Furthermore, we were able to
complete the verification for 250 processes for a partial order trace.

Keywords: specification verification of distributed systems, runtime verification, predicate detection, testing, debugging,
formal methods, temporal logic

∗supported in part by the NSF Grants ECS-9907213, CCR-9988225, Texas Education Board Grant ARP-320, an Engineering Foundation Fellowship,
and an IBM grant

1. Introduction

A fundamental problem in distributed systems is that of
predicate detection – detecting whether a finite execution
trace of a distributed program satisfies a given predicate.
There are applications of predicate detection in many do-
mains such as testing, debugging, and monitoring of dis-
tributed programs. For example, when debugging a dis-
tributed mutual exclusion algorithm, it is useful to moni-
tor the system to detect concurrent accesses to the shared
resources.

We can model a finite trace in two ways. The first model
imposes a partial order between events, for example Lam-
port’s happened-before relation [19]. The second model
imposes a total order (interleaving) of events. We use the
former approach in this paper, which is a more faithful rep-
resentation of concurrency [19].

Consider an execution of a distributed program. The par-
tial order model of the resulting execution trace is shown in
Figure 1(a). In the trace, there are two processes P1 and
P2 with integer variables x and y, respectively. The events
are represented by solid circles. Process P2 sends a mes-
sage to process P1 by executing event f1 and process P1

receives that message by executing event e1. Each event
is labeled with the value of the respective variable imme-
diately after the event is executed. For example, the value
of x immediately after executing e1 is 2. The first event on
each process initializes the state of the process. Figure 1(b)
contains the set of all reachable global states of the compu-
tation reachable from the initial state {e0, f0}. In the figure,
we represent a global state as a tuple where each element
is the last event that occurred on a process. Observe that
{e1, f0} is not a reachable global state because it depicts
a situation where a message has been received from P2 by
P1, that is e1, but P2 has not yet sent the message. By us-
ing a partial order representation, we are able to capture all
possible interleavings of events, namely ten in total, rather
than a single interleaving. One such interleaving sequence
is {e0, f0}, {e0, f1}, {e1, f1}, {e2, f1}, {e3, f1}, {e3, f2},
{e3, f3} as shown in Figure 1(b) with thick lines. Therefore
we can obtain better coverage in terms of testing and de-
bugging by capturing all interleavings. This coverage may
translate into finding bugs that are not found using a single
interleaving.

The main problem in predicate detection in the partial
order model is the state explosion problem—the set of pos-
sible global states of a distributed program with n individ-
ual processes can be of size exponential in n. A variety of
strategies for ameliorating the state explosion problem, in-
cluding symbolic representation of states and partial order
reduction have been explored [21, 11, 33, 24, 5, 31, 32].

In this paper, we present a provably efficient predicate
detection algorithm using a technique called computation

slicing. Computation slicing was introduced in [9, 22] as
an abstraction technique for analyzing distributed computa-
tions (finite execution traces). A computation slice, defined
with respect to a global predicate, is the computation with
the least number of global states that contains all global
states of the original computation for which the predicate
evaluates to true. This is in contrast to traditional slicing
techniques which either work at the program level or do
slicing with respect to variables. Computation slicing can
be used to throw away the extraneous global states of the
original computation in an efficient manner, and focus on
only those that are currently relevant for our purpose.

With the results of this paper, we can efficiently use com-
putation slicing for predicate detection in the subset of CTL
[2] with the following three properties. First, temporal oper-
ators are EF, EG, and AG. Second, atomic propositions
are regular predicates, which we will define later. Third,
negation operator has been pushed onto atomic proposi-
tions. We call this logic Regular CTL plus (RCTL+), where
plus denotes that the disjunction and negation operators are
included in the logic. We also consider a disjunction and
negation free subset of RCTL+ and denote this by Regular
CTL (RCTL). In RCTL+, we use the class of predicates,
called regular predicates, that was introduced in [9]. The
slice with respect to a regular predicate contains precisely
those global states for which the predicate evaluates to true.
Regular predicates widely occur in practice during verifi-
cation. Some examples of regular predicates are conjunc-
tion of local predicates [8, 16] such as “all processes are in
red state”, certain channel predicates [8] such as “at most
k messages are in transit from process Pi to Pj”, and some
relational predicates [8]. We show that temporal predicates
EF(p), EG(p), and AG(p) are regular when p is regular
and present polynomial-time algorithms to compute slices
with respect to these temporal predicates.

We show that the complexity of predicate detection for
a predicate p in RCTL is O(|p| · n2|E|), where |p| is the
number of boolean and temporal operators in p. To the best
of our knowledge, there did not previously exist efficient al-
gorithms (polynomial in the number of processes) to detect
predicates that contain nested temporal logic predicates. An
example of a nested predicate is AG(EF(reset)), which
states that reset is possible from every state. Furthermore,
we validate with experiments that even for RCTL+ predi-
cates our computation slicing based technique is very effec-
tive.

We also implemented our predicate detection algorithms
for RCTL and RCTL+, which use computation slicing, in a
prototype tool called Partial Order Trace Analyzer (POTA)
[29]. We performed experiments using POTA on several
protocols such as the Asynchronous Transfer Mode Ring
(ATMR) [17]. ATMR protocol is an ISO standard based
on a high-speed shared medium connecting a number of ac-

2

2e ,

1e ,

2f 1f

2e ,

3f2e , 3e , 2f

2f

1e ,

1f

3f

3e , 1f1e , 3f 3e , 1f

0e 0f

0e

0e

0e 3f

2f

1f

3e

3f

1e 2e

1f

0e

0f

P 1

P 2
2f

3f

1e 2e

1f

0e

0f 2f

0e 0f

1e 1f 3f2e 0e 0f

3f3e

3f2e

0e1e

2f

2e

0f

3f

1f

������
���
������
���

������
���
������
���

������
���
������
���

������
���
������
���

	�		�	
	�	

�

�

�

������
���
������
���

��
�
������
���

������
���
������
���

������
���
������
���

������
���
������
���

������
���
������
���

������
���
������
���

������
���
������
���

���
�

���
�

��

!!"
"

##$
$

%�%%�%&�&&�&''(
(

))*
*

,3e{

{ {

{

{

{

{

{ }

}

}

}}

}

}

}

{ }

(b)

{ },

{ },

{ },

{ },

5

6

(c)

4

y 0 2

2

0

x 0

(a)

6

4

0 2

2

0

0

Initial state

Final state

Initial state: Final state:{ , }

Initial state: Final state:{ , } { , } Initial state: Final state:{ , }

{ , }

{ , }

(d)

{

{ }

}

},

,

, ,

{: meta−event

x = 2 y = 0

W

D

V

C

x = 4

y = 6

Figure 1. (a) A computation (b) its set of all reachable global states (c) its slice with respect to (2 ≤ x ≤ 4) ∧ (y 6= 2) (d) its
slice with respect to EF((2 ≤ x ≤ 4) ∧ (y 6= 2))

cess nodes by channels in a ring topology. Peng et al. [25]
performed experiments with this scalable protocol for dif-
ferent number of nodes in the ring. However, they could
not complete full state space verification even for a con-
figuration of ATMR with 3 nodes using SPIN [15] model
checking tool. Instead, they used bit-state hashing approx-
imation technique for verification upto 6 nodes. In our ex-
periments, we could complete full state space verification
of execution traces for a configuration with 250 nodes. We
used the translator module in POTA that translates traces
into Promela (SPIN input language) to enable comparison
with SPIN on execution traces. Although, SPIN is designed
for checking correctness of programs and not traces, to the
best of our knowledge it is the best distributed program veri-
fication tool with effective reduction techniques that we can
use for our models. Even with an execution trace input,
SPIN failed to complete verification for configurations with
more than 3 nodes in the case of ATMR. In all cases, our
technique completes fast and uses state space efficiently.

In summary, this paper makes the following contribu-
tions:

• We advocate the use of computation slicing approach
for temporal logic predicate detection. To this end,

we extend computation slicing to include algorithms
for such predicates. This approach allows us to detect
nested temporal logic predicates efficiently.

• We identify a regular subset of temporal logic CTL
that contains predicates for which the slices contain
precisely those global states that satisfy the predi-
cate. In particular, we prove that temporal predi-
cates EF(p), EG(p), and AG(p) are regular, whereas
AF(p), EX(p), AX(p), EU(p, q), and AU(p, q), in
general, are not regular when p and q are regular.

• We present polynomial-time algorithms to compute
slices for EF(p), EG(p), and AG(p), when p is reg-
ular.

• As an application, we show how to use computation
slicing in predicate detection for the regular subset of
temporal logic CTL, which includes nested temporal
logic predicates, and present polynomial-time algo-
rithms to accomplish this.

2. Example

To illustrate predicate detection using computation slic-
ing, consider the computation in Figure 1(a). Let p = (2 ≤

3

x ≤ 4) ∧ (y 6= 2), and suppose we want to detect EF(p),
that is, whether there exists a global state that satisfies p.
Without computation slicing, we are forced to examine all
global states of the computation, thirteen in total, to decide
whether the computation satisfies the predicate. Alterna-
tively, we can compute the slice of the computation with
respect to the regular predicate EF(p) and use this slice for
predicate detection. For this purpose, first we compute the
slice with respect to the atomic proposition p as follows.
Immediately after executing f2, the value of y becomes 2
which does not satisfy y 6= 2. To reach a global state sat-
isfying y 6= 2, f3 has to be executed. In other words, any
global state in which only f2 has been executed but not f3 is
of no interest to us and can be ignored. The slice is shown in
Figure 1(c). It is modeled by a partial order on a set of meta-
events; each meta-event consists of one or more “primitive”
events. A global state of the slice either contains all the
events in a meta-event or none of them. Moreover, a meta-
event “belongs” to a global state only if all its incoming
neighbours are also contained in the state. The slice con-
tains only four states C,D, V and W and has much fewer
states than the computation itself – exponentially smaller
in many cases – resulting in substantial savings. Using the
slice in Figure 1(c), we can obtain the last state that satis-
fies p in the computation, which is denoted by W . We also
know from the definition of EF(p) that every global state
of the computation that occurs before W satisfies EF(p),
e.g. states enclosed in the dashed ellipse in Figure 1(b).
Therefore, applying this observation we can compute the
slice with respect to EF(p) as shown in Figure 1(d), where
the slice and the computation have the same consistent cuts
upto W . Finally, we check whether the initial state of the
computation is the same as the initial state of the slice. If
the answer is yes then the predicate is satisfied, otherwise
not.

Computation slicing can indeed be used to facilitate
predicate detection even for a larger class of predicates than
RCTL+ as illustrated by the following example. Consider
a predicate p that is a conjunction of two clauses p1 and
p2. Now, assume that p1 is such that it belongs to RCTL+
but p2 has no structural property that can be exploited for
efficient detection, such as, (x1 ∗ x2 + x3 > x4), where
xi is an integer variable on process i. To detect p, with-
out computation slicing, we are forced to use global-state-
space-construction-based approaches, which do not take ad-
vantage of the fact that p1 can be detected efficiently. With
computation slicing, however, we can first compute the slice
for p1. If only a small fraction of global states satisfy p1,
then instead of detecting p in the computation, it is much
more efficient to detect p in the slice. Therefore by spend-
ing only polynomial amount of time in computing the slice
we can throw away exponential number of global states,
thereby obtaining an exponential speedup overall. This also

shows that our approach is orthogonal to previous reduction
techniques.

3. Related Work

Predicate detection is a hard problem. Detecting even a
2-CNF predicate under EF modality has been shown to be
NP-complete, in general [23]. Some examples of the pred-
icates for which the predicate detection can be solved ef-
ficiently are: conjunctive [8, 16], disjunctive [8], observer-
independent [1, 8], linear [8, 26], and non-temporal regular
[9, 22] predicates. These predicate classes have been so far
detected under some or all of the temporal operators EF,
EG, AG, AF and under the until operator of CTL [26],
but not under any nesting of these operators. For example,
a predicate EF(p ∧ EG(q)), where p and q are conjunc-
tive predicates, cannot be efficiently detected using only the
efficient algorithms for conjunctive predicates. With the re-
sults of this paper, we can detect such nested temporal logic
predicates efficiently.

The idea of using temporal logic for analyzing execu-
tion traces (also referred to as runtime verification) has re-
cently been attracting a lot of attention. We first presented
a temporal logic framework for partially ordered execution
traces in [26] and gave efficient algorithms for predicates of
the form EG(p) and AG(p) when p is a linear predicate.
The efficiency of those algorithms depended on the fact that
p was a state predicate and therefore we could efficiently
evaluate the satisfiability of p at a global state. However, in
this paper we present implementation of efficient algorithms
even when p is a temporal predicate.

Some other examples of using temporal logic for check-
ing execution traces are the commercial Temporal Rover
tool (TR) [4], the MaC tool [18], the JPaX tool [13], and the
JMPaX tool [30]. TR allows the user to specify the tempo-
ral formula in programs. These temporal formula are trans-
lated into Java code before compilation. The MaC and JPaX
tools consider a totally ordered view of an execution trace
and therefore can potentially miss bugs that can be deduced
from the trace. LTL based verification of execution traces
use automata generation [10, 7] or rewriting [14], where the
verification complexity is polynomial time yet the represen-
tation model is a total order. JMPaX tool is closer to our tool
POTA [29] because of the partial order trace model. We
work with message passing distributed programs, whereas
JMPaX considers multithreaded shared memory Java pro-
grams. However, the input to our techniques is a partial or-
der therefore we can easily use the partial order traces gen-
erated by JMPaX and consequently extend the applicability
of our technique to multithreaded Java programs. JMPaX
uses a subset of temporal logic with safety where atomic
propositions can be arbitrary. Whereas we use a subset of
temporal logic with both safety and liveness where atomic

4

propositions are restricted. The complexity of the predi-
cate detection algorithm in our approach is polynomial-time
whereas the complexity is exponential-time in JMPaX.

4. Model

We assume a loosely-coupled message-passing asyn-
chronous system without any shared memory or a global
clock. A distributed program consists of n sequential pro-
cesses denoted by P1, P2, . . . , Pn communicating via asyn-
chronous messages. In this paper, we are concerned with
a single computation (execution) of a distributed program.
We assume that no messages are altered or spuriously intro-
duced. We do not make any assumptions about FIFO nature
of channels.

Traditionally, a distributed computation is modeled as a
partial order on a set of events, called happened-before re-
lation [19]. The happened-before relation between any two
“primitive” events e and f can be formally stated as the
smallest relation such that e happened-before f if and only
if e occurs before f in the same process, or e is a send of a
message and f is a receive of that message, or there exists
an event g such that e happened-before g and g happened-
before f . In this paper we relax the restriction that the order
on events must be a partial order. More precisely, we use
directed graphs to model distributed computations as well
as slices. Directed graphs allow us to handle both of them
in a uniform and convenient manner.

Given a directed graph G, let V(G) and E(G) denote
the set of vertices and edges, respectively. We define a
consistent cut (global state) on directed graphs as a sub-
set of vertices such that if the subset contains a vertex
then it contains all its incoming neighbours. Formally,
C is a consistent cut of G, if ∀e, f ∈ V(G) : (e, f) ∈
E(G) ∧ (f ∈ C) ⇒ (e ∈ C). We say that a strongly
connected component is non-trivial if it has more than one
vertex. We denote the set of consistent cuts of a directed
graph G by C(G). Observe that the empty set ∅ and the
set of vertices V(G) trivially belong to C(G). We call them
trivial consistent cuts.

We model a distributed computation (or simply a com-
putation), denoted by 〈E,→〉, as a directed graph with ver-
tices as the set of events E and edges as →. We use event
and vertex interchangeably. A distributed computation in
our model can contain cycles. This is because whereas a
computation in the happened-before model captures the ob-
servable order of execution of events, a computation in our
model captures the set of possible consistent cuts. Intu-
itively, each strongly connected component of a computa-
tion can be viewed as a meta-event; a meta-event consists
of one or more primitive events.

We assume the presence of a fictitious global initial and
a global final event, denoted by ⊥ and >, respectively. The

global initial event occurs before any other event on the pro-
cesses and initializes the state of the processes. The global
final event occurs after all other events on the processes.
Any non-trivial consistent cut will contain the global initial
event and not the global final event. Therefore, every con-
sistent cut of a computation in traditional model (happened-
before model) is a non-trivial consistent cut of the computa-
tion in our model and vice versa. Note that the empty con-
sistent cut, ∅, in the traditional model corresponds to {⊥} in
our model and the final consistent cut, E, in the traditional
model corresponds to E−{>} in our model and we denote
this by E . We use uppercase letters C, D, H , V , and W to
represent consistent cuts.

Figure 2 shows a computation and its lattice of (non-
trivial) consistent cuts.

2e ,

1e ,2f

2f 1f

2e ,

3f

3f2e , 3e , 2f

2f

1e ,

1f

3f

3e , 1f1e , 3f

2e 3e

2f 3f

1e

1f
P 2

P 1 ���
�

���
�

���
�

���
�

��	
	

�
�

��

���
�

(a)

2 4 5

0 2 6

Initially x=0, y=0

x

y

C

������
���
������
���

������
���
������
���

������
���
������
���

������
���
������
���

������
���
������
���

������
���
������
���

������
���
������
���

������
���
 � �
 �

!�!!�!
!�!
"�""�"
"�"

#�##�#
#�#
$�$$�$
$�$

%�%%�%
%�%
&�&&�&
&�&

'�''�'
'�'
(�((�(
(�(

)�))�)
)�))�)

*�**�*
*�**�*

1f

,3e{

{ {

{ {

{

{

{

{ {

{

}

}

}

}

}

}

}}

}

}

}

}{

{ }

(b)

C

Figure 2. (a) A computation 〈E,→〉 (b) and its lattice
corresponding to C(G)

Given a consistent cut, a predicate is evaluated with re-
spect to the values of variables resulting after executing all
events in the cut. If a predicate p evaluates to true for a
consistent cut C, we say that C satisfies p. We leave the
predicate undefined for the trivial consistent cuts. A global
predicate is local if it depends on variables of a single pro-
cess. We will define temporal logic predicates in Section 6.

5. Background on Slicing and Regular Predi-
cates

The notion of computation slice is based on the
Birkhoff’s Representation Theorem for Finite Distributive
Lattices [3]. The readers who are not familiar with earlier
papers on slicing in [9, 22] are urged to read Appendix 10.2.
Roughly speaking, a computation slice (or simply a slice) is
a concise representation of all those consistent cuts of the
computation that satisfy the predicate. More precisely,

Definition 1 (slice [22]) A slice of a computation with re-
spect to a predicate is a directed graph with the least num-

5

ber of consistent cuts that contains all consistent cuts of the
given computation for which the predicate evaluates to true.

We denote the slice of a computation 〈E,→〉 with re-
spect to a predicate p by slice(〈E,→〉, p). Note that
〈E,→〉 = slice(〈E,→〉, true). Every slice derived from
the computation 〈E,→〉 has the trivial consistent cuts (∅
and E) among its set of consistent cuts. A slice is empty
if it has no non-trivial consistent cuts [22]. In the rest of
the paper, unless otherwise stated, a consistent cut refers to
a non-trivial consistent cut. In general, a slice will contain
consistent cuts that do not satisfy the predicate (besides triv-
ial consistent cuts). In case a slice does not contain any such
cut, it is called lean. We next give the class of predicates for
which the slice is lean.

Given a computation, the set of consistent cuts satisfying
a regular predicate forms a sublattice of the set of consistent
cuts of the computation [9]. Equivalently,

Definition 2 (regular predicate [9]) A predicate is regular
if given two consistent cuts that satisfy the predicate, the
consistent cuts obtained by their set union and set intersec-
tion also satisfy the predicate. Formally, given a regular
predicate p,
(C satisfies p) ∧ (D satisfies p) ⇒ (C ∩ D satisfies p) ∧
(C ∪D satisfies p)

We say that a regular predicate is non-temporal if it does
not contain temporal operators such as EF, AG, and EG,
otherwise it is a temporal regular predicate.

Some examples of non-temporal regular predicates are
monotonic channel predicates such as “there are at least k
messages in transit from Pi to Pj”, conjunction of local
predicates such as “Pi and Pj are in critical section”, and
relational predicates such as x1 − x2 ≤ 5, where xi is a
monotonically non-decreasing integer variable on process
i. From the definition of a regular predicate we deduce that
a regular predicate has a least satisfying cut and a greatest
satisfying cut. Furthermore, the class of regular predicates
is closed under conjunction.

Also in [22] polynomial-time algorithms are given to
compute slices with respect to boolean combination of reg-
ular predicates. Given the slices with respect to two regular
predicates, the complexity of computing the slice for the
conjunction and disjunction of these regular predicates is
O(n2|E|). The complexity of computing the slice for the
negation of a regular predicate is O(n2|E|2). Note that reg-
ular predicates are not closed under disjunction and nega-
tion operators therefore slices obtained with respect to pred-
icates that contain these operators may not be lean.

We now give a formal definition of RCTL+ which uses
regular predicates as atomic propositions.

6. RCTL+ Syntax and Semantics

We define successor of a cut by a relation . ⊆ C(G) ×
C(G) such that C . D if and only if D = C ∪ e, where e is
the set of vertices in some strongly connected component in
〈E,→〉 and e ∩ C = ∅. We denote the reflexive closure of
this relation by .. A consistent cut sequenceC0, C1, . . . , Ck

of (C(G),⊆) satisfies that for each 0 ≤ i < k, Ci . Ci+1.
We say that a cut D is reachable from a cut C if C ⊆ D.

Propositional temporal logics use a finite set of atomic
propositions AP , each one of which represents some prop-
erty of the global state. A labeling function λ: C(G) → 2AP

assigns to each global state the set of predicates from AP

that hold in it. In this paper we assume that atomic propo-
sitions are non-temporal regular predicates and their nega-
tions.

The formal syntax of RCTL+ is given below.
• Every predicate ap ∈ AP is an RCTL+ formula.
• If p and q are RCTL+ formulas, then so are p ∨ q,

p ∧ q, EF(p), EG(p), and AG(p).
Given a finite distributive lattice L = (C(G),⊆), the

formulas of RCTL+ are interpreted over the consistent
cuts in C(G). Let p be an RCTL+ formula and C be a
consistent cut in C(G). Then, the satisfaction relation,
L,C |= p means that predicate p holds at consistent cut C
in lattice L = (C(G),⊆) and is defined inductively below.
We denote C |= p as a short form for L,C |= p, when L is
clear from the context.

• C |= ap iff ap ∈ λ(C) for an atomic proposition ap.
• C |= p ∧ q iff C |= p and C |= q.
• C |= p ∨ q iff either C |= p or C |= q.
• C |= EG(p) iff for some consistent cut sequence

C0, . . . , Ck such that (i) C0 = C, (ii) Ck = E , (iii)
Ci . Ci+1 for 0 ≤ i < k, we have (iv) Ci |= p for all
0 ≤ i ≤ k.

• C |= AG(p) iff for all consistent cut sequences
C0, . . . , Ck such that (i) C0 = C, (ii) Ck = E , (iii)
Ci . Ci+1 for 0 ≤ i < k, we have (iv) Ci |= p for all
0 ≤ i ≤ k.

• C |= EF(p) iff for some consistent cut sequence
C0, . . . , Ck such that (i) C0 = C, (ii) Ck = E , (iii)
Ci . Ci+1 for 0 ≤ i < k, we have (iv) Ci |= p for some
0 ≤ i ≤ k.

We defineL |= p if and only ifL, {⊥} |= p. The formula
C |= AG(p) (resp. C |= EG(p)) intuitively means that for
all consistent cut sequences (resp. for some consistent cut
sequence) C, . . . , E , p holds at every cut of the sequence.
The formula C |= EF(p) intuitively means that for some
consistent cut sequence C, . . . , E , there exists a consistent
cut that satisfies p.

We define RCTL as the subset of RCTL+ where disjunc-
tion and negation operators are not allowed.

6

The predicate detection problem is to decide whether the
initial consistent cut of a distributed computation satisfies a
predicate.

Note that full CTL contains X and U operators, to de-
note next-time and until modalities. However, we are not
going to explain them here due to space limitations.

7. Temporal Regular Predicates

In this section, we study regularity of a predicate p when
temporal operators EF, AG, and EG are applied to it.
These results enable us to compute lean slices for these tem-
poral predicates.

Lemma 1 If p is a regular predicate then EF(p), AG(p),
and EG(p) are regular predicates.
Proof Sketch: Our goal is to prove that for all consis-
tent cuts D,H if D and H satisfy EF(p) (resp. AG(p),
EG(p)) then (D ∩ H) and (D ∪ H) satisfy EF(p) (resp.
AG(p), EG(p)).
• EF(p) is a regular predicate:

From the definition of EF(p), there exists consistent cuts
D′, H ′ that satisfy p and D ⊆ D′ and H ⊆ H ′. Further-
more we have that D′ ⊆ W and H ′ ⊆ W where W is the
greatest cut satisfying p. Then we have (D ∩H) ⊆ W and
(D ∪ H) ⊆ W . Therefore (D ∩ H) and (D ∪ H) both
satisfy EF(p).
•AG(p) is a regular predicate:

From the definition of AG(p), for all consistent cuts D′

such that D ⊆ D′ ⊆ E , D′ satisfies AG(p). Then sub-
stituting (D ∪ H) for D′ in the previous observation we
have D ⊆ (D ∪H) ⊆ E . Thus (D ∪H) satisfies AG(p).
Now we show that (D ∩H) satisfies AG(p). Consider an
arbitrary consistent cut J such that (D ∩ H) ⊆ J . Since
D ⊆ (D ∪ J) ⊆ E and H ⊆ (H ∪ J) ⊆ E , both (D ∪ J)
and (H ∪ J) satisfy p. Since p is regular, it is easy to show
that J = (D∪J)∩ (H ∪J) satisfies p. Therefore (D∩H)
satisfies AG(p).
• EG(p) is a regular predicate:

From the definition of EG(p), there exist consistent cut
sequences (D0 = D), . . . , (Dk = E) and (H0 =
H), . . . , (Hm = E) such that p is satisfied at all cuts of the
sequences. Since p is a regular predicate, (H0∪D0), (H0∪
D1), . . . , (H0∪Dk) and (H0∩D0), (H0∩D1), . . . , (H0∩
Dk−1), (H0), . . . , (Hm) are also such sequences. There-
fore (D ∩H) and (D ∪H) satisfy EG(p).

However, the regularity does not follow in the case of
AF(p), EX(p), AX(p), EU(p, q) and AU(p, q). We now
give an example in Figure 3 where consistent cuts D and H
satisfy AF(p) but their intersection (D∩H) does not. This
is because there exists a path starting from (D ∩ H) and
ending at the final cut E where p never holds on the path.

We present examples for the other temporal predicates in
the extended version of the paper [27].

���
���
���
���
���

���
���
���

���
���
���

�����
�����
�����

�����
�����
�����

D H

H

D

u

E

: denotes consistent cuts where p holds

Figure 3. AF(p) may not be regular

8. Computation Slices for Temporal Predicates

In this section, we describe computation slicing algo-
rithms for temporal regular predicates to enable efficient
predicate detection for RCTL+. Earlier, Mittal and Garg
[9, 22] presented computation slicing algorithms for non-
temporal regular predicates, which they use to detect pred-
icates such as EF(p), EG(p) and AG(p). We present al-
gorithms for temporal regular predicates, which we use to
detect nested temporal predicates such as EG(p ∧EF(q)).

Since the consistent cuts of the slice of a computation is
a subset of consistent cuts of the computation, the slice can
be obtained by adding edges to the computation. In other
words, the slice contains additional edges that do not exist
in the computation. These additional edges may generate
strongly connected components in the slice. For example,
consider Figure 6(a) that displays the slice of the computa-
tion in Figure 2 with respect to ¬((x = 5) ∧ (y = 2)). The
only consistent cut in the computation that does not satisfy
the predicate is {e3, f1}. By adding the edge (f2, e3), we
disallow this consistent cut from the slice. Similarly, since
the consistent cuts of the slice for AG(p) is a subset of
consistent cuts of the slice for p, the slice for AG(p) can be
obtained by adding edges to the slice for p. Below, we will
show which edges we should add to a computation (resp. to
the slice for p) for computing slices for EF(p) (resp. for
computing slices for AG(p)).

8.1. Slicing Algorithms

Now we explain Algorithm A1 in Figure 5 for generat-
ing the slice of a computation with respect to EF(p). From
the definition of EF(p), all consistent cuts of the computa-
tion that can reach the greatest consistent cut that satisfy p,
say W , will also satisfy EF(p) and furthermore these are
the only cuts that satisfy EF(p). We can find the cut W us-
ing slice(〈E,→〉, p) when it is nonempty. We construct the
slice for EF(p) from the computation so that the slice has

7

the same consistent cuts as the computation upto the final
cut of the slice W . To ensure that all cuts that cannot reach
W do not belong to the slice, we add edges from > to the
successors of events in the frontier of W in the computa-
tion. Adding an edge from> to an event makes any cut that
contains the event trivial. Figure 4 shows the application of
Algorithm A1. Given the slice of the computation in Fig-
ure 2(a) for some predicate p as shown in Figure 4(a), first
we compute the final cut of the slice for p, that is, {e2, f3}.
Then, on the computation, we add an edge from > to the
successor of e2, that is e3. The successor of f3 does not ex-
ist so we do not add any other edges. The resulting slice for
EF(p) is displayed in Figure 4(c).

2e ,

2f

1f

2e ,

3f

3f2e ,

2f

1e ,2f

2f

2e ,

3f

3f2e ,

2f

1e ,

1f

1e , 3f

2e , 1f

3f2f

1e
2e 3e

1f

2f 3f1f

3e2e1e

������
���
������
���

������
���
������
���

������
���
������
���

������
���
������
���

	�		�	
	�	

�

�

�

������
���
������
���

��
�
������
���

������
���
������
���

������
���
������
���

������
���
������
���

������
���
������
���

������
���
������
���

������
���
������
���

������
���
������
���

������
���
������
���

������
���
 � �
 �

!�!!�!
!�!
"�""�"
"�"

##$
$

%%&
&

''(
(

))*
*

++,
,

--.
.

//0
0

112
2

334
4

556
6

778
8

99:
:

;;<
<

==>
>

??@
@

AAB
B

(b)

1f

{

{

{

{

{

}

}

}

}

}

}

}{

1f

{

{

{

{

{ {

{

}

}

}

}

}

}

}

}{

{ }

(d)

}

(c)

(a)

{

{

Figure 4. (a) A slice of 〈E,→〉 in Fig. 2 (b) the cor-
responding sublattice (c) The application of the temporal
operator EF on the slice in (a) (d) the corresponding sub-
lattice

In Step 1 we can find the final cut of slice(〈E,→〉, p)
using the strongly connected components inO(n|E|). Steps
2 to 4 take O(n) time. The overall complexity is O(n|E|).

Algorithm A2 in Figure 5 generates the slice for AG(p).
We explained above that to obtain the slice for AG(p) we
will add edges to the slice for p and therefore eliminate
consistent cuts that do not belong to the slice for AG(p).
We claim that consistent cuts of slice for p that do not in-
clude vertex e of each additional edge (e, f) do not sat-
isfy AG(p). For simplicity, let the slice(〈E,→〉, p) have

Algorithm A1

Input: A computation 〈E,→〉 and slice(〈E,→〉, p)
Output: slice(〈E,→〉,EF(p))
1. Let G be 〈E,→〉 and let W be the final cut of

slice(〈E,→〉, p)
2. If W exists then
3. ∀ e ∈ frontier(W): add an edge from

the vertex > to succ(e) in G

4. return G

5. else return empty slice

Algorithm A2

Input: A computation 〈E,→〉 and slice(〈E,→〉, p)
Output: slice(〈E,→〉,AG(p))
1. Let G be slice(〈E,→〉, p)
2. For each pair of vertices (e, f) in slice(〈E,→〉, p)

such that,
(i) ¬(e → f) in 〈E,→〉, and
(ii) (e → f) in slice(〈E,→〉, p)

add an edge from vertex e to the vertex ⊥ in G

3. return G

Algorithm A3

Input: A computation 〈E,→〉 and slice(〈E,→〉, p)
Output: slice(〈E,→〉,EG(p))
1. Let G be slice(〈E,→〉, p)
2. For each pair of vertices (e, f) in slice(〈E,→〉, p)

such that,
(i) ¬(e → f) in 〈E,→〉, and
(ii) (e → f) and (f → e) in slice(〈E,→〉, p)

add an edge from vertex e to the vertex ⊥ in G

3. return G

Figure 5. Algorithm for generating a slice with respect to
EF(p), AG(p) and EG(p)

a single additional edge (e, f). Consider consistent cuts
{⊥}, {f1}, {e1, f1}, and {e2, f1} of the slice in Figure
6(a) that do not include vertex f2 of the additional edge
(f2, e3). It is easy to see that these four consistent cuts do
not satisfy AG(p). This is because there exists a consis-
tent cut {e3, f1} in the computation that does not satisfy p,
yet which is reachable from these four consistent cuts. We
now give a proof sketch of the correctness of the algorithm
for the simplified case with a single additional edge. Due
to space limitations, the formal proof of correctness of the
algorithms in this section are given in the extended version
of the paper in [27].

Theorem 2 Given a computation 〈E,→〉 and
slice(〈E,→〉, p), a consistent cut D in 〈E,→〉 satis-
fies AG(p) iff it includes vertex e of the additional edge
(e, f) in slice(〈E,→〉, p).
Proof Sketch:

8

If a consistent cut D does not include vertex e then there
exists a consistent cut H that can be reached from D in the
computation such that H does not include e but includes
f . In this case, it is clear that H does not satisfy p since
(e, f) is an edge in the slice(〈E,→〉, p) and every consis-
tent cut of slice(〈E,→〉, p) that includes f must include e.
Therefore from the definition of AG(p), D does not satisfy
AG(p).

Now we prove the other direction. If a consistent cut D
does not satisfy AG(p) then there exists a consistent cut H
reachable from D such that H does not satisfy p. We know
that only the consistent cuts that include f but not e do not
satisfy p. Since H is reachable from D and H does not
include e, we have that D also does not include e.

For example, the slice in Figure 6(a) has an additional
edge (f2, e3) so we add the edge (f2,⊥) and obtain the slice
for AG(p) as in Figure 6(c).

2f

2e ,

3f

2f

3f,3e{ }

3e , 2f{ }3f2e ,{

3f

2f

1e

1e

2e ,

2f

1f

2e ,

3f

2f

3f,3e{ }

3e , 2f{ }3f2e ,{

3f

2f

1f

1e

1e

1e

3f

1e
2e 3e

1f 2f

3f

1e
2e 3e

1f 2f

������
���������

������
���������

������
���
������
���

������
���������

	�		�	
	�	
�

�

���������������
���������������

��

������
���������

������
���
������
���

������
���������

������
���������

��
�
��
�

������
���������

������
���������

������
���
������
���

������
���
 � �

!�!�!!�!�!!�!�!"�"�""�"�"

#�##�#
#�#$�$$�$

%%
%&&

'�''�'
'�'(�((�(

))*
*

++,
,

--.
.

//0
0

112
2

334
4

556
6

778
8

99:
:

;;<
<

==>
>

??@
@

AAB
B

CCD
D

EEF
F

GGH
H

(d)

{

{

{

}

}

}

}}

}

{

{

,

,

(b)

1f

{ {

{

{

{

}

}

}

}

}

}

}{

}

}

}

{

{

{

,

,

,

(c)

2 4

0 2

2 4 5

0 2 6

6

(a)

5

Figure 6. (a) The slice of 〈E,→〉 in Fig. 2 with respect to
¬((x = 5) ∧ (y = 0)) (b) the corresponding sublattice (c)
The slice of 〈E,→〉 in Fig. 2 with respect to AG ¬((x =
5) ∧ (y = 0)) (d) the corresponding sublattice

In Step 2 we can add edges for each additional edge in
slice(〈E,→〉, p). From [22], there are O(n|E|) such edges

when the skeletal representation of a slice is used. There-
fore, the overall complexity is O(n|E|).

The algorithm for EG(p) slicing displayed in Figure 5
is similar to the AG(p) slicing algorithm. However in this
case, for each additional edge (e, f) that generates a non-
trivial strongly connected component in slice(〈E,→〉, p),
we add an edge from the vertex e to the vertex ⊥. Intu-
itively, due to such a strongly connected component on all
paths from the initial to the final state in the computation
there exists a cut that does not satisfy p.

8.2. Predicate Detection using Slicing

Figure 7 displays our predicate detection algorithm that
uses slicing algorithms developed in this section. The com-
plexity of predicate detection for RCTL is dominated by the
complexity of computing the slice with respect to a non-
temporal regular predicates, which has O(n2|E|) complex-
ity [9, 22]. Therefore, the overall complexity of predicate
detection for RCTL is O(|p| · n2|E|), where |p| is the num-
ber of boolean and temporal operators in p.

When the predicate does not belong to RCTL (that is,
it contains disjunction or negation operators) the slice may
not be lean. In this case, we may have to take an extra
step. This is because the initial state of the slice may not
satisfy the predicate. Therefore, we employ the translator
module of POTA and translate the slice into Promela [15]
. Then we use SPIN to check the trace assuming that there
are equivalent specifications in LTL. Using SPIN may lead
to exponential-time complexity for RCTL+. However, the
slice is in general much smaller than the computation and
therefore we still have efficient verification, which we vali-
date with experiments in the next section.

Input: A computation 〈E,→〉 and an RCTL+ predicate p

Output: Predicate is satisfied or not
1. Recursively process p from inside to outside

while applying temporal and boolean operators
to compute slices

2. If initial(〈E,→〉) 6= initial(slice(〈E,→〉, p) then
3. return false and counterexample

else
4. if p does not contain ¬ or ∨ then
5. return true
6. else run SPIN on the translated slice(〈E,→〉, p)

Figure 7. Predicate Detection using Slicing

9. Experimental Results

We implemented our algorithms using Java in a proto-
type tool called Partial Order Temporal Analyzer (POTA)

9

[29]. POTA consists of analyzer, translator and instrumen-
tor modules. We have implemented slicing based predicate
detection algorithms in the analyzer module. Predicate de-
tection algorithms from our previous research has not been
implemented yet. In order to evaluate the effectiveness of
POTA, we performed experiments with scalable protocols,
comparing our computation slicing based approach with
partial order reduction based approach of SPIN [15]. The
translator module takes an execution trace and generates
Promela code. Currently, the instrumentation is being done
manually. The instrumented program is such that when
run every process outputs its local state where a local state
contains the values of variables relevant to the predicate in
question and a vector clock that is updated for each inter-
nal, send and receive event according to the Fidge/Mattern
[6, 20] algorithm. Vector clocks enable us to obtain a par-
tial order representation of traces. All experiments were
performed on a 1.4 Ghz Pentium 4 machine running Linux.
We restricted the memory usage to 512MB, but did not set
a time limit. The two performance metrics we measured
are running time (T in seconds) and memory usage (M in
megabytes). We run the programs for 20 seconds and our
measurements are averaged over 20 traces for each pro-
gram. Further experimental results can be obtained from
POTA website [28] for protocols such as General Inter-ORB
Protocol (GIOP), distributed dining philosophers and leader
election.

First, we use the Distributed Mutual Exclusion protocol
from [12] in Java and check the complement of the liveness

property, that is,
∨

i

(

EF
(

tryCSi ∧ EG(¬inCSi)
)

)

, for

each process i. Observe that the negation of a local predi-
cate ¬inCSi is also a local predicate and furthermore it is a
regular predicate.

Next, we perform experiments for the primary secondary
program [32], which concerns an algorithm designed to en-
sure that the system always contains a pair of processes act-
ing together as primary and secondary. The property re-
quires that there is a pair of processes Pi and Pj such that
(1) Pi is acting as a primary and correctly thinks that Pj

is its secondary, and (2) Pj is acting as a secondary and
correctly thinks that Pi is its primary. Both the primary
and secondary may choose new processes as their succes-
sor at any time. The complement of the safety property is

EF
∧

(

¬isPrimaryi ∨¬isSecondaryj ∨ (secondaryi 6=

Pj) ∨ (primaryj 6= Pi)
)

when i, j ∈ 0 . . . (n− 1), i 6= j.

Note that this predicate contains disjunction operators and
the slice may not be lean.

Finally, we present experimental results for the Asyn-
chronous Transfer Mode Ring (ATMR) protocol which was
verified in [25] using SPIN.

ATMR protocol [17] is an ISO standard based on a high-
speed shared medium connecting a number of access nodes

by channels in a ring topology. For controlling access to
this type of shared medium, the ring is first initialized with a
fixed number of ATM cells continuously circulating around
the channel from one node to another. Within each access
node there is an access unit which performs both the physi-
cal layer convergence function and the access control func-
tion. Access to the ring is requested by the client and con-
trolled by a combination of a window mechanism and a re-
set procedure. The client can issue a sending request to the
access unit and receive a data cell. The window mechanism
limits the number of cells a node can transmit at a time,
called the “credits” of this node. The reset procedure reini-
tializes the window in all access units to a predefined credit
value.

We conducted experiments for the following predicates
used in [25].

1. Once an access unit exhausts its window size credit,
the credit will eventually be renewed.

EF

(

(crediti == 0) ∧ EG(¬(crediti == 6))
)

, for

all access units i, where credit stands for the number
of credits which is being held by an access unit and 6
is the preset maximum value.

2. A client’s request will be eventually acknowledged.

EF

(

reqi∧EG(¬acki)
)

, for all clients i, where req is

a cell sending request signal from a client to an access
unit. If the requested cell has been sent out, the access
unit will return an ack signal to the client.

3. An access unit will eventually exit Reset state and en-
ter the Send state.
EF

(

Reseti ∧EG(¬Sendi)
)

, for all access units i.

4. An access unit will eventually exhaust its window size
credit.
EF

(

(crediti == 6) ∧ EG(¬(crediti == 0))
)

, for

all access units i.

The full state space verification of ATMR by Peng et al.
[25] even for a configuration with 3 nodes was not com-
pleted due to state explosion. To enable verification for
larger number of processes, they used an approximation
technique in SPIN called bit-state hashing where two bits
of memory are used to store a reachable state. With bit-state
hashing, they could verify upto 6 nodes on a 2GB memory
machine with less than 98 percent coverage.

We generated execution traces for upto 250 nodes and
completed full state space verification of these traces.
Whereas, SPIN failed to complete full state space verifica-
tion for more than 3 nodes even when the input were traces
rather than the protocol. Similarly, we verified execution
traces with 100 processes for mutual exclusion protocol and
for 40 processes for primary secondary protocol, whereas
SPIN failed to complete for more than 5 processes and 10
processes, respectively.

10

50 100 150 200 250
0

1000

2000

3000

4000

5000

6000

Number of Processes

Ti
m

e
(s

)

Property 1
Property 2

50 100 150 200 250
0

100

200

300

400

500

Number of Processes

M
em

or
y

(M
B

)

Property 1
Property 2

Figure 8. ATMR verification results, SPIN runs out of memory for > 3 processes

Figure 9. Mutual Exclusion verification results: SPIN runs out of memory for > 6 processes

In Figure 8, we present experimental results for the first
two properties of ATMR. Our results for mutual exclusion
and primary secondary protocols are displayed in Figure 9
and Figure 10, respectively. We use logscale for time and
memory in Figure 10, which shows that even in the case of
predicates with disjunction operator slicing can reduce the
state space substantially.

The experimental work proves that for large problem
sizes, computation slicing is an effective technique.

References

[1] B. Charron-Bost, C. Delporte-Gallet, and H. Fauconnier.
Local and temporal predicates in distributed systems. ACM
Transactions on Programming Languages and Systems,
17(1):157–179, Jan 1995.

[2] E. M. Clarke and E. A. Emerson. Design and Synthesis of
Synchronization Skeletons using Branching Time Temporal
Logic. In Proc. of the Workshop on Logics of Programs,
volume 131 of LNCS, Yorktown Heights, New York, May
1981.

[3] B. A. Davey and H. A. Priestley. Introduction to Lattices
and Order. Cambridge University Press, Cambridge, UK,
1990.

[4] D. Drusinsky. The Temporal Rover and the ATG Rover.
In SPIN Model Checking and Verification, volume 1885 of
LNCS, pages 323–330, 2000.

[5] J. Esparza. Model checking using net unfoldings. Science
of Computer Programming, 23(2):151–195, 1994.

[6] C. Fidge. Logical Time in Distributed Computing Systems.
IEEE Computer, 24(8):28–33, Aug. 1991.

[7] B. Finkbeiner and H. B. Sipma. Checking Finite Traces us-
ing Alternating Automata. In Runtime Verification 2001,
volume 55 of ENTCS, pages 44–60, July 2001.

[8] V. K. Garg. Elements of Distributed Computing. John Wiley
& Sons, 2002.

[9] V. K. Garg and N. Mittal. On Slicing a Distributed Com-
putation. In Proc. of the 15th International Conference on
Distributed Computing Systems (ICDCS), pages 322–329,
Phoenix, Arizona, 2001.

[10] D. Giannakopoulou and K. Havelund. Automata-Based Ver-
ification of Temporal Properties on Running Programs. In
Proc. of Int. Conference on Automated Software Engineer-
ing (ASE’01), pages 412– 417, San Diego, California, 2001.

11

0 10 20 30 40
0.01

0.03

0.08

0.15

0.28
0.42
0.65
0.9

4.07

20.53

70.66

number of processes

Ti
m

e
(s

)

POTA
SPIN

0 5 10 15 20 25 30 35 40

0.41

0.75
1

2.03
2.75
3.77

7.788.82

28.89

199.4

304.5

number of processes

M
em

or
y

(M
B)

POTA
SPIN

Figure 10. Primary Secondary verification results: SPIN runs out of memory for > 10 processes

[11] P. Godefroid and P. Wolper. A partial approach to model
checking. In Proc. of the 6th IEEE Symposium on Logic in
Computer Science, pages 406–415, 1991.

[12] S. Hartley. Concurrent Programming: The Java Program-
ming Language. Oxford University Press, 1998.

[13] K. Havelund and G. Rosu. Monitoring Java Programs with
Java PathExplorer. In Runtime Verification 2001, volume 55
of ENTCS, 2001.

[14] K. Havelund and G. Rosu. Monitoring Programs Using
Rewriting. In Proc. of Int. Conference on Automated Soft-
ware Engineering (ASE’01), pages 135–143, San Diego,
California, 2001.

[15] G. J. Holzmann. The Model Checker SPIN. IEEE Transac-
tions on Software Engineering, 23(5), May 1997.

[16] M. Hurfin, M. Mizuno, M. Raynal, and M. Singhal. Efficient
detection of conjunctions of local predicates. IEEE Trans-
actions on Software Engineering, 24(8):664–677, 1998.

[17] ISO. Specification of the Asynchronous Transfer Mode Ring
(ATMR) Protocol. January 1993.

[18] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and
M. Viswanathan. Java-MaC: a Run-time Assurance
Tool for Java Programs. In Runtime Verification 2001,
volume 55 of ENTCS, 2001.

[19] L. Lamport. Time, Clocks, and the Ordering of Events
in a Distributed System. Communications of the ACM,
21(7):558–565, July 1978.

[20] F. Mattern. Virtual Time and Global States of Distributed
Systems. In Parallel and Distributed Algorithms: Proc. of
the Int’l Workshop on Parallel and Distributed Algorithms,
pages 215–226. Elsevier Science Publishers B. V. (North-
Holland), 1989.

[21] K. L. McMillan. Symbolic Model Checking. Kluwer Aca-
demic Publishers, 1993.

[22] N. Mittal and V. K. Garg. Computation Slicing: Techniques
and Theory. In In Proc. of the 15th International Sympo-
sium on Distributed Computing (DISC), pages 78–92, Lis-
bon, Portugal, 2001.

[23] N. Mittal and V. K. Garg. On Detecting Global Predi-
cates in Distributed Computations. In Proc. of the 15th In-
ternational Conference on Distributed Computing Systems
(ICDCS), pages 3–10, Phoenix, Arizona, 2001.

[24] D. Peled. All from One, One for All: On Model
Checking Using Representatives. In 5th Int’l. Confer-
ence on Computer-Aided Verification (CAV), pages 409–
423. Springer, Berlin, Heidelberg, 1993.

[25] H. Pendex, S. Tahar, and F. Khendek. Comparison of SPIN
and VIS for Protocol Verification. Software Tools for Tech-
nology Transfer, 4(2):234–245, 2003.

[26] A. Sen and V. K. Garg. Detecting Temporal Logic Predi-
cates on the Happened-Before Model. In Proc. of the In-
ternational Parallel and Distributed Processing Symposium
(IPDPS), Fort Lauderdale, Florida, 2002.

[27] A. Sen and V. K. Garg. Automatic Generation of Slices for
Temporal Logic Predicate Detection. Technical Report TR-
PDS-2003-001, PDSL, ECE Dept. Univ. of Texas at Austin,
2003. Available at http://maple.ece.utexas.edu/.

[28] A. Sen and V. K. Garg. Partial Order Trace Ana-
lyzer (POTA). http://maple.ece.utexas.edu/˜sen/POTA.html,
2003.

[29] A. Sen and V. K. Garg. Partial Order Trace Analyzer (POTA)
for Distributed Programs. In Runtime Verification 2003, vol-
ume 89 of ENTCS, 2003.

[30] K. Sen, G. Rosu, and G. Agha. Runtime Safety Analysis
of Multithreaded Programs. TR UIUCDCS-R-2003-2334,
Univ. of Illinois at Urbana Champaign, Apr. 2003.

[31] S. D. Stoller and Y. Liu. Efficient Symbolic Detection of
Global Properties in Distributed Systems. In 10th Int’l.
Conference on Computer-Aided Verification (CAV), volume
1447 of LNCS, pages 357–368, 1998.

[32] S. D. Stoller, L. Unnikrishnan, and Y. A. Liu. Efficient
Detection of Global Properties in Distributed Systems Us-
ing Partial-Order Methods. In 12th Int’l. Conference on
Computer-Aided Verification (CAV), volume 1855 of LNCS,
pages 264–279, 2000.

[33] A. Valmari. A Stubborn Attack On State Explosion. In 2nd
Int’l. Conference on Computer-Aided Verification (CAV),
volume 531 of LNCS, pages 156–165, Berlin, Germany,
1990.

12

10 Appendix

10.1 Illustration of Concepts in Section 4

Example 1 Consider the computation depicted in Fig-
ure 11(a). It has three processes, namely p1, p2 and p3. The
events e1, f1 and g1 are the initial events, and the events
e4, f4 and g4 are the final events of the computation. The
cut A = {e1, e2, e3, e4, f1, g1} is not consistent because
g4 → e4 and e4 ∈ A but g4 6∈ A. On the other hand, the
cut {e1, e2, f1, f2, g1} is a consistent cut. The events e1, f1

and g1 belong to the same strongly connected component or
meta-event. Processes p1, p2 and p3 host integer variables
x, y and z, respectively. The predicate x ≤ 1 is a local
predicate whereas the predicate x+ y ≤ z is not. The con-
sistent cut {e1, f1, g1} satisfies the predicate x+ y ≤ z but
the consistent cut {e1, e2, f1, f2, g1} does not.

10.2 Birkhoff’s Theorem

We first describe some concepts needed to understand
the theorem. Given a lattice, its meet (infimum) and join
(supremum) operators are denoted by u and t , respec-
tively. A lattice is distributive if meet distributes over join
[3]. We call an element of a lattice join-irreducible if it
cannot be expressed as join of two distinct elements (of the
lattice), both different from itself [3]. Let L be a lattice and
J I(L) be the set of its join-irreducible elements. In case
L is a distributive lattice, it satisfies an important property.
Specifically, every element in L can be expressed as join
of some subset of elements in J I(L) and vice versa [3,
Birkhoff’s Theorem]. In other words, J I(L) completely
characterizes L. This is significant because |J I(L)| is gen-
erally much smaller—exponentially in many cases—than
|L|. Hence if some computation on L can instead be per-
formed on J I(L), we obtain a significant computational
advantage.

Consider a computation 〈E,→〉 and let C(E) denote the
set of its consistent cuts. In [9], it was shown that C(E)
forms a distributive lattice under the relation ⊆; its join and
meet operators correspond to set union (∪) and set intersec-
tion (∩), respectively. Furthermore, no additional structural
property is satisfied by C(E). The set of join-irreducible
elements of C(E) is isomorphic to the set of strongly con-
nected components of 〈E,→〉.

Now, consider a subset D ⊆ C(E). We say that D forms
a sublattice of C(E) if D is closed under set union and set
intersection. That is, given two consistent cuts from D, the
consistent cuts obtained by their set union and set intersec-
tion also belong toD. It can be proved that any sublattice of
a distributive lattice is also a distributive lattice [3]. Thus if
D is a sublattice of C(E), then, using Birkhoff’s Theorem,

J I(D) completely characterizes D. This forms the basis
for the notion of computation slice.

Example 2 Consider the computation shown in Fig-
ure 11(a). The (distributive) lattice spanned by its set of
consistent cuts is shown in Figure 11(b). In the figure,
each consistent cut is labeled with the number of events
that have to be executed on each process to reach the cut.
The join-irreducible elements of the lattice have been drawn
with thick boundaries. (They have exactly one incoming
edge.) The lattice has eight join-irreducible elements which
is same as the number of strongly connected components of
the computation. It can be verified that every consistent cut
of the computation can be obtained as the join of some sub-
set of these eight join-irreducible elements and vice versa.
For instance, the consistent cut R (in Figure 11(b)) can be
expressed as the join of the consistent cuts U and V .

10.3 Establishing the Existence and Uniqueness
of Computation Slice

It was proven in [22] that the slice exists and is uniquely
defined for all predicates. The main idea behind the proof is
as follows. Consider the computation 〈E,→〉 and a predi-
cate p. Let C(E) denote the set of consistent cuts of 〈E,→〉
and further, let Cp(E) ⊆ C(E) be the subset of those con-
sistent cuts that satisfy p. We show that there exists a unique
subsetD ⊆ C(E) satisfying the following conditions. First,
D contains Cp(E), that is, Cp(E) ⊆ D. Second, D forms
a sublattice of C(E). Last, among all sublattices that ful-
fill the first two conditions, D is the smallest one. From
Birkhoff’s Theorem, J I(D), the set of join-irreducible el-
ements of D, completely characterizes D. We call the poset
(partially ordered set) induced on the consistent cuts of
J I(D) by the relation⊆ as the slice of 〈E,→〉 with respect
to p. Each join-irreducible element gives rise to a meta-
event. Alternatively, the slice can also be represented by a
directed graph drawn on the set of events such that the set of
consistent cuts of the graph is exactly D. Such a graph can
be obtained by simply forming a strongly connected com-
ponent out of each meta-event. Whereas the poset repre-
sentation of a slice is better for presentation purposes, the
graph representation is more suited for slicing algorithms.

Example 3 Consider the lattice of consistent cuts depicted
in Figure 11(b). The consistent cuts that satisfy the predi-
cate x + y − z ≤ 1 have been shaded in the figure. Fig-
ure 11(c) depicts the smallest sublattice that contains these
consistent cuts. The consistent cuts P and Q do not sat-
isfy the predicate but have been included to complete the
sublattice. The join-irreducible elements of the sublattice
have been drawn with thick boundaries. There are, in total,
seven join-irreducible elements, namely T , U , V , W , X , Y
and Z. Figure 11(d) portrays the partial order induced on

13

2 51

653

1 3 5

p3

p2

p1

(3,1,2)

VU

T

X

YP

Q

Z

U V

R

U W

W

Z

X
Y

T

V

(1,1,1)

(1,1,2)(2,1,1)

(2,1,2)

(2,2,2)

(2,3,3)(3,2,2)

(3,3,3)

(4,4,4)

(0,0,0)

(1,1,1)

(1,1,2)(2,1,1)

(2,1,2)(2,2,1)(3,1,1)

(2,2,2)(2,3,1)(3,1,2)(3,2,1)

(2,3,2)(3,2,2)(3,3,1)

(3,3,2) (2,3,3)

(3,3,3)

(4,4,4)

(0,0,0)

e1 e4e2 e3

g1 g2 g3 g4

f1 f2 f3 f4

g1 g2 g3 g4

f1 f2 f3 f4

e1 e4e2 e3

p1

p3

x

y

z

p2

(a)

(b)

(c) (d)

: trivial consistent cut

: join-irreducible element : consistent cut that satisfies the predicate

strongly connected
components

: non-trivial consistent cut

Figure 11. (a) A computation, (b) the lattice of its consistent cuts, (c) the smallest sublattice that
contains all consistent cuts satisfying the predicate x + y − z ≤ 1, and (d) the poset induced on the
set of join-irreducible elements of the sublattice.

the set J = {T,U, V,W,X, Y, Z}. There is a one-to-one
correspondence between the set of join-irreducible elements
and the set of strongly connected components of the graph
shown in Figure 11(d). It can be verified that every consis-
tent cut in the sublattice can be expressed as join of some
subset of J and, furthermore, the join of every subset of J
is a consistent cut of the sublattice.

14

