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Abstract. A distributed computation is usually modeled as a finite par-
tially ordered set (poset) of events. Many operations on this poset require
computing meets and joins of subsets of events. The lattice of normal
cuts of a poset is the smallest lattice that embeds the poset such that all
meets and joins are defined. In this paper, we propose new algorithms
to construct or enumerate the lattice of normal cuts. Our algorithms are
designed for distributed computing applications and have lower time or
space complexity than existing algorithms. We also show applications of
this lattice to the problems in distributed computing such as finding the
extremal events and detecting global predicates.

1 Introduction

A distributed computation is usually modeled as a set of events ordered by the
partial order relation called the happened-before [Lam78] relation. This rela-
tion can be tracked using Mattern [Mat89] and Fidge’s vector clocks [Fid89]
which provide an efficient implicit representation of the poset of events that
happened in a distributed computation. There are numerous applications in dis-
tributed systems such as distributed debugging [CM91,GW94], and recovery of
distributed programs [SY85], that track the happened-before relation using vec-
tor clocks.

Since the joins and meets are always defined for lattices but may not exist
for a general poset, there are many fundamental and practical advantages of
working with lattices rather than posets. Given any poset, there are usually two
ways to complete it — completion by consistent cuts (or ideals) and completion
by normal cuts. The lattice of consistent cuts captures the notion of consistent
global states in a distributed computation and has been discussed extensively in
the distributed computing literature [Mat89,CM91,GM01]. The lattice of normal
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cuts has not received much attention in distributed computing. For a poset P , its
completion by normal cuts, or Dedekind-Macneille (DM) completion, denoted
by LDM (P ) is the smallest lattice that has P as its suborder [DP90]. Fig. 1(i)
shows a distributed computation with four events. Its completion by normal cuts
and consistent cuts is shown in Fig. 1(ii) and (iii), respectively.

The lattice of normal cuts is generally much smaller in size than the lattice
of consistent cuts. In the extreme case, the lattice of consistent cuts may be
exponentially bigger in size than the lattice of normal cuts. We show in this
paper that some global predicates can be detected on the lattice of normal cuts
instead of consistent cuts, thereby providing an exponential reduction in the
complexity of detecting them.
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Fig. 1: (i) The original poset. (ii) Its lattice of normal cuts (iii) Its lattice of
consistent cuts.

In this paper, we also discuss algorithms for constructing and enumerating
LDM (P ) for a distributed computation given as a finite poset P with implicit
representation (i.e., represented using vector clocks). There has been extensive
research in algorithms for the problems of DM-completion [NR99,NR02,GK98],
construction of concept lattices[Gan84], construction of maximal antichain lat-
tice [JRJ94], and construction of union-closed family of sets [NR99,NR02]. Our
work differs in principally two ways. First, our focus is on implicit representation
of posets and lattices. Most of the earlier work builds explicit cover relation of
the lattice, whereas we represent the lattice implicitly using vector clocks. We
note here that [Gar13] also uses vector clocks but for the lattice of maximal an-
tichains. Second, our work is targeted towards distributed computing traces. For
distributed computing traces, it is natural to assume that the number of events
generated by a single process is significantly more than the number of processes,
i.e., the width of the poset is much smaller than the height of the poset corre-



sponding to the computation. Also, most events in a distributed computation
are internal to the process, i.e., they do not have any interaction with other
processes. The computational complexity of our algorithm is explicitly depen-
dent on the width of the poset, and the number of message receive events in a
distributed system.

There are principally two classes of algorithms for generation of lattices.
Incremental algorithms take as input a poset P and its lattice completion L,
and output the lattice completion of the poset P extended with an element x.
The algorithms by Ganter and Kuznetsov [GK98] and Lourine and Raynaud
[NR99,NR02] fall in this class. These algorithms store the entire lattice. The
other class of algorithms, frequently used in concept analysis [GW97], only re-
quire enumeration of all elements of the concept lattice. They do not require
storage of the entire lattice (which may be exponentially bigger than the poset
itself). The algorithm by Ganter [Gan84] falls in this class. It enumerates all
elements of the lattice in a lexicographical order. To distinguish between these
two classes of lattice generation, we refer to the first class of algorithms as the
lattice construction and the second class of algorithms as the lattice enumer-
ation. In this paper, we propose algorithms for both lattice construction and
lattice enumeration adapted to distributed computations.

Table 1: Algorithms for Lattice Construction and Enumeration of Normal Cuts.

Algorithm Incremental Time Complexity Space Complexity

Ganter and Kuznetsov [GK98] Yes O(mn3) O(mn)
Nourine and Raynaud[NR99,NR02] Yes O(mn2) O(mn)

Algorithm IDML [this paper] Yes O(rwm logm) O(mw logn)
BFS [this paper] No O(mw2(w + logwL)) O(wLw logn)
DFS [this paper] No O(mw3) O(hLw logn)

Lexical by Ganter [Gan84] No O(mn3) O(n)

Table 2: The notation used in the paper

Symbol Definition Symbol Definition

n size of the poset P m size of the normal cuts lattice L
w width of the poset P r number of elements with more than one lower cover
hL height of the lattice L wL width of the lattice L.

We first propose an incremental Dedekind-Macneille lattice construction al-
gorithm called IDML which compares favorably with the algorithms proposed by
Nourine and Raynoud [NR99,NR02] for distributed computing. Let the size of
the poset be n and the size of the DM-lattice bem, then the algorithm by Nourine



and Raynoud takes O(n2m) time. The IDML algorithm takes O(rwm logm)
time where w is the width of the poset and r is the number of receive events in
the computation. For typical distributed computations, our algorithm has sig-
nificantly smaller time complexity. Moreover, Nourine and Raynoud’s algorithm
require building a special structure called a lexicographic tree with space com-
plexity O(mn). Our incremental algorithm uses a balanced binary search tree of
all the lattice elements with the space complexity O(mw log n).

For lattice enumeration, the existing algorithms use lexicographical enumer-
ation of the lattice [Gan84]. In this paper, we propose techniques for breadth-
first (BFS) and depth-first (DFS) enumeration of lattices. It is important to
note that the algorithms for BFS and DFS enumeration of lattices are different
from the standard graph-based BFS and DFS enumeration because our algo-
rithms cannot store the explicit graph corresponding to the lattice. Hence, the
usual technique of marking the visited nodes is not applicable. BFS-enumeration
and DFS-enumeration may be semantically more meaningful and useful in dis-
tributed computing than lexical enumeration. For example, while searching for
an event with a given property in a distributed computation, it is more useful
to find one at the lowest level of the lattice. Note that BFS, DFS and lexical
algorithms for enumeration of the lattice of consistent cuts (but not for the
lattice of normal cuts) have already been proposed in the distributed comput-
ing literature. For example, BFS enumeration has been proposed by Cooper and
Marzullo [CM91], DFS enumeration by Alagar and Venkatesan [AV01], and Lex-
ical enumeration by Garg [Gar03]. Due to different structure of these lattices,
the technique for BFS and DFS enumeration is quite different. For example, the
problem of determining if an element of the lattice has already been enumer-
ated is different for the two lattices. Table 1 summarizes the time and space
complexity of the lattice construction and enumeration algorithms.

The ability to construct or enumerate the lattice of normal cuts has wide
applications in many areas. We discuss distributed computing applications in
Section 6. It has applications in other areas such as formal concept analysis
[GW97] but will not be discussed in this paper.

2 Background: Posets with Implicit Representation

We assume that the reader is familiar with the basic concepts of posets and
lattices [DP90]. A partially ordered set (or poset) is a pair P = (X,≤) where X
is a set and ≤ is a reflexive, antisymmetric, and transitive binary relation on X.
A subposet of P is a subset of X whose order relation is restriction of P to the
subset. If either x ≤ y or y ≤ x, we say that x and y are comparable; otherwise,
we say x and y are incomparable. For any two elements x and y, y covers x
if x < y and ∀z ∈ X : x ≤ z < y implies z = x. A subset Y ⊆ X is called
an antichain (chain), if every distinct pair of points from Y is incomparable
(comparable) in P . The width (height) of a poset is defined to be the size of a
largest antichain (chain) in the poset.



Given a subset Y ⊆ X, the meet of Y , if it exists, is the greatest lower bound
of Y and the join of Y is the least upper bound. An element is join-irreducible
(meet-irreducible) if it cannot be expressed as the join (meet) of other elements.
A poset P = (X,≤) is a lattice if joins and meets exist for all finite subsets of X.
It is a complete lattice if joins and meets exists for all subsets of X. The largest
element of a lattice is called the top element.

Let P be a poset with a given chain partition of width w. In a distributed
computation, P is the set of events executed under the happened-before relation
where a chain corresponds to a total order of events executed on a single process.
In such a poset, every element e can be identified with a tuple (i, k), the kth event
on the ith chain. In this paper, we keep the order relation implicit using vector
clock [Mat89] as explained next. For e ∈ P , let D[e], the down-set of e be the
elements in P , that are less than or equal to e. The set D[e] can equivalently be
captured using a vector e.V such that e.V [i] = j iff there are exactly j elements
on chain i that are less than or equal to e. It is easy to verify that e ≤ f iff
e.V ≤ f.V . Fig. 2(i) and (ii) show a poset and corresponding vector clocks.

A subset Q is a consistent cut (an order ideal) of P if it satisfies the constraint
that if f is in Q and e is less than or equal to f , then e is also in Q. For any
element e ∈ P , D[e] is always a consistent cut and is called a principal ideal.
Any consistent cut Q of P can be represented using a simple vector Q.V with
the interpretation that Q.V [i] = j iff exactly j smallest elements of chain i are
in Q. Note that we have used vectors for representing events as well as set of
events. Given two consistent cuts Q and R, their intersection (union) is simply
the component-wise minimum (maximum) of the vectors for Q and R.

Just as we have constructed vectors using the down-sets, we can also use the
dual up-sets. For e ∈ P , let U [e], the up-set of e be the elements in P , that are
greater than or equal to e. The notion of order filters which are duals of order
ideals can similarly be defined.

3 Lattice Completion of a Computation

In this section, we discuss lattice-completion of a computation via normal cuts.
Given Q ⊆ P , the set of lower bounds of Q, denoted by Ql is given by

{x ∈ P |∀e ∈ Q : x ≤ e}

In Fig. 1, {c, d}l = {a}. When Q is empty, Ql is trivially the entire set P .
When Q is singleton {e}, then it simply corresponds to D[e]. In general, we can
compute Ql using D as follows:

Ql = ∩e∈QD[e]

It is easy to verify that Ql is alway a consistent cut because D[e] is a consistent
cut for any e, and consistent cuts are closed under intersection. Similarly, the set
of upper bounds of Q, denoted by Qu can be computed. In Fig. 1, {a, b}u = {d}.
The set ({a, b}u)l = {a, b, d}.



Definition 1 (Normal Cut). [DP90] A set Q ⊆ P is a normal cut if (Qu)l =
Q.

We will use the simpler notation Qul for (Qu)l. It is easily shown [DP90]
that computing Qul for any Q ⊆ P is a closure operator, i.e., (1) Q ⊆ Qul (it is
extensive), (2) Q1 ⊆ Q2 ⇒ Qul

1 ⊆ Qul
2 (it is monotone) (3) (Qul)ul = Qul (it is

idempotent). It is easy to verify that principal ideals are always normal. Indeed,
if Q = D[e], then Qu = U [e] and Qul = D[e] = Q. Since normal cuts correspond
to a closure operator, they are closed under intersection.
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Fig. 2: (i) The original poset. (ii) Equivalent representation using Vector Clocks
(iii) Its Lattice of normal cuts

Definition 2 (Dedekind–MacNeille Completion of a Poset). For a given
poset P = (X,≤), the Dedekind–MacNeille completion of P is the poset formed
with the set of all the normal cuts of P under the set inclusion. Formally,

DM(P ) = ({A ⊆ X : Aul = A},⊆).

For the poset in Figure 1(i), the set of all normal cuts is:
{{}, {a}, {b}, {a, c}, {a, b, d}, {a, b, c, d}}.
The poset formed by these sets under the ⊆ relation is shown in Figure 1(ii).
This new poset is a complete lattice. The meet of normal cuts is same as the set
intersection. The join of a set of normal cuts Q is defined as the meet of all the
normal cuts that that are greater than or equal to all the normal cuts in Q. For
example, the join of {a} and {b} is {a, b, d} because it is the meet of all normal
cuts which contain both {a} and {b}. Our original poset P is embedded in this
new structure such that x is mapped to the set D[x].

For the poset in Fig. 2, the lattice of normal cuts has 9 cuts:
{{}, {a}, {b}, {c}, {a, d}, {b, c}, {a, b, e, c}, {b, c, f}, {a, b, c, d, e, f}}. Figure 2(iii)
shows these 9 cuts in the vector clock representation. The lattice of consistent
cuts has 19 elements (not shown in the figure).



4 IDML: An Incremental Algorithm for Lattice
Completion

Let P be a poset and L be its Dedekind-Macneille lattice completion. In this
section, we present a new incremental algorithm for lattice completion in implicit
representation in which both P and L are represented using vectors. Suppose
that a new element x is added to P with the constraint that x is not less than
or equal to any of the existing elements. Our goal is to compute the lattice
completion, L′ of P ′ = P ∪ {x} given P and L. When P is a singleton, then its
completion is itself. By adding one element at a time in any linear order that
is consistent with the partial order, we can use the incremental algorithm for
lattice completion of any poset.

Our incremental strategy for the lattice completion is as follows. We show
that all the elements of L other than the top element of L are also contained in
L′. The top element of L would either be retained or modified for L′. Therefore,
except for the top, our algorithm will simply add elements to L to obtain L′.

Lemma 1. Let S be a normal cut of P = (X,≤) such that S 6= X. Then S is
also a normal cut of P ′ := P ∪ {x} where x is a maximal element of P ′.

Proof. Let T = Su in P . This implies that T l = S in P because S is a normal
cut of P . Since S 6= X, T is nonempty (because if T is empty, T l = X which is
not equal to S).

If S ⊆ D[x], then Su in P ′ equals T ∪ {x}. We need to show that Sul = S in
P ′, i.e., (T ∪{x})l = S in P ′. The set (T ∪{x})l = T l∩D[x]. Since x is a maximal
element, we know that x 6∈ T l. Since T l = S and S ⊆ D[x], T l∩D[x] = S. Hence,
S is a normal cut of P ′.

If S 6⊆ D[x], then Su in P ′ equals T . Since T is nonempty, and T l = S in P ,
we get that T l = S in P ′ as well. Hence, S is a normal cut of P ′.

Our algorithm for DM-construction is shown in Fig. 3. Whenever a new
element x arrives, we carry out three steps. In step 1, we process Y , the top
element of L; in step 2, we add a normal cut corresponding to the principal ideal
of x; and, in step 3, we process the remaining elements of L. The goal of step 1
is to ensure that L′ has a top element. The goal of step 2 is to ensure that all
principal ideals of P ′ are in L′. The goal of step 3 is to ensure that L′ is closed
under intersection. In step 3, we first check if x covers more than one element.
If it does not, then we do not have to go over all normal cuts in L because of
the following claim.

Lemma 2. If x covers at most one element in P , then for any normal cut
W ∈ L, min(W,D[x]) ∈ L assuming {} ∈ L.

Proof. If x does not cover any element of P , then D[x] = {x} and W ∩D[x] = {}
which is assumed to be in L. Now suppose that x covers just one element y, then
D[x] = {x} ∪ D[y]. Therefore, W ∩ D[x] = W ∩ D[y]. Since both W and D[y]
are normal cuts of L, so is W ∩D[y].



Input: a nonempty finite poset P , its DM-completion L, element x
Output: L′ := DM-completion of P ∪ {x}

D[x] := the vector clock for x;
Y := top(L);
newTop := max(D[x], Y );
// Step 1: Ensure that L′ has a top element

if Y ∈ P then L′ := L ∪ {newTop};
else L′ := (L− Y ) ∪ {newTop};

// Step 2: Ensure that D[x] is in L′

if (D[x] 6= newTop) then L′ := L′ ∪ {D[x]};
// Step 3: Ensure that all meets are defined

if x does not cover any element in P then
L′ := L′ ∪ {0}; // add zero vector

else if x covers more than one element in P then
for all normal cuts W ∈ L do

if min(W,D[x]) 6∈ L′ then L′ := L′ ∪min(W,D[x]);

Fig. 3: Incremental Algorithm IDML for DM-construction

We now show the correctness of the algorithm, i.e., L′ is precisely the DM-
lattice for P ′.

Theorem 1. The algorithm IDML computes DM-completion of P ′ assuming
that L is a DM-completion of P .

Proof. We first show that all cuts included in L′ are normal cuts of P ′. In step
1, we add to L′ all cuts of L except possibly top(L), and max(D[x], Y ). All
elements of L except possibly top(L) are normal cuts of P ′ from Lemma 1. The
cut max(D[x], Y ) is a cut of P ′, because it includes all elements of P ′. In step
2, we add cut D[x] to L′ which is a normal cut of P ′ because it is a principal
ideal of P ′. In step 3, we only add cuts of the form min(W,D[x]). Since both
W and D[x] are normal cuts of P ′, and the set of normal cuts is closed under
intersection, we get that min(W,D[x]) is also a normal cut of P ′.

We now show that all normal cuts of P ′ are included in L′. Let S be a normal
cut of P ′. Let Q be the set of all principal ideals of P ′. By our construction,
L′ includes all principal ideals of P ′ (because of step 2). It is sufficient to show
that L′ is closed under joins and meets. Since we have the top element in L′,
it is sufficient to show closure under meets. Let S and T be two normal cuts in
L′. If both S and T are in L, then S ∩ T is in L and therefore also L′. Now,
assume that S ∈ L′ − L. Therefore, S = W ∩D[x] for some W ∈ L. If T ∈ L,
then S ∩ T = W ∩D[x] ∩ T = (W ∩ T ) ∩D[x]. Since (W ∩ T ) ∈ L, we get that
S ∩ T ∈ L′ because of step 3. If T ∈ L′ −L, then it can be written as W ′ ∩D[x]
for some W ′ ∈ L. Therefore, S ∩ T = W ∩D[x]∩W ′ ∩D[x] = (W ∩W ′)∩D[x].
Since (W ∩W ′) ∈ L, we again get that S∩T ∈ L′. Since L′ contains all principal
ideals of P ′ and is closed under meet and join, we get that all normal cuts of P ′

are included in L′.



Note that our algorithm also gives an easy proof for the following claim.

Lemma 3. The number of normal cuts of P ∪ {x} is at most twice the number
of normal cuts of P plus two.

Proof. For every cut in L, we add at most one more cut in Step 3 of the algorithm.
Further, we add at most one cut in step 1 and one additional cut in Step 2.

We now discuss the time complexity of the IDML algorithm. Let m be the size
of the lattice L. The time complexity of the IDML algorithm is dominated by step
3. Assuming that L is kept in a sorted order (for example, in the lexicographically
sorted order) in a balanced binary search tree, the operation of checking whether
min(W,S) ∈ L can be performed inO(w logm), where w is the width of the poset
P ′. For any element for which we traverse the lattice L, we take O(wm logm)
time. If the element x covers only one element (or no elements), then we take
O(w logm) time. Suppose that there are r events in the poset that cover at
least two events. In a distributed computation, only receive events would have
this property. Then, to compute DM-Lattice of a poset P , we can repeatedly
invoke IDML algorithm in any total order consistent with P . Therefore, we can
construct DM-lattice of a poset P of width w with r elements of lower cover
of size at least two in O(rwm logm). The algorithm by Nourine and Raynoud
[NR99,NR02] takes O(n2m) time. Since n ≤ m ≤ 2n, our algorithm takes time
O(rwn log n) when m = O(n).

We also note here that given a poset P , to construct its DM-lattice, we
can restrict our attention to its subposet of irreducible elements because DM-
completion of P is identical to DM-completion of the subposet containing all its
join and meet irreducibles [DP90].

5 Traversal Based Algorithms for DM-completion

In some distributed computing applications, we may be interested not in storing
the DM-Lattice but simply enumerating all the elements of the lattice or storing
only those elements of the lattice that satisfy a given property. Recall that the
size of the DM-Lattice may be exponential in the size of the poset in the worst
case. Algorithm IDML has space complexity of O(mw log n) to store the lattice
L (there are m elements in the lattice, and each element is represented using
a w dimensional vector of entries of size O(log n)). We now give an algorithm
BFS-DML that does not require storing the entire lattice.

5.1 Breadth First Search Enumeration of Normal Cuts

The algorithm BFS-DML views the lattice as a directed graph and generates
its elements in the breadth-first-order. It is different from the traditional BFS
algorithm on a graph because we do not store the graph or keep data that
is proportional to the size of the graph (such as the nodes already visited). Let
Layer(k) be the set of nodes in the graph that are at distance k from the bottom



element of the lattice. Let wL be the size of the largest set Layer(k). Then, the
space required by BFS-DML is O(wLw log n).

The algorithm BFS-DML is shown in Figure 4. The set S is used to store
the set of nodes that have been generated but have not been explored yet. The
set is kept in a balanced binary tree so that it is easy to check if some element is
already contained in the set. We maintain the invariant that the set S contains
only the normal cuts of the poset P . The elements in the binary search tree are
compared using the function levelCompare shown in Fig. 4. For any vector a
corresponding to a consistent cut, the function a.sum() returns the number of
events in the consistent cut. At lines (1) and (2) of the function levelCompare, we
define a consistent cut to be smaller than the other if it has fewer elements. Lines
(3)-(5) impose a lexicographic order on all consistent cuts with equal number of
elements. As a result, the function levelCompare imposes a total order on the
set of all consistent and normal cuts.

The main BFS traversal of normal cuts, shown in lines (1) to (6), exploits
the fact that there is a unique least normal cut that contains any consistent cut.
The algorithm removes normal cuts from S in the levelCompare order. Let H
be the smallest vector in this order (line 2). It finds all consistent cuts reachable
from H by executing a single event e (line 4). We define an event e to be enabled
in H if H ∪ {e} is a consistent cut. It adds all normal cuts that corresponds to
“closure” of consistent cuts H∪{e} at line (5). We need to ensure that no normal
cut is enumerated twice. At line (6), we check if a normal cut is already part of
S. It can be shown that this check is sufficient to ensure that no normal cut is
enumerated twice (due to the definition of levelCompare and the BFS order of
traversal).

We now discuss the complexity of the BFS algorithm. At line (4), since
there are w processes, there can be at most w events enabled on any normal
cut H. Checking whether an event is enabled in H requires that the events
that happened-before e in poset P are included in H. This check requires O(w)
comparisons in the worst case.

To find the smallest normal cut containing Q := H ∪{e}, we simply compute
Qul. Since f ≤ g is equivalent to U [g] ⊆ U [f ], we can restrict our attention to
maximal elements of Q, i.e.,

Qu = ∩f∈maximal(Q)U [e].

Since P is represented using w chains, there are at most w maximal elements and
therefore we can compute Qu in O(w2) operations. We now take R := Qu and
compute Rl, again using O(w2) operations. Thus, step (5) can be implemented
in O(w2).

To check if the resulting normal cut K is not in S, we exploit the tree
structure of S to perform it in O(w log |S|) which is O(w logwL) in the worst
case. Hence the total time complexity of Algorithm BFS is O(mw(w2+w logwL))
= O(mw2(w+ logwL)). The main space complexity of the BFS algorithm is the
data structure S which is (wLw log n). Note that the size of S is proportional to
the size of the layer of the lattice in BFS enumeration (wL) and is much smaller
than the size of the lattice m used in the IDML algorithm.



Input: a finite poset P
Output: Breadth First Enumeration of elements of DM-completion of P
G := bottom element ;
S := TreeSet of VectorClocks initially {G} with levelCompare order;

(1) while (S is notEmpty)
(2) H := remove the smallest element from S;
(3) output(H);
(4) foreach event e enabled in H do;
(5) K := the smallest normal cut containing Q := H ∪ {e};
(6) if K is not in S, then add K to S;

int function levelCompare(VectorClock a, VectorClock b)
(1) if (a.sum() > b.sum()) return 1;
(2) else if (a.sum() < b.sum()) return -1;
(3) for (int i = 0; i < a.size(); i++)
(4) if (a[i] > b[i]) return 1;
(5) if (a[i] < b[i]) return -1;
(6) return 0;

Fig. 4: Algorithm BFS-DML for BFS Enumeration of DM-Lattice

5.2 Depth First Search Enumeration of Normal Cuts

Another useful technique to enumerate elements of the lattice is based on the
depth first search order. In BFS enumeration, the storage required is proportional
to the width of the lattice whereas in DFS enumeration the storage required is
proportional to the height of the lattice. Given any poset with n elements, the
width of its lattice of normal cuts may be exponential in the size of the poset,
but the height is always less than or equal to n. Hence, the DFS enumeration
may result in exponential savings in space.

The algorithm for DFS enumeration is shown in Fig. 5. From any normal
cut, we explore all enabled events to find the normal cuts. There are at most w
enabled events and for each event it takes O(w2) time to compute the normal
cut K at line (3). Since we are not storing the enumerated elements explicitly,
we need a method to ensure that the same normal cut is not visited twice. For
example, in Fig. 1, the normal cut {a, b, d} is reachable from {a} as well as {b}.
Let pred(K) be the set of all normal cuts that are covered by K in the lattice.
We use the total order levelCompare defined in Section 5.1 on the set pred(K).
We make a recursive call on K from the normal cut G iff G is the maximum
normal cut in pred(K) in the levelCompare order. Line (4) finds the maximum
predecessor M using the traversal on the dual poset P d. The dual of a poset
P = (X,≤) is defined as follows. In the poset P d, x ≤ y iff y ≤ x in P . It is
easy to verify that S is a normal cut in P iff Su is a normal cut in P d. The
function get-Max-Predecessor, shown in Fig. 5 uses expansion of a normal cut in
the poset P d to find the maximum predecessor.



Input: a finite poset P , starting state G
Output: DFS Enumeration of elements of DM-completion of P

(1) output(G);
(2) foreach event e enabled in G do
(3) K := smallest normal cut containing Q := G ∪ {e};
(4) M := get-Max-predecessor(K) ;
(5) if M = G then
(6) DFS-NormalCuts(K);

function VectorClock get-Max-predecessor(K) {
//takes K as input vector and returns its maximum predecessor normal cut

(1) H = MinimalUpperBounds(K); // H := Ku

(2) // find the maximal predecessor using normal cuts in the dual poset
(3) foreach event f enabled in the cut H in P d do
(4) tempf := H − {f}; // advance on event f in P d from cut H;
(5) // get the set of lower bounds on tempf
(6) pred := MaximalLowerBounds(tempf ) using Hl;
(7) if (levelCompare(pred, maxPred) = 1) then maxPred = pred;
(8) return maxPred;

Fig. 5: Algorithm DFS-DML for BFS Enumeration of DM-Lattice

The function get-Max-predecessor works as follows. At line (1), we compute
H = Ku, which is the normal cut in P d corresponding to K. Our goal is to
compute all predecessors of K in P which corresponds to all successors of H
in P d. To find successors of H, we consider each event f enabled in H in P d.
At line (4), we compute the consistent cut tempf . The closure of tempf in P d

equals tempulf in P d. Equivalently, we can compute templuf in P . The closed set

templuf in P d corresponds to the closed set templulf in P . However, we know that

templulf is equal to templf . Therefore, by computing templf for each f enabled in

H, we get all the predecessors of K in P d. Since there can be w events enabled
in H in P d, and it takes O(w2) time to compute each predecessor, it would take
O(w3) to determine the maximum predecessor. However, since tempf and H
differ on a single event, we can compute templf using H l = K in O(w) time.
By this observation, the complexity of computing max-predecessor reduces to
O(w2), and the total time complexity to determine whether K can be inserted
is O(w2).

In line (5) of DFS-DML, we traverse K using recursive DFS call only if M
equals G. Since the complexity of step (3) and step (4) is O(w2), the overall
complexity of processing a normal cut G is O(w3) due to the foreach at line (2).
Since there are m normal cuts, we get the total time complexity of DFS-DML
algorithm as O(mw3).

The main space requirement of the DFS algorithm is the stack used for
recursion. Every time the recursion level is increased, the size of the normal
cut increases by at least 1. Hence, the maximum depth of the recursion is n.
Therefore, the space requirement is O(nw log n) bits because we only need to



store vectors of dimension w at each recursion level. Hence, the DFS algorithm
takes significantly less space than the BFS algorithm.

6 Applications of Normal Cuts in Distributed Systems

6.1 Finding the Meet and Join of Events

Suppose that there are two events x and y on different processes that correspond
to faulty behavior. It is natural to determine the largest event, z, in the compu-
tation that could have affected both x and y. The event z is simply the meet of
events x and y if it exists in the underlying computation. For example, in Fig.
2(a), suppose that the faulty events are {d, e}. In this case, the “root” cause of
faults of these events could be event a. In the vector clock representation, the
root cause is (1, 0, 0) in the DM-Lattice. Now consider the case when the set of
faulty events is {e, f}. In this case, the underlying computation does not have a
unique maximum event that affects both e and f . It can be seen in Fig. 2(a) that
both the events b and c could be the “root” cause of the events e and f . This is
exactly what we would get from the lattice of normal cuts. The largest normal
cut that is smaller than both events e with vector clock (1, 2, 1) and event f with
vector clock (0, 1, 2) equals the vector (0, 1, 1) which correctly identifies the set
of events that affect both e and f .

Dually, we may be interested in the smallest event z that happened-after a
subset of events. In a distributed system, an event z can have the knowledge
of event x only if x happened-before event z. If two events x and y happened
on different processes, the minimum event z that knows about both x and y
corresponds to their join.

6.2 Detecting Global Predicates in Distributed Systems

A global predicate on a distributed computation is a boolean function B defined
on its set of consistent cuts. If B is true on a consistent cut G, then we denote it
as B(G). The problem of detecting a global predicate possibly : B corresponds
to determining if there exists a consistent cut G in the computation that satis-
fies B. The global predicate detection problem is NP-complete [CG98] even for
the restricted case when the predicate B is a singular 2CNF formula of local
predicates [MG01]. The key problem is that the lattice of consistent cuts LCGS

may be exponential in the size of the poset. The lattice of normal cuts, LDM of
a poset P is a suborder of the LCGS (every normal cut is consistent, but every
consistent cut may not be normal). Its size always lies between the size of the
poset P and the size of the lattice of consistent cuts of P . In particular, it may
be exponentially smaller than LCGS . We now show that a class of predicates
can be efficiently detected by traversing the lattice of normal cuts rather than
LCGS .

The class of predicates we discuss are based on the idea of knowledge in a dis-
tributed system[HM84]. We define knowledge predicates based on the happened-
before relation. We use the notation G[i] to refer to events of G on process i.



Definition 3. Given a distributed computation, or equivalently a poset (P,≤),
we say that every one knows the predicate B in the consistent cut G, if there
exists a consistent cut H such that H satisfies B and for every process i there
exists an event e in G[i] such that all events in H happened before e. Formally,
E(B,G) ≡ ∃H : B(H) ∧ ∀i∃e ∈ G[i] : ∀f ∈ H : f ≤ e.
We also define E(B) ≡ ∃G : E(B,G)

Intuitively, the above definition says that a predicate is known to everyone
in the system if every process has a consistent cut in its past in which B was
true. The definition captures the fact that in a distributed system, a process can
know about remote events only through a chain of messages.

We now show that instead of traversing LCGS we can traverse LDM to detect
E(B) for any global predicate B.

Theorem 2. Let B be any global predicate and G be a consistent cut such that
E(B,G). Then, there exists a normal cut N such that E(B,Nu).

Proof. Since everyone knows B in G, by the definition of “everyone knows”, we
get that there exists a consistent cut H ⊆ G such that B is true in H and every
process in G knows H. Let K be the set of all consistent cuts that know H. The
set is nonempty because G ∈ K. Furthermore, it is easy to show that the set K
is closed under intersection. The least element K of the set K corresponds to the
minimal elements of the filter Hu. Hence, we conclude that E(B,K).

Define N to be the consistent cut corresponding to Hul. It is clear that N
is a normal cut because it corresponds to the closure of H. Moreover, Nu =
Hulu = Hu = K. The first equality holds by the definition of N and the second
equality holds due to properties of u and l operators. Since K equals Nu, from
E(B,K) we get that E(B,Nu).

7 Conclusions and Future Work

We have proposed algorithms for the construction and enumeration of the lattice
of normal cuts of a poset of a distributed computation. We have also shown their
application to distributed computing.

It is clear that enumeration or construction of a lattice of size m in which
each element is represented using w log n bits requires Ω(mw log n) time. The
problem of finding an algorithm that matches the lower bound is open.
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