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Abstract
Verifying the correctness of executions of concurrent and distributed programs is difficult

because they show nondeterministic behavior due to different process scheduling order. Predicate
detection can alleviate this problem by predicting whether the user-specified condition (predicate)
could have become true in any global state of the given concurrent or distributed computation.
The method is predictive because it generates inferred global states from the observed execution
path and then checks if those global states satisfy the predicate. An important part of the
predicate detection method is global states enumeration, which generates the consistent global
states, including the inferred ones, of the given computation. Cooper and Marzullo gave the first
enumeration algorithm based on a breadth first strategy (BFS). Later, many algorithms have
been proposed to improve the space and time complexity. Among the existing algorithms, the
Tree algorithm due to Jegou et. al. has the smallest time complexity and requires O(|P |) space,
which is linear to the size of the computation P . In this paper, we present a fast algorithm,
QuickLex, to enumerate global states in the lexical order. QuickLex requires much smaller space
than O(|P |). From our experiments, the Tree algorithm requires 2–10 times more memory space
than QuickLex. Moreover, QuickLex is 4 times faster than Tree even though the asymptotic
time complexity of QuickLex is higher than that of Tree. The reason is that the worst case
time complexity of QuickLex happens only in computations that are not common in practice.
Moreover, Tree is built on linked-lists and QuickLex can be implemented using integer arrays. In
comparison with the existing lexical algorithm (Lex), QuickLex is 7 times faster and uses almost
the same amount of memory as Lex. Finally, we implement a parallel-and-online predicate
detector for concurrent programs using QuickLex, which can detect data races and violation of
invariants in the programs.
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1 Introduction

The technique of predicate detection is first proposed for distributed debugging [6]. Many
tools also use this technique for detecting various types of bugs in concurrent systems
[5, 10, 22, 17]. The problem of predicate detection is to detect if the user-specified condition
(or simply predicate) could happen in the given concurrent or distributed computation, which
models the execution trace of concurrent or distributed programs as a partially ordered set
(poset) of events; each event corresponds to an operation of the program. On this poset, the
inferred consistent global states of the system are generated and checked if any one of them
satisfies the predicate.
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Figure 1 (a) The captured logical order between events, which form a poset. The dashed lines

are consistent global states of the program. (b) The relationship of the set of consistent global states.

We use Fig. 1a to explain the technique of predicate detection. In this computation, the
event e2, which occurs on process p1, sends a message to event e4, which occurs on process
p2. Because of the message, the causal dependency between e2 and e4 is established. We
assume that the messages may have arbitrary delays but no process exhibits faulty behavior.
Informally, a global state is consistent if there exists an execution path to reach the state. In
Fig. 1a, the dashed lines show all consistent global states of the computation and each global
state contains all the events to the left of the corresponding dashed line. For example, the
global state G4 contains events e1, e2, and e3.

Fig. 1b shows the relationship of the consistent global states in Fig. 1a. Assume that the
sequence G1, G2, G3, G5, G6, G8 of global states is the observed execution of the program.
The objective of predicate detection is to generate the inferred global states G4 and G7.
Hence, we do not need to re-execute the program in order to reach G4 and G7. In this paper,
we study the method for enumerating all consistent global states, including the inferred ones,
of the given computation. From now on, the term computation refers to a concurrent or a
distributed computation, the term processes refers to threads in a concurrent computation
or processes in a distributed computation, and the term global state means consistent global
state; unless specified otherwise.

Enumerating all global states of a computation P requires exponential time because the
number of global states, i(P ), grows exponentially in n, which is the number of processes in
the computation. With some particular assumptions, it may be reduced to polynomial time
because only a partial set of global states is enumerated [10, 18, 24, 25, 27]. If no assumption
is made regarding the predicate, i.e., the enumeration algorithm is general-purpose, then
enumerating every global state is necessary. Thus, the time complexity of a general-purpose
algorithm can be calculated by multiplying i(P ) by the time complexity per global state, which
is the time to advance from one global state to the other. For simplicity, we use the time
complexity per global state to represent the time complexity of a general-purpose algorithm.

Cooper and Marzullo [6] gave the first general-purpose enumeration algorithm based on a
breadth first strategy (BFS) that requires O(n3) time and exponential space in n, which is the
number of processes in the computation P . Alagar and Venkatesan [2] presented the notion of
global interval which reduces the space complexity to O(|P |). Steiner [29] gave an algorithm
that uses O(|P |) time, and Squire [28] further improved the computation time to O(log|P |).
Pruesse and Ruskey [26] gave an algorithm that enumerates global states in a combinatorial
Gray code manner. The algorithm uses O(|P |) time and can be reduced to O(∆(P )), where
∆(P ) is the maximal in-degree of any event; however, the space grows exponentially in |P |.
Later, Jegou et al. [19] and Habib et al. [15] improved the space complexity to O(|P |).
Ganter [11] presented an algorithm, which enumerates global states in lexical order, and Garg
[12] gave an implementation using vector clocks [9, 23]. The lexical algorithm requires O(n2)
time, but the algorithm requires no additional space besides the input, i.e., the computation.
Note that the space complexity of an enumeration algorithm only considers the memory
space that stores the intermediate information during the enumeration. Table 1 summarizes
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Table 1 Time and space complexity of algorithms.
Algorithms Time per Global State Space
Cooper–Marzullo [6] O(n3) exp. in n
Alagar–Venkatesan [2] O(n3) O(|P |)
Steiner [29] O(|P |) not available
Squire [28] O(log|P |) not available
Pruesse–Ruskey [26] O(|P |) exp. in |P |
Jegou and Habib et al. [19, 15] O(∆(P )) O(|P |)
Lexical [11, 12] O(n2) O(1)
QuickLex O(n·∆(P )) O(n2) †)

†) n is the number of processes in the computation P . Thus, n2 is usually much smaller than |P |
because |P | = n×m, where m is the least number of events per process and m >> n.

the time and space complexity of the algorithms and Table 4 in Appendix A lists the symbols
that are used in this paper.

In this paper, we present QuickLex — a fast algorithm for global states enumeration in
lexical order. In comparison with the existing lexical algorithm (Lex) [11, 12], QuickLex
reduces the time complexity from O(n2) to O(n·∆(P )). The time complexity can be reduced
to O(n) for the commonly used computations [5, 21, 10, 15, 19], in which most events send
and receive at most one message.

Both QuickLex and Lex algorithms enumerate global states in the same order. However,
they are fundamentally different in computing the next global state in the lexical order.
The Lex algorithm simply uses the current global state and vector clocks to determine the
next global state. Thus, it has to repeatedly calculate the information that is reusable.
QuickLex reduces the computational cost using two approaches. First, it preprocesses the
computation and pre-calculates the statically reusable information. Second, it incorporates
dynamic programming to reuse the dynamic information during the enumeration.

We evaluate QuickLex using multiple benchmarks including four computations that are
captured from the executions of real-world applications. In our experiments, QuickLex is 7
times faster than the Lex algorithm [11, 12] and 4–5 times faster than the Tree algorithm
[15, 19]. We note here that QuickLex is faster than the Tree algorithm even though the
asymptotic worst case time complexity for the Tree algorithm is lower. There are two reasons
for this. First, the time complexity of QuickLex is calculated as the worst case, which is not
a common computation in practice. Second, the Tree algorithm needs to store its temporary
information, which is a spanning tree, in a linked-list, which induces large overhead during
enumeration. As far as space complexity is concerned, QuickLex uses almost the same
amount of memory as Lex, which shows that the extra space for dynamic programming in
QuickLex is quite small. The Tree algorithm uses 2–10 times more memory than QuickLex.

In [4], we have discussed a technique, named ParaMount, to decompose any lattice of
global states into multiple sublattices and to enumerate those using Lex in a parallel-and-
online fashion. Since Lex and QuickLex are similar, we can easily speed up ParaMount
by replacing Lex with QuickLex. The experimental results show that QuickLex speeds up
ParaMount by a factor of 3. The technique in [4] focuses on the high-level parallelization of
the enumeration of consistent global states, which uses sequential enumeration algorithms
for its subroutines. In this paper, we focus on the fast sequential enumeration algorithm.

The rest of the paper is organized as follows. Section 2 gives the model of computation.
Section 3 presents the algorithm of QuickLex. Section 4 shows the experimental results.
Section 5 discusses the applications of QuickLex. Section 6 concludes this paper.
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Figure 2 (a) A computation is composed of a partially ordered set (poset) of events. G and G′′

are consistent global states and G′ is an inconsistent global state. (b) The vector clocks of the events.
(c) The distributive lattice formed by the set of consistent global states of the computation.

2 The Model of Computations

The observed execution of the program is modeled as a computation that is composed of
a poset P = (E,→) of events, which contains a set E of events together with Lamport’s
happened-before (HB) relation → [20]. Fig. 2a shows a graphical representation of a
computation with three processes p1, p2, and p3. The horizontal arrows represent the total
order of the events that occur on the same process. The arrows between two events that
occur on different processes represent messages. The HB relation between two events e and
f is established by the following rules:
1. If e occurs before f on the same process, then e→ f .
2. If e sends a message and f receives the message, then e→ f .
3. If e→ g and g → f , then e→ f .

In the computation, the HB relation between events is captured using vector clocks [9, 23].
A vector clock, vc, is an array of integers. For an event e, which occurs on process pi, the
integer e.vc[i] is the index of e among the events that occur on pi. For j 6= i, e.vc[j] is the
largest index of event f among the events that occur on process pj such that f → e. For
instance, the vector clock of event e7 in Fig. 2b is [0, 2, 3], which means the index of the
current event e7 is 3. Moreover, the event e3, which has index 2 in p2, happened before e7.

2.1 The Lattice of Consistent Global States
A consistent global state G is a subset of E, such that if G includes any event f , then it also
includes all events that happened before f [3]. Formally, G ⊆ E is a consistent global state if

∀e, f : (f ∈ G) ∧ (e→ f)⇒ (e ∈ G).

In Fig. 2a, for instance, the global states G and G′′ are consistent and G′ is not, because
e3→ e6 but e3 6∈ G′.

A global state can equivalently be identified by the maximal events of each process. These
maximal events are simply represented by an array of integers, in which the i-th integer
indicates the index of the maximal event among the events that occur on process pi. If the
index is zero then no event on the corresponding process is included in the global state. For
instance, G′′ in Fig. 2a is represented by [1, 2, 2]. The symbol G[i] denotes the maximal event
of process pi in G, e.g., G′′[2] refers to event e3.
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The set of consistent global states forms a distributive lattice [7]. Fig. 2c shows the
lattice that is formed by the consistent global states of the computation. Each node of the
lattice corresponds to a consistent global state and the edge label denotes the event that
takes the system from one consistent global state to the other. The objective of QuickLex is
to enumerate the lattice of consistent global states of the computation in the lexical order.
From now on, the term global state means consistent global state; unless specified otherwise.

2.2 Lexical Order among the Global States of the Computation
A lexical algorithm explores the lattice of global states using a pre-defined total order, called
lexical order (denoted ≺), among the global states. The order ≺ is defined on global states
as follows:

G ≺ G′ ⇔ ∃k : (∀i : 1 ≤ i < k : G[i] = G′[i]) ∧ (G[k] < G′[k]),

where G and G′ are two arbitrary global states in the lattice. In Fig. 2c, the lexical order of
the two global states G2 = [0, 0, 1] and G3 = [0, 1, 0] is G2 ≺ G3. The number of each global
state in Fig. 2c is its lexical order among the global states in the lattice.

2.3 Remote Events and Predecessor of an Event
If an event r sends a message to an event e, r is the remote event of e. Formally, an event r

is a remote event of event e if 1) r → e, 2) r and e occur on different processes, and 3) there
does not exist any event f such that r → f → e. If an event does not have any remote event,
it is a local event. In Fig. 2a, for example, event e6’s remote event is event e3. Similarly,
event d is the predecessor of e if 1) d→ e, 2) d and e occur on the same process, and 3) there
does not exist any event f such that d→ f → e. In Fig. 2a, event e6’s predecessor is e5.

3 QuickLex

3.1 Overview
For simplicity, we consider the array of indices of a global state as a number and each index
is a single digit of that number. Fig. 3 shows the mapping between an array of indices and a
number of digits. In a global state, the processes at the left are high priority processes and
those at the right are low priority processes.

Number =  1  2  ...  2 

digits

digits: high order low order

indices

Global State = [1, 2, ..., 2] 
p2p1 pn

processes: high priority low priority

Figure 3 A number consists of
multiple digits and the array of in-
dices, which is considered as a num-
ber and each index is considered as
a digit of that number.

Algorithm 1 QuickLex(P )
Input: A computation P with L as the least global state

and M as the greatest global state.
1: G := L . Use L as the initial global state.
2: for every event e in P do locateRemoteEvents(e)
3: initialStacks()
4: while true do
5: enumerate(G) . Evaluate the predicate on G.
6: k := propagate(M) . Find pk to propagate.
7: if k < 1 then break . true: no process to propagate.
8: G[k] := G[k] + 1 . Add the new event ek into G.
9: reset(k) . Reset the maximal events of lower

priority processes, i.e., pk+1 to pn.
10: end while
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To advance from one global state to the other (which is also referred as one iteration in
this paper) in the lexical order, we use the notion of carrying over from algebraic addition, in
which we continuously add one to the low-order digit of a number and propagate the carry
to a higher order digit that has not reached its limit. Then, all lower order digits are reset
to their least value. Similarly, QuickLex contains two main parts. The first part adds the
next event of the least priority process pn into the current global state. If the next event
of pn is not available (e.g., if the limit of the digit is reached), the carry is propagated to a
higher priority process, say pk. The second part resets the maximal events of lower priority
processes, i.e., p(k+1) to pn. The challenge for the two parts is that the limit and the least
value of a digit are not fixed; they dynamically change with the values of other digits.

Algorithm 1 shows the pseudo code of QuickLex, which takes as input a computation
P . The least global state L and the greatest global state M of P are acquired from the
computation itself and no additional calculation is needed. Take Fig. 2a for example,
where L = [0, 0, 0] and M = [1, 3, 3]. QuickLex enumerates every global state G such that
L � G � M . The function locateRemoteEvents at line 2 pre-calculates the reusable
information for the propagate procedure. The function initializeStack at line 3 initializes
the memory space for dynamic programming, which speeds up the reset procedure.

Part 1 (lines 6-8): Informally, an event is enabled if it can be added into the current
global state G without violating the consistency of G. Therefore, there might be multiple
enabled events with respect to G. Since we enumerate global states in the lexical order, the
propagate procedure locates the enabled event that occurs on the process that has the least
priority, say pk. If k is 0, then the next global state has exceeded the maximal global state
M and hence the enumeration is terminated; otherwise, the enabled event is added into G.

When k is decided by the propagate procedure, the processes in the computation are
divided into two sets: Ph and Pl. The set Ph contains the processes whose priorities are
higher or equal to process pk, and Pl contains those whose priorities are lower than pk. In
Fig. 2a, for example, if k = 2, then Ph = {p1, p2} and Pl = {p3}. From now on, the symbols
ph and pl denote an arbitrary process in Ph and Pl, respectively. Moreover, h ≤ k < l.

Part 2 (line 9): After part 1, the maximal events for Ph are decided and fixed. Thus,
we need to ensure that all the events of Pl that happened before the events of Ph will be
included in the next global state. We define the maximum dependency event of any process
pl as the event, which has the largest index among the events that occur on pl, that has to
be included in G due to the consistency of the HB relation. The procedure reset finds the
maximum dependency event for every pl.

The details of the first and second part of QuickLex are described next.

3.2 Part 1: Procedure propagate and the Enabled Event ek

We first use Fig. 2 to show how part 1 works during an iteration of QuickLex. Assume that
the current global state is G2 = [0, 0, 1] and thus the next global state to be enumerated is
G3 = [0, 1, 0]. The advance from G2 to G3 is shown as a dashed arrow in Fig. 2c. First, event
e6 is considered as the next event to be added into G2. However, e6 cannot be included in
G2 because e3→ e6 and e3 6∈ G2, i.e., e6 is not enabled. Thus, the carry is propagated to p2.
Since event e2 is enabled, it is added to G2. Now, we have reached an intermediate global
state [0, 1, 1]. In this example, the maximal event G[3] of p3 will be reset to 0 in the second
part of QuickLex and hence G3 = [0, 1, 0] is reached.

I Definition 1. An event e is enabled in a global state G iff all events that happened before
e are included in G.
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Algorithm 2 Locate the set R(e) of remote events for event e

1: function locateRemoteEvents(e)
2: Let d be e’s predecessor.

. Find the new HB relation on event e.
3: for i from 1 to n except e.pid do . e.pid

is the id of the process on which e occurs.
4: if d.vc[i] 6= e.vc[i] then Add

event(i, e.vc[i]) into RCandidate.
5: end for

. Find the direct HB relation on event e.
6: for every r ∈ RCandidate do
7: Let r′ be any other event in

RCandidate.
8: if r.vc[r.pid] is larger than all r′.vc[r.pid]

then Add r into R(e).
9: end for

10: end function

Algorithm 3 Procedure propagate and Function isEnabled
Input: The maximal global state M .
Output: The process pk to propagate.
1: procedure propagate(M)
2: for k from n to 1 do . From pn to p1.
3: if G[k] + 1≤M [k] then . G + ek �M

4: ek := the next event on process pk.
5: if isEnabled(ek) then return k

6: end if
7: end for
8: return 0 . No process to propagate.
9: end procedure

Input: The next event ek on process pk.
Output: Returns true if ek is enabled w.r.t. G.
10: function isEnabled(ek)
11: if ek is a local event then return true
12: if ∀r∈R(ek) s.t. r.vc[r.pid] > G[r.pid]

then return true . r.pid is the id of the
process on which r occurs.

13: return false
14: end function

Assuming that event e occurs on process pi, this condition can be determined using the
property of vector clocks [9, 23]: (e.vc[i] = G[i] + 1)∧ (∀j 6= i : e.vc[j] ≤ G[j]). Unfortunately,
it takes O(n) time to compare the vector clocks in the later part of the condition. QuickLex
uses the following theorem to reduce the time complexity to O(∆(P )), where ∆(P ) is the
maximal number of remote events for any event:
I Theorem 1. Let R(e) be the set of remote events of event e, which occurs on process pi,
and event d be the predecessor of e, then e is enabled iff d ∈ G and ∀r ∈ R(e) : r ∈ G.
Proof. In Appendix B. J

Theorem 1 reduces the computational cost of the procedure that determines whether event e

is enabled by ignoring the events that transitively happened before e. For example, if event e

is a local event, which does not have any remote event, then e is enabled when its predecessor
is included in G. In a computation P , ∆(P ) is at most (n− 1) because there are at most
(n− 1) events that occur on different processes and send messages to e. If any event in P

can have at most one remote event [5, 21, 10, 15, 19], then ∆(P ) can be reduced to O(1).
Algorithm 2 uses the property of vector clocks to locate the set R(e) of remote events

for any event e. The function has two steps. In the first step (lines 2-5), the vector clock
of e and that of e’s predecessor are compared. If the i-th value (except the one for e itself)
of e’s vector clock is updated, then a new HB relation is established between e and event(i,
e.vc[i]), which is the event, whose index is e.vc[i], that occurs on process pi. However, we are
interested in only direct HB relation because of Theorem 1. Thus, the second step (lines 6-9)
uses another property of vector clocks: if event r has not happened-before event r′, then
the vector clock of r′ does not contain r’s latest clock value, i.e., r.vc[r.pid], where pid is
the id of the process on which r occurs. Note that Algorithm 2 is invoked only once in the
beginning of QuickLex and the calculated R(e) for event e is reused during the enumeration.

Algorithm 3 shows the procedure propagate. The procedure decides which process to
propagate starting from the least to the highest priority processes in order to follow the
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Figure 4 The symbol Xl(i) denotes the function max1≤j≤iG[j].vc[l]. The upside-down stack5

on the right is the actual stackl that is used by QuickLex.

lexical order. Moreover, the event that occurs after the currently maximal event of process
pk is chosen. Thus, the predecessor of ek is always included in G. The function isEnabled
checks if either one of the following two conditions holds to determine whether ek is enabled:
1) ek is a local event or 2) all remote events of ek are included in G. If any event in the
computation has at most one remote event, then isEnabled takes constant time. If ek is
enabled, then propagate has found the process pk and it returns k. If the process pk does
not exist, which implies that M is reached, then propagate returns 0.

3.3 Part 2: Procedure reset and the Maximum Dependency Events
The maximal events of Pl are not always reset to index 0. Assume that we are advancing
from G12 = [0, 3, 3] to G13 = [1, 1, 0] in Fig. 2. After propagate decides k = 1, we reach the
intermediate global state [1, 3, 3]. However, we cannot simply reset the global state to [1, 0, 0]
because it is not consistent; it includes e1 but does not include e2 even though e2→ e1 (see
Fig. 2a). So, the procedure reset has to find the maximum dependency events of p2 and p3
that would satisfy the consistency of the global state.

From now on, the symbol Gm[l] denotes the maximum dependency event of pl, which
becomes the maximal event G[l] of pl after reset. When ek is decided, the maximal events
of Ph are also decided. The maximum dependency event Gm[l] for every pl can be calculated
using the property of vector clocks:

Gm[l] = max
1≤j≤n

(G[j].vc[l])

For simplicity, the expression max1≤j≤i(G[j].vc[l]) is denoted by the symbol Xl(i) from now
on. Fig. 4 shows how the maximum dependency event Gm[l] of a process pl is identified
by Xl(n). In Fig. 4, the events e1, e2, e3, and e4 are four events that occur on process p5.
Assume that their indices are 1, 2, 3, and 4, respectively. Suppose that k = 4. Thus, G[4] is
the new event ek. The fifth indices of the vector clocks of the maximal events of p1, p2, p3,
and p4 are shown in the figure (i.e., G[1].vc[5], G[2].vc[5], G[3].vc[5], and G[4].vc[5]). The
bold arrows between events are the HB relations that are obtained from these indices. Since
G[3].vc[5] has the largest index, i.e., 4, it follows that e4 is the maximum dependency event
of p5. In other words, Gm[5] = X5(4) = 4.

In fact, Gm[l] can be identified by Xl(k) instead of Xl(n):
I Theorem 2. For a global state G, k, and any process pl, Xl(i) = Xl(k) for all i > k.
Proof. Assume that the condition is not true, i.e., ∃i : i > k : Xl(i) > Xl(k). The condition
implies that Gm[l]→ ei, which is an event that occurs on process pi. Because i > k, we get
pi ∈ Pl and thus ei → Gm[i]; so ei is included in G. Moreover, since Gm[i] is a maximal
dependency event, there exists an event eh such that Gm[i] → eh, where eh occurs on a
process ph, where h ≤ k.
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Algorithm 4 Incremental update of array
Xl

Input: The process id of pl, the decided k,
and ∀i : 1 ≤ i ≤ n : Xl[i] = Xl(i) w.r.t.
global state F .

Output: ∀i : 1 ≤ i ≤ n : Xl[i] = Xl(i) w.r.t.
global state G.

1: function updateArrayX(l, k)
2: Xl[k] := max

(
Xl[k − 1], G[k].vc[l])

)
3: for i from (k +1) to n do Xl[i] := Xl[k]
4: end function

Algorithm 5 Initialize stacks for every process
1: function initializeStacks()
2: for i from 1 to n do . For every process pi in

P .
3: push [p1 : G[1].vc[i]] into stacki

4: for j from 1 to (i− 1) do . k < i is always
true.

5: if top.val < G[j].vc[i] then
6: push [pj : G[j].vc[i]] into stacki

7: end for
8: end for
9: end function

Due to the transitivity of HB relation, we get Gm[l]→ ei → Gm[i]→ eh and hence Xl(h)
also contains the largest value of Xl(i). Since h ≤ k < i, we get Xl(h) = Xl(k) = Xl(i),
which contradicts the assumption. J

According to Theorem 2, Xl(k) has had the largest clock value among Xl(i) for all i.
Consequently, Gm[l] can be identified by Xl(k). Now we show how to calculate the value of
Xl(k) in amortized constant time for each iteration using dynamic programming. It is easy
to see that the value of Xl(i) can be represented with the following recursive equation:

Xl(i) =
{

G[1].vc[l], if i = 1
max

(
Xl(i− 1), G[i].vc[l]

)
, otherwise

(1)

We use an auxiliary integer array Xl for each process pl, in which each value Xl[i] stores the
true value of Xl(i). Note that Xl(i) is the true value of max1≤j≤i(G[j].vc[l]) and Xl[i] is a
calculated result. The array Xl has to satisfy the invariant:
∀i : 1 ≤ i ≤ n : Xl[i] = Xl(i)

For any global state G and a given k, we can calculate the array Xl for each process
pl with respect to G. Assume that F is the previous global state of G in the lexical order.
Instead of calculating the array Xl for G from scratch, we incrementally construct Xl from
that of F . The incremental update procedure is shown in the function updateArrayX in
Algorithm 4.

I Theorem 3. Function updateArrayX maintains the invariant of Xl after the incremental
update.
Proof. We consider the three intervals of the values in Xl:

(a) i < k: Since the maximal events of Ph are not changed, the true values of Xl(i) for
i < k remain the same. Thus, updateArrayX does not need to update Xl[i] for i < k.

(b) i = k: Xl[i] is updated at line 2 using equation (1), where the true value of Xl(i− 1)
is obtained from Xl[i− 1].

(c) i > k: Xl[i] is updated at line 3 using Theorem 2. J

Since the results of Xl are non-decreasing, we only need to store the values that are
larger than their previous one and the process ids of the events that provide the values. For
instance, stack5 in Fig. 4 is the actual stack (which is shown upside down) for storing the
results of X5. In stack5, the top entry [p3 : 4] means X5[3] = X5[4] = · · · = X5[n] = 4 and
the bottom entry [p1 : 2] means X5[1] = X5[2] = 2.
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Algorithm 6 Function updateStack and Procedure reset
Input: The process id of pl and the decided k.
Output: The top value of stackl is G[l].
1: function updateStack(l, k)
2: pop stackl until top.pid ≤ k.
3: if top.val < G[k].vc[l] then
4: if top.pid = k then top.val := G[k].vc[l]
5: else push [pk : G[k].vc[l]] into stackl

6: end if
7: end function

Input: The decided k.
Output: The maximum dependency events of

Pl are found.
8: procedure reset(k)
9: for l from (k + 1) to n do

10: UpdateStack(l, k)
11: G[l] := top.val . Set G[l] to Gm[l].
12: end for
13: end procedure

Algorithm 5 constructs the stacki of each process pi for the initial global state of a
computation, which is [0, 0, ..., 0]. Although k does not exist in the initial global state,
we know that k < i for each process pi because of the definition of Pl. Therefore, it
is safe to assume that k = (i − 1) when constructing stacki. It is easy to see that the
construction of stacki is equivalent to the construction of the array Xi. Moreover, the
function updateArrayX in Algorithm 4 can be converted to the function updateStack in
Algorithm 6. Line 2 of updateArrayX is equivalent to lines 2-6 of updateStack and line
3 of updateArrayX is achieved by the property of stackl.

I Theorem 4. Gm[l] can be identified using stackl in an amortized constant time per global
state.

Proof. At line 2 of Algorithm 6, if stackl pops m entries, then there exist m iterations that
cumulatively pushed m entries into stackl. Therefore, the cost of the pop operations can
be evenly charged to the m iterations and be reduced to amortized constant time. The
operations at lines 4 and 5 take constant time. As a result, the time complexity for updating
a stack is amortized constant time per global state. J

Finally, lines 8-13 of Algorithm 6 shows the procedure reset, which updates stackl for every
pl. The maximum dependency event of pl is identified from the top entry of stackl.

3.4 The Correctness and Worst Time Complexity of QuickLex
I Theorem 5. QuickLex enumerates the lattice of global states of a computation in the
lexical order such that every global state is enumerated exactly once.

Proof. Assume that F is the previously enumerated global state and G is the current global
state to be enumerated.

Lexical Order: Since propagate adds a new event ek to F , we get ∃k : (∃i : 1 ≤ i <

k : F [i] = G[i]) ∧ (F [k] < G[k]) and hence F ≺ G.
Exactly Once: Since F ≺ G, every global state is enumerated at most once. We

next show that every global state is enumerated at least once. Since F ≺ G, we get
∀i : 1 ≤ i < k : F [i] = G[i] and G[k] = F [k] + 1. Assume that F ′ is a consistent global state
such that F ≺ F ′ ≺ G. We consider the following cases:

(a) F ′[k] < F [k]: This case implies that F ′ ≺ F , which contradicts the assumption
F ≺ F ′.

(b) F ′[k] = F [k]: Since F ≺ F ′, this case implies that there exists a process pk′ such that
k′ > k and pk′ has an enabled event w.r.t. F . However, propagate locates the enabled
event from pn to p1 and hence k′ ≤ k. A contradiction.
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(c) F ′[k] = F [k] + 1 = G[k]: After reset, any pl cannot have a maximal event that is
smaller than its maximum dependency event Gm[l] due to the consistency of the HB relation.
Thus, we get 6 ∃l : F ′[l] < G[l] = Gm[l]. So, F ′ does not exist.

(d) F ′[k] > F [k] + 1 = G[k]: This case implies that G ≺ F ′, which contradicts the
assumption F ′ ≺ G. J

I Theorem 6. The worst case time complexity of QuickLex is O(n·∆(P )) per global state.

Proof. There are two main procedures during each iteration of QuickLex: propagate and
reset. We first analyze the worst time complexity of propagate. Each invocation the
function isEnabled takes O(∆(P )) time and the for loop of propagate is executed at most
n iterations. So, the worst time complexity of propagate is O(n·∆(P )) time.

We now analyze the worst case time complexity of reset. Each invocation of the function
updateStack takes amortized O(1) time and the for loop of reset is executed at most n

iterations. So, the worst time complexity of reset is amortized O(n) time. As a result, the
worst time complexity of each iteration of QuickLex is O(n·∆(P )). J

4 Evaluation

4.1 Setup of Benchmarks

Table 2 The information of benchmarks and runtimes (sec.) of each algorithm.
Benchmark n #events #global states BFS Tree Lex QuickLex

d-300 10 300 42,695,907 58.43 3.80 3.41 0.76
d-500 10 500 237,475,992 375.06 19.40 18.67 3.78
d-10K 10 10,000 4,962,876,973 8,211.87 393.74 448.28 86.38
bank 8 96 815,730,721 out of memory 56.67 64.37 9.69
tsp 8 105,282 13,474,170 9.85 1.63 2.37 0.37
hedc 12 216 4,486,599,595 out of memory 322.04 488.22 78.34

elevator 12 38,528 27,643,588,608 out of memory 2,248.39 4,677.12 660.40
w-4 4 480 9,381,251 2.51 0.88 0.38 0.16
w-8 8 480 7,392,009,768 out of memory 609.74 454.28 128.03
w-12 12 480 206,379,406,870 out of memory 19,225.98 21,303.66 3,996.17
w-16 16 480 991,493,848,554 out of memory 111,452.52 179,844.62 23,263.05

Table 2 shows the information of the benchmarks that are used in the experiments. The
benchmarks contain three different sets of computations. The benchmarks that start with the
prefix “d-” are randomly generated posets of events for modeling distributed computations.
The benchmarks bank, tsp, hedc, and elevator are the computations that are captured from
the executions of real-world concurrent applications. We establish the HB relation in these
concurrent computations using the following rules [10, 21]:
1. If e occurs before f on the same thread, then e→ f .
2. If event e corresponds to a thread releasing a lock and f corresponds to subsequent

acquisition of that lock (including implicit locks and monitors), then e→ f .
3. If the parent thread forks a new thread on event e and the child thread is created on

event f , then e → f . Similarly, if a child thread terminates on event e and the parent
thread joins the child thread on event f , then e→ f .

4. If e→ g and g → f , then e→ f .
The benchmark banking contains a typical error pattern in concurrent programs [8]; tsp is a
parallel solver for the traveling salesman problem; hedc is a crawler for searching Internet
archives; and elevator is a discrete event simulator for an elevator system. The benchmarks
tsp, hedc, and elevator are the benchmark programs that are used in [5, 10, 30].
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Finally, the benchmarks that start with the prefix “w-” have the same number of events,
i.e., 480 events, but different number of processes in the computation. The set of benchmarks
is used to show how different n influences the performance of enumeration algorithms, and
therefore we keep the number of events constant.

4.2 Compared Enumeration Algorithms
Besides QuickLex, we implemented the breadth-first strategy (BFS) algorithm [6, 12], the
ideal tree traversal algorithm (Tree) [19, 15], and the original lexical algorithm (Lex) [11, 12].
In BFS algorithm [6], a global state might be enumerated more than once, so we use
the strategy in [12] to ensure that every global state is enumerated exactly once. In our
experiments, we use the improved BFS algorithm.

For Lex [12], we improve the nested for loops of function LeastGlobalState(). Each of
the for loop goes through process p1 to process pn, which takes O(n2) time. However, looping
through all processes is not necessary. We modify the first loop, which only loops from p1 to
pk, and the second loop, which only loops from pk+1 to pn. Although the time complexity
remains the same, the practical runtime is improved significantly. In our experiments, we
use the improved Lex algorithm.

The Tree algorithm [15, 19] finds a backward spanning tree in the lattice of global states,
where the root is the global state that contains all events, e.g., the state G22 that is shown
in Fig. 2c. Then it traverses the spanning three in a depth-first manner. The performance of
Tree mainly dependents on SList [19], which is a customized linked list that continuously
adds and removes the nodes of the spanning tree. So, we use the following implementation
techniques to improve its performance. First, we calculate the least number of nodes that is
required by SList during the enumeration. Then, we pre-allocate all the nodes in an object
pool, which is implemented using an array, and reuse the nodes through the enumeration
procedure. Second, each node of SList has a counter that has to be updated and there
are ∆(P ) nodes that need to be updated in each iteration. We replace the counter with a
timestamp, which achieves the same functionality but only needs to be set once and requires
no further updates. Hence, the cost of the update is reduced from O(∆(P )) time to constant
time. From our empirical observations, the implementation enhancements have reduced
approximately 50% of the original running time and 90% of the original memory usage. In
our experiments, we use the improved Tree algorithm.

4.3 Experimental Results
The input of the compared algorithms is the vector clocks of the events in the computation
and the output is the set of global states of the computation. Table 2 also shows the
experimental results. All the experiments are conducted on a Linux machine with an Intel
Xeon 2.67GHz CPU and the heap size of Java virtual machine is limited to 2GB. The
runtime is measured in seconds. As it can be seen, BFS algorithm has the worst performance
because of its high time complexity. Moreover, it failed to finish on more than half of the
benchmarks because it ran out of the available 2GB memory. The reason is that it has to
store intermediate global states for future iterations and the number of intermediate global
states might grow exponentially in n in the worst case.

We first compare the runtimes of Tree, Lex, and QuickLex in the first and second set of
benchmarks. Fig. 5 shows the normalized runtimes of each algorithm with respect to the
runtime of Tree. We normalized the runtimes to those of Tree because it has an amortized
O(1) per global state and the smallest theoretical time complexity among the existing
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Figure 5 Normalized runtime of each algorithm w.r.t. the runtime of Tree algorithm.
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enumeration algorithms. From Fig. 5, QuickLex is approximately 7 times faster than Lex
and consistently 4–5 times faster than Tree. One reason that Tree is not as fast as QuickLex
is that its intermediate information has to be stored in a linked list and therefore the cost of
accessing the information is high.

We now compare the runtimes of Tree, Lex, and QuickLex in the third set of benchmarks;
the benchmarks that start with the prefix “w-”. From Fig. 5, we can see that the normalized
runtimes of Lex increase as the number of processes increases. On the other hand, the
normalized runtimes of QuickLex are consistently 4 times faster than those of Tree, which
shows that the time complexity of QuickLex can achieve amortized O(1) per global state in
practice. The detailed explanation is discussed in Appendix C.

Fig. 6 shows the memory usage of the compared enumeration algorithms. Since Lex is
stateless, its memory is mainly used for storing the input, i.e., the computation. From Fig. 6,
QuickLex uses almost the same amount of memory even though QuickLex requires additional
O(n2) space to store the stacks for dynamic programming. The O(n2) space is quite small
because the space only stores integers. Tree, however, consumes much more memory space
than Lex and QuickLex because it needs to store the information regarding its backward
spanning tree, whose size is linear to O(|P |). Note that |P | is much larger than n2. Assume
that each process in P has at least m events, then |P | is at least as large as (n×m). Usually,
m is much larger than n.
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Table 3 The performance of ParaMount with different enumeration algorithms.

Information Runtime (ms) # Detection
Benchmark LoC Thread #Var Lex QuickLex
banking 139 4 7 72 20 1
set (faulty) 223 4 10 152 69 1
set (correct) 260 4 10 110 51 0
arraylist1 1,474 4 6 19 19 3
arraylist2 1,377 4 16 22 15 0
sor 255 4 20 81 25 0
elevator 547 4 23 890 667 0
tsp 702 4 36 114 42 1
raytracer 1,885 4 77 1240 236 1
hedc 25,027 8 345 940 335 4

5 The Applications of QuickLex

5.1 Predicate Detection in Concurrent Systems

In this section, we compare the performance of Lex and QuickLex in real-world applications.
In [4], we implemented a predicate detector, named ParaMount, for concurrent programs.
The detector captures the execution trace of users’ program using Java bytecode injection [1].
The captured execution trace is converted to a concurrent computation using the methods
discussed in [10, 21]. Specifically, the detector captures 1) the read and write operations
of all variables, 2) the causal dependency of fork-and-join operations of thread, and 3) the
causal dependency of the acquisition-and-release operations of locks (including implicit locks
and monitors) in users’ program. The causal dependency is represented by HB relation in
the computation.

Afterwards, ParaMount uses a sequential enumeration algorithm (e.g., Lex or QuickLex)
as the subroutine to enumerate the set of global states in an online-and-parallel fashion.
During the enumeration, each global state is checked for the predicate corresponding to data
races. A data race occurs when conflicting operations (i.e., a pair of read-write or write-write
operations) are concurrently executed on the same memory address by different threads. In
summary, the detector takes as input a program and outputs the variables that have data
races.

Table 3 shows the result of the detection. “LoC” shows the lines of code of the benchmark
program. “Thread” shows the number of threads that are used to drive each benchmark.
“#Var” shows the number of variables of the benchmark. Every variable is checked if it
is accessed by different threads without the protection of any lock. Besides the four real-
world applications that are used in Section 4, we also use the following applications. The
benchmarks set (faulty) and set (correct) are incorrect and correct implementations of the
concurrent set [16]; arraylist1 is a non-thread-safe container and arraylist2 is a thread-safe
container from Java library; sor is a scientific computation application; and raytracer is a
benchmark for measuring the performance of a 3D raytracer. The benchmarks sor, elevator,
tsp, raytracer, and hedc are also used in [5, 10, 30].

The running time of ParaMount includes the time to inject bytecode for monitoring, to
execute the benchmark program, to capture the executed events, to enumerate global states,
and to evaluate the predicate of data races. The column “Lex” shows the original execution
time of ParaMount using the Lex as its subroutine and column “QuickLex” shows the
improved execution time. In average, QuickLex improves the execution time of ParaMount
by a factor of 3. “#Detection” shows the number of variables that have data races; all the
detected variables are also detected by [5, 10], so the results do not have false positives.
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5.2 Other Applications
In [13, 14], it has been shown that many families of combinatorial objects can be mapped to
the lattice of global states of appropriate posets. Thus, lexical traversal that is discussed in
this paper can also be used to efficiently enumerate all subsets of [n], all subsets of [n] of size
m, all permutations, all permutations with a given inversion number, all integer partitions
less than a given partition, all integer partitions of a given number, and all n-tuples of a
product space.

6 Conclusion

In this paper, we presented a fast algorithm, named QuickLex, for global states enumeration
of concurrent and distributed computations. In comparison with the original lexical algorithm,
QuickLex has a preprocessing procedure and incorporates dynamic programming to reduce
the time complexity from O(n2) to O(n·∆(P )). In the evaluation section, we implemented
and compared QuickLex with several existing enumeration algorithms, i.e., BFS [6, 12], Lex
[11, 12], and Tree [19, 15]. Moreover, these algorithms are enhanced with different techniques.
From our experimental results, QuickLex is 7 times faster than Lex and 4–5 times faster
than Tree. The experiments also show that QuickLex can achieve amortized constant time
for a certain type of computations. QuickLex uses almost the same amount of memory
as Lex while Tree requires 2–10 times more memory than QuickLex. For the real-world
applications, QuickLex is used to implement an online-and-parallel predicate detector for
concurrent programs. The experimental results show that the detector speeds up 3 times in
comparison with its previous version (which uses Lex as its subroutine).
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A The Symbols Used in this Paper

Table 4 Symbols used in this paper.

Symbol Meaning or exchangeable terms
G consistent global state, ideal.
P poset of events, computation.
n #processes in P , width of P .

i(P ) #global states in P , #ideals of P .
|P | #events in P , size of P .

∆(P ) #remote events or maximal in-degree of any event.
e, f arbitrary events in P unless specified otherwise.
pi a process whose process ID is i.
ei an arbitrary event that occurs on process pi.

G[i] the maximal event of process pi w.r.t. global state G.
Ph, Pl the set of processes with higher and lower priority, respectively.
ph, pl an arbitrary process in Pm and Pl, respectively.
Gm[l] the maximum dependency event of process pl w.r.t. global state G.
Xl(i) the max function max1≤j≤i(G[j].vc[l]).

B Proof of Theorem 1

Algorithm 7 Calculate vector clock for event e

Input: Event e occurs on process pi, predecessor d of e, and the set R(e) of remote events of e.
Output: The vector clock for event e.
1: function calVectorClock(e, d, R(e))
2: e.vc = d.vc

3: e.vc[i] = d.vc[i] + 1
4: for r ∈ R(e) do . For every remote event r of e

5: for j from 1 to n do
6: e.vc[j] = max(e.vc[j], r.vc[j])
7: end for
8: end for
9: end function

For every event e, which occurs on process pi, its vector clock e.vc is calculated using
Algorithm 7. For example, the vector clock of event e6 in Fig. 2b is set to [0, 0, 2] because of
its predecessor e5. Then, its vector clock is set to [0, 2, 2] due to its remote event e3. Now
we show the proof of Theorem 1:

Proof. (⇒): From Definition 1.
(⇐): The proof is shown by the information of vector clocks. Assume that the predecessor

d of e is included in G, we get (e.vc[i] = G[i] + 1).
Since d is included in G, we also get ∀j : 1 ≤ j ≤ n : d.vc[j] ≤ G[j] due to the

property of vector clocks. Assume that all remote events of e are also included in G, we
get ∀r ∈ R(e) : (∀j : 1 ≤ j ≤ n : r.vc[j] ≤ G[j]). From the calculation of vector clocks in
Algorithm 7, we get (∀j 6= i : e.vc[j] ≤ G[j]). As a result, e is enabled when its predecessor
and all remote events are included in G. J

C The Amortized Constant Time Enumeration of QuickLex

We now explain how QuickLex achieves amortized O(1) time per global state in practice.
Suppose that any event in the computation can have at most one remote event, then the
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Figure 7 (a) The best case for QuickLex. (b) The worst case for QuickLex.

worst time complexity of propagate is O(n) per global state. Recall that each call of
propagate runs through (n− k + 1) processes before returning k. If there exist more than
(n− k + 1) global states between current and most recent propagate call that returns the
same k, then the cost of current propagate call can be charged to the iterations between
these two propagate calls, which cumulatively enumerated (n− k + 1) global states. Thus,
the current propagate call is amortized to O(1).

Fig. 7a illustrates the explanation. Assume that the cost of a propagate call is c if
the while loop of propagate executes c iterations. For instance, the cost of a propagate
call that returns k = 2 is 2. However, QuickLex has enumerated 4 global states, e.g.,
[0, 0, 0], [0, 0, 1], [0, 0, 2], and [0, 0, 3], between any two propagate calls that return k = 2.
Consequently, the additional cost of the current propagate call, which returns k = 2, can
be evenly charged to 5 global states, including the current one. Similarly, there are 17 global
states for any propagate call that returns k = 1 to share the additional cost. As a result,
the time complexity of any propagate call can be amortized to O(1) time per global state.
The same reason holds for the time complexity of reset.

Fig. 7b shows the worst case for QuickLex, in which only one global state exists between
propagate calls. Therefore, the cost cannot be amortized and hence propagate takes
O(n) time. The events in this computation are totally ordered, which is not a common
computation.
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