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Abstract. The happened-before model (or the poset model) has been widely used for modeling the
computations (execution traces) of parallel programs and detecting predicates (user-specified condi-
tions). This model captures potential causality as well as locking constraints among the executed events
of computations using Lamport’s happened-before relation. The detection of a predicate in a compu-
tation is performed by checking if the predicate could become true in any reachable global state of the
computation. In this paper, we argue that locking constraints are fundamentally different from potential
causality. Hence, a poset is not an appropriate model for debugging purposes when the computations
contain locking constraints. We present a model called Locking Poset, or a Loset, that generalizes the
poset model for locking constraints. Just as a poset captures possibly an exponential number of total
orders, a loset captures possibly an exponential number of posets. Therefore, detecting a predicate
in a loset is equivalent to detecting the predicate in all corresponding posets. Since determining if a
global state is reachable in a computation is a fundamental problem for detecting predicates, this paper
first studies the reachability problem in the loset model. We show that the problem is NP-complete.
Afterwards, we introduce a subset of reachable global states called lock-free feasible global states such
that we can check whether a global state is lock-free feasible in polynomial time. Moreover, we show
that lock-free feasible global states can act as “reset” points for reachability and be used to drastically
reduce the time for determining the reachability of other global states. We also introduce strongly
feasible global states that contain all reachable global states and show that the strong feasibility of a
global state can be checked in polynomial time. We show that strong feasibility provides an effective
approximation of reachability for many practical applications.
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1 Introduction

One of the fundamental problems in debugging or runtime verification of a parallel program is to
check if a predicate (user-specified condition) could become true in any global state that can be
reached by the program. This problem is challenging because different runs of the program may
reach different sets of global states due to the nondeterministic thread scheduling even for the
same user input. In this paper, we propose a new model of parallel computation that captures the
reachable global states on multiple thread schedules and thus enables efficient predicate detection.

As an example of predicate detection, suppose that the condition @: file f is opened by two
threads at the same time, is a potential bug of the parallel program shown in Fig. 1. We would like
to know if the program can possibly reach a global state where @ is true, i.e., to detect possibly ®.
One popular debugging method is to run the program and collect a totally ordered sequence of
events. Suppose that the sequence recorded is ¢ = al, a2, a3, a4,bl, b2,b3,b4. In this total order,
@ does not become true. However, the predicate is indeed possible if the sequence of events starts
with the prefix (al, a2, a3,bl,b2). Hence, the only way to detect possibly @ is to perform multiple
executions and hope that one of them produces a total order that makes the predicate true [24,30].

To alleviate this issue, the computation (the execution trace) of a parallel program is usually
modeled as a partially ordered set (poset) of events, ordered by Lamport’s happened-before relation
(denoted by —) [20]. In this poset, the events that are executed by a single thread are totally ordered
and the events across threads are ordered based on their causality. Usually, the synchronization
due to locks is also modeled with the happened-before relation. Specifically, the release of a lock is
ordered before its subsequent acquisition [2,4,9,21].

By modeling the computation as a poset, we are able to predictively detect the predicate if it
becomes true in any consistent global state of the poset. In the poset model, a global state G is
consistent iff for events e, f:(e—f) A (f€G)=(e€G). Moreover, consistent global states are consid-
ered reachable because for every consistent global state there always exists at least one sequence
of events that leads the program to reach that global state [1]. Hence, detecting a predicate on one
poset is equivalent to detecting the predicate on multiple sequences of events. In addition, if we do
not know the nature of the predicate, then predicate detection is usually done by enumerating all
consistent global states of the poset and checking if any one of them satisfies the predicate [2,4,5,17].

For the program in Fig. 1, the executions that produce ¢ and any total order with the prefix
(al,a2,a3,bl,b2) are modeled as the same poset shown in Fig. 2(a), in which the dashed lines are
consistent global states of the poset and each of which contains all the events on its left. Fig. 2(b)
shows the only global state G where the predicate @ becomes true. Since G is consistent, ¢ would
be successfully detected when G is enumerated. However, we still have not solved the problem of
predicate detection for all thread schedules. Suppose that thread ¢ obtains the lock before t; during
the execution. Then, we put a happened-before order from b4 to al instead of a3 to bl as shown in
Fig. 2(c). In this poset, G is inconsistent and will not be enumerated. Consequently, a purely poset
based predicate detection algorithm will miss the predicate under a different locking schedule.
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Fig. 2. (a) The dashed lines are consistent global states. (b)
@ only becomes true in the global state G and it can be
correctly detected because G is consistent. (c¢) In this poset,
G is inconsistent and thus @ cannot be detected.

Fig.1. A program which has two threads that
might open the file £ at the same time.



Thread t1

Thread to

bl: recMsg(t3,&m)
b2: f.openFile()

al: acquireLock(1l)
a2: l.notify()

a3: f.openFile()
ad: f.closeFile()
ab5: releaseLock(l)

Thread t3

cl: acquireLock(l)
c2: l.waitUntilNotified()
c3: sendMsg(t2,m)
c4: releaseLock(l)
Fig. 3. A program which has three threads but the file £
can only be opened by one thread at a time.
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Fig. 4. (a) The global state G, where @ is true, is in-
deed unreachable because of the implicit order (the
dashed arrow) between the two critical sections. (b)
The local view that contains only two of the threads,
where G is mistakenly considered reachable.

An alternative approach removes the happened-before (HB) relation due to lock synchronization
and determines the reachability of a global state using the techniques of lockset and acquisition
history instead of the HB consistency of the global state [18,19,25,27,28]. However, these techniques
only consider predicates that involve two threads, i.e., data races and atomicity violations. If the
computation contains more than two threads, the detection is performed on a local view that
consists of only two threads at a time. Hence, they can induce false positives because of the lack of
the global view. Consider the program in Fig. 3, which has three threads. Because of the conditional
synchronization (e.g., Java’s notify () and wait()) between events a2 and ¢2, thread ¢; will obtain
the lock [ before t3; otherwise, t3 will be forced to release the lock. Thus, we get a computation as
shown in Fig. 4(a). Although the order a5 — ¢l is not explicitly captured in the computation, it is
always implicitly induced during the execution of the program. Thus, the global state GG, where &
is true, is indeed unreachable. If we try to detect @ in a local view that contains only two threads
(see Fig. 4(b)), then G could be mistakenly considered reachable and result in a false-positive.

To deal with the co-existence of locks and the happened-before (HB) relation, one commonly
used method is to convert mutual exclusion constraints and the HB relation to the constraints for
SAT/SMT solvers [16,32,33]. When a global state that satisfies @ is found, the solver is invoked
in order to determine whether that global state is reachable in the computation. If it is reachable,
then possibly @ is detected. Although this method is applicable for detecting predicate that involve
the global view of the system, these solvers may take exponential time in the worst case.

Since determining the reachability of a global state is a fundamental problem for the technique of
predicate detection, our focus in this paper is on methods that take polynomial time for determining
the reachability. We first introduce a model, named Loset (Locking poset), which is a generalization
of the poset model. A Loset is a Poset augmented with the notion of locking intervals. In a loset, a
lock synchronization is not modeled using the HB relation. Instead, the intervals of events that are
executed under one or more locks are modeled separately. If two intervals I1 and I2 are executed
under the same lock, then it is understood that events in I1 and I2 cannot be interleaved but can
happen in either order. Since there can be an exponential number of different locking schedules,
a loset in effect would model an exponential number of posets. Thus, a loset allows us to detect
possibility of violation of invariants which would not be possible to detect using a single conventional
poset. Moreover, our technique does not depend on the nature of the predicate. Thus, it can be used
for detecting the predicate whose nature is unknown and requires the global view of the system.

Afterwards, we study the complexity of reachability problem in a loset: Given a loset £ and
a global state GG, the reachability problem asks if there exists a sequence of events that leads the
program to reach G in L. The reachability problem is trivial for a poset: G is reachable iff G is
consistent [1]. However, we show that the reachability problem for a loset is NP-complete. Our
proof uses the NP-completeness of the predicate control problem shown in [29].



To cope with the NP-completeness, we introduce a subset of reachable global states called
lock-free feasible global states such that we can efficiently check whether a global state is lock-free
feasible in polynomial time. We show that the set of reachable lock-free feasible global states forms a
finite distributive lattice under the usual less than relation < of global states. With the property of
distributive lattice, we show that the reachability of a global state G can be determined using only
a subset (F\G) of events, where F' is the greatest lock-free feasible global state such that F' < G.
Thus, lock-free feasible states act as “reset” points for reachability and can be used to drastically
reduce the time for checking reachability, by limiting the calculation in a subcomputation rather
than the entire computation.

We also introduce strongly feasible global states that contain all reachable global states such
that checking whether a global state is strongly feasible for a loset can be done efficiently. For
many practical applications, strongly feasible global states provide an effective approximation of
reachability. In Appendix E, we show that for computations with two threads, the set of strongly
feasible global states is identical to the set of reachable global states. In Appendix F, our experiments
show that the gap between strong feasibility and reachability seldom exists in practice. We give a
method to enumerate the strongly feasible global states of a loset. In comparison with two naive but
accurate enumeration algorithms, which enumerate only reachable global states, our enumeration
method shows that the strongly feasible property accurately models the reachable global states for
all 11 benchmark programs while using only 15-40% of their runtime.

We note here that our techniques are orthogonal to the techniques using SAT/SMT solvers.
Given a trace of a computation, instead of calculating the reachability of a global state G from the
initial global state, we only need to compute if G is reachable from the greatest lock-free feasible
global state that precedes G. Moreover, we only need to calculate the reachability with a SAT/SMT
solver if G is strongly feasible.

The rest of the paper is organized as follows. Section 2 presents the loset model. Section 3 and 4
introduce the sets of lock-free feasible and strongly feasible global states. Section 5 discusses the
reachability of various classes of global states in a loset. Finally, section 6 concludes this paper.

2 Loset Model of a Computation

A computation (i.e., an execution trace of a parallel program) is modeled as a Loset (Locking
Poset) of events as defined next.

Definition 1 (Loset). A loset L is a five-tuple L = (E,—,n, L,T) where:

E: is a set of events,

—: 15 an irreflezive transitive binary relation on E,

n: is the number of threads,

L: is the number of locks,

ZL:is a set of locking intervals.

The — relation represents the potential causality between events, i.e., e — f means that the
event e may directly or transitively cause the event f. For distributed systems, it corresponds to the
Lamport’s happened-before (HB) relation [20]. In concurrent systems, we may have additional order
constraints due to the fork-join events of threads and the wait-notification events of conditional
synchronization [2,4,9,21]. In this paper, we maintain the — relation using vector clocks [8,22].
The set E of events is partitioned into n sequences F1, Es, - -- , E, such that each E; represents a
thread. For all distinct events e, f € E; : (e = f) V (f — e). For convenience, we define the process
order relation (denoted by <) such that e < f means e — f in some E;. A locking interval I € 7
is a four-tuple I = (t,1,acq,rel) such that t € {1..n},l € {1..L}, (acq,rel € E;), and acq < rel. An
interval indicates that the thread I.t acquired the lock I.l at event [.acq and released it at I.rel.
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Fig. 5. (a) The loset that is equivalent to the two posets in Fig. 2(b) and 2(c). The gray boxes are the critical sections
created by the same lock. (b) A loset that is equivalent to C2™ posets. (c) A loset that is equivalent to m! posets.

Note that the objective of the — relation is to capture the causality of events but not the
real-time locking order between the acquisition and release events of locks. Therefore, the locking
intervals for the same lock are totally ordered in a poset but not in a loset. Formally,

Definition 2 (Valid Poset of a Loset). A poset P = (E,—p) is a valid poset of a loset L = (E,—,
n,L,T) if (=C—p) and VI, J € T such that I.l = J.l, we have (I.rel —p J.acq)V (J.rel —p I.acq).

For instance, the two posets in Fig. 2(b) and Fig. 2(c) are the valid posets of the loset in Fig. 5(a).
In Fig. 5(b), suppose that each thread contains m locking intervals for the same lock, then the loset
is equivalent to C,%lm valid posets because the m intervals of t; can be interleaved with those of to
in C2™ total orders. Similarly, the loset in Fig. 5(c) is equivalent to m! valid posets. Fig. 7 shows
a more complex loset. We now define global states and their reachability under the loset model.

2.1 Global States

A global state G is a subset of F such that Ve, f € E: (f € G)A(e < f) = (e € G). In Fig. 5(a),
the set {al,a2,bl} is a global state, but {a2,b1} is not a global state because it contains event a2
but not al even though al < a2. A global state G can equivalently be identified by the number of
events of each F; in G. For example, the global state {al,a2,bl} is represented by the array [2,1].
The symbol G[i] denotes the maximal (latest) event of E; in the global state G. The order G < H
between the two global states means G[i] < H[i| holds for any thread i.

A global state G is consistent iff Ve, f € E: (f € G) A (e — f) = (e € G). A consistent global
state preserves the — relation of the loset. Note that the initial global state (G = ¢), and the final
global state (G = E) are always consistent. We define the set EL(e) of effective locks for any
event e, which are the locks being held by the thread that has executed e:

EL(e) = {I.l | l.acq < e < I.rel}.
In Fig. 5(a), the effective locks of the events in the computation are shown in curly brackets. We
can now define the set of global states that respect the locking constraints. A global state G is
(lock) compatible iff for any i # j, G[i] and G[j] are pairwise (lock) compatible, i.e., EL(G[i]) N
EL(G[j]) = @. Finally, a global state is feasible iff it is consistent and compatible.

If a global state is not feasible then it violates either the consistency constraints or the locking
constraints. Hence, only feasible global states are reachable from the initial global state. However,
not all feasible global states are reachable. For example, the global state G in Fig. 4(a) is feasible
but not reachable because of the implicit locking order induced by the conditional synchronization.

2.2 Reachable Global States and Runs

We first introduce a sequence of events called a run, R, in which the total order between events
is denoted by <. The symbol 6(G,R) denotes the global state that is reached by executing the
sequence R of events starting from the global state G. The symbol R? denotes the prefix of R of
length 4. Since only feasible states are reachable, a run goes through only feasible global states.



Formally, a sequence R of events is a run starting from G iff the global state §(G,R?) is feasible
for any 7 such that 0 < ¢ < |R|. A global state G is reachable from the initial global state ¢ iff
there exists a run R such that 6(¢, R) = G. The reachability problem is defined as:

Definition 3 (Loset Reachability Problem). Given a loset L and a global state G, is G a reachable
global state of L?

Theorem 1. The loset reachability problem is NP-complete.

Proof. (Outline) The details are shown in Appendix A. In [29], the predicate control problem asks
if there exists a control sequence, which is a total order among the critical sections for the same
lock, such that the predicate @ remains true after the control sequence is added to the computation.
It was shown that the predicate control problem is NP-complete. The model defined in [29] is a
special case of our loset model, where locking intervals do not overlap. It can be shown that there
exists a control sequence that reaches the global state G without violating mutual exclusion iff the
global state G is reachable in the loset. Therefore, the predicate control problem is a special case
of the reachability problem of a loset. O

In the following sections, we present two classes of global states — lock-free feasible global
states and strongly feasible global states. A lock-free feasible global state is always reachable and
a reachable global state is always strongly feasible. Thus, these two classes provide a lower and an
upper bound on the set of reachable global states. Both of these classes can be checked efficiently (in
polynomial time), whereas the reachability problem is NP-complete. Moreover, to check reachability
of a global state G, it is sufficient to check its reachability from the greatest lock-free feasible global
state that precedes G instead of checking it from the initial global state of the computation.

3 Lock-Free Feasible Global States

A lock-free feasible global state is a feasible global state that holds no lock. We show that given a
reachable global state G of a loset, then any lock-free feasible global state F' < G is also reachable.

Theorem 2. Given a reachable global state G of a loset and a lock-free feasible global state F' < G,
there exists a run that reaches both F and G.

Proof. Since G is reachable, there exists a run R such that §(¢, R) = G. Let the sequence S;
of events be R 1 F, which is the projection of R that contains only the events in F', and let
Sy =R 1T (G\F). Let S = &1 & Sy (S1 concatenated with Sz). We show that the sequence S of
events is also a run, i.e., §(¢, S?) is feasible for any S, which implies §(¢,S1) = F and §(F,Ss) = G.
Claim 1. Vi: 0 < i < |S] : §(¢, S?) is consistent:
We show the partial order — of the computation is preserved by the total order <s in S. For any
two events, e and f, in S such that e <s f, we have
CASE 1. (e, f € S1)V (e, f € S2): The — relation between e and f is preserved in <z because R is
a run. Since &1 and Sy are projections of R, the — relation is preserved in <s, and <g,.
CASE 2. e € &1, f € So: If e — f, the — relation is preserved by the concatenation &1 @& So. The
case f — e is not possible because F' is consistent and e € F but f &€ F.
Claim 2. Vi: 0 < i < |Sy| : 6(¢,S?}) is compatible:
Let the global state V = §(¢, S¢). We show that
Vs #t:EL(V[s]) NEL(V]l]) = @. (1)

Let R/ be the shortest prefix of R such that R/ 1 F = Si and let W = 6(¢, R’). Then, the
following condition holds because R is a run:



Vs #t: EL(W(s]) NEL(W[t]) = @. (2)
Since Si contains the same or fewer events than R7, we get V' C W, which implies V[t] < W[t]

for any thread t. We now consider the following two cases: '
Case 1. V[t] < W][t]: Because S§ = R 1 F, this case holds only if R’ contains the events in

G\F w.r.t. E;, which implies that S! contains all the events in F w.r.t. E;. Thus, we get
V[t] = F[t] < W]t]. Since F is lock-free, we get EL(V[t]) = @ C EL(Wt]).
CASE 2. V[t] = W]t]: In this case, we get EL(V[t]) = EL(W]t]).
From cases 1 and 2, EL(V[t]) C EL(Wt]) holds for any thread ¢. Then, from (2), (1) holds.
Claim 3. Vi: 0 < i < |S3|: d(F,S8%) is compatible:
Let the global state V = §(F, S%). We show that
Vs #t:EL(V[s]) NEL(V]H]) = @. (3)
Let R7 be the shortest prefix of R such that R7 1 (G\F) = Si and W = §(¢, R?). Then, the
following condition holds because R is a run:
Vs #t: EL(W(s]) NEL(W]t]) = 2. (4)
Since V initially contains all the events in F' and Si contains the same events in G\F as R/,

we get W C V, which implies that Wt] < V[t] holds for any thread ¢:

Case 1. W[t] < V[t]: Because S5 = R7 1 G\ I, this case holds only if R? contains only the events
in F w.r.t. By, which implies that Si does not contain any event of E;. Thus, we get
Wt] < V[t] = F[t]. Since F is lock-free, we get EL(W[t]) 2 EL(V[t]) = 2.

CASE 2. W[t] = Vt]: We get EL(Wt]) = EL(V[t]).

From the two cases, EL(Wt]) D EL(V[t]) holds for any thread ¢. Then, from (4), (3) holds.

From claims 1, 2, and 3, S is a run that reaches first F' using the run &1 and then reaches G
using the run Ss. O

Since we use the loset model for analyzing the behavior of parallel programs, we are interested
only in those losets that capture a possible execution from a real-world application, i.e., the reacha-
bility of the final global state of the computation is given by the execution of the program. Formally,
a loset is valid iff its final global state F is reachable. An example of a loset, which is an artificial
computation, that is not valid is shown in Appendix B. A simple consequence of Theorem 2 is that
whenever L is a valid loset, then every lock-free feasible global state of L is reachable.

Corollary 1. All lock-free feasible global states of a valid loset are reachable.

Proof. The final global state of a valid loset is reachable. Therefore, from Theorem 2, we get that
every lock-free feasible global state of that loset is reachable. O

The set of reachable lock-free feasible global states also satisfies the following nice property for
all losets: (and not just valid losets).

Theorem 3. The set of reachable lock-free feasible global states of a loset L forms a distributive
lattice.

Proof. (Outline) The details are shown in Appendix C. For any two reachable lock-free feasible
global states, G and H, let M = (GNH) be their meet and J = (GUH) be their join. We first show
that M and J are lock-free and feasible. Then, from Theorem 2, M is reachable because M < G.
To show their join J is reachable, we construct a sequence Sy of events such that Sy = Ra®RyH,
where R¢ is a run reaches G and Rjy; g reaches H from M. Then, we show that Sy is also a run. [

Theorem 3 has two important implications. First, since the set of reachable lock-free feasible
global states forms a distributive lattice, we can concisely represent all lock-free feasible global
states of a valid loset using the set of join-irreducible elements of the distributive lattice [6] and use
slicing to study various sublattices, which reduces the time complexity of predicate detection to
polynomial time for certain classes of predicates [12,23]. Secondly, as shown next, we can reduce the
search space to determine reachability of a feasible global state that is not lock-free. Given a global



acq < e<rel acqg<rel<e acq <e < rel acg<rel<e

/ acq < f<rel acq < f<rel f<acq<rel [ <acq<rel

(a) (b) (c) (d)
Fig. 6. All possible cases of I(I) — J(I) and the locking order I(l).rel — J(l).acq (shown in dashed lines).

state GG, we first find the greatest lock-free feasible global state F' < G. On account of Theorem 3,
F' is well-defined whenever there exists any lock-free feasible global state that precedes G. Given
G and F, the following theorem shows that the search for the reachability in a valid loset can be
restricted to the events in G\ F.

Theorem 4. Given a global state G of a valid loset and the greatest lock-free feasible global state
F such that F < G, the reachability of G can be determined by the events G\F'.

Proof. From Theorem 2, F' is reachable because the final global state F is reachable. Moreover, the
run that reaches F of £ can be reordered so that it first reaches F' and then E. We consider the
following two cases: (1) If G is reachable, then from Theorem 2 there exists a run R = R; & Ra,
where R; is a run that reaches F' and R is a run that reaches G from F. (2) If G is unreachable,
then there exists no run from F to GG because F is reachable and lock-free. Hence, the existence of
the run Ro depends only on the events G\ F'. O

4 Strongly Feasible Global States

In this section, we give an upper-approximation of reachability. We define the notion of strong
feasibility based on the inferred causality due to the HB relation and locking constraints. Therefore,
a reachable global state is always strongly feasible. Also, just as feasibility and lock-freedom can
be evaluated in polynomial time, strong feasibility can be evaluated in polynomial time.

4.1 Locking Order

Even though real-time locking order is not modeled in a loset, some order between locks may be
implied due to the HB orders between events and locking constraints (i.e., the events in different
locking intervals of the same lock cannot be interleaved during the execution of the program). We
next introduce the relation — for capturing such implied ordering constraints.

The — relation is defined between locking intervals of the same lock such that I — J means
the locking interval I has to start before J can finish:

Definition 4 (Relation ). Let I(1) and J(I) be the locking intervals of the same lock 1. I(1) — J(I)
iff there exist events e and f such that (I(l).acq 2 e) A (e — f)A(f X J(l).rel).
)-
)-

Because of the locking constraint from the lock [, the
acq. Hence, we define the locking order — 1 as follows:

Fig. 6 shows all possible cases of I(l) — J(!
event I(l).rel has to be executed before J(I

Definition 5 (Locking Order —1). (e —1 f) iff there exists two locking intervals, I(l) and J(I),
of the same lock | such that (e = I(1).rel) A (I(1) — J(1)) A (f = J(1).acq).
If I(I) and J(I) belong to the same thread, then the —, relation is implied by their process order.
Therefore, we only consider the —, relation across different threads. Fig. 6 shows the corresponding
locking order of all possible cases of I(l) — J(l) in the dashed lines. For convenience, the locking
order I(l).rel —r, J(l).acq is simplified as I(l) — J(I) from now on.

In this paper, we assume for simplicity that the initial global state does not hold any lock. If it
is not lock-free, then any interval I(l) that is part of the initial global state is ordered (by locking
constraints) before all other intervals with the same lock .
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Fig. 7. (a) An initial loset £, which contains only the HB relation. (b) A normalized loset £, where the locking
orders (the solid arrows) are added to the original loset L.

Algorithm 1 NORMALIZELOSET(L, H)

Input: A loset £ that contains only HB orders, which are added to the set H of seed relations.
Output: Returns false if a cycle in the — relation is detected; otherwise, the loset £ is normalized.

1: for each seed order e; — e; in H do > H initially contains all direct and transitive — relation.
2:  for each | € EL(e;) U EL(e;) do > Exclude the case of Fig. 6(d).
3 Let I(l) be the most recent locking interval for I s.t. I(l).acq < e;.

4 Let J(I) be the first locking interval for I s.t. e; < J(I).rel.

5: if either I(1) or J(I) does not exist then continue > None of the cases, Fig. 6(a), 6(b), or 6(c), holds.
6: if the relation I(l) — J(I) completes a cycle then return false

7 else

8 Add I(l) — J(1) to the loset and to the set H > I(l) = J(I) means I(l).rel — J(1).acq.
9 Append new transitive relations due to I(l) — J(I) to H
10: end if

11: return true

4.2 Normalization of Losets

Since the combination of happened-before orders and locking constraints may introduce additional
order constraints — 7, during execution, it is easier to analyze a loset that satisfies Ve, f : e =1 f =
e — f. Thus locking order leads us to the following definition:

Definition 6 (Normal Loset). A loset L = (E,—,n, L,T) is normal ifVe,f € E:e —» f = e — f.

Fig. 7(a) shows a loset £, which contains only the HB relation and four locks Iy, I, ly, and [,.
The events acq (1) and rel (1) correspond to the operations acquireLock (1) and releaseLock(1)
of the program, respectively. The solid arrows are direct HB orders between events. The boxes of
different gray-levels are the locking intervals with different locks. The effective locks of events are
shown in the curly brackets. Fig. 7(b) shows the corresponding normal loset £, which has locking
orders added to £. The dashed arrows in Fig. 7(b) are used to explain the procedure of normalization
as shown next.

At first, the HB relation a2 — b2 induces the relation I;(l,,) — I2(ly) and hence the locking
order a3 — bl. Therefore, the locking order a3 — bl is added to L. Similarly, the HB relation
b3 — ¢b induces the relation I5(l,) — I3(lw) and hence the locking order b5 — c4. Afterwards,
the relation b5 — ¢4 induces I5(l,) — I3(l,) and hence the locking order b7 — ¢2. The procedure
continues until no new locking order is induced. Note that the transitive HB relation a2 — ¢5 is not
shown in Fig. 7(b), which induces I;(ly) — I3(ly) and hence the locking order a3 — c4, because
its corresponding locking order a3 — ¢4 is transitively implied by other relations.

Algorithm 1 shows a procedure to normalize a loset £. The algorithm takes as input the direct
and transitive HB orders in the computation (i.e., a2 — b2, b3 — ¢b, and a2 — ¢5 in Fig. 7(a))
and iteratively adds the locking orders to the computation by locating the cases of the — relation
in Fig. 6(a), 6(b), and 6(c). The case of Fig. 6(d) is ruled out in Algorithm 1 because the locking



order is transitively implied by I(l) — J(l) and does not induce any new — relation. At line 9, if
the addition of I(l) — J(I) induces any transitive relation, say e — f, then e — f is also appended
to the set H for checking if any new +— relation is induced.

We now discuss the time complexity of the normalization procedure.

Theorem 5. The time complexity of Algorithm 1 is O(n|E]3L).

Proof. Line 1 executes at most O(|E|?) times because there are at most O(|E|?) pairs of the —
relation in the computation. Line 2 executes at most L times. The procedures at lines 3 and 4 can
be done in constant time by using lookup tables. Finally, the time complexity for detecting the
cycle at line 6 and for locating the transitive relations at line 9 is O(n|E|) by recomputing vector
clocks after the addition of the relation I(I) — J(I) at line 8. O

We now show that the normalized loset contains the same set of runs that reach the final global
state as the original loset. We first define the runs Runs(L) of a loset:

Definition 7 (Runs of a Loset). Given any loset L, the set Runs(L) = {R | R is a run that
reaches the final global state E of L from the initial global state ¢}.

Theorem 6. Let L be a loset and L be the corresponding normal loset, then Runs(L) = Runs(L').
Proof. (Sketch) We show that Runs(L’) C Runs(L) and Runs(L) C Runs(L'). Since L' contains
more constraints of the — relation, we get Runs(L') C Runs(L). On the other hand, it is easily
shown that any run R in Runs(L) is also a run of Runs(L') because the run R in Runs(L, E) does
not violate any locking order constraint and therefore only goes through feasible states of £'. [

4.3 Strong Feasibility

If a lock [ is held by a thread ¢ in the global state G, then any other thread, say, j, that acquired
the lock [ prior to G should have released it before thread ¢ subsequently acquires it. We refer this
implicit order due to G as dynamic locking order. Formally,

Definition 8 (Dynamic Locking Order —1). (e — f) iff there exists two locking intervals, I(1)
and J(l), of the same lock | such that ((e € E;)A(e = I(l).rel X Gl]))A((f € Ej)A(f = J(1).acq <
Glj) < J(1).rel)).

The dynamic locking orders due to G can be added to H and then be normalized in order to
estimate the reachability of G. We now define strong feasibility of a global state as follows:
Definition 9 (Strong Feasibility). A feasible global state G is strongly feasible iff the normalization
of the loset due to G does not induce any cycle in the — relation.

We use the feasible global state G = [8,7, 7] in Fig. 8 to show the calculation of strong feasibility:
Step 1: From Theorem 4, this calculation can be bounded between G and the greatest lock-free
feasible global state F' that precedes G, i.e., the grayed out events in Fig. 8 are excluded.

Step 2: Since the lock [, is currently held by the thread ¢;, so we get the dynamic locking orders
c6 — a7 and b7 — a7. Similarly, the lock [, is currently held by the thread to, we get a6 — b6.
Step 3: The HB orders of the sub-loset along with dynamic locking orders are added to the set H
for normalization. From b3 — ¢b, we get b5 — ¢4 and then b7 — ¢2. Then, the transitive relation
a6 — ¢2 establishes the relation I1(l;) — I3(l;) and hence the locking order a8 — ¢1. Consequently,
a cycle in the — relation is induced: a8 — ¢1 — ¢6 — a7 — a8. Thus, G is not strongly feasible.

Theorem 7. The time complexity for calculating the strong feasibility of a global state is O(n|E|3L).
Proof. In step 1, the lock-free feasible global state F' can be identified using the detection algorithm
for conjunctive predicate [13] starting from G in a backward fashion, which takes at most O(|E|)
time. In step 2, we can locate the dynamic locking orders due to G by pairwise processing the
maximal events of G for each lock, which takes O(n%L) time. In step 3, the normalization takes at
most O(n|E|?L) time using Algorithm 1. O
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Fig. 8. The feasible global state GG is unreachable because the Fig. 9. The relationship among various classes of
locking order completes a cycle in the — relation. global states in a valid loset.

5 Relationship Among Various Classes of Global States

Fig. 9 shows the relationship among different sets of global states in a valid loset, whose final
global state is reachable. Corollary 1 shows that all lock-free feasible global states are reachable
and hence they are a subset of reachable global states. The set of strongly feasible global states is
a superset of reachable global states: (1) Every reachable global state is strongly feasible because
the normalization of a loset does not remove any run that reaches G, which can be shown by
replacing E and L of Theorem 6 with G and the sub-loset from Theorem 4, respectively. Moreover,
a reachable global state does not contain any cycle in the — relation. (2) A strongly feasible global
state may be unreachable; an example is shown in Appendix D.

Strong feasibility is still useful in practice. In Appendix E we show that reachability equals to
strong feasibility in any loset with two threads:
Theorem 8. In a loset L with two threads, a global state is reachable iff it is strongly feasible.
Moreover, in Appendix F we present experiments to show that the gap between strong feasibility and
reachability seldom exists in practice. We enumerate the reachable global states, by enumerating
the strongly feasible global states, of losets that are captured from the execution of benchmark
programs. In comparison with two naive but accurate enumeration algorithms, which simulate the
execution of the program using one thread in a BF'S or DFS fashion and hence only reachable global
states are enumerated, our enumeration approach is able to produce exactly the same set of global
states while using only 15-40% of their runtime.

6 Conclusion

In this paper, we present Loset, a model for a computation that contains locking constraints. We first
show that the reachability problem in a loset is NP-complete. Afterwards, we present several useful
properties of the model. Specifically, if a loset £ is valid, then all lock-free feasible global states are
reachable. In addition, the set of reachable lock-free feasible global states forms a distributive lattice.
We also show that the reachability of G can be determined using only the subset of events that is
located between G and the greatest lock-free feasible global state F' that precedes G. Therefore, the
set of lock-free feasible global state acts as a lower approximation and “reset” point of reachability.
We also present the property of strong feasibility, which is an upper approximation of reachability,
and can be checked in polynomial time. The calculation is based on the inferred causality due to
locking constraints and hence a reachable global state must be strongly feasible. Because of the
lower and upper approximation of reachability, it is easy to answer the reachability of any given
global state G in L if either G is lock-free feasible or not strongly feasible. If neither of these cases
holds, then the reachability can be determined in the subcomputation (G\ F’) rather than the entire
computation. Since our technique does not depend on the nature of predicates, it can be used for
detecting the predicates whose nature are unknown and require the global view of the system.
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A Proof of Theorem 1

Theorem 1. The loset reachability problem is NP-complete.

Proof. The reachability problem is in NP because given a global state G of a loset £ and a sequence
S of events that contains exactly the same set of events as GG, we can verify if S is a run of G by
verifying that if S passes through only feasible global states, i.e., §(¢, S?) is feasible for any i such
that 0 < i < |S|. The feasibility of global state can be checked in a polynomial time; specifically, it
takes O(n?) and O(n + L) time for checking the consistency and compatibility, respectively. Since
S contains at most |E| events, the verification takes at most O(n?|E|) time.

We now show that the reachability problem is NP-hard. In [29], the predicate control problem
asks if there exists a control sequence, which is a total order among the critical sections for the same
lock, such that the predicate @ remains true after the control sequence is added to the computation
P = (E,—). In other words, the control sequence adds additional — relations to P such that the
critical sections for the same lock are totally ordered. The new computation, say, @, cannot contain
any cycle in the — relation. In addition, every consistent global state G of P such that & is true
remains consistent in Q.

The NP-completeness of predicate control problem is proven by converting any 3-SAT instance
into a computation, where the total orders between critical sections are the values for the corre-
sponding variables. The predicate to detect is “every event in the set ' of events of the computation
is executed,” i.e., the final global state E is reachable. Hence, the existence of the control sequence
such that all events in F are executed is equivalent to the satisfiability of that 3-SAT instance.

The model defined in [29] is a special case of our loset model, where locking intervals do not
overlap. Moreover, a control sequence does not violate the constraints of mutual exclusion and the
happened-before consistency, so an execution that follows the control sequence only passes through
feasible global states. Hence, the condition holds: there exists a control sequence that reaches the
global state G iff there exists a run reaches G in the computation. As a result, the predicate control
problem is a special case of the loset reachability problem. ]

B An Example of A Loset That Is Not Valid

The example computation is shown in Fig. 10(a), which has three locks, I, I, and [.; and six
locking intervals, I1 to Is. The lock [, is acquired by I; and I3, I, by I3 and I4, and I, by I5 and
Ig. Moreover, each interval contains the sequence of events: the acquisition of the lock, a source of
the — relation, a sink of the — relation, and the release of the lock. For simplicity, the symbol I[i]
denotes the event, whose index is i, that occurs in the locking interval I. We now use Fig. 10(b)
and Fig. 10(c) to explain why the final global state E in Fig. 10(a) is unreachable.
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Fig.10. (a) A loset whose final global state is unreachable. (b)(c) The — relation in (a) is partitioned into two
groups.

Fig. 10(b) shows the central part of the — relation in Fig. 10(a). In Fig. 10(b), if I1[1] is executed
before I[1], then the locking order I} — Iy (i.e., I;1[4] — I3[1]) is implicitly induced during the
execution of the program. Then, from the chain of relations: I3[2] — ©L[3] — ©Li[4] — I2[1] —
I[2] — I4(3], we get I3(l,) — I4(l,) and hence the locking order Is — I;. On the other hand, if
I>[1] is executed before I1[1], then we get Io — I; and hence Iy — I3. As a result, the solid arrows
in Fig. 10(b) would induce one of the two sets of locking orders.

(Il —>IQ/\I3—>I4)\/(IQ —)Il/\I4—>I3). (5)
Moreover, because of the dashed arrows, our two sets of locking orders become:
(Il — 1o AN I3 —>I4/\I5—>Iﬁ)\/(]2 — L NIy — I3 N I —>I5). (6)

Similar to Fig. 10(b), the — relation in Fig. 10(c) induces one of the two sets of locking orders
depending upon whether I1[1] is executed before or after I[1]:
(Il —>Ig/\]6—>I5)\/(Ig—>[1/\f5—>]6). (7)

Fig. 10(a) merges the — relations of Fig. 10(b) and 10(c). Initially, the computation does not
have any cycle because every pair of the — relation starts from the second event and ends at the
third event of locking intervals. However, a cycle is formed whenever an event is executed. For
instance, suppose that the event I;[1] is executed, then we get (I1 — I2) A (I3 — Is) A (I5 — Ig)
from (6), and (I; — I) A (I — I5) from (7). Thus, the cycle Is — I5 — I is formed. Consequently,
the final global state E is unreachable.

Since the final global state of the computation in Fig. 10(a) is unreachable, this computation
cannot correspond to an actual execution of a program.

C Proof of Theorem 3

Theorem 3. The set of reachable lock-free feasible global states of a loset L forms a distributive
lattice.

Proof. We show that for any two reachable lock-free feasible global states, G and H, their meet
M = (GNH) and join J = (G U H) are also reachable lock-free feasible global states. Since G and
H are consistent global states, their meet and join are also consistent global states. Furthermore,
the maximal events of G and H do not hold any lock, so the maximal events of M and J also do
not hold any lock. As a result, M and J are lock-free feasible global states. Then, from Theorem 2,
M is reachable because M < G. Now we show that their join J is reachable.

Because G is reachable, there exists a run R¢. Then, from Theorem 2, the run Rg = RydSRua,
where Ry and Ry are also runs such that §(¢, Ryr) = M and §(M, Ryc) = G. Similarly, there
exists a run Ry = Ry @ Ruyg because H is reachable. We create a sequence Sj of events such
that S; = Rg ® Ry g. Since Sy contains all the events in J, J is reachable if Sy is a run.

Claim 1. Vi: 0 < i < |Sy| : (¢, SH) is consistent:

Similar to the claim 1 of Theorem 2, we consider the two cases for any two events, e and f, in Sy
such that e <s, f:



CASE 1. (e, f € Rg) V (e, f € Ryp): Since R and Ry are runs, the — relation between e and
f is preserved in <z, and <g,,,, and hence in <gs,.
CASE 2. e€ Ra, f € Rym: If e — f, the — relation is preserved by the concatenation Rg ®Raspr-
The case f — e is not possible; otherwise, the consistency of G is violated.
Since R¢ is a run, it is sufficient to show that the execution of RY,, starting from G results in
a compatible global state:
Claim 2. Vi: 0 <i < |Rupu|: 6(G,RY,y) is compatible:
Let V = §(G,R%, ). We show that

Vs #t:EL(V[s]) NEL(V]H]) = @. (8)
Let W = §(M, R, 5), then the condition holds because Rysp is a run to reach H from M:
Vs #t: EL(W]s]) NEL(Wt]) = @. 9)

Since both G in 6(G,RY;y) and M in §(M, R}, are lock-free feasible global states, we get
EL(V[t]) = EL(W]t]) for any thread ¢. Then, from (9), (8) holds.

From claims 1 and 2, S is a run and hence J is reachable.

Finally, the lattice of lock-free feasible global states is distributive because it is a sub-lattice of
the distributive lattice of consistent global states. O

D Strong Feasibility Does Not Imply Reachability

Since a reachable global state cannot contain any cycle in the — relation of a loset, a run can
go through only strongly feasible global states. Hence, if none of the maximal events e of G can
be removed from G such that G — {e} is strongly feasible, then G is unreachable. In this section,
we show a strongly feasible global state G such that removing any of its maximal events would
result in a global state that is not strongly feasible, i.e., G is strongly feasible but not reachable.
Moreover, the loset is valid, i.e., the final global state is reachable, so it is possible to capture this
computation from the execution of a real-world application.

The example is shown in Fig. 11(a), which has six locks: Iy, ly,lv, s, ly, and .. The lock [,
is a coordinator, which has the — relation that is similar to that of the computation shown in
Fig. 10(b). In short, any removal of the last event of the intervals Io, Iy, Ig, Ig, and I1o, induces
the set A of locking orders: (IT — I2) A (Is — Iy) A (Is — Is) N (I — Ig) A (Ig — I1p); and any
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Fig. 11. A loset whose final global state is reachable. In addition, G is strongly feasible but unreachable. The locking
orders are drawn in dashed arrows.




removal of the last event of the intervals Iy, I3, I5, I7, and Ig, induces the set B of locking orders:
(IQ — Il) A (I4 — Ig) A (Iﬁ — I5) A (Ig — I7) VAN (IIO — Ig).

Fig. 11(b) shows the remaining — relation in the computation, i.e., the combination of Fig. 11(a)
and Fig. 11(b) is the complete computation. The computation does not contain any cycle in the
— relation initially because every pair of the — relation starts from the second event and ends at
the third event of locking intervals. For ease of reading, the arrows in Fig. 11(a) are omitted in the
other figures of Fig. 11. The final global state can be reached by the run that preserves the partial
order: (1) 11 — 12, and (2) (Il — IQ) VAN (Ig — I4) AN (I5 — 16) VAN (I7 — Ig) AN (Ig — IlO)'

Fig. 11(c) shows the strong feasible global state GG, where the locking order I13 — I1; is induced
because [, is held by the thread ¢;;. In G, the removals of G[11] and G[12] would violate the
consistency constraints and the locking constraints, respectively. Thus, we consider the removal of
the maximal events on other threads, i.e., G[1] to G[10]. Those maximal events can be divided into
two groups: the ones that induce the set A of locking orders and the ones that induce the set B of
locking orders.

Let the symbol I[i] denote the event, whose index is 7, that occurs in the locking interval I. We
first consider the case where the set A of locking orders is induced, which is shown in Fig. 11(d).
Without loss of generality, suppose that the set of orders is induced by the removal of G[2] (i.e.,
I[4]). Then, the following cycle is induced: I3[4] — IL4[1] — I4]2] — I5[3] — Is[4] — Is[l] —
Is[2] — I3[3] — I3[4]. On the other hand, suppose that the set B of locking orders is induced by
the removal of G[1] (i.e., I1[4]) as shown in Fig. 11(e). Then, the following cycle is induced: I7[1] —
17[2] — 110[3] — 110[4] — Ig[l] — [9[2] — 112[3] — 112[4] — In[l] — [11[2] — I8[3] — 18[4] — 17[1].
Therefore, the global state G is strongly feasible but unreachable.

E Proof of Theorem 8

Theorem 8. In a loset L with two threads, a global state is reachable iff it is strongly feasible.

Proof. 1t is sufficient to show that any strongly feasible global state G of a loset with two threads
is always reachable. We show this by induction on the size of G. When |G| = 0, G is the initial
global state and therefore reachable. Now consider any G such that |G| > 0. We will show that
there exists a maximal event e in G such that G — {e} is also strongly feasible. By the induction
hypothesis, we can assume that G — {e} is reachable and therefore G is reachable.

We now show that there does not exist a strongly feasible global state G such that removing
any of its maximal event results in a global state that is not strongly feasible. Let H = G — G[1]
and F' = G — G[2]. Without loss of generality, we show that if H is not strongly feasible, then
G[1] — G[2]. We consider the following three cases:

CASE 1. H is not consistent: It is obvious that G[1] — G[2]. (See Fig. 12(a).)

CASE 2. H is not compatible: An example loset is shown in Fig. 12(b). If H is not compatible,
then there exists one lock [ € EL(H|[1]) N EL(G[2]). Let I(I) and J(I) be the two intervals for the
lock [ such that I(l).acq < H[1] < I(l).rel and J(I).acq < G[2] < J(I).rel. Since G is compatible

acqg<H[1]<iG[1]|=rel
t; >
1)
G J(0) H G
tH)—O0 O t =
e <(@[2] acqg < @G[2]

(a) (b) (c)
Fig.12. (a) CaSE 1: H = G — G[1] is inconsistent. (b) CASE 2: H is incompatible. (¢) CASE 3: H induces a cycle in
the — relation and either (f < acq) or (acqg < f) holds. (d) CASE 3: The cycle in (c) implies G[1] — G[2].




(i.e., EL(G[1]) NEL(G[2]) = @), we get G[1] = I(l).rel. Consequently, the locking order I(l).rel —,
J(1).acq is induced in G and hence G[1] — G[2].

CASE 3. H contains a cycle in the — relation: Fig. 12(c) shows an example loset. Since G is strongly
feasible, the cycle must be completed by a locking order that is induced by H. Suppose that the
locking order is induced because of the lock [, then the following conditions hold:

1. Since the locking order only exits in H, there exists an interval I(l) such that H[1] < I(l).rel =
GI1].

2. There exists an interval J(I) such that J(I).rel < G[2]. Thus, the locking order J(I).rel —p,
I(l).acq can be induced in H but not G.

In order to complete the cycle, there exists a relation e — f in H such that I(l).acq < e < H[1]
and f < J(l).rel. Since the computation has only two threads, any locking order due to H must
point toward the events that occur on ¢;. Hence, the relation e — f is either an existing HB relation
of the computation or a locking order that is induced by G[2]. In either case, e — f also exists in G.
Then, e — f would induce the relation I(l) — J(I) in G (see Fig. 12(d)) and hence the locking
order G[1] —, J(1).acq, which implies G[1] — G][2].

If both H and F are not strongly feasible, then we get G[1] — G[2] and G[2] — G[1]. Therefore,
G contains the cycle G[1] — G[2] — G[1], which is a contradiction to the assumption that G is
strongly feasible. O

F  Enumeration of Reachable Global State in the Loset Model

There are two approaches in literature to enumerate reachable global states of a computation. The
first approach uses breadth (BFS) or depth (DFS) first strategy to add one event to the current
global state G at a time [5,11]. The event to be added satisfies the feasibility of G. This approach
simulates the execution the program using one thread and hence every enumerated global state is
reachable. Because DFS and BFS algorithms might enumerate the same global state more than
once, this approach has to store the enumerated global states. In the worst case, the memory space
for storing might grow exponentially in the number of threads in the computation.

An alternative approach predefines or calculates a spanning tree among the lattice of consistent
global states and enumerates the global states following the edges of the tree [3,10,11,14,17,26].
However, an edge may pass through unreachable global states because the set of consistent global
states is a superset of reachable global states in a loset. Therefore, this approach needs to incorporate
an additional function to prune the consistent but unreachable global states. In this paper, we use
QuickLex [3] to enumerate the consistent global states and use strong feasibility to prune the
unreachable global states.

Table 1 shows the information of the benchmarks that are used in the experiment. The bench-
mark banking is a toy program, which was used to demonstrates typical error patterns in concurrent
programs [7]; arraylist1 is a non-thread-safe container and arraylist2 is a thread-safe container from
Java library; set! and set2 are implementations of concurrent sets using different fine-grained lock-
ing strategies [15]; sor is a scientific computation application; raytracer, moldyn, and montecarlo
are parallel programs from Java Grande benchmark suite; hedc is a crawler for searching Internet
archives; and tsp is a parallel solver for the traveling salesman problem. The benchmarks sor, ray-
tracer, moldyn, montecarlo, hede, and tsp are the benchmark programs used in [4,9,31]. In addition,
the columns of “n”, “#events”, and “#GS” show the number of threads, the number of events,
and the number of enumerated global states of the computation, respectively.

All the experiments are conducted on a Linux machine with an Intel Xeon 2.67 GHz CPU
and the heap size of Java virtual machine is limited to 2GB. The runtime is measured in seconds.



Table 1. The information of benchmarks and runtimes (sec.) of each enumeration approach.

Runtimes Runtimes

Benchmark | n #events #GS Our n #events #GS Our
BFS DFS Method BFS DFS Method
bank 7 91 664,325 | 0.99  3.20 0.09 9 121 53,808,433 | 350.27 o.0.m. 4.47
arraylist1 12 56 354,293 | 0.57 1.06 0.07 || 16 76 28,697,813 | 175.80 o.0.m. 1.66
arraylist2 7 103 3,045,808 | 4.48 30.28 0.22 8 118 25,740,144 | 104.81 o.0.m. 1.75
setl 6 114 947,951 1.36  5.25 1.16 7 147 15,040,942 | 40.21 o.0.m. 23.02
set2 6 140 2,762,420 | 3.55 28.70 3.16 7 189 78,130,591 | 452.43 o.0.m. 160.38
sor 14 66 3,188,645 | 9.16 32.29 0.22 || 16 76 28,697,813 | 174.48 o.0.m. 1.64
raytracer 9 121 4,882,833 | 10.36 42.57 0.54 || 10 132 24,414,083 | 98.15 o.0.m. 2.83
moldyn 13 83 3,188,633 | 8.66 23.77 0.22 || 15 93 28,697,831 | 166.83 o.0.m. 2.08
montecarlo | 12 78 354,315 | 1.53  1.06 0.05 || 16 98 28,697,835 | 227.51 o.0.m. 1.88
hedc 7 92 458,334 | 0.64 1.50 0.38 9 121 24,522,560 | 108.37 o.0.m. 7.30
tsp 8 76 1,235,981 1.99 11.26 0.17 || 10 90 25,000,001 | 115.77 o.0.m. 52.33

Table 1 contains two sets of results. The set at the left of the table shows the largest computations
that the DFS algorithm can handle, i.e., the DFS algorithm would run out of memory when the
computations contain one more thread. On the other hand, the set at the right of the table shows the
largest computations that the BFS algorithm can handle. The BFS and DFS algorithms generate
the reachable global states and our approach generates strongly feasible global states. However, all
the compared algorithms generate the same set of global states. Meanwhile, our approach reduces
84% and 61% of runtime in comparison with BFS and DFS algorithms, respectively.



