Fast Detection of Stable and Count Predicates in
Parallel Computations

Himanshu Chauhan and Vijay K.
Garg
University of Texas at Austin

Context: Verifying Parallel or Distributed
Programs

* Correct parallel programs

> not only difficult to implement
> put also difficult to debug/
verity

Verifying Programs: Techniques

1. Testing

run implemented program once and observe
output

2. Model Checking

check all possible states of the state machine
model of the program

Verifying Parallel Programs

4
Efficacy

Predicate Detection

or Predictive Analysis

>

Resources

Predicate Detection

* Run program once

1. model execution as partial order
2. verify model for correctness

One partial order

M

Many total orders

@—0—0—0

O—@—0—0

O—0—0—0

O—O0—0—@

@—0—0—0

—0—0—®

00000000

"@—C——0O—0

@—O0—@—0

5

Analyzing Computations

] Ps
Example Questions: SN ? .®
Is it possible that two red messages P, :\w\;g

can be delivered before the first yellow event?

Is it possible that process P1 (master) finishes executing three
events before second event on P3 happened?

Possible to map and analyze useful applications:
Paxos implementation [distributed]
Concurrent modification/data-race/critical section violation

[shared memory]

Predicate Detection: Background

Computation: Trace of a Parallel Program
P> @ I »O
P1 @ @

ee E: setofevents

— happened-before relation
process order + causal dependency

Consistent Cut

Snapshot of computation that is consistent
with the happened-before order.

d CU INCiudaes event e tnen It mus

Include

vl
— S

Verifying Computation for Correctness

 Check all consistent cuts of the
computation against a predicate B

* NP-complete [Chase and Garg 98]

10

Set of all Consistent Cuts

200000

e :

Enumerating all consistent cuts satisfying B

 Brute force 1:

for all subsets G of E do
If consistent(G) and B(G): enumerate G

Generates all cuts
BFS: [Cooper Marzullo 92]

current: list of the global states initially contains initial state;
repeat

for all G in current: if B(G) then enumerate G

last := current;

current = global states reached from last in one step;

until (current is empty)
Other Algorithms: DFS, Lex, QuickLex..
Generate all consistent cuts

12

Enumerating all consistent cuts satisfying B

* Need to enumerate those and only those
consistent cuts that satisfy B

* The time to compute a consistent cut
should be polynomial in the number of
events

* NP-completeness for general B implies we
need to exploit the structure of the
predicate

13

Regular Predicates

* Sg: set of consistent cuts satisfying B

» Bisreqgular if Sgis a sublattice of L.

(e.g. all processes are red and all channels
are empty)
* slice: a computation that generates exactly

Se [Garg and Mittal 01]

e Enumerate all consistent cuts of slice

What if B is not regular?

14

Enumerating Stable and Count
Predicate Detectes

Stable Predicate

Predicate that once becomes true in the
computation stays true.
[Chandy and Lamport 85]

Examples: “Every process is in round > k7,
“at least k events have been executed”,
‘Process Pi has sent k messages’.

16

Consistent Cuts satisfying Stable Predicate

17

Count Predicates

Predicate that take the form:
“exactly k c-colored events have been
executed.

Examples:
“exactly 3 blue events have been executed”

D, O
Only 8 such cuts
2o O O—@

P @ »@—O

Total # of consistent cuts = 64

18

Uniflow Chain Partition

* Arrangement of computation

dependencies (happened-before edges)
across chains go only down to up.

e S
—
: i/é |

Uniflow Chain Partition

* Arrangement of computation

dependencies (happened-before edges)
flow either left to right, or down to up.

20

Uniflow Chain Partition

emma: Every computation has a uniflo
partition.
Proof: Topological sort.

21

Optimal Uniflow Chain Partition

Ny is polynomial in input size: ny < E; where E is # of events.

Finding the optimal uniflow chain partition is
NP-Hard (jump number of a poset)

22

Cut formed with bottom r events

Lemma: Any cut formed with bottom
r(1 < r<IEl) events of uniflow partition

IS consistent.

23

Enumerating Cuts satisfying
Counting or Stable Predicates

Satisfy Stable Predicate B Satisfy Counting Predicate B

All known enumeration algorithms will

Our algorithms only enumerate the cuts of the
lattice that satisfy the predicate.

* Predicate Detection

* Uniflow Chain Partition

» Stable and Counting Predicates

> Enumerating cuts: Stable Predicates

* Enumerating cuts: Counting
Predicates

25

Enumerating Stable Predicates using
Uniflow Partition

B = "3 or more blue events have been

executed”
Step 1: Gg = FindSmallestCut(B, {})

//smallest cut that satisfies B and is bigger than {}.

P O—@—0O 0
>, o—r0—0 | 3
P @——0——8—>0 3

26

Enumerating Stable Predicates using
Uniflow Partition

B = "3 or more blue events have been

executed”
Step 2: G = FindSmallestCut(B, Gg)

//smallest cut that satisfies B and is bigger than Ge.

P O—@—0O 0
D, (O O—@ 3
b, @——0O——@—>0 4

Enumerating Stable Predicates using
Uniflow Partition

Gg = FindSmallestCut(B, {})

while(true):

enumerate(Gg)
Gg = FindSmallestCut(B, Gg)
If not expanded: break

B =“3 or more blue events have been executed”

P3 [OT—®

> 01 1 2

o, (b9 3330

31 x. >O

o b4a3 4 3

28

* Predicate Detection

* Uniflow Chain Partition

» Stable and Counting Predicates

* Enumerating cuts: Stable Predicates

> Enumerating cuts: Counting
Predicates

29

Enumerating Counting Predicates using
Uniflow Partition

B = “exactly 3 blue events have been
executed”
Step 1: G = FindsSmallestCut(B)

P; O—@ O
2> 1O O0—0 |
>, [@—0——0—0

30

Enumerating Counting Predicates using
Uniflow Partition

B = “exactly 3 blue events have been
executed”
Step 2: EnumerateSameView(G,B)

o5 (O —>@——O
Po 1O O—@
P @ > »@—0O

Enumerating Counting Predicates using
Uniflow Partition

B = “exactly 3 blue events have been
executed”
Step 3: G = Successor(G,B)

s [O—97—C

P2 (O O—@
:1h ..ioj

Enumerating Counting Predicates using
Uniflow Partition

G = FindSmallestCut(B)
while(G = null)

EnumerateSameView(G,B)
G = Successor(G,B)

33

Theorem: Let Sp € C(F) denote the set of consistent cuts that satisfy the stable or
counting predicate B. Then, enumerating all consistent cuts in Sp takes O(f - |Sp|) time
using the algorithms given in this paper; where f is a polynomial function of | E| (the number
of events) and n (the number of processes).

In comparison, enumerating all the cuts of S using the existing algorithms such as BF'S,
DFS, Lex (or QuickLex) may take O(|C(E)|) time in the worst case. Note that the |C(E)|
can be exponentially bigger than |Sg|.

34

Summary

Satisfy Stable Predicate B Satisfy Counting Predicate B

Our algorithms only enumerate the cuts of the
lattice that satisfy the predicate.

35

Future Work

* Lower bounds on algorithms that
enumerate global states satisfying stable
and counting predicates

* Other interesting classes of predicates that
can be efficiently enumerated.

36

Thanks.
Questions?

