
Fast Detection of Stable and Count Predicates in
Parallel Computations
Himanshu Chauhan1 and Vijay K. Garg1

1 University of Texas at Austin
{himanshu@, garg@ece.}utexas.edu

Abstract
Enumerating all consistent states of a parallel computation that satisfy a given predicate is an
important problem in debugging and verification of parallel programs. We give a fast algorithm to
enumerate all consistent states of a parallel computation that satisfy a stable predicate. In addi-
tion, we define a new category of global predicates called count predicates and give an algorithm
to enumerate all consistent states (of the computation) that satisfy it. All existing predicate
detection algorithms, such as BFS, DFS and Lex algorithms, do not exploit the knowledge about
the nature of the predicates, and thus may visit all global states of the computation in the worst
case. In comparison, our algorithms only visit the states that satisfy the given predicate, and thus
take time and space that is a polynomial function of the number of states of interest. In doing
so, they provide a significant reduction — exponential in many cases — in time complexities in
comparison to existing algorithms.

1998 ACM Subject Classification C.2.4 Distributed Systems

Keywords and phrases Algorithms, Theory, Predicate Detection, Parallel Programs

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2017.0

1 Introduction

Predicate detection [18, 11] is a powerful technique for verifying parallel programs. It allows
inference based analysis to check many possible system states based on a single execution of
the program. It involves three key steps: (a) obtaining an execution trace of the program,
(b) modeling this trace as a partial order, and (c) checking all possible states of the model
that are consistent with the partial order against a predicate that encodes the violation of
any constraint or invariant. A large body of work uses this approach to verify distributed
applications, as well as to detect data-races and other concurrency related bugs in shared
memory parallel programs [10, 14, 21, 25].

In many debugging/analysis applications, we may be interested in analyzing each consis-
tent global state — often called a consistent cut — of a parallel program that satisfies a given
predicate. For example, while debugging an implementation of the Paxos [24] algorithm,
a programmer might only be interested in analyzing consistent cuts when all the promise
messages of a particular round have been delivered. Another scenario is when a programmer
knows that her program exhibits a bug only after the system has executed a certain number
of, let us say k, events. For these two scenarios, our predicate definitions are: B = all
promises have been delivered, and B = at least k events have been executed. Both of these
predicates fall under the category of stable predicates. A stable predicate is a predicate that
remains true once it becomes true. In addition, some predicates are defined on the count of
some specific types of events in the system. We call such global predicates count predicates.
This category of predicates encodes many useful conditions for debugging/verification of

licensed under Creative Commons License CC-BY
21st International Conference on Principles of Distributed Systems (OPODIS 2017).
Editors: James Aspnes, Alysson Bessani, Pascal Felber, and João Leitão; Article No. 0; pp. 0:1–0:20
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2017.0
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:2 Fast Detection of Stable and Count Predicates in Parallel Computations

parallel programs. For example, B = exactly two promise messages have been received is a
count predicate.

Let us call the partial order model of the execution trace a computation. If we are
interested in enumerating all possible consistent cuts of a computation that satisfy a global
predicate B that is of either a stable or a count predicate, then we currently only have
one choice: traverse all the cuts using existing traversal algorithms (such as BFS [11], DFS
[1], and Lex [16, 17] and check which ones satisfy B. This is generally wasteful because
we traverse many more cuts than needed — especially if the subset of cuts satisfying B

is relatively small. For example, consider the computation in Figure 1, and the predicate
B = at least 4 events have been executed. Figure 2 shows all the consistent cuts of the
computation as a distributive lattice using the vector clock notation. There are five such
cuts in which at least four events have been executed. Using the BFS, DFS, or Lex traversal
algorithms, however, we will have to visit all the twelve cuts to find these five.

e f g

a b c

P2

P1

Figure 1 Computation on two pro-
cesses with six events

{}

{a} {e}

{a, b} {a, e}

{a, b, c} {a, b, e}

{a, b, c, e} {a, b, e, f}

{a, b, c, e, f} {a, b, e, f, g}

{a, b, c, e, f, g}

Figure 2 Lattice of Consistent Cuts
for Figure 1

We present the first algorithms to efficiently enu-
merate the subset of consistent cuts that satisfy sta-
ble or count predicates without enumerating other
consistent cuts that do not satisfy them. Our al-
gorithms take time and space that is a polynomial
function of the number of consistent cuts of interest.
Thus, when compared to existing algorithms for enu-
merating such consistent cuts, the time complexities
of our algorithms are significantly — exponentially
for many cases — better.

2 Background

We model a computation P = (E,→) on n pro-
cesses {P1, P2, . . . , Pn} as a partial order on the set
of events, E. The events are ordered by Lamport’s
happened-before (→) relation [23]. This partially or-
dered set (poset) of events is generally partitioned
into chains:

I Definition 1 (Chain Partition). A chain partition
of a poset places every element of the poset on a
chain that is totally ordered. Formally, if α is a chain
partition of poset P = (E,→) then α maps every
event to a natural number such that

∀x, y ∈ E : α(x) = α(y)⇒ (x→ y) ∨ (y → x).

Generally, a computation on n processes is partitioned into n chains such that the events
executed by process Pi (1 ≤ i ≤ n) are placed on ith chain.

Mattern [26] and Fidge [13] proposed vector clocks, an approach for time-stamping events
in a computation such that the happened-before relation can be tracked. For a program
on n processes, each event’s vector clock is a n-length vector of integers. Note that vector
clocks are dependent on chain partition of the poset that models the computation. For an
event e, we denote e.V as its vector clock. Throughout this paper, we use the following
representation for interpreting chain partitions and vector clocks:

H. Chauhan and V.K. Garg 0:3

If there are n chains in the chain partition of the computation, then the lowest chain
(process) is always numbered 1, the second lowest chain is numbered 2, and so on, with
the highest chain being numbered n.
A vector clock on n chains is represented as a n-length vector: [en, en−1, ..., ei, ..., e2, e1]
such that the rightmost (first from right) entry denotes the number of events executed
on P1, second from right entry denotes events executed on P2, and so on, such that the
left most (nth from right) entry holds the number of events executed on Pn.

Hence, if event e was executed on process Pi, then e.V [i] is e’s index (starting from 1) on
Pi. Also, for any event f in the computation: e→ f ⇔ ∀j : e.V [j] ≤ f.V [j] ∧ ∃k : e.V [k] <
f.V [k]. A pair of events, e and f , is concurrent iff e 6→ f ∧ f 6→ e. We denote this relation
by e||f . Note that concurrent events must occur on separate processes. Figure 3 shows the
corresponding vector clocks of the computation shown in Figure 1. Event b is the second
event on process P1, and thus using the notation described above its vector clock is [0, 2].
Event g is the third event on P2, but it is preceded by f , which in turn is causally dependent
on b on P1, and thus the vector clock of f is [3, 2].
I Definition 2 (Consistent Cut). Given a computation (E,→), a subset of events C ⊆ E forms
a consistent cut if C contains an event e only if it contains all events that happened-before
e. Formally, e ∈ C ∧ f → e =⇒ f ∈ C.

e

[1, 0]

f

[2, 2]

g

[3, 2]

a

[0, 1]

b

[0, 2]

c

[0, 3]

P2

P1

Figure 3 Vector clocks of events for
computation of Figure 1

A consistent cut captures the notion of a global
state of the system at some point during its execution
[3]. We use the term cut for a possible global state of
the computation which may or may not be consistent.
When the global state is consistent, we use the term
consistent cut.

Consider the computation shown in Fig 1. The
subset of events {a, b, e} forms a consistent cut,
whereas the subset {a, e, f} does not; because b → f (b happened-before f) but b is not
included in the subset.

Vector Clock Notation of Cuts: So far we have described how vector clocks can be
used to time-stamp events in the computation. We also use them to represent cuts of the
computation. If the computation is partitioned into n chains, then for any cut G, its vector
clock is a n-length vector such that G[i] denotes the number of events from Pi included in
G. Note that in our vector clock representation the events from Pi are at the ith index from
the right.

For example, consider the state of the computation in Figure 1 when P1 has executed
events a and b, and P2 has only executed event e. The consistent cut for this state, {a, b, e},
is represented by [1, 2]. Note that cut [2, 1] is not consistent, as it indicates execution of f
on P2 without b being executed on P1.
I Definition 3 (Lexical Order on Consistent Cuts). Given any chain partition of poset P that
partitions it into n chains, we define a total order called lexical order on all consistent cuts
of P as follows. Let G and H be any two consistent cuts of P . Then, G <l H ≡ ∃k : (G[k] <
H[k]) ∧ (∀i : n ≥ i > k : G[i] = H[i])
I Theorem 1. [12, 26] Let C(E) denote the set of all consistent cuts of a computation (E,→).
C(E) forms a finite distributive lattice under the relation ⊆.

Figure 9 in Appendix A, shows the twelve consistent cuts of the computation in Figure 1
in set notation and their corresponding vector clock notation.

OPODIS 2017

0:4 Fast Detection of Stable and Count Predicates in Parallel Computations

Rank of a Cut: Given a cut G, we define rank(G) =
∑
G[i]. The rank of a cut corresponds

to the total number of events, across all processes, that have been executed to reach the cut.

3 Uniflow Chain Partition

We now discuss a special chain partition of a poset called uniflow chain partition. A uniflow
partition of a poset P is its partition into nu chains {µi | 1 ≤ i ≤ nu} such that no element
in a higher numbered chain is smaller than any element in lower numbered chain; that is
if any element e is placed on a chain i then all elements smaller than e must be placed on
chains numbered lower than i. For poset P , chain partition µ is uniflow if

∀x, y ∈ P : µ(x) < µ(y)⇒ (y 6→ x) (1)

P2

P1

(a)

P3

P2

P1

(b)

Figure 4 Posets in Uniflow Partitions

Visually, in a uniflow chain partition all the edges between separate chains always point
upwards. Figure 4 shows two posets with uniflow partitions. Whereas Figure 5 shows two
posets with partitions that do not satisfy the uniflow property. The poset in Figure 5a can
be transformed into a uniflow partition of three chains as shown in Figure 5b. Similarly,
Figure 5c can be transformed into a uniflow partition of two chains shown in Figure 5d.
Observe that:

I Lemma 1. Every poset has at least one uniflow chain partition.

Proof. Any total order that is an extension of the poset is a uniflow chain partition in which
each element is a chain by itself. In this trivial uniflow chain partition the number of chains
is equal to the number of elements in the poset. J

For any poset P , the number of chains in any of its uniflow partition is always less than
or equal to |P | (the number of elements in poset). Let us now focus on finding a uniflow
chain partition of our poset model of a parallel computation.

We define a total order, called uniflow order, on the events of the computation based on
its uniflow chain partition. Recall from Equation 1 that for any event e, µ(e) denotes its
chain number in µ. Let pos(e) denote the index of event e on chain µ(e). Note that a chain
is totally ordered, and thus for any two events on the same chain one event’s index will be
greater than the other’s.

I Definition 4 (Uniflow Order on Events, <u). Let µ be uniflow chain partition of a compu-
tation P =(E,→) that partitions it into nu chains. We define a total order called uniflow
order on the set of events E as follows. Let e and f be any two events in E. Then,
e <u f ≡ (µ(e) < µ(f)) ∨ (µ(e) = µ(f) ∧ pos(e) < pos(f))

H. Chauhan and V.K. Garg 0:5

e f

a b

P2

P1

(a)

e
f

a

b
µ3

µ2

µ1

(b)

a b c

e f g

P2

P1

(c)

a b c

e f

g
µ2

µ1

(d)

Figure 5 Posets in (a) and (c) are not in uniflow partition: but (b) and (d) respectively are their
equivalent uniflow partitions

For example, in Figure 5b we have a <u e as µ(a) = 1 and µ(e) = 2; and e <u f as
µ(e) = µ(f) = 2, pos(e) = 1 and pos(f) = 2.

The problem of finding a uniflow chain partition is a direct extension of finding the jump
number of a poset [9, 2, 32]. Multiple algorithms have been proposed to find the jump
number of a poset; which in turn arrange the poset in a uniflow chain partition. Finding
an optimal (smallest number of chains) uniflow chain partition of a poset is a hard problem
[9, 2]. Bianco et al. [2] present a heuristic algorithm to find a uniflow partition, and show in
their experimental evaluation that in most of the cases the resulting partitions are relatively
close to optimal. We use the online algorithm given in [7] to find a uniflow partition for a
computation.

Recall that for the vector clock notation of a cut G, G[i] denotes the number of events
included from chain i. The vector clocks of events, and cuts, of a computation are dependent
on the underlying chain partition, and hence we re-generate the vector clocks of the events
for the uniflow partition. This is a simple task using existing vector clock implementation
techniques, and we omit these details.

Note that the set of consistent cuts of a computation remains the same irrespective of
the chain partition used. Hence, if the computation’s uniflow partition is different from its
original chain partition, we re-map the vector clock of consistent cuts in uniflow partition
to the vector clocks of cuts in original partition. For the details of this step, we refer the
reader to [7].

The structure of uniflow chain partitions can be used for efficiently obtaining bigger
consistent cuts. After we find a uniflow chain partition of a computation, and regenerate
the vector clocks of events as per this partition, we have the following result.

I Lemma 2 (Uniflow Cuts Lemma). Let P be a poset with a uniflow chain partition {µi | 1 ≤
i ≤ nu}, and G be a consistent cut of P . Then any Hk ⊆ P for 1 ≤ k ≤ nu is also a
consistent cut of P if it satisfies:

∀i : k < i ≤ nu : Hk[i] = G[i], and
∀i : 1 ≤ i ≤ k : Hk[i] = |µi|.

Proof. Using Equation 1, we exploit the structure of uniflow chain partitions: the causal
dependencies of any element e lie only on chains that are lower than e’s chain. As G is
consistent, and Hk contains the same elements as G for the top (nu − k) chains, all the
causal dependencies that need to be satisfied to make Hk have to be on chain k or lower.
Hence, including all the elements from all of the lower chains will naturally satisfy all the
causal dependencies, and make Hk consistent. J

OPODIS 2017

0:6 Fast Detection of Stable and Count Predicates in Parallel Computations

For example, in Figure 4b, consider the cut G = [1, 2, 1]1 that is a consistent cut of the
poset. Then, picking k = 1, and using Lemma 2 gives us the cut [1, 2, 3] which is consistent;
similarly choosing k = 2 gives us [1, 3, 3] that is also consistent. Note that the claim may
not hold if the chain partition does not have uniflow property. For example, in Figure 5c,
G = [2, 2] is a consistent cut. The chain partition, however, is not uniflow and thus applying
Lemma 2 with k = 1 gives us [2, 3] which is not a consistent cut as it includes the third
event on P1, but not its causal dependency — the third event on P2.

We now define the notion of a base cut: a consistent cut that is formed by including
events from µ in a bottom-up manner.
I Definition 5 (l-Base Cut). Let G be a consistent cut of a computation P =(E,→) with
uniflow partition µ. Then, we call G a l-base cut if ∀j ≤ l : G[j] = size(µj)

Thus, in a l-base cut we must include all the events from each chain that is same or
lower than µl in the uniflow partition µ. In Figure 5b, {a, e, b} (or [1, 1, 1] in its vector clock
notation) is a consistent cut. It is a 1-base cut as it includes all the elements from chain µ1,
but it is not a 2-base cut as it does not include all the events from the chain µ2.

4 Enumerating Consistent Cuts Satisfying Stable Predicates

A predicate B is stable if once it becomes true it stays true. Some examples of stable
predicates are: deadlock, termination, loss of message, at least k events have been executed,
and at least k′ messages have been sent.
I Definition 6 (Stable Predicate). Let C be the set of all consistent cuts of a computation.
A predicate B defined on C is called stable if and only if ∀G,H ∈ C : G ⊆ H implies that if
B(G) is true then B(H) is also true.

Thus, for any stable predicate B the lattice of consistent cuts can be split in two parts
using a boundary: every consistent cut higher than the boundary satisfies B, and no consis-
tent cut lower than the boundary satisfies B. Figure 10 (in Appendix, page 18) presents a
visualization for this concept. Our goal is to enumerate all consistent cuts of a computation
P =(E,→) that satisfy a stable predicate B. Note that if the empty cut, {} satisfies B,
then by the stability property of B all the consistent cuts of the computation satisfy B. In
this case, the problem is equivalent to traversing all the consistent cuts of a computation.
We can use a fast traversal algorithm such as QuickLex [5] to do so. We now focus on the
non-trivial case, and present our algorithm that enumerates only the consistent cuts that
satisfy B, and does not enumerate the remaining parts of the lattice of consistent cuts.

Recall that C(E) represents the set of all consistent cuts of the computation P =(E,→).
Let SB ⊂ C(E) be the set of all consistent cuts of P that satisfy a stable predicate B. We
use P ’s uniflow partition µ to enumerate them in their lexical order based on the uniflow
partition. Let G and H be two consistent cuts of P , then applying the definition of lexical
order (Definition 3) over nu chains, we get G <l H ≡ ∃k : (G[k] < H[k])∧ (∀i : nu ≥ i > k :
G[i] = H[i]).

We use the EnumerateStable routine in Algorithm 1 for this enumeration. We first
find the lexically smallest consistent cut G that satisfies B. We then find the next cut that
is lexically greater than G and satisfies B, and repeat the process after re-assigning G to
this cut. We stop when no such lexically greater cut satisfying B is found.

1 Recall that in our vector clock notation ith entry from the right in the vector clock represents the
events included from ith chain from the bottom in the uniflow chain partition.

H. Chauhan and V.K. Garg 0:7

Algorithm 1 EnumerateStable((E,→), B)
Input: Computation (E,→) in its uniflow chain partition µ, B: a stable predicate
Output: Enumerate all consistent cuts satisfying B.
1: G = GetMinCut(B, {}) // find the lexically smallest consistent cut satisfying B
2: while G 6= null do
3: enumerate(G) // enumerate the cut
4: G = GetMinCut(B,G) // find the next lexically smallest consistent cut >l G satisfying B

Algorithm 2 GetMinCut(B,G)
Input: B: a stable predicate, G: a consistent cut
Output: lexically smallest consistent cut >l G that satisfies B
1: 〈H, c〉 = GetBiggerBaseCut(B,G)
2: return BackwardPass(B, c− 1, H)

Given a consistent cut G, and a stable predicate B, we use the GetMinCut routine in
Algorithm 2 to find the lexically smallest cut that is greater than G and satisfies B. We use
two sub-routines for this task: GetBiggerBaseCut and BackwardPass.

The GetBiggerBaseCut routine in Algorithm 3 takes a consistent cut, G, and returns
a pair: the first entry is the lexically smallest l-base cut (Definition 5) H lexically greater
than G that satisfies B, and the second entry is the chain number from which we added the
last event to H before returning the result. If no such cut H can be found, then we return
〈null,−1〉. We start by copying G into H, and from the lowest chain, i = 1, add events
to H that are not included in it. Each time we add an event e (not already present in H)
to H, we form a bigger consistent cut, and then check if this H satisfies B. Note that we
move from lower chains to higher, and by the property of uniflow chain partition, we know
that adding events in this order will not violate any causal dependencies and keep the cut
consistent. At the first instance of finding a bigger cut that satisfies B, we stop and return
the pair 〈H, i〉, where i is the chain number in µ on which we found e. If we consume all
the events from a chain, we move to the chain immediately above and repeat this process.

c d

a b

P1

P2

(a) Computation

c

b

a

d

µ1

µ2

µ3

(b) Uniflow
Partition

Figure 6 A computation on two pro-
cesses in: (a) its original non-uniflow
partition, (b) equivalent uniflow parti-
tion

Let us illustrate the execution with an example.
Consider the computation in Figure 6b and the pred-
icate B=P2 has executed two or more events, and the
call GetBiggerBaseCut (B, {c}). We use the uni-
flow partition, and starting at µ1, with H = G = {c},
we add the first and only event of this chain, a, to
H and get {a, c} that is greater than G but does not
satisfy B, as a was executed on P1 in the computa-
tion. We now jump to chain µ2, and find the first
event on µ2 that is not included in H. This event is
b, the second event on chain. We add it to H and get
H = {a, b, c} that still does not satisfy B. We now
move to the third chain, and add its only event d to
H. We now have H = {a, b, c, d} and it satisfies B.
We return 〈H = {a, b, c, d}, i = 3〉.

The BackwardPass routine (in Algorithm 4)
takes three arguments: a stable predicate B, a chain
number start, and a consistent cut G that satisfies B. It returns a consistent cut H such
that H satisfies B, and H is the lexically smallest member of the set: {G′ ⊆ G : G′[j] =

OPODIS 2017

0:8 Fast Detection of Stable and Count Predicates in Parallel Computations

Algorithm 3 GetBiggerBaseCut(B,G)
Input: B: a stable predicate, G: a consistent cut
Output: pair 〈H, i〉: H is the smallest base cut that is lexically greater than G and satisfies B, i

is the chain number in µ from which we added the last event to H.
1: H = G

2: for (i = 1; i ≤ nu; i = i+ 1) do // go from lowest chain to highest
3: j = index of the smallest event on chain µi that is not included in H
4: for (; j ≤ size(µi); j = j + 1) do // use events on chain i not included in G
5: H = H ∪ {µi[j]} // add event to cut H
6: // H is guaranteed to be lexically greater than G now
7: if B(H) then // if H satisfies B
8: return 〈H, i〉 // return H and chain number of the event
9: return 〈null,-1〉 // no cut lexically greater than G and satisfying B was found

G[j], start+ 1 ≤ j ≤ nu}. Thus, H is the lexically smallest consistent cut H ≤l G that sat-
isfies B such that H and G include the same set of events from chains start+ 1 and higher.
Note that whenever start = nu, we have start + 1 > nu, and the routine returns without
changing the passed cut. We start from the given chain number and traverse backwards
on it removing the events as long as the resulting cut continues to satisfy B. If removing
an event will cause the cut to become inconsistent or not satisfy B, we do not remove the
event and move to the chain immediately below. Consider the computation in Figure 6b
and the predicate B=P2 has executed two or more events, and the call BackwardPass
(B, 2, {a, b, c, d}). We start at chain i = 2, and remove the last event on this chain, b, from
H, to get K = {a, c, d}. This cut satisfies B as it has two events c and d that were executed
on P2. We now update H = K = {a, c, d}. We then try to remove c the first event on chain
µ2 from H, but get the cut K = {a, d} that is not consistent — d’s causal dependency c is
not included in this cut. Hence, H is not changed, and kept as {a, c, d}. We now move to
the lower chain µ1. We again cannot remove the only event from this chain (event a) as it
will make the cut inconsistent. We now have exhausted all the chains, and thus at the end
return H = {a, c, d} which is lexically smaller than G = {a, b, c, d} and satisfies B.

Algorithm 4 BackwardPass(B, start,G)
Input: B: a stable predicate, start: a chain number (from µ) such that 0 < start < nu, G: a

base cut that satisfies B.
Output: H: Lexically smallest consistent cut ≤ G that satisfies B and has H[k] = G[k] for

start+ 1 ≤ k ≤ nu.
1: H = G

2: for (j = start; j ≥ 1; j = j − 1) do // iterate from start argument chain to lower chains
3: for (e = H[j]; e ≥ 1; e = e− 1) do // from last event on chain to first
4: K = H \ {µj [e]} // remove event from cut
5: if K is inconsistent then // removing the event violated consistency
6: break // break inner loop on events to move to the lower chain
7: // K must be consistent now
8: if B(K) then // K is consistent, smaller than G, and satisfies B
9: H = K // update H to this cut

10: return H

For the computation in Figure 6b and the predicate B=P2 has executed two or more
events, let us find the lexically smallest cut that satisfies B. We use the GetMinCut
routine, and since we are interested in finding the lexically smallest cut, we start with

H. Chauhan and V.K. Garg 0:9

G = {}. Calling GetBiggerBaseCut (B, {}) returns 〈H = {a, b, c, d}, i = 3〉 as shown
earlier. Now calling BackwardPass (B, 2, {a, b, c, d}) returns {a, c, d}. This is the lexically
smallest cut of the computation that satisfies B.

Let us now go through a run of EnumerateStable routine. For the computation
in Figure 6b and the predicate B=P2 has executed two or more events, we have already
seen that lexically smallest cut that satisfies B is {a, c, d}. We enumerate this cut at line
3 (in Algorithm 1) and then call GetMinCut (B, {a, c, d}). This in turn will first call
GetBiggerBaseCut (B, {a, c, d}), and the result is 〈H = {a, b, c, d}, i = 2〉. The second
call (in GetMinCut) is BackwardPass (B, 1, {a, b, c, d}) that returns G = {a, b, c, d}, and
we enumerate it. The next call of GetMinCut (B, {a, b, c, d}) will return null as there is no
cut greater than {a, b, c, d}. Hence, the loop will now terminate, and we have enumerated
all the cuts that satisfy B.

We present the proof of correctness for these algorithms in this paper’s extended version
[6]. The routines presented here can be implemented without the regeneration of vector
clocks for uniflow partition. We can also optimize them for improved runtime by using
some additional space. We present these implementation details, and their optimizations in
Appendix B.

5 Enumerating Consistent Cuts satisfying Count Predicates

Many applications involve analysis of computations based on some specific type of events.
The type of an event is defined either in the context of the system under consideration,
or in the context of the analysis problem. For example, we can categorize events in a
message-passing computation in three base types: send event, receive event, and local event.
Similarly, in a shared memory parallel computation that uses locks, we can define three
base types: acquire-lock event, release-lock event, and thread-local event. Analyzing such
computations may require us to check all consistent cuts that satisfy counting conditions on
a type of event. For example, we may be interested in analyzing the computation when a
certain number of send events have occurred, or a certain number of messages have been
received. We call such predicates count predicates. Count predicates are used in multiple
debugging and analysis applications. For example, while debugging an implementation of
Paxos [24] algorithm, a programmer might only be interested in analyzing possible system
states when kth propose message has been sent, or k′ promise messages have been delivered.
Another scenario is when a programmer knows that a program exhibits a bug only after the
system has executed a certain number of events. We use the notion of colors to represent
types. We assume that by default each event in a computation is colored white. Then,
every event of interest is assigned a color where each color represents a type categorization.
Note that an event can have only one color, and on assigning a color c to it, we replace
its previously assigned color. For example, in the Paxos implementation scenario discussed
earlier, we may assign the color blue to all the events that send a propose message, and the
color red to all the events that deliver promise messages. We then define the notion of a
view of a consistent cut with respect to a color:

I Definition 7 (view(G, c)). Let each event e of the computation P = (E,→) be colored
with a color c from the set of colors C. Then for a consistent cut G of P we define view(G, c)
as the set of events that are included in G and are colored c.

For example, consider the computation shown in Figure 7. The events in this computa-
tion are colored either white or blue. Given the cut G = {a, b, e} in this computation, we

OPODIS 2017

0:10 Fast Detection of Stable and Count Predicates in Parallel Computations

have view(G,white) = {a, b, e}, and view(G, blue) = {}. For G = {a, b, c, d, e, f, g}, we get
view(G,white) = {a, b, c, e, g}, and view(G, blue) = {d, f}.

We now use the view with respect to a color to define a count predicate.

I Definition 8 (Count Predicate). Let P = (E,→) be a computation, and c be a color from
the set of colors C. A predicate B is called a count predicate if it can be written in the
form: |view(G, c)| = k ∈ N, for any consistent cut G of P .

If c is the color used in defining B, then we use the notation countB(G) = |view(G, c)|.
Observe that for a count predicate B, we get:

countB(G) ≤ rank(G).
If H is a consistent cut such that G ⊆ H then countB(H) ≥ countB(G).
If K is a consistent cut such that G ⊂ K and countB(K) > countB(G), then ∃H : (G ⊂
H ⊆ K) ∧ countB(H) = countB(G) + 1.

Given that B is defined with respect to one color c, for brevity and ease of notation we
usually write view(G) for view(G, c) when c is obvious from the context.

e f g

a b c

h

d

µ2

µ1

Figure 7 A computation in uniflow
partition

We now present an algorithm to enumerate all
consistent cuts of a computation (E,→) that satisfy
a count predicate B. We use the computation’s uni-
flow partition µ for enumerating these cuts in their
lexical order. Algorithm 5 shows our approach out-
line. First we find the lexically smallest cut that sat-
isfies B. Given the properties of B, we know that
adding new events to any consistent cut G can either
increase countB(G) or keep it same. Thus, using the
uniflow chain partition µ we can use the GetMin-
Cut routine from Algorithm 2 to find the lexically
smallest cut that satisfies B. This works because the lexically smallest cut that satisfies
the count predicate countB(G) = k is also the lexically smallest cut that satisfies the stable
predicate countB(G) > k − 1. We then repeatedly enumerate lexically bigger cuts that
satisfy B using two sub-routines: EnumSameViewCuts and GetSuccessor.

EnumSameViewCuts in Algorithm 6 takes two arguments: a count predicate B, and
a consistent cut G that satisfies B. It uses the uniflow chain partition µ to enumerate all
the consistent cuts that satisfy the predicate and have the same view with respect to the
color c used to define B. For example, consider the predicate B=number of blue events is 1,
and the computation in Figure 7. Calling EnumSameViewCuts with G = {a, b, e, f} will
enumerate three cuts: {a, b, e, f}, {a, b, e, f, g}, {a, b, c, e, f, g} as they have the same view —
the same blue event f has been executed in all of them. The routine goes from lower chains
to higher, and on each chain adds events in their increasing order to the cut. We know from
the structure of uniflow chain partition that the resulting cut will be consistent. If it has
the same view, then we enumerate it. Otherwise, if the view is different, by the properties
of B we know that adding more events from the same chain will also give a different view
than the one we seek. Hence, we move to the chain above, and repeat the steps.

Given a consistent cut G that satisfies B, GetSuccessor routine in Algorithm 7 finds a
consistent cutH such thatH satisfies B and view(G) 6= view(H). For example, suppose B =
number of blue events is 2. Then for the computation in Figure 7, given G = {a, b, c, d, e, f},
we have GetSuccessor (B,G) = {a, b, e, f, g, h}. This is because view({a, b, c, d, e, f}) is
the set with two blue events: {d, f}. The next lexically bigger consistent cut that has two

H. Chauhan and V.K. Garg 0:11

Algorithm 5 EnumerateCount((E,→), B)
Input: Computation (E,→) in its uniflow chain partition µ, B: a count predicate
Output: Enumerate all consistent cuts satisfying B.
1: G = GetMinCut(B, {}) // now G is the smallest cut satisfying B
2: while G 6= null do
3: EnumSameViewCuts(B,G)
4: G = GetSuccessor(B,G)

Algorithm 6 EnumSameViewCuts(B,G)
Input: B: a count predicate, G: a consistent cut that satisfies B.
Output: Enumerate each consistent cut H that is ≥l G and satisfies view(G) == view(H).
1: enumerate(G)
2: H = G

3: K = G

4: for (i = 1; i ≤ nu; i = i+ 1) do // go from lowest chain to highest
5: j = index of the first event on chain µi that is not included in H
6: for (; j ≤ size(µi); j = j + 1) do // use events not included in G
7: H = H ∪ {µi[j]} // add event to cut
8: if view(H) == view(G) then // same view
9: K = H // update cut

10: enumerate(K)
11: else // B(H) = false; countB(H) must have increased
12: H = K // retain old cut
13: break // break the inner loop on events; move to the chain above

Algorithm 7 GetSuccessor(B,G)
Input: B: a count predicate, G: a consistent cut satisfying B
Output: K: lexically smallest consistent cut >l G that satisfies B and view(G) 6= view(K)
1: V = view(G)
2: r = countB(G)
3: K = G // Create a copy of G in K
4: for (i = 1; i ≤ nu; i++) do // lower chains to higher
5: ind = index of the first event on chain µi that is not included in K
6: for (; ind ≤ size(µi); ind = ind+ 1) do // move forward on chain
7: K = K ∪ {µi[ind]} // add event to cut
8: if view(K) 6= V then // K is lexically greater than G and has a different view than G
9: for (j = i− 1; j > 0; j −−) do // first reset lower chains

10: remove all elements on µj from K

11: //K may not be consistent: fix causual dependencies on all lower chains
12: for (j = i+ 1; j ≤ nu; j + +) do
13: for (k = i− 1; k > 0; k −−) do
14: S = causal dependencies of events from chain µj on chain µk

15: K = K ∪ S
16: //K is a consistent cut now, and view(K) 6= view(G)
17: if B(K) == true then
18: return K // K satisfies B, and is the successor cut we want
19: if countB(K) < r then // K can be used to construct the lexically bigger cut that

satisfies B
20: return GetMinCut(B,K)
21: return null // could not find a candidate cut

OPODIS 2017

0:12 Fast Detection of Stable and Count Predicates in Parallel Computations

blue events and has a different view is the cut {a, b, e, f, g, h} with two blue events: f and
h.

In this routine, we start at the lowest chain in a uniflow poset, and if possible increment
the cut by one event on this chain. If the new cut has the same view, we move on to the
next event. When we encounter an event whose addition changes the view of the resulting
cut K, we reset the entries on lower chains, and then make K consistent by satisfying all
the causal dependencies. Note that at this point view(K) is guaranteed to be different than
view(G). However, K may not satisfy B as it may have a lower countB . If that is the case,
we make countB(K) == countB(G) by calling the GetMinCut routine to find lexically
smallest cut that is greater than K and satisfies B. If we have tried all chains and did not
find a suitable cut, then G is the largest consistent cut satisfying B and we return null.

i j k

e f g

a b c

h

d

µ3

µ2

µ1

Figure 8 A computation in uniflow parti-
tion

Consider the computation in Figure 8 which
is in a uniflow partition. Given the predicate
B = number of blue events is 2, and consistent
cut G = {a, b, c, d, e, f} that satisfies B, consider
the call of GetSuccessor (B,G). We find V =
view(G) = {c, f}, and r = countB(G) = 2, and
create K = G. We start from the bottom chain
µ1 but there is no event in µ1 that is not included
in K. We move on to µ2 and find the next event
not in K: event g. We add it to K at line 7,
to make K = {a, b, c, d, e, f, g}, which is bigger
than G but view(K) == V as g is not a blue event. We then move on to the next event in
µ2 which is h. Adding it to K makes K = {a, b, c, d, e, f, g, h}. Now K is bigger than G and
view(K) = {c, f, h} which is different than V . We now remove all the events (lines 9–10)
from lower chain µ1, and get K = {e, f, g, h}. This cut is not consistent, and we make it
consistent by executing lines 12–15 and add all the causal dependencies required: {a, b}. We
now have K = {a, b, e, f, g, h}. At line 17, we get countB(K) which is 2; thus we have our
result and we return this K. Hence, GetSuccessor (B,G) = {a, b, e, f, g, h} whose view
is {f, h}. If we call GetSuccessor (B, {a, b, e, f, g, h}), we get {a, b, c, i, j} whose view is
{c, j}.

We present the proof of correctness for these algorithms in this paper’s extended version
[6]. The algorithms presented in this section can be implemented without regeneration
of vector clocks for uniflow partition. In addition, we can optimize them for improved
runtime performance using some additional space. We discuss these implementation details
in Appendix B.

6 Complexity Analysis

Consider the computation P = (E,→) whose uniflow partition µ has nu chains. We now
present the time and space complexity of the optimized versions of our algorithms for de-
tecting stable and count predicate for P .

Using the optimized implementations discussed in Appendix B.1, we know that comput-
ing and storing the vector J requires O(n · |E|) time and space. This task is only performed
once. After computing J , each call to GetBiggerBaseCut takes O(n log |E|) time with
binary search: there are O(log |E|) search iterations, and for each such iteration, we re-
quire O(n) time to check if the consistent cut under consideration satisfies the predicate.
Similarly, using the optimized implementation from Appendix B.2, BackwardPass takes

H. Chauhan and V.K. Garg 0:13

Algorithm Space Required

BFS [11] O(mn−1

n
)

DFS [1] O(|E|)
Lex [17] O(n)
QuickLex [5] O(n)
This paper* O((nu + |E|) · n)

Table 1 Space complexities of algorithms for detecting a stable or count predicate in the lattice
of consistent cuts; here m = |E|

n
.

O(nu · n2 · logm) time, where m = max1≤j≤nu
size(µj), in the worst case. Hence, getting

a consistent cut result from GetMinCut in the representation corresponding to original
chain partition takes O((nu · n · logm+ log |E|) · n) time in the worst case.

Based on this, we can state that for a stable predicate B enumerating all consistent cuts
of P = (E,→) that satisfy B takes O((nu · n · logm+ log |E|) · n) time per cut.

Let us now analyze the EnumSameViewCuts routine. Given a cut G, the routine adds
events not already present in G to form bigger cuts, and then checks if the cut satisfies the
predicate B. There are at |E − G| events that are not present in G. Hence, in the worst
case the two for loops at lines 4 and 6 perform O(|E −G|) iterations in combination. Each
time we form a bigger cut by adding an event, we check if the view of the cuts remains the
same (at line 8). Finding view(H) requires O(n) time. Thus, EnumSameViewCuts takes
O(n · |E −G|) in the worst case.

We now analyze the optimized version of GetSuccessor routine. Recall that with the
projection based optimization, we first call the ComputeProjections routine that takes
O(n ·nu) time. We need O(n ·nu) space to store the computed projections. We then iterate
over nu chains, and perform O(n) work in finding viewK and then O(n) work in taking
the component-wise maximum of proj[i − 1] and the vector clock of event being included.
Thus, in the worst case we perform O(n · nu) work before returning a result. Note that, we
may call GetMinCut routine at the end to return the correct result. As per our earlier
analysis, that requires additional O((nu · n · logm + log |E|) · n) time. Hence, in the worst
case GetSuccessor takes O((nu ·n · logm+ log |E|) ·n) time and requires O(n ·nu) space.

In Table 1, we compare the worst-case space complexities of our optimized algorithm
against those of detecting the predicate using the BFS, DFS, and Lex traversal algorithms.

Let SB ∈ C(E) denote the set of consistent cuts that satisfy the stable or count predicate
B for the computation P = (E,→). Then, based on our analysis we have the following
result:

I Theorem 2. Enumerating all consistent cuts in SB takes O(f · |SB |) time using the algo-
rithms given in this paper; where f is a polynomial function of |E| and n.

In comparison, enumerating all the cuts of SB using the existing algorithms such as BFS,
DFS, Lex (or QuickLex) may take O(|C(E)|) time in the worst case. Note that the |C(E)|
can be exponentially bigger than |SB |. Table 2 compares the worst-case time complexities
of these algorithms to enumerate all consistent cuts in SB when B is stable.

7 Related Work

We first discuss the algorithms for traversal of cuts in the lattice of consistent cuts of a
computation. Cooper and Marzullo [11] gave the first algorithm for global states enumeration

OPODIS 2017

0:14 Fast Detection of Stable and Count Predicates in Parallel Computations

Algorithm Time

BFS [11] O(n2 · |C(E)|)
DFS [1] O(n2 · |C(E)|)
Lex [17] O(n2 · |C(E)|)
QuickLex [5] O(n ·∆ · |C(E)|)
This paper* O(n · |SB | · (nu · n · logm+ log |E|))

Table 2 Time complexities for enumerating all consistent cuts of C(E) that satisfy a stable
predicate B. Here ∆ is the maximum in-degree of an event in the computation.

which is based on breadth first search (BFS). Let i(P) denote the total number of consistent
cuts of a poset P . Cooper-Marzullo algorithm requires O(n2 · i(P)) time, and exponential
space in the size of the input computation. Alagar and Venkatesan [1] presented a depth
first algorithm using the notion of global interval which reduces the space complexity to
O(|E|). Steiner [31] gave an algorithm that uses O(|E| · i(P)) time, and Squire [30] further
improved the computation time to O(log|E| · i(P)). Pruesse and Ruskey [29] gave the first
algorithm that generates global states in a combinatorial Gray code manner. The algorithm
uses O(|E| · i(P)) time and can be reduced to O(∆(P) · i(P)) time, where ∆(P) is the
in-degree of an event; however, the space grows exponentially in |E|. Later, Jegou et al. [22]
and Habib et al. [20] improved the space complexity to O(n · |E|). Ganter [16] presented
an algorithm, which uses the notion of lexical order, and Garg [17] gave the implementation
using vector clocks. The lexical algorithm requires O(n2 · i(P)) time but the algorithm itself
is stateless and hence requires no additional space besides the poset. Paramount [4] gave
a parallel algorithm to traverse this lattice in lexical order, and QuickLex [5] provides an
improved implementation for lexical traversal that takes O(n ·∆(P) · i(P)) time, and O(n2)
space overall.

For enumerating only the consistent cuts that satisfy a given predicate, computation
slicing is an abstraction technique to reduce the state space for model checking a single pro-
gram trace [27, 28, 8]. But the known efficient algorithms for computation slicing generally
require the predicate to be regular. Hence, this technique does not apply to stable or count
predicates.

8 Conclusion and Applications to Other Fields

The ubiquity of multicore and cloud computing has significantly increased the degree of
parallelism in programs. This change has in turn made verification and analysis of large
parallel programs even more challenging. For such verification and analysis tasks, the algo-
rithms presented in this paper can provide much faster runtimes in comparison to existing
algorithms. In many cases, this reduction in runtime can be exponential, and also allows
us allows us to analyze computation with high degree of parallelism with relatively small
memory footprint.

Our algorithm for detecting count predicates has a wide-ranging potential scope in anal-
ysis of parallel computations. In addition to predicate detection for verifying correctness,
it can also be used to analyze logs of distributed protocols such as Paxos, and various dis-
tributed systems for performance related analysis. Further optimizations of this algorithm
can provide improved runtimes for its implementation which can make it an appealing choice
as a lightweight and fast component in online runtime verification systems.

Observe that many useful analysis criterion can be written in the form of stable predi-

H. Chauhan and V.K. Garg 0:15

cates. For example, if we are interested in analyzing logs of a distributed system to identify
causes of a system failure or performance degradation, we can create stable predicates that
include either thresholds or upper bounds for performance load factors. By using these
predicates, we can then use our algorithm (Algorithm 1) to efficiently find only those system
states that are of interest to us without going through the states that came before them. A
promising future application of our work is implementation of a system that accepts either
a stable or count predicate and returns the set of consistent cuts satisfying it.

The applications of our algorithms extend to the problem of stable marriage [15, 19]. The
stable marriage problem involves finding a stable matching of women and men and ensure
that there is no pair of woman and man such that they are not married to each other but
prefer each other over their matched partners. Many variations of the problem with addi-
tional constraints have been studied. Some examples include man-optimal or woman-optimal
matchings, and introducing the notion of regret. We can use the algorithms developed in this
paper to enumerate matchings that meet a given lower-bound or upper-bound, or any other
combination of such criteria on the overall cumulative regret of the matching, or individual
regrets of actors.

The notion of consistent cut of a computation, directly maps to the notion of order ideals
in a lattice. Multiple problems in the field of lattice theory require enumeration of a specific
level of order ideals, or a range of levels. Our algorithms can be used to enumerate order
ideals of a lattice that satisfy some stable properties without visiting other levels of the
lattice. Our algorithm for enumerating cuts satisfying count predicate can also be used to
traversing order ideals of a sub-lattice without visiting ideals outside the sub-lattice. No
known algorithm in lattice theory has the ability to perform such traversals without visiting
other ideals of the lattice — whose total number can be exponentially bigger than the size
of the sub-lattice of interest.

References

1 S. Alagar and S. Venkatesan. Techniques to Tackle State Explosion in Global Predicate
Detection. IEEE Transactions on Software Engineering (TSE), 27(8):704–714, August
2001.

2 Lucio Bianco, Paolo Dell ‘Olmo, and Stefano Giordani. An optimal algorithm to find
the jump number of partially ordered sets. Computational Optimization and Applications,
8(2):197–210, 1997.

3 K. M. Chandy and L. Lamport. Distributed Snapshots: Determining Global States of
Distributed Systems. ACM Transactions on Computer Systems, 3(1):63–75, February 1985.

4 Yen-Jung Chang and Vijay K. Garg. A parallel algorithm for global states enumeration in
concurrent systems. In Proceedings of the 20th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP 2015, pages 140–149. ACM, 2015.

5 Yen-Jung Chang and Vijay K. Garg. Quicklex: A fast algorithm for consistent global states
enumeration of distributed computations. In 19th International Conference on Principles
of Distributed Systems, OPODIS 2015, December 14-17, 2015, Rennes, France, pages 25:1–
25:17, 2015.

6 Himanshu Chauhan and Vijay K. Garg. Fast detection of stable and counting predicates
in parallel computations. Extended Version, 2017. URL: http://users.ece.utexas.edu/
~garg/dist/opodis17.pdf.

7 Himanshu Chauhan and Vijay K. Garg. Space efficient breadth-first and level traversals of
consistent global states of parallel programs. In 17th International Conference on Runtime
Verification (RV 2017), pages 138–154, 2017.

OPODIS 2017

http://users.ece.utexas.edu/~garg/dist/opodis17.pdf
http://users.ece.utexas.edu/~garg/dist/opodis17.pdf

0:16 Fast Detection of Stable and Count Predicates in Parallel Computations

8 Himanshu Chauhan, Vijay K Garg, Aravind Natarajan, and Neeraj Mittal. A distributed
abstraction algorithm for online predicate detection. In Reliable Distributed Systems
(SRDS), 2013 IEEE 32nd International Symposium on, pages 101–110. IEEE, 2013.

9 M Chein and M Habib. The jump number of dags and posets: an introduction. Annals of
Discrete Mathematics, 9:189–194, 1980.

10 Feng Chen, Traian Florin Serbanuta, and Grigore Roşu. jPredictor: a predictive runtime
analysis tool for java. In Proceedings of the International Conference on Software Engi-
neering, pages 221–230, 2008.

11 R. Cooper and K. Marzullo. Consistent detection of global predicates. In Proc. of the
Workshop on Parallel and Distributed Debugging, pages 163–173, 1991.

12 B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge University
Press, Cambridge, UK, 1990.

13 C. J. Fidge. Timestamps in Message-Passing Systems that Preserve the Partial-Ordering.
In K. Raymond, editor, Proceedings of the 11th Australian Computer Science Conference
(ACSC), pages 56–66, February 1988.

14 Cormac Flanagan and Stephen N. Freund. FastTrack: efficient and precise dynamic race
detection. In Proceedings of the Conference on Programming Language Design and Imple-
mentation, pages 121–133, 2009.

15 David Gale and Lloyd S Shapley. College admissions and the stability of marriage. The
American Mathematical Monthly, 69(1):9–15, 1962.

16 Bernhard Ganter. Two basic algorithms in concept analysis. In Proceedings of the Inter-
national Conference on Formal Concept Analysis, pages 312–340, 2010.

17 Vijay K. Garg. Enumerating global states of a distributed computation. In Proceedings of
the International Conference on Parallel and Distributed Computing Systems, pages 134–
139, 2003.

18 Vijay K. Garg and B. Waldecker. Detection of weak unstable predicates in distributed
programs. IEEE Transactions on Parallel and Distributed Systems, 5(3):299–307, 1994.

19 Dan Gusfield and Robert W Irving. The stable marriage problem: structure and algorithms.
MIT press, 1989.

20 Michel Habib, Raoul Medina, Lhouari Nourine, and George Steiner. Efficient algorithms
on distributive lattices. Discrete Appl. Math., 110(2-3):169–187, 2001.

21 Jeff Huang and Charles Zhang. Persuasive prediction of concurrency access anomalies.
In Proceedings of the International Symposium on Software Testing and Analysis, pages
144–154, 2011.

22 Roland Jegou, Raoul Medina, and Lhouari Nourine. Linear space algorithm for on-line
detection of global predicates. In Proc. of the International Workshop on Structures in
Concurrency Theory, pages 175–189, 1995.

23 L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Commu-
nications of the ACM (CACM), 21(7):558–565, July 1978.

24 Leslie Lamport. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.
25 Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. AVIO: detecting atomicity vio-

lations via access interleaving invariants. In Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating Systems, pages 37–48,
2006.

26 F. Mattern. Virtual Time and Global States of Distributed Systems. In Parallel and
Distributed Algorithms: Proceedings of the Workshop on Distributed Algorithms (WDAG),
pages 215–226, 1989.

27 N. Mittal and V. K. Garg. Techniques and Applications of Computation Slicing. Distributed
Computing (DC), 17(3):251–277, March 2005.

H. Chauhan and V.K. Garg 0:17

28 N. Mittal, A. Sen, and V. K. Garg. Solving Computation Slicing using Predicate Detec-
tion. IEEE Transactions on Parallel and Distributed Systems (TPDS), 18(12):1700–1713,
December 2007.

29 Gara Pruesse and Frank Ruskey. Gray codes from antimatroids. Order 10, pages 239–252,
1993.

30 Matthew B. Squire. Enumerating the ideals of a poset. In PhD Dissertation, Department
of Computer Science, North Carolina State University, 1995.

31 George Steiner. An algorithm to generate the ideals of a partial order. Oper. Res. Lett.,
5(6):317–320, 1986.

32 Maciej M Sysło. Minimizing the jump number for partially ordered sets: A graph-theoretic
approach. Order, 1(1):7–19, 1984.

A Visual Illustrations for Lattice of Consistent Cuts

{}

{a} {e}

{a, b} {a, e}

{a, b, c} {a, b, e}

{a, b, c, e} {a, b, e, f}

{a, b, c, e, f} {a, b, e, f, g}

{a, b, c, e, f, g}

(a) Set of Events Representation

[0, 0]

[0, 1] [1, 0]

[0, 2] [1, 1]

[0, 3] [1, 2]

[1, 3] [2, 2]

[2, 3] [3, 2]

[3, 3]

(b) Vector Clock Representation

Figure 9 Lattice of Consistent Cuts for Figure 1

B Optimized Implementation

In this section, we discuss optimized implementations of our algorithms for detecting stable
and counting predicates.

First, note that we do not need to regenerate the vector clocks of the computation for
its uniflow chain partition. In implementing our algorithms based on the uniflow chain
partition, µ, we only reposition the events on their respective uniflow chains. There are nu

such chains, and each of them is stored as an array in which whose entries store the original
vector clocks, and the state variables for each event. For example, the computation on two
processes in Figure 12a is not in uniflow partition. Figure 12b shows its uniflow partition on

OPODIS 2017

0:18 Fast Detection of Stable and Count Predicates in Parallel Computations

Satisfies B

Figure 10 Illustration: Visual representation for some stable predicate B: the cuts in the blue
region of the lattice satisfy a stable predicate, and cuts in the white region do not.

three chains. Note that we have retained the original vector clocks of the events, and only
repositioned them on three chains.

We achieve this by replicating the process described in [7]. In short, we use a vector
Gu, called indicator vector, of length nu, to keep track of which event is included in G.
In Figure 11, we show an illustration with multiple G cuts, and their respective indicator
vectors. Whenever we add an event e from chain µi to G we update Gu[i] to the index of e.
Thus, finding the index of the first event on chain µi not included in G can be implemented
as ind = Gu[i] + 1, and takes constant time. Given the indicator vector Gu, we can find its
equivalent cut G in O(nu + n2) time. For details, we refer the interested reader to Section
4.2 of [7].

c d

a b

P1

P2

(a) Computation

c

b

a

d

µ1

µ2

µ3

(b) Uniflow Partition

G = {a} =⇒ Gu[0] = 1, Gu[1] = 0, Gu[2] = 0
G = {a, c} =⇒ Gu[0] = 1, Gu[1] = 1, Gu[2] = 0
G = {a, c, b} =⇒ Gu[0] = 1, Gu[1] = 2, Gu[2] = 0
G = {a, c, d} =⇒ Gu[0] = 1, Gu[1] = 1, Gu[2] = 1
G = {a, b, c, d} =⇒ Gu[0] = 1, Gu[1] = 2, Gu[2] = 1

(c) G values and their respective Gu vectors

Figure 11 Illustration: Maintaining indicator vector Gu for a cut G

B.1 GetBiggerBaseCut

In the GetBiggerBaseCut routine we add events to any cut in increasing uniflow order
(Definition 4). We do not skip any event, and only return 〈H, c〉 when the cut satisfies a
predicate B. Given a uniflow chain partition µ, we can optimize the runtime for this routine
by using additional O(n · |E|) space.

The computation P =(E,→) on n processes has |E| events, and each event has a vector
clock of length n. We first collect and store all the events in the uniflow order. Let J
represent the array that stores the vector clocks of events in their increasing uniflow order.
Now, for 2 ≤ i ≤ |E| we compute element-wise max of vector clocks in entries J [i] and
J [i−1], and store the result in J [i]. Thus, for a computation on n processes J [i] and J [i−1]

H. Chauhan and V.K. Garg 0:19

c : [1, 0] d : [2, 1]

a : [0, 1] b : [1, 2]
P1

P2

(a) Computation

a : [0, 1]

c : [1, 0] b : [1, 2]

d : [2, 1]

µ1

µ2

µ3

(b) Uniflow Partition

a : [0, 1]
c : [1, 0]
b : [1, 2]
d : [2, 1]

(c) Events in Uniflow
Order

J [1] = [0, 1]
J [2] = [1, 1]
J [3] = [1, 2]
J [4] = [2, 2]

(d) J Vector

Figure 12 Illustration: Computing J vector for optimizing GetBiggerBaseCut

are both vector of length n, and we have:

J [i][k] = max (J [i][k], J [i− 1][k]), 2 ≤ i ≤ |E|, 1 ≤ k ≤ n.

We can now use this vector J to find the result of GetBiggerBaseCut for any predicate
B. Moreover, given that J will contain entries (vector clocks) in increasing order, we can
perform binary search on it to find the result. If a predicate B is stable, we perform the
binary search using its evaluation (true or false) on the cuts, and return the smallest entry
in J on which B evaluates to true.. If B is a counting predicate, then we use countB to
guide the binary search, and return the smallest entry in J for which countB matches the
requirement in B.

Consider the computation in Figure 12a that has four events, and its uniflow partition in
Figure 12b. The increasing order on the vector clocks of all the four events is in Figure 12c.
Starting from the bottom (vector [0, 1]), and performing the joins, we get J as shown in
Figure 12d. Now, given a predicate B that is stable or counting, we can perform the binary
search on this J to find the result of GetBiggerBaseCut for this computation.

Computing and storing the vector J requires O(n · |E|) time and space. After computing
J , each call to GetBiggerBaseCut takes O(n · log |E|) time with binary search: there are
O(n · log |E|) iterations, and for each such iteration we take O(n · log |E|) time to check the
consistent cut satisfies the predicate.

B.2 BackwardPass

In BackwardPass routine, we iterate on chains in top to bottom manner, and try to
remove as many events from a cut G from the end of the chain as possible. We only
stop removing events from a chain i if G becomes inconsistent or B(G) becomes false on
removal. Then, we move to chain i − 1. We can exploit the properties of stable and
counting predicates, and use binary search, instead of linear search used in Algorithm 4
to remove events on each chain. This is possible possible because for a stable or counting
predicate, if removal of an event from a chain makes the predicate become false (from
true) then we know that removing any smaller events on that chain will never make it
true. Using this implementation, BackwardPass takes O(nu · n2 · logm) time, where
m = max1≤j≤nu size(µj), in the worst case. This is because the outer loop on the uniflow
chains takes O(nu · n2 · logm) iterations in the worst case. In the inner body of this loop,
we check if removal of an event makes the resulting cut inconsistent, and this check requires
O(n2) time. There are O(logm) search iterations for such an event in the worst case.

OPODIS 2017

0:20 Fast Detection of Stable and Count Predicates in Parallel Computations

B.3 GetSuccessor
We optimize the routine GetSuccessor by replicating the strategy of computing pro-
jections as per [7]. Whenever the routine is called, we compute the causal dependencies,
called projections, of the input consistent cut on each chain in µ, and store them in a vec-
tor called proj. We then use this vector to fix the causal dependencies on each chain in
O(n) time (see [7] for details). For this optimization, we require O(nu · n) space to store
the computed projections, and by using them we can find the result of GetSuccessor
in O((nu + log |E| + nu logm) · n) time in the worst case. As logm > 1 for most of the
computations, we can simplify this bound to O((log |E|+ nu logm) · n).

[1, 0]
[1, 2]

[0, 1]

[2, 1]

µ1

µ2

µ3 proj[3] = [0, 0]
proj[2] = [1, 2]
proj[1] = [1, 2]

G = [1, 2], Gu[1] = 1, Gu[2] = 2, Gu[3] = 0

(a) n = 2, nu = 3

µ1

µ2

µ3

G = [1, 3, 2], Gu[1] = 2, Gu[2] = 3, Gu[3] = 1
proj[3] = [1, 0, 0]
proj[2] = [1, 3, 1]
proj[1] = [1, 3, 2]

(b) n = 3, nu = 3

Figure 13 Illustration: Projections of cuts on uniflow chains

We illustrate with the computation shown in Figure 13a that was originally on two
processes. Suppose we want the lexical successor of G = [1, 2]. Then, for each chain,
starting from the top, using the vector Gu we compute the projection of events included in
G on lower chains. For the consistent cut G = [1, 2], we have Gu[3] = 0, Gu[2] = 2, Gu[1] = 1.
Hence, on the top-most chain, the projection is empty and we have proj[3] = [0, 0]. On chain
µ2, the projection must include the combined vector clocks of events included form chain
µ3, and µ2. As Gu[2] = 2, we take the vector clock of second event on µ2, and perform a
element-wise max operation for its entries and proj[3]. We thus get proj[2] = [1, 2]. We
then move to chain µ1 and find the vector clock of event against entry Gu[1] = 1 which
is the first event on µ1, with vector clock [0, 1]. We then set proj[1] = max(proj[2], [0, 1]),
which is element-wise max of two arrays [1, 2], and [0, 1]. Thus, we get proj[1] = [1, 2].

Figure 13b shows another illustration of computing the projection vector proj on a
computation with three processes that forms a uniflow chain partition by default.

	Introduction
	Background
	Uniflow Chain Partition
	Enumerating Consistent Cuts Satisfying Stable Predicates
	Enumerating Consistent Cuts satisfying Count Predicates
	Complexity Analysis
	Related Work
	Conclusion and Applications to Other Fields
	Visual Illustrations for Lattice of Consistent Cuts
	Optimized Implementation
	GetBiggerBaseCut
	BackwardPass
	GetSuccessor

