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Abstract

Replication is a standard solution for fault-tolerance in distributed systems modeled as deterministic finite
state machines (DFSMs or machines). To correctf crash faults amongn machines, replication requiresn f
additional backup machines. We challenge this approach andpresent a fusion-based solution that requires just
f additional backup machines (called fusions or fused backups). In this paper, we first propose a fundamental
problem regarding DFSMs, independent of fault tolerance, that has not been explored in the literature so far:
Given a machineM, with a set of states and a set of events, can wereplaceit with machines each containing
fewer events thanM? To formalize this we define a (k,e)-event decomposition of a given machineM, that is a
set ofk machines each with at leaste events fewer than the event set ofM, that acting in parallel, are equivalent
to M. We present an algorithm to generate such machines with timecomplexity polynomial in the number of
states inM. Second, we use our event decomposition algorithm to generate fused backups that can correct
faults among a given set of machines. We show that these backups areminimal w.r.t the number of states they
contain and the number of events in their event set. Third, weuse the notion oflocality sensitive hashingto
present algorithms for the detection and correction of faults for the fusion-based solution. The algorithm for the
detection of Byzantine faults has time complexityO(n f) on average, which is the same as that for replication.
The algorithm for the correction of both crash and Byzantinefaults has time complexityO(nρ f ) with high
probability (w.h.p), whereρ is the average state reduction achieved by fusion. We show that for small values
of n (for most practical systems,n < 10) andρ (average value ofρ < 2 in our experiments), this results in
almost no overhead as compared to replication. Finally, we evaluate fusion on the widely used MCNC’91
benchmarks for DFSMs and results show that the average statespace savings in fusion (over replication) is
38% (range 0-99%), while the average event-reduction is 4% (range 0-45%).
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I. I

Distributed applications often use deterministic finite state machines (or justmachines) to model computa-
tions such as regular expressions for pattern detection, syntactical analysis of documents or mining algorithms
for large data sets. These machines executing on distinct distributed processes are often prone to faults.
Traditional solutions to this problem involve some form of replication, in which to correctf crash faults [20]
amongn given machines (referred to asprimaries), f copies of each primary are maintained [13], [22], [21].
If the backups start from the same initial state as the corresponding primaries and act on the same events,
then in the case of faults, the state of the failed machines can be recovered from one of the remaining copies.
These backups can also correct⌊ f /2⌋ Byzantine faults [14], where the processes lie about the state of the
machine, since a majority of truthful machines is always available. This approach is expensive both in terms
of the total number of backup machines,n f and the total backup state space.

*supported by the NSF CNS-0718990, Texas Education Board Grant 781, and Cullen Trust for Higher Education Endowed
Professorship.



Consider a distributed application that is searching for three different string patterns among a huge file, as
modeled by the state machinesA, B andC shown in Fig. 1. A state machine in our system consists of a finite
set of states (including the initial execution state) and a finite set of events. On application of an event, the
state machine transitions to the next state based on the state-transition function. For example, machineA in
Fig. 1 contains the states{a0,a1}, events{0,2} and the initial state, shown by the dark ended arrow, isa0. The
state transitions are shown by the arrows from one state to another. Hence, ifA is in statea0 and event 0 is
applied to it, then it transitions to statea1. In this example,A checks the parity of{0,2} and so, if it is in state
a0, then an even number of 0s or 2s have been applied to the machine and if it is in statea1, then an odd
number of the inputs have been applied. MachinesB andC check for the parity of{1,2} and{0} respectively.

To correct one crash fault among these machines, replication requires a copy of each of them, resulting in
three backup machines, consuming total state space of eight(23). Rather than replicate the machines, we can
correct one fault by maintaining just one additional machine F1 shown in Fig. 1. The relevant events from
the client (or environment) are applied to all the machines.So if the event sequence 0, 0, 1, 2 is applied on
all the machines,A, B, C and F1 will be in statesa1, b0, c0 and f 1

1 respectively. Assume a crash fault inC.
Given the parity of 1s (state ofF1) and the parity of 1s or 2s (state ofB), we can first determine the parity of
2s. Using this, and the parity of 0s or 2s (state ofA), we can determine the parity of 0s (state ofC). Hence,
we can correct the crash fault inC usingA, B andF1. This argument can be extended to correcting one fault
among any of the machines in{A, B,C, F1}. This approach consumes fewer backups than replication (onevs.
three) and less backup state space (two vs. eight).

1

1
f 0

1 f 1

1

F1

f 2

2

f 3

2

a0
a1

A (Parity of 0s, 2s)
0, 2

0, 2

B (Parity of 1s, 2s)b0
b1

1, 2

1, 2

0
c0

c1

0

f 1

2

2

2

f 0

2

0, 1

0, 1

0, 1
0, 1

2

2

F2

C (Parity of 0s)
Fig. 1. Fused-Backups for Fault Tolerance

0 0

1

0 0

1

1

m0

1

m1

m3 m2

M (Dual Parity Che
ker)
1

1
p0

p1

0

0
q0

q1

P (Parity of 1s)
Q (Parity of 0s)

Fig. 2. Event-based Decomposition

However, it is not always possible to design these backups merely by inspection. In Fig. 1, it may not be
obvious thatF1 and F2 can correct two crash faults among the primaries. In [17], wepresent the theory and
algorithm to automatically generatef backup machines (calledfusions) for any given set of primaries that can
correct f crash faults (or⌊ f /2⌋ Byzantine faults). In this paper, we focus on the three main challenges faced
by fusion which are the large event-sets of the fusions, the high time complexity for the generation of fusions
and the high cost for detecting and correcting faults. To summarize our contributions in this paper:

a) Event-based Decomposition:We start with a question that is fundamental to the understanding of
DFSMs, independent of fault-tolerance: Given a machineM, can it bereplacedby two or more machines
executing in parallel, each containing fewer events thanM? In other words, given the state of these fewer-event
machines, can we uniquely determine the state ofM? In Fig. 2, the 2-event machineM (it contains events 0
and 1 in its event set), checks for the parity of 0sand 1s. M can be replaced by two 1-event machinesP and
Q, that check for the parity of just 1s or 0s respectively. Given the state ofP and Q, we can determine the
state ofM. How can we generate these event-reduced machines (if they exist) for any given machine? While
there has been work on both the state-based decomposition [10], [15] and the minimization of completely
specified machines [12], [11], this is the first paper that presents the problem of event-reduction.

In this paper, we define the concept of a (k,e)-event decomposition of a machineM that is a set ofk machines,
each with at leaste events fewer than the event set ofM, such that given the state of these machines, we can
determine the state ofM. We present an algorithm to generate such a decomposition with time complexity
polynomial in the number of states ofM. The load on a process running a machine is directly proportional

2



to the number of events in the event-set of the machine. Hence, this decomposition is crucial for applications
such as sensor networks in which there are strict limits on the number of events that each process can service.

b) Space-Event Optimized Fusion Algorithm:We apply our event-decomposition algorithm to generate
backups for fault tolerance that are optimized for both events and states. In Fig. 1, it is better to choose the
1-eventF1 over the 3-eventF2 as a backup machine to correct one fault. We show that if our solution achieves
no event-reduction, then no solution with the same number ofbackups achieves it. Further, we present an
incremental approach for generating the fusions that improves the time complexity by a factor ofρn, whereρ
is the average state savings achieved by fusion.

c) Efficient Algorithms for Detection/Correction of Faults: In [17], the algorithm for the correction of
crash and Byzantine faults, has time complexityO(n2ρ+nρ f +sn), wheren is the number of primaries,f is the
number of crash faults,s is the maximum number of states among primaries andρ is the average state savings
achieved by fusion. In this paper, we present a Byzantine detection algorithm with time complexityO(n f) on
average, which is the same as the time complexity of detection for replication. Hence, for a system that needs
to periodically detect liars, fusion causes no additional overhead. We reduce the problem of fault correction to
one of finding points within a certain Hamming distance of a given query point inn-dimensional space and
present algorithms to correct crash and Byzantine faults with time complexityO(nρ f ) with high probability.
The time complexity for crash and Byzantine correction in replication is θ( f ) andO(n f) respectively. Hence,
for small values ofn and ρ, fusion causes almost no overhead for recovery. In Table I wesummarize the
notation used in this paper and in Table II we compare replication and the current version of fusion.

TABLE I
S/N    

P Set of primaries n Number of primaries
RCP Reachable Cross Product ofP N Number of states in the RCP

f No. of crash faults s Maximum number of states among primaries
F Set of fusions/backups ρ Average State Reduction in fusion
Σ Union of primary event-sets β Event-Reduction parameter

TABLE II
F . R (n , O(s)  , f , |Σ|  ,    ρ)

Replication Fusion
Number of Backups n f f

Backup Space O(sn f ) O((s/ρ)n f )
Backup Generation Time Complexity O(ns f) O(sn|Σ| f /ρn)

Maximum Events/Backup Maximum Events/primary Minimal for f backups
Byzantine Detection Time Complexity O(n f) O(n f) on average

Crash Correction Time Complexity θ( f ) O(nρ f ) w.h.p
Byzantine Correction Time Complexity O(n f) O(nρ f ) w.h.p

d) Evaluation of Fusion:In [17], we evaluated fusion on simple examples such as counters and dividers.
In this paper, we evaluate our fusion algorithm on the MCNC’91 [23] benchmarks for DFSMs, that are widely
used in the fields of logic synthesis and circuit design. Our results show that the average state space savings in
fusion (over replication) is 38% (range 0-99%), while the average event-reduction is 4% (range 0-45%). Further,
the average savings in time by the incremental approach for generating the fusions (over the non-incremental
approach) is 8%. To illustrate the practical use of fusion, we apply its design to thegrep application of the
MapReduce framework [5]. Using a simple example, we show that the currently used checkpointing approach
for fault tolerance needs 600,000 map tasks causing high latency, while replication demands 1200,000 tasks
with minimum latency. Fusion offers the best compromise with just 800,000 tasks but smaller latency than
the checkpointing approach.
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II. M

The DFSMs in our system execute on separate processes with no shared state or communication. Clients
of the state machines issue the events (or commands) to the concerned primaries and backups, all of which
act on them in the same relative order. We assume loss-less FIFOcommunication links with a strict upper
bound on the time taken for message delivery. Faults in our system are of two types: crash faults, resulting
in a loss of the execution state of the machines and Byzantinefaults resulting in an arbitrary execution state.
Henceforth in the paper, when we simply say faults, we refer to crash faults. When faults are detected by
a trusted recovery agent using timeouts (crash faults) or a detection algorithm (Byzantine faults) no further
events are sent by any client to these machines. After the machines act on all events sent to them thus far, the
recovery agent obtains their states, and recovers the correct execution states of all faulty machines. Since we
assume a trusted recovery agent, the work on consensus in thepresence of Byzantine faults [6], [19], does
not apply to our paper. In the following section, we summarize the relevant concepts and results introduced
in our previous work.

III. B [17]

1) State-based Decomposition:A DFSM, denoted byR, consists of a set of statesXR, set of eventsΣR,
transition functionαR : XR × ΣR → XR and initial statex0

R. The size ofR, denoted by|R| is the number of
states inR. We can partition the state space ofR such that the transition functionαR, maps each block of the
partition to another block for all events inΣR [10], [15]. In other words, we combine the states ofR to generate
machines that are consistent to the transition function. Theset of all machines generated by combining the
states ofR is called theclosed partition setof R (example in Fig. 3).

Consider machineM2 in Fig. 3, generated by combining the statesr0 andr2 of R. On event 0,{r0, r2} self-
transitions to{r0, r2} (self transitions not shown). However, sincer0 andr2 transition tor1 andr3 respectively
on event 1, we need to combine the statesr1 andr3. Continuing this procedure, we obtain the combined states
in M2. We can define an order (≤) among any two machinesP and Q in this set as follows:P ≤ Q, if each
block of Q is contained in a block ofP (shown by an arrow fromP to Q). P and Q are incomparable, i.e.,
P||Q, if P ≮ Q and Q ≮ P. In Fig. 3, F1 < M2, while M1||M2.

2) Minimum Hamming distance for DFSMs (dmin): Consider a set of machinesR each less thanR, i.e.,
machines belonging to the closed partition set ofR. We define the Hamming distance [9] between each
r i , r j ∈ XR, denotedd(r i , r j), as the number of machines inR that containr i and r j in different blocks
(separate ri and r j). The minimum Hamming distance across all such pairs is denoted dmin(R) or just dmin. In
Fig. 3, if R = {A, B}, d(r0, r1) = 1 (B separates them), whiled(r0, r7) = 0 and hencedmin = 0.

Given the state of the machines inR we can determine the state ofR if there is at least one machine in
R to distinguish between each pair of states inXR, or in other words,dmin > 0. In Fig. 3 if R = {A, B} and
A and B are in statesa0 = {r0, r1, r7, r6} andb0 = {r0, r2, r7, r5}, we cannot determine ifR is in stater0 or r7

(intersection ofa0 andb0). However, ifR = {A, B,C} (dmin = 1), then given thatA, B andC are ina0, b0 and
c0, we can determine thatR is in stater0 (only state common toa0,b0 andc0).

3) Fault Tolerance in DFSMs:To generate the backups (or fusions) for a set of machines, wefirst construct
their reachable cross product. Given any two machinesA = (XA,ΣA, αA, x0

A) and B = (XB,ΣB, αB, x0
B), their

reachable cross product, denoted RCP({A, B}) is the machine which consists of all the states in the product
set of XA and XB reachable from the initial state{x0

A, x
0
B}, with the transition functionαRCP({a,b}, σ) =

{αA(a, σ), αB(b, σ)} for all reachable states{a,b} ∈ XA × XB and σ ∈ ΣA ∪ ΣB. Given a set ofn primaries
P, their reachable cross product is denoted RCP (XRCP,Σ, αRCP, r0), whereΣ is the union of the event sets
of all primary machines. The machineR in Fig. 3, is in fact the RCP ofP = {A, B,C} shown in Fig. 1. For
convenience, we label the states of the RCP,r0 . . . r7, where eachr i ∈ XRCP is a tuple consisting of the primary
states (mapping shown in Fig. 3). The closed partition set of the RCP always includes the primary machines
and its states correspond to the RCP states that contains it.In Fig. 3, a0 = {a0b0c0,a0b1c0,a0b1c1,a0b0c1}.

Given the state of the RCP, the state of the primaries can be determined. The basic goal of fault tolerance
is to generate a set of machinesF , each less than the RCP, so that despitef crash faults, there are sufficient
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machines inP ∪ F , i.e., among the primaries and backups, whosedmin > 0. In other words, a set of machines
in P ∪ F can correctf crash faults iff dmin(P ∪ F ) > f . In Fig. 3, forP = {A, B,C} andF = {F1, F2}, it can
be seen thatdmin(P ∪ F ) > 2. Consider the state of the machines after the application of the event sequence
0, 1, 1 on the machines inP ∪ F . Assume thatB andC crash and we need to recover their state. Given the
state ofA, F1 and F2 as a1 = {r2, r3, r4, r5}, f 0

1 = {r
0, r2, r4, r6} and f 1

2 = {r
1, r2}, we can determine the state

of the RCP asr2 (only state common toa1, f 0
1 and f 1

2 ). Sincer2 = a1b0c1, we can recover the states ofB and
C asb0 andc1 respectively.

When |F | = f , we call it the f -fusion ofP and call the machines inF , fused-backups or justfusions. An
f -fusion isminimal if there exists no otherf -fusionG in which every machine is less than or equal to some
machine inF and at least one machine is strictly less than some machine inF . In section VI, we describe
how an f -fusion can also detectf Byzantine faults or correct⌊ f /2⌋ Byzantine faults.

Coding theory is often used in data fault tolerance for reducing redundancy [18], [4]. In our previous work,
we present coding-theoretic solutions to fault tolerance in data structures [2] and infinite state machines [7].
However, a direct coding-theoretic approach to DFSMs, in which we maintain the parity of the states of
each machine would be too expensive in terms of communication and computation, since after every event
transition, the machine needs to sends its state and the parity needs to be recalculated. Instead, we use our
Hamming distance metric to construct backups that independently act on events.

IV. E-B D M

In this section, we explore the problem of replacing a given machineM with two or more machines, each
containing fewer events thanM. We present an algorithm to generate such event-reduced machines with time
complexity polynomial in the size ofM. This is important for applications with limits on the numberof
events each individual process running a DFSM can service. Note that, the contributions in this section are
independent of fault tolerance. We first define the notion of event-based decomposition.

Definition 1: A (k,e)-event decompositionof a machineM(XM, αM,ΣM,m0) is a set ofk machinesE, each
less thanM, such thatdmin(E) > 0 and∀P(XP, αP,ΣP, p0) ∈ E, |ΣP| ≤ |ΣM | − e.

As dmin(E) > 0, given the state of the machines inE, the state ofM can be determined (section III-2).
So, the machines inE, each containing at most|ΣM | − e events, can effectively replaceM. In Fig. 4, we
present theeventDecompose algorithm that takes as input, machineM, parametere, and returns a (k,e)-event
decomposition ofM (if it exists) for somek ≤ |XM |

2.
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In each iteration, Loop 1 generates machines that contain at least one event less than the machines of the
previous iteration. So, starting withM in the first iteration, at the end ofe iterations,M contains the set of
largest machines (according to the order≤ defined in III-1) less thanM, each containing at most|ΣM | − e
events. Loop 2, iterates through each machineP generated in the previous iteration, and uses thereduceEvent

algorithm to generate the set of largest machines less thanP containing at least one event less thanΣP. To
generate a machine less thanP, that does not contain an eventσ in its event set, thereduceEvent algorithm
combines the states such that they loop onto themselves onσ. The algorithm then constructs the largest
machine that contains these states in the combined form. Thismachine, in effect, ignoresσ. This procedure
is repeated for all events inΣP and the incomparable machines among them are returned. Loop 3constructs
an event-decompositionE of M, by iteratively adding at least one machine fromM to separate each pair of
states inM, thereby ensuring thatdmin(E) > 0 1.

m0, m3

0,1,2
m0 m1, m2, m3

M2 (No event 3)

31 1
m1

2
2m0

m2

m3

M

M3 (No events 0,1)
M⊥ (self-loops on all events)

states self-loop on event 0
11 22m1 m2

3
M1 (No event 0)

m2m0, m1, m3 23

0
21

eventDecompose

Input: MachineM (XM , αM ,ΣM ,m0), e;
Output: (k,e)-event decomposition ofM for
somek ≤ |XM |

2;
M = {M};
for ( j = 1 to e) //Loop 1
G ← {};
for (P ∈ M) //Loop 2
G = G ∪ reduceEvent(P);

M = G;
E ← {};
for (mi ,mj ∈ XM) //Loop 3

E ← Any machine inM separating (mi ,mj);
if (E == {}) return {};
else E ← E ∪ {E};

return E;
—————————————————————–
reduceEvent

Input: MachineP (XP, αP,ΣP, p0);
Output: Largest Machines< P with ≤ |ΣP| − 1
events;
B = {};
for (σ ∈ ΣP)

Set of states,XB = XP;
for (s ∈ XB) //combine states to self-loop onσ

s= s∪ αP(s, σ);
B = B ∪ {Largest machine consistent withXB};

return Incomparable machines inB;

Fig. 4. Event-based Decomposition

Let the 4-event machineM shown in Fig. 4 be the input to theeventDecompose algorithm withe= 1. In the
first and only iteration of Loop 1,P = M and thereduceEvent algorithm generates the set of largest 3-event
machines less thanM, by successively eliminating each event. To eliminate event 0, sincem0 transitions tom3

on event 0, these two states are combined. This is repeated forall states and the largest machine containing
all the combined states self looping on event 0 isM1. Similarly, the largest machines not acting on events

1Since each machine added toE can separate more than one pair of states, an efficient way to implement Loop 3 is to check for
the pairs that still need to be separated in each iteration and add machines till no pair remains.
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3,1 and 2 areM2, M3 and M⊥ respectively. ThereduceEvent algorithm returnsM1 and M2 as the only
incomparable machines in this set. TheeventDecompose algorithm returnsE = {M1, M2}, since each pair of
states inM are separated byM1 or M2. Hence, the 4-eventM can be replaced by the 3-eventM1 and M2,
i.e., E = {M1,M2} is a (2,1)-event decomposition ofM. We show in appendix A that theeventDecompose
algorithm has time complexityO(|XM |

3|ΣM |
e) and also present the proof for the following theorem.

Theorem 1:Given machineM (XM, αM,ΣM,m0), the eventDecompose algorithm generates a (k,e)-event
decomposition ofM (if it exists) for somek ≤ |XM |

2.

V. S-E O F

genFusion

Input: PrimariesP, faults f , event depthβ;
Output: f -fusion ofP;
F ← {};
for (i = 1 to f ) //Loop 1
M← {RCP(P)};
for ( j = 1 to β) //Loop 2
G ← {};
for (M ∈ M)
G = G ∪ reduceEvent(M);

M = Machines inG that incrementdmin;
M ← Any machine inM;
while (M , RCP(P)⊥) //Loop 3
C ← reduceState(M);
M= Machine inC that incrementsdmin;

F ← {M}
⋃
F ;

return F ;

reduceState

Input: MachineP (XP, αP,ΣP, p0);
Output: Largest Machines with≤ |XP| − 1 states;
B = {};
for (si , sj ∈ XP)
//combine statessi and sj

Set of states,XB = XP with (si , sj) combined;
B = B ∪ {Largest machine consistent withXB};

return Incomparable machines inB;
—————————————————————–
incFusion

Input: PrimariesP, faults f , event depthβ;
Output: f -fusion ofP;
F ← {};
for each (Pi ∈ P)
F ← genFusion({Pi} ∪ RCP(F ), f , β);

return F ;

Fig. 5. Optimized Fusion Algorithm

Given a set ofn primariesP, we present an algorithm in [17] to generate a minimalf -fusion ofP. In this
paper, we present an algorithm to generate fusions that are optimized for both states and events. We show that
if each fusion in our solution contains more thanΣ− β events, then nof -fusion ofP contains a machine with
less than or equal toΣ − β events, whereβ is a user defined parameter. Further, we present an incremental
approach to this problem that improves the time complexity by a factor ofρn, whereρ is the average state
reduction achieved by fusion, i.e., (|RCP|/Average size of a fusion).

The genFusion algorithm that generates the fusion machines is shown in Fig.5. Starting with the RCP of
the primaries,RCP(P), the algorithm generates one machine for each iteration ofLoop 1 that increasesdmin

by 1 and at the end off iterations we havef machines inF such thatdmin(P∪F ) > f . Loops 2 and 3 reduce
the events and states of the fusion machines.

Loop 2, Event Reduction: Starting with the RCP, which always increasesdmin by one, Loop 2 uses the
reduceEvent algorithm in Fig. 4 to iteratively generate reduced event machines that increasedmin by one. In
each iteration of Loop 2, we generate the set of machines that contain one event less than the machines in the
previous iteration and increasedmin by one. At the end ofβ iterations, we generate machineM that increases
dmin by one and contains at mostΣ − β events, if such a machine exists. At any stage, if no valid machine
was found, we exit the loop and select a machine from the previous iteration.

Loop 3, State Reduction [17]: In Loop 3, we try to find a minimal machine less than the event-reducedM
that increasesdmin by one. Starting withM, thereduceState algorithm in Fig. 5 generates the set of largest
machines less thanM in which at least two states ofM are combined. We choose a machine in that set that
increasesdmin and reduce it until no further state reduction is possible (hit the bottom machineRCP(P)⊥).
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In Fig. 3, letP = {A, B,C}, f = 1, β = 2. Since,dmin(P) = 1, we need to add a machine that increases
dmin to two. The set of machines containing one event less than the RCP areM1 and M2 among which only
M2 increasesdmin. Reducing the event-set ofM2, at the end ofβ = 2 iterations,M = F1. Since there is no
machine less thanF1 that increasesdmin, no state reduction is possible and thegenFusion algorithm returns
F1. Note that, forβ = 0 (no event-reduction), thegenFusion algorithm is identical to the one in [17]. However,
without event-reduction, the state reduction algorithm can combiner0 and r3 into a single block and generate
F2 as the largest machine containing this block. Since this is a minimal machine, thegenFusion algorithm
can return this 3-event machine. The event-reduction in the current version forces the algorithm to pick the
1-event machineF1. In appendix B, we show that the time complexity ofgenFusion is O(N2|Σ|β f +N3|Σ| f ),
whereN = |RCP| and present a proof for the following theorem.

Theorem 2:Given a set ofn machinesP, the genFusion algorithm generates a minimalf -fusion (state
minimality) of P such that if each machine inF contains more than|Σ| − β events, then nof -fusion of P
contains a machine with less than or equal to|Σ| − β events (event minimality).

Given n primaries each of sizes, the genFusion algorithm generates their RCP, that has sizeO(sn), and
hence the algorithm can have very high execution times. In Fig. 5, we present an incremental approach to
generate the fusions, referred to as theincFusion algorithm in which we may never have to reduce the RCP
of all the primaries. In each iteration, we generate the fusion corresponding to a new primary and the RCP
of the (possibly small) fusions generated for the set of primaries in the previous iteration. In appendix C, we
illustrate this approach with an example, present the proofof correctness and show that it has time complexity
ρn times better than that of thegenFusion algorithm, whereρ is the average state reduction achieved by
fusion.

VI. D  C  F

In [17], the time complexity to detect and correct faults isO(n2ρ + nρ f + N), wheren is the number of
primaries, f is the number of crash faults,s is the size of each machine,N is the size of the RCP andρ is the
average state reduction achieved by fusion. In this section, we provide algorithms to detect Byzantine faults
with time complexityO(n f), on average, and correct crash/Byzantine faults with time complexityO(nρ f ),
with high probability. Throughout this section, we refer to Fig. 3, with primaries,P = {A, B,C} and backups
F = {F1, F2}, that can correct two crash faults. The execution state of theprimaries is represented collectively
as an-tuple (primary tuple) while the state of each backup is represented as the set of primary tuples it
corresponds to (tuple-set). In Fig. 3, if A, B, C and F1 are in their initial states, then the primary tuple is
a0b0c0 and the state ofF1 is f 0

1 = {a
0b0c0,a1b0c1,a1b1c0,a0b1c1} (which corresponds to{r0, r2, r4, r6}).

A. Detection of Byzantine Faults

Given the primary tuple and the tuple-sets corresponding tothe backup states, thedetectByz algorithm in
Fig. 6 detects up tof Byzantine faults (liars). Assuming that the tuple-set of each backup state is stored in
a permanent hash table at the recovery agent, thedetectByz algorithm simply checks if the primary tuple
r is present in each backup tuple-setb. In Fig. 3, if the states of machinesA, B, C, F1 and F2 are a1, b1,
c0, f 1

1 and f 1
2 respectively, then the algorithm flags a Byzantine fault, since a1b1c0 is not present in either

f 1
1 = {a

0b1c0,a1b1c1,a1b0c0,a0b0c1} or f 1
2 = {a

0b1c0,a1b0c1}. In the following theorem we show that if there
are liars in the system, then the primary tuple will not be present in at least one of the backup tuple-sets.

Theorem 3:Given a set ofn machinesP and anf -fusionF corresponding to it, thedetectByz algorithm
detects up tof Byzantine faults among them.

In appendix D we present the proof for this theorem and also show that the space complexity for the
detectByz algorithm isO(N f nlog s) while its time complexity isO(n f) (on average). Even for replication,
the recovery agent needs to compare the state ofn primaries with the state of each of itsf replicas, giving
time complexityO(n f).

B. Correction of Faults

Given the primary tuple and the tuple-sets of the backup states, to correctf crash faults (or⌊ f /2⌋ Byzantine
faults), we first need to find the tuples among the backup tuple-sets that are within Hamming distance off
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detectByz

Input: set of of fusion statesB, primary tupler;
Output: true or false
for (b ∈ B)

if ¬(hash table(b) · contains(r))
return false;

return true;
—————————————————————–
correctCrash

Input: set of of fusion statesB, primary tupler,
crash faults among the primariesc (≤ f );
Output: corrected primaryn-tuple;
D← {} //list of tuple-sets
for (b ∈ B)
//tuples inb within Hamming distancec of r
S← lsh tables(b) · search(r, c);
D · add(S);

return Intersection of sets inD; // singleton w.h.p

correctByz

Input: set of of fusion statesB, primary tupler;
Output: corrected primaryn-tuple;
D← {} //list of tuple-sets
for (b ∈ B)
//tuples inb within Hamming distance⌊ f /2⌋ of r

S← lsh tables(b) · search(r, ⌊ f /2⌋);
D · add(S);

G← Set of tuples that appear inD;
V← Vote array of size|G|;
for (g ∈ G)
// get votes from fusions
V[g] ← Number of timesg appears inD;
// get votes from primaries
for (i = 1 to n)

if(r[i] ∈ g)
V[g] + +;

return Tuple g : V[g] ≥ n+ ⌊ f /2⌋;

Fig. 6. Detection and Correction of Faults

(⌊ f /2⌋ for Byzantine faults) from the primary tuple (explained in sections VI-B1 and VI-B2). In Fig. 3, the
tuples in f 0

1 = {a
0b0c0,a1b0c1,a1b1c0,a0b1c1} that are within Hamming distance one of a primary tuplea0b0c1

are a0b0c0, a1b0c1 and a0b1c1. An efficient solution to finding the points among a large set within a certain
Hamming distance of a query point islocality sensitive hashing(LSH) [1], [8]. Based on this, we maintainL
hash tables,{g1 . . . gL}, for each fusion state at the recovery agent. The hash function for g j , takes as input an
n-tuple, selectsk coordinates uniformly at random from them and returns the concatenated bit representation
of these coordinates. In the example shown in Fig. 7(i), the tuple a1b0c1 of f 0

1 , is hashed into the 2nd bucket
of g1 and the 3rd bucket ofg2.

3
2 (a1b0c1)

1
0 (a0b0c0)

(a0b1c1)


oordinates 0 and 1are 01 3
2 (a1b1c0)

1
0 (a0b0c0)

(a0b1c1)

(a1b1c0) 3
2
1
0 (a0b0c0)

3 (a1b1c1)

2
1
0 (a0b0c0)

(a1b1c1)(a1b0c1)

(i) Fusion State f 0

1
= {a0b0c0, a1b0c1, a1b1c0, a0b1c1} (ii) Fusion State f 0

2
= {a0b0c0, a1b1c1}

g1 (Coordinates 0 and 1) g2 (Coordinates 0 and 2) g1 (Coordinates 0 and 1) g2 (Coordinates 0 and 2)

Fig. 7. LSH Example for fusion states in Fig. 3 withk = 2, L = 2

Given a pointq and distancef , we obtain the points found in the bucketsg j(q) for j = 1 . . . L, and return
those that are within distance off from q. For example, in Fig. 7(i), givenq = a0b1c0, f = 2, this point
hashes into the 1st bucket ofg1 and the 0th bucket ofg2 and hence the points returned area0b1c1 anda0b0c0

respectively. If we setL = log1−γk δ, whereγ = 1 − f /n, such that (1− γk)L < δ, then any f -neighbor of a
point q is returned with probability at least 1− δ [1], [8]. In the following sections, we present algorithms for
the correction of crash and Byzantine faults based on these LSHfunctions.

1) Crash Correction:Given the primary tuple (with possible gaps because of faults) and the tuple-sets of
the available backup states, thecorrectCrash algorithm in Fig. 6 corrects up tof crash faults. The algorithm
finds the tuples in the tuple-sets of each fusion stateb that are within a Hamming distancec (actual number
of faults) of the primary tupler using the LSH tables for each fusion state. If the intersectionof these sets is
singleton, then we return that as the correct primary tuple.When the intersection is not singleton, we need to
exhaustively search each fusion state for points within distancec of r (LSH has not returned all of them), but
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this happens with a very low probability [1], [8]. In Fig. 3, assume crash faults in primariesB andC among
{A, B,C}. Given the states ofA, F1 andF2 asa0, f 0

1 and f 0
2 respectively, the tuples within Hamming distance

two of r = a0{}{} among f 0
1 = {a

0b0c0,a1b0c1,a1b1c0,a0b1c1} and f 0
2 = {a

0b0c0,a1b1c1} are {a0b0c0,a0b1c1}

and {a0b0c0} respectively. The algorithm returns their intersection,a0b0c0 as the corrected primary tuple. In
the following theorem, we prove that thecorrectCrash algorithm returns a unique primary tuple.

Theorem 4:Given a set ofn machinesP and an f -fusion F corresponding to it, thecorrectCrash
algorithm corrects up tof crash faults among them.

In appendix E, we present the proof for this theorem and show that the space complexity of thecorrectCrash
algorithm is O(N f nlog s) and its time complexity isO(nρ f ) w.h.p. Crash correction in replication simply
involves copying the state of the replicas off failed primaries which has time complexityO( f ).

2) Byzantine Correction:Given the primary tuple and the tuple-sets of the backup states, thecorrectByz
algorithm in Fig. 6 corrects up to⌊ f /2⌋ Byzantine faults. The algorithm finds the set of tuples among the
tuple-sets of each fusion state that are within Hamming distance⌊ f /2⌋ of the primary tupler using the LSH
tables and stores them in listD. It then constructs a vote vectorV for each unique tuple in this list. The votes
for each tupleg ∈ V is the number of times it appears inD plus the number of primary states ofr that appear
in g. The tuple with greater than or equal ton+ ⌊ f /2⌋ votes is the correct primary tuple. When there is no
such tuple, we need to exhaustively search each fusion statefor points within distance⌊ f /2⌋ of r (LSH has
not returned all of them). In Fig. 3, let the states of machinesA, B, C F1 and F2 are a0, b1, c0, f 0

1 and f 0
2

respectively, with one liar among them (⌊ f /2⌋ = 1). The tuples within Hamming distance one ofr = a0b1c0

among f 0
1 = {a

0b0c0,a1b0c1,a1b1c0,a0b1c1} and f 0
2 = {a

0b0c0,a1b1c1} are{a0b0c0,a1b1c0,a0b1c1} and{a0b0c0}

respectively. The algorithm returnsa0b0c0, with four votes in total (one each fromA, C, F1 and F2), since
n+ ⌊ f /2⌋ = 3+ 1 = 4. We show in the following theorem that there are enough machines separating each pair
of tuples and even with liars the true primary tuple will get sufficient votes.

Theorem 5:Given a set ofn machinesP and a f -fusionF corresponding to it, thecorrectByz algorithm
corrects up to⌊ f /2⌋ Byzantine faults among them.

In appendix F, we present a proof for the following theorem andshow that the space complexity of the
correctByz algorithm isO(N f nlog s) and its time complexity of isO(nρ f ) w.h.p. In the case of replication,
we just need to obtain the majority acrossf copies of each primary with time complexityO(n f).

VII. E

A. Experimental Results

In [17], we evaluate fusion for simple examples such as counters and dividers. In this section, we evaluate
fusion using the MCNC’91 benchmarks [23] for DFSMs, widely used for research in the fields of logic
synthesis and finite state machine synthesis [16], [24]. We implemented theincFusion algorithm of Fig. 5
in Java 1.6 and compared the performance of fusion with replication for 100 different combinations of the
benchmark machines, withn = 3, f = 2, β = 3 and present some of the results in Table III. The machine
descriptions, implementation and detailed results are available in [3].

Let the primaries be denotedP1, P2 and P3 and the fused-backupsF1 and F2. Column 1 of Table III
specifies the names of three primary DFSMs. Column 2 specifies the backup space required for replication
(
∏1=3

i=1 |Pi |
f ), column 3 specifies the backup space for fusion (

∏i=2
i=1 |Fi |) and column 4 specifies the percentage

state space savings ((column 2-column 3)* 100/column 2). Column 5 specifies the total number of primary
events, column 6 specifies the average number of events acrossF1 and F2 and the last column specifies the
percentage reduction in events ((column 5-column 6)*100/column 5).

The average state space savings in fusion (over replication)is 38% (range 0-99%) over the 100 combination
of benchmark machines, while the average event-reduction is 4% (range 0-45%). We also present results in
[3] that show that the average savings in time by the incremental approach for generating the fusions (over the
non-incremental approach) is 8%. Hence, fusion achieves significant savings in space for standard benchmarks,
while the event-reduction indicates that for many cases, the backups will not contain a large number of events.
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TABLE III
E  F   MCNC’91 B

Machines Replication

State Space

Fusion

State Space

% Savings

State Space

Primary

Events

Fusion

Events

% Reduction

Events

dk15, bbara, mc 25600 19600 23.44 16 10 37.5
lion, bbtas, mc 9216 8464 8.16 8 7 12.5

lion, tav, modulo12 36864 9216 75 16 16 0
lion, bbara, mc 25600 25600 0 16 9 43.75

tav, beecount, lion 12544 10816 13.78 16 16 0
mc, bbtas, shiftreg 36864 26896 27.04 8 7 12.5

tav, bbara, mc 25600 25600 0 16 16 0
dk15, modulo12, mc 36864 28224 23.44 8 8 0
modulo12, lion, mc 36864 36864 0 8 7 12.5

B. Practical Example: MapReduce

To motivate the practical use of fusion, we discuss its application to the MapReduce framework which is
used to model large scale distributed computations. Typically, the Map-Reduce framework is built using the
master-worker configuration where the master assigns the mapand reduce tasks to various workers. Due to high
cost of resources in replication, handling faults among themap workers is primarily based on checkpointing
in which the processes periodically write to permanent storage. In the case of faults, the tasks are restarted
from the last available state. This approach increases latency and may be inadequate for some applications.

Consider a distributed grep application over large files, where the master assigns three map tasks, each
searching for one of the string patterns modeled by{A, B,C} in Fig. 1. When the input files are partitioned
into 200,000 chunks of data (the usual number in [5]), the current checkpointing-based approach requires
200,00*3= 600,000 tasks in total, while causing high latency. A replication-based solution for correcting just
one fault will involve creating a replica of each of the tasksA, B and C for each chunk of data, requiring
1200,000 tasks in total. A fusion-based approach needs to run only one additional backup task for each chunk
of data, runningF1 shown in Fig. 1. Though recovery is costlier than replication,this approach requires only
800,000 tasks with much better latency than checkpointing.

VIII. C

We challenge the traditional approach of replication that requiresn f backups to correctf crash faults among
n machines and present a fusion-based solution that requiresonly f backups consuming considerably lesser
state space. We present a problem that is fundamental to DFSMs:Can we replace a given DFSM with DFSMs
containing fewer events? To formalize this, we introduce the concept of a (k,e)-event decomposition of a
given machine and present efficient algorithms to generate such a decomposition. Based onthis, we describe
an algorithm to generate fused backups for a given set of machines that is optimized for both states and events.

Further, we present efficient algorithms to detect and correct faults in a system with fused backups. The
algorithm for the detection of Byzantine faults has time complexity O(n f) (on average), which is the same as
that for replication. We apply the concept of locality sensitive hashing to the correction of faults and the time
complexity for the correction of crash and Byzantine faultsis O(nρ f ) w.h.p. For relatively small values of
n andρ, fusion causes almost no overhead for recovery. Finally, we evaluate fusion on standard benchmarks
for DFSMs and the results confirm that fusion achieves significantsavings in space over replication. The
event-reduction algorithm ensures that for many examples,the fused backups contain small event sets. Hence,
in addition to our results on the theoretical optimality of the fused backups, we have illustrated the practical
usefulness of fusion.
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A

A. Time complexity, Proof of Correctness foreventDecompose

The reduceEvent algorithm visits each state of machineM to create blocks of states which loop to the
same block on eventσ ∈ ΣM. This has time complexityO(|XM |). The cost of generating the largest closed
partition corresponding to this block isO(|XM ||ΣM |). Since we need to do this for all events inΣM, the time
complexity to reduce at least one event isO(|XM ||ΣM |

2). In theeventDecompose algorithm, the first iteration
generates at most|ΣM | machines, the second iteration at most|ΣM |

2 machines and theeth iteration will contain
O(|ΣM |

e) machines. The time complexity to reduce at most one event from any machine isO(|XM ||ΣM |
2).

Hence, the time complexity to generate the set of event-reduced machines inM at the end ofe iterations is
O(|XM | · |ΣM |

2(|ΣM | + |ΣM |
2 + . . .+)|ΣM |

e) which reduces toO(|XM ||ΣM |
e).

To generate the (k,e)-event decomposition from the set of machines inM, we find a machine inM to
separate each pair of states inXM. Since there areO(|XM |

2) such pairs, the number of iterations of Loop 3 is
O(|XM |

2). In each iteration of Loop 3, we find a machine among theO(|ΣM |
e) machines ofM that separates a

pair mi ,mj ∈ XM. To check if a machine separates a pair of states just takesO(|XM |) time. Hence the complexity
of Loop 3 isO(|XM |

3|Σ|e), which is the overall time complexity of theeventDecompose algorithm.
Theorem 1:Given machineM (XM, αM,ΣM,m0), the eventDecompose algorithm generates a (k,e)-event

decomposition ofM (if it exists) for somek ≤ |XM |
2.

Proof: ThereduceEvent algorithm exhaustively generates all incomparable machines that ignore at least
one event inΣM. After e such reduction in events, Loop 3 selects one machine (if it exists) amongM to
separate each pair of states inXM. This ensures that at the end of Loop 3, eitherdmin(E) > 0 or the algorithm
has returned{} (no (k,e)-event decomposition exists). Since there are at most|XM |

2 pairs of states inXM, there
are at most|XM |

2 iterations of Loop 3, in which we pick one machine per iteration. Hence,k ≤ |XM |
2.

B. Time complexity Analysis, Correctness Proof forgenFusion

We first analyze the time complexity of Loop 2. For each event, the reduceEvent algorithm iterates
through all the states in the RCP and forms the largest closedpartition corresponding to the set of blocks
generated. This has time complexityO(N|Σ|), whereN = |RCP|. Since this is done for all events inΣ, the time
complexity of thegenFusion algorithm isO(N|Σ|2) and the number of machines that it generates isO(|Σ|). In
each iteration of Loop 2, we check to see if there is a machine that increasesdmin by one which costsO(N2)
time per machine. The number of machines generated in each iteration increases exponentially inβ since we
may reduce the event set for each of the machines generated inthe previous iteration. So, the cost of Loop 2
is O((N2 + N|Σ|2)(1+ |Σ| + |Σ|2 + . . . |Σ|β)), which reduces toO(N2|Σ|β). Loop 3 has time complexityO(N3|Σ|)
[17]. The complexity of the loops dominate the complexity of the algorithm. Since there aref iterations of
these loops, the time complexity of thegenFusion algorithm isO(N2 f |Σ|β + N3 f |Σ|).

To prove theorem 2, we refer to relevant concepts introducedin [17]. To generate fusions, we add a machine
in each iteration which increases the minimum Hamming distance by one. Each machine added, increases the
weight of some pair of statesr i , r j by one. If a machineM has the statesr i and r j in distinct blocks, we
say thatM coversthe edge (r i , r j). It can be seen from thegenFusion algorithm that every machine added,
covers a set of edges, called the edge set of that machine. The edge set ofF j is denoted byE j . The weight of
an edge (r i , r j) is dmin(r i , r j) and the weakest edge is the edge corresponding to the least Hamming distance
(dmin). We first state a lemma presented in [17].

Lemma 1:Given a set ofn machinesP, and the setF returned by thegenFusion algorithm, letFi ∈ F

be the machine returned in theith iteration. Then,∀Fi , F j ∈ F : i < j ⇒ Ei ⊆ E j .
Proof: If F ′ ⊆ F is the current fusion set during the execution of thegenFusion algorithm, then the

edge set for the next iteration consists of the minimal edgesof the machines inP∪F . Every time a machine
is added toF ′, the weights of the edges can increase by at most one and the weight of every minimal edge
is incremented by exactly one. Hence, after every iterationthe edge set for the next iteration cannot decrease
in size. This implies∀Fi , F j ∈ F : i < j ⇒ Ei ⊆ E j .

This implies the following two observations.
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Observation 1:If an edgee occurs in the edge set of any machine inF and there arek machines inF
that covere, then in any validf -fusion there are at leastk machines that cover edgee.

Observation 2:The edge set of the fusionF1 added in the first iteration of thegenFusion algorithm has
to be a subset of the edge set of all machines part of any validf -fusion.

We prove theorem 2 based on these observations.
Theorem 2:Given a set ofn machinesP, the genFusion algorithm generates a minimalf -fusion of P

such that if each machine inF contains more than|Σ| − β events, then nof -fusion ofP contains a machine
with less than or equal to|Σ| − β events.

Proof:

• |F | = f : Given a set of primaries, we can generate the RCP corresponding to them. Hence,dmin(P) = 1.
For each iteration of the outer loop, we add one machine toF that increasesdmin(P∪F ) exactly by one.
At the end of f iterations we add exactlyf fusions such thatdmin(P ∪ F ) = f + 1.

• F is minimal [17]: Let there be anf -fusion G = {G1, ..G f }, such thatG is less thanf -fusion F =
{F2, F1, ..., F f }. Hence∀ j : G j ≤ F j . Let Gi < Fi and letEi be the set of edges that needed to be covered
by Fi . It follows from thegenFusion algorithm, thatGi does not cover at least one edge saye in Ei

(otherwise thegenFusion algorithm would have returnedGi instead ofFi). From observation 1, ife is
covered byk DFSMs inF , thene has to be covered byk machines inG. We know that there is a pair
of machinesFi ,Gi such thatFi coverse andGi does not covere. For all other pairsF j ,G j if G j covers
e then F j coverse (sinceG j ≤ F j). Hencee can be covered by no more thank − 1 in G. This implies
thatG is not a valid fusion.

• If each machine inF contains more than|Σ| − β events, then nof -fusion can contain a machine with
less than or equal to|Σ| − β events: Let there be anf -fusionG that contains a machineG with ≤ |Σ| − β
events. From observation 2,G covers all edges in the edge setE1, that are covered byF1 ∈ F (the first
machine chosen by thegenFusion algorithm). Since thegenFusion algorithm could find no machine
covering the edges inE1 at a depth of event reduction|Σ| − β, there cannot exist machines with events
less than or equal to|Σ| − β events that coverE1. Hence,G cannot exist.

C. Time Complexity Analysis, Correctness Proof forincFusion
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Fig. 8. Incremental Approach: First generateF′ and thenF

In Fig. 8, rather than generate a fusion by reducing the 8-state RCP of{A, B,C}, we can reduce the 4-state
RCP of {A, B} to generate fusionF′ and then reduce the 4-state RCP of{C, F′} to generate fusionF. Let the
number of states in each primary bes. Thegenfusion algorithm has time complexityO(N3 · |Σ| · f ) (assuming
β = 1 for simplicity), whereN is the size of the cross product of the primaries. Fori = 1, genfusion takes
two machinesP1 andP2 as parameters each of sizes. The size of their RCP isO(s2) and the time complexity
for the first iteration isO(s6 · |Σ| · f ). Since we assume an average reduction ofρ, the size of each fusion is
O(s/ρ). The size of the RCP of these fusions is bound by the size of theRCP of the input machines which
is O(s2) while it has a lower bound ofo(s2/ρ2). On average, it will beO(s2/ρ). The input state space for the
next iteration isO(s3/ρ) and hence the time complexity isO((s3/ρ)3 · |Σ| · f ). The input state space for the next
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iteration isO(s4/ρ2). Continuing this analysis, the time complexity of thenth iteration isO((sn/ρn)3 · |Σ| · f ).
The sum of these terms across all the iterations is a geometricprogression dominated by the last term. Hence,
the time complexity theincFusion algorithm isO(N3/ρn · |Σ| · f ).

Theorem 3:Given a set ofn machinesP, theincFusion algorithm generates af -fusion ofP.
Proof: We prove it using induction on the iterations of the algorithm.

Base case: For (i = 1), let the f -fusion generated for the primaries{P1,P2} be denotedF 1. For (i = 2), let the
f -fusion generated for{P3,RCP(F 1)} be denotedF 2. We show thatF 2 is a f -fusion of {P1,P2,P3}. There
can only be three cases:

• f machines among{P1,P2} crash: Since by construction,{P3∪RCP(F 1)∪F 2} can correctf crash faults,
using the state of{P3 ∪ F

2}, we can generate the state ofRCP(F 1). Subsequently, using the state of the
remaining machines among{P1,P2} and the states of all the machines inF 1 we can generate the state
of the crashed machines among{P1,P2}.

• f machines among{P3∪F
2} crash: Since by construction,{P1,P2∪F

1} can correctf crash faults, using
the state of machines in{P1,P2} we can generate the state of thef machines inF 1. Subsequently, using
the state of the remaining machines among{P3 ∪ F

2} and the state of all the machines inF 1 we can
generate the crashed machines{P3 ∪ F

2}.
• t machines among{P1,P2} crash (t > 0) and f − t machine among{P3 ∪ F

2} crash (f − t < f ): Among
the f + 1 machines in{P3 ∪F

2} less thanf have crashed. So using the state of the remaining machines,
we can generate the state of the machines inF 1 and the state of the crashed machines among{P3∪F

2}.
Subsequently, using the state of the remaining machines among {P1,P2} and the states of all the machines
in F 1 we can generate the state of the crashed machines among{P1,P2}.

Induction Hypothesis: If the fusion setF i generated in iterationi is a f -fusion of {P1 . . .Pi+1} and if F i+1

is a f -fusion of {Pi+2,RCP(F i)}. To prove:F i+1 is a f -fusion of {P1 . . .Pi+2}. The proof is similar to that for
the base case. Iff machines crash among{P1 . . .Pi+1}, then we can generate the state of the machines inF i

using the state of the machines among{Pi+2 ∪ F
i+1} and then generate the state of thef crashed machines

among{P1 . . .Pi+1} andF i . If f machines crash among{Pi+2 ∪ F
i+1} then similarly you first generate the

state of the machines inF i from the state of the remaining machines and then recover thestate of the failed
machines. The same argument works when the failures are spread across the machines in{P1 . . .Pi+1} and
{Pi+2 ∪ F

i+1}. Hence the hypothesis is true.

D. Byzantine Detection Complexity Analysis

Theorem 4:Given a set ofn machinesP and anf -fusionF corresponding to it, thedetectByz algorithm
detects up tof Byzantine faults among them.

Proof: When machines lie about their state, we assume that they lie within their state set. For example,
in Fig. 3, suppose the true state ofF2 is f 0

2 . To lie, if F2 says it state is any number apart fromf 1
2 , f 2

2 and
f 3
2 , then that can be detected easily without a detection algorithm. We show that when there are liars in the

system, the primary tupler will not be present in the tuple-sets of at least one of the fusions.
If r is the correct tuple (without liars), then the liars among the fusions will not containr in their sets

because only one fusion state in each fusion machine contains each primary tuple (fusion states are a partition
of the RCP state space). In Fig. 3, ifr = a1b0c1 (no liars) andF2 is lying about its state asf 0

2 (truthful state
is f 1

2 ), thenr is not present inf 0
2 = {a

0b0c0,a1b1c1} since it is present inf 1
2 = {a

0b1c0,a1b0c1}.
If r is the incorrect tuple (with liars), then for the fault to go undetected,r must be present in the tuple-

sets of all fusion states. The truthful backup tuple-sets will also contain the correct primary tuplercorrect.
Note that, like the fusion states, each primary state can be expressed as a tuple-set that contain the RCP
tuples it belongs to. So, the truthful machines among the primaries will also contain{r, rcorrect} in the same
tuple-set. For example, in Fig. 3, ifr = a0b0c0 and rcorrect = a0b0c1, thena0 = {a0b0c0,a0b1c0,a0b1c1,a0b0c1}

contains{r, rcorrect} in the same tuple-set. Hence, all the truthful machines (both primaries and backups) contain
{r, rcorrect} in the same tuple-set. Since the number of truthful machines is greater thann, at most f machines
separate{r, rcorrect}. This contradicts the fact thatF is a f -fusion ofP with dmin(P ∪ F ) > f .
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Each tuple in a tuple-set of a fusion state containsn states each of size logs, where s is the maximum
number of states in any primary. For each fusion, we need to store O(N) such points in the hash table. Hence,
the space complexity for storage at the recovery agent isO(N f nlog s). Since each fusion state is maintained
as a hash table at the recovery agent, it can search for the primary tuple inO(n) time, on average. Hence, the
time complexity for thedetectByz algorithm isO(n f) on average.

E. Crash Correction Complexity Analysis

Theorem 5:Given a set ofn machinesP and an f -fusion F corresponding to it, thecorrectCrash
algorithm corrects up tof crash faults among them.

Proof: The tuples among the backup tuple-sets within a Hamming distance f of the primary tupler,
are essentially the tuples containing the incompleter. Since all available fusion-states contain the complete
primary tuple, denotedrcorrect, we just need to prove that the intersection of the tuples among the fusion-states
containingr is singleton. If not, then there exists at least one other tuple rwrong in all the fusion states containing
r. Similar to the proof in theorem 4, since bothrwrong and rcorrect contain r, these tuples will be present in
the same tuple-sets of the primaries as well. So, the minimum number of machines containing{rcorrect, rwrong}

in the same tuple-set aren (primaries)+ available backups, which is greater than or equal ton. Hence, the
number of machines separating them is at mostf , contradictingdmin(P ∪ F ) > f .

We maintainL hash tables per fusion state, each storingρ (average number of points in each fusion)n-
dimensional points, each containing logs bits. Since the sum of all such points isN, the total space complexity
of storage at the recovery agent isO(N f nlog s).

Since the number of points per fusion state that are within distance f of the primary tupler is O(ρ) (average
size of the list), the cost of hashingr and retrievingO(ρ) n-dimensional points fromO( f ) fusion states is
O(nρ f ) w.h.p (assumingk, L for the LSH tables are constants). So, the cost of generatingD is O(nρ f ) w.h.p.
In order to find the intersection in linear time, we can hash theelements of the smallest set and check if the
elements of the other sets are part of this set. The elements found across all sets is the intersection of the sets.
The time complexity to find the intersection among theO(ρ f ) points in D, each of sizen is simply O(nρ f ).
Hence, the overall time complexity of thecorrectCrash algorithm isO(nρ f ) w.h.p.

F. Byzantine Correction Complexity Analysis

Theorem 6:Given a set ofn machinesP and a f -fusionF corresponding to it, thecorrectByz algorithm
corrects up to⌊ f /2⌋ Byzantine faults among them.

Proof: We prove that the true primary tuple,rcorrect will uniquely get≥ n+ ⌊ f /2⌋ votes. Since there are
at most⌊ f /2⌋ liars, rcorrect will be present in the tuple-sets of at leastn+ ⌊ f /2⌋ truthful machines. Hence the
number of votes torcorrect, V[rcorrect] ≥ n+ ⌊ f /2⌋. An incorrect primary tuplerwrong can get votes from at most
⌊ f /2⌋ liars and the truthful machines that contain bothrcorrect and rwrong in their tuple-sets. Sincedmin > f ,
amongn+ f machines, less thann of them contain{rcorrect, rwrong} in the same tuple-set. The number of votes
to rwrong, V[rwrong] < n (truthful)+⌊ f /2⌋ (liars) < n+ ⌊ f /2⌋ < V[rcorrect].

The space complexity analysis is similar to crash correction. The time complexity to generateD, same as
that for crash faults, isO(nρ f ) w.h.p. If we maintainG as a hash table (standard hash functions), to obtain
votes from the fusions, we just need to iterate through thef sets inD, each containingρ points of sizen
each and check for their presence inG in constant time. Hence the time complexity to obtain votes from the
backups isO(nρ f ). Since the size ofG is O(ρ f ), the time complexity to obtain votes from the primaries is
againO(nρ f ), giving over all time complexityO(nρ f ) w.h.p.
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