Fusion-based DFSMs for Fault Tolerance in
Distributed Systems

Bharath Balasubramanian and Vijay K. Garg*
Parallel and Distributed Systems Laboratory,
Dept. of Electrical and Computer Engineering,
The University of Texas at Austin,
Austin, TX 78712, Ph: 512 2398104, Fax: 512 4715120,
Email: bbharath@mail.utexas.edu, garg@ece.utexas.edu

Abstract

Replication is a standard solution for fault-tolerance istributed systems modeled as deterministic finite
state machines (DFSMs or machines). To corredrash faults among machines, replication requiresf
additional backup machines. We challenge this approactpegsnt a fusion-based solution that requires just
f additional backup machines (called fusions or fused bagkup this paper, we first propose a fundamental
problem regarding DFSMs, independent of fault toleranieat has not been explored in the literature so far:
Given a machineM, with a set of states and a set of events, canreptaceit with machines each containing
fewer events that? To formalize this we define &,€)-event decomposition of a given machikk that is a
set ofk machines each with at leastevents fewer than the event setMf that acting in parallel, are equivalent
to M. We present an algorithm to generate such machines withdonglexity polynomial in the number of
states inM. Second, we use our event decomposition algorithm to genéuaed backups that can correct
faults among a given set of machines. We show that these pa@aeminimal w.r.t the number of states they
contain and the number of events in their event set. Thirdugesthe notion ofocality sensitive hashintp
present algorithms for the detection and correction oftéafialr the fusion-based solution. The algorithm for the
detection of Byzantine faults has time complex@yn f) on average, which is the same as that for replication.
The algorithm for the correction of both crash and Byzanfemdts has time complexitYD(nof) with high
probability (w.h.p), where is the average state reduction achieved by fusion. We shatvdh small values
of n (for most practical systems, < 10) andp (average value op < 2 in our experiments), this results in
almost no overhead as compared to replication. Finally, vaduate fusion on the widely used MCNC’'91
benchmarks for DFSMs and results show that the average sgatee savings in fusion (over replication) is
38% (range 0-99%), while the average event-reduction is ##tge 0-45%).

Keywords: Distributed Systems, Fault Tolerance, Finite Stéaehines.

|. INTRODUCTION

Distributed applications often use deterministic finitetestaachines (or justhachine¥ to model computa-
tions such as regular expressions for pattern detectiontastcal analysis of documents or mining algorithms
for large data sets. These machines executing on distintibdiged processes are often prone to faults.
Traditional solutions to this problem involve some form eplication, in which to correct crash faults [20]
amongn given machines (referred to asimarieg, f copies of each primary are maintained [13], [22], [21].
If the backups start from the same initial state as the cpomding primaries and act on the same events,
then in the case of faults, the state of the failed machinasearecovered from one of the remaining copies.
These backups can also corrédt/2] Byzantine faults [14], where the processes lie about thie sifithe
machine, since a majority of truthful machines is alwaysilaleée. This approach is expensive both in terms
of the total number of backup machined, and the total backup state space.

*supported by the NSF CNS-0718990, Texas Education Board Gr@ht &d Cullen Trust for Higher Education Endowed
Professorship.

Consider a distributed application that is searching foeehdiferent string patterns among a huge file, as
modeled by the state machindsB andC shown in Fig. 1. A state machine in our system consists of a finite
set of states (including the initial execution state) and #efiget of events. On application of an event, the
state machine transitions to the next state based on thetstatition function. For example, machifein
Fig. 1 contains the statd¢al, a'}, events(0, 2} and the initial state, shown by the dark ended arrovaisThe
state transitions are shown by the arrows from one statedthan Hence, ifA is in statea® and event 0 is
applied to it, then it transitions to sta&é. In this exampleA checks the parity of0, 2} and so, if it is in state
a®, then an even number ofs®r 2s have been applied to the machine and if it is in statethen an odd
number of the inputs have been applied. MachiBendC check for the parity of1, 2} and{0} respectively.

To correct one crash fault among these machines, replicagiguires a copy of each of them, resulting in
three backup machines, consuming total state space of @¢htRather than replicate the machines, we can
correct one fault by maintaining just one additional maehiy shown in Fig. 1. The relevant events from
the client (or environment) are applied to all the machirgs.if the event sequence 0, 0, 1, 2 is applied on
all the machinesA, B, C and F; will be in statesal, b°, ¢ and f! respectively. Assume a crash fault@
Given the parity of 1s (state d¢f;) and the parity of 1s or 2s (state Bj, we can first determine the parity of
2s. Using this, and the parity of Os or 2s (stateA)pf we can determine the parity of Os (state@)f Hence,
we can correct the crash fault @ using A, B and F;. This argument can be extended to correcting one fault
among any of the machines {A, B,C, F1}. This approach consumes fewer backups than replication\®ne
three) and less backup state space (two vs. eight).

0.2
omd
' (@
A (Parity of 0s, 2s) <L

5 F /—m
1
D,
L2) (Parity of 15)
L, G :
% ‘ : 4

B (Parity of 1s, 2s)
GKD/‘TA M Dual Parlt\ Checker) bm@
Vﬂ@ Q (Parity of 0s)

C' (Parity of 0s)

Fig. 1. Fused-Backups for Fault Tolerance Fig. 2. Event-based Decomposition

However, it is not always possible to design these backup®lyney inspection. In Fig. 1, it may not be
obvious thatF; andF, can correct two crash faults among the primaries. In [17]present the theory and
algorithm to automatically generafebackup machines (callddsiong for any given set of primaries that can
correctf crash faults (ot f /2] Byzantine faults). In this paper, we focus on the three mhillenges faced
by fusion which are the large event-sets of the fusions, thke time complexity for the generation of fusions
and the high cost for detecting and correcting faults. Toreanize our contributions in this paper:

a) Event-based DecompositionVe start with a question that is fundamental to the undedatgnof
DFSMs, independent of fault-tolerance: Given a macHihecan it bereplacedby two or more machines
executing in parallel, each containing fewer events thiéhin other words, given the state of these fewer-event
machines, can we uniquely determine the stat®d@fin Fig. 2, the 2-event machind (it contains events 0
and 1 in its event set), checks for the parity ofadsl 1s. M can be replaced by two 1-event machimfeand
Q, that check for the parity of just 1s or Os respectively. Gitee state ofP and Q, we can determine the
state ofM. How can we generate these event-reduced machines (if #igty ®r any given machine? While
there has been work on both the state-based decomposittdn[1b] and the minimization of completely
specified machines [12], [11], this is the first paper that pressthe problem of event-reduction.

In this paper, we define the concept oke)-event decomposition of a machiiethat is a set ok machines,
each with at least events fewer than the event setMf such that given the state of these machines, we can
determine the state dfl. We present an algorithm to generate such a decomposititmtime complexity
polynomial in the number of states &. The load on a process running a machine is directly propatio

2

to the number of events in the event-set of the machine. Hehisedecomposition is crucial for applications
such as sensor networks in which there are strict limits emtimber of events that each process can service.

b) Space-Event Optimized Fusion Algorith/e apply our event-decomposition algorithm to generate
backups for fault tolerance that are optimized for both e&vemd states. In Fig. 1, it is better to choose the
1-eventF; over the 3-evenF, as a backup machine to correct one fault. We show that if dutieao achieves
no event-reduction, then no solution with the same numbedvaakups achieves it. Further, we present an
incremental approach for generating the fusions that ingsdhe time complexity by a factor pf, wherep
is the average state savings achieved by fusion.

c) Efficient Algorithms for Detectig@orrection of Faults: In [17], the algorithm for the correction of
crash and Byzantine faults, has time complexy?p +nof +s"), wheren is the number of primaried, is the
number of crash faults is the maximum number of states among primaries@igdthe average state savings
achieved by fusion. In this paper, we present a Byzantinectien algorithm with time complexit®(nf) on
average, which is the same as the time complexity of deteétioreplication. Hence, for a system that needs
to periodically detect liars, fusion causes no additionarbead. We reduce the problem of fault correction to
one of finding points within a certain Hamming distance of aegiquery point im-dimensional space and
present algorithms to correct crash and Byzantine faulte time complexityO(nof) with high probability.
The time complexity for crash and Byzantine correction inliogpion is 6(f) and O(nf) respectively. Hence,
for small values ofn and p, fusion causes almost no overhead for recovery. In Table swamarize the
notation used in this paper and in Table || we compare rejidicaand the current version of fusion.

TABLE |
SyMBOLS/NOTATION USED IN THE PAPER

P Set of primaries n Number of primaries
RCP | Reachable Cross Product 8f || N Number of states in the RCP
f No. of crash faults s | Maximum number of states among primaries
Vil Set of fusionfackups P Average State Reduction in fusion
z Union of primary event-sets|| B Event-Reduction parameter
TABLE I

FusioN vs. REPLICATION (N PRIMARIES, O(S) STATES EACH, f FAULTS, [X| TOTAL EVENTS, AVERAGE STATE REDUCTION)

Replication Fusion
Number of Backups nf f
Backup Space o(s™ O((s/p)™
Backup Generation Time Complexity O(nsf) O(s"Z[f /o™
Maximum Event@Backup Maximum Eventgrimary | Minimal for f backups

Byzantine Detection Time Complexity O(nf) O(nf) on average

Crash Correction Time Complexity o(f) O(npf) w.h.p
Byzantine Correction Time Complexity O(nf) O(npf) w.h.p

d) Evaluation of Fusion:In [17], we evaluated fusion on simple examples such as eosiaind dividers.
In this paper, we evaluate our fusion algorithm on the MCNIO®3] benchmarks for DFSMs, that are widely
used in the fields of logic synthesis and circuit design. Osulte show that the average state space savings in
fusion (over replication) is 38% (range 0-99%), while therage event-reduction is 4% (range 0-45%). Further,
the average savings in time by the incremental approachdoermting the fusions (over the non-incremental
approach) is 8%. To illustrate the practical use of fusior, apply its design to thgrep application of the
MapReduce framework [5]. Using a simple example, we showtti@currently used checkpointing approach
for fault tolerance needs 600,000 map tasks causing highdgt while replication demands 1200,000 tasks
with minimum latency. Fusion feers the best compromise with just 800,000 tasks but smaltenty than
the checkpointing approach.

Il. MobEL

The DFSMs in our system execute on separate processes with rewl dtate or communication. Clients
of the state machines issue the events (or commands) to tteereed primaries and backups, all of which
act on them in the same relative order. We assume loss-less ¢dRtnunication links with a strict upper
bound on the time taken for message delivery. Faults in ositesy are of two types: crash faults, resulting
in a loss of the execution state of the machines and Byzafduies resulting in an arbitrary execution state.
Henceforth in the paper, when we simply say faults, we reafecrash faults. When faults are detected by
a trusted recovery agent using timeouts (crash faults) cetaction algorithm (Byzantine faults) no further
events are sent by any client to these machines. After théimes act on all events sent to them thus far, the
recovery agent obtains their states, and recovers theat@xecution states of all faulty machines. Since we
assume a trusted recovery agent, the work on consensus prakence of Byzantine faults [6], [19], does
not apply to our paper. In the following section, we sumn®tize relevant concepts and results introduced
in our previous work.

Ill. BAckGROUND [17]

1) State-based Decompositio®s DFSM, denoted byR, consists of a set of state&, set of eventg,
transition functionagr : Xg X Zr = Xgr and initial statexOR. The size ofR, denoted byR is the number of
states inR. We can partition the state spaceRBuch that the transition functiang, maps each block of the
partition to another block for all events ¥k [10], [15]. In other words, we combine the statesRaio generate
machines that are consistent to the transition function. Séieof all machines generated by combining the
states ofR is called theclosed partition sebf R (example in Fig. 3).

Consider machin/, in Fig. 3, generated by combining the stat€sindr? of R. On event 0{r°, r?} self-
transitions to{r r?} (self transitions not shown). However, sincdeandr? transition tor! andr? respectively
on event 1, we need to combine the stateandr?. Continuing this procedure, we obtain the combined states
in M,. We can define an ordek) among any two machineB and Q in this set as followsP < Q, if each
block of Q is contained in a block oP (shown by an arrow fronP to Q). P and Q are incomparabile, i.e.,
PlIQ, if P« QandQ ¢« P. In Fig. 3, F; < My, while M4||M5.

2) Minimum Hamming distance for DFSMs{g): Consider a set of maching® each less tham, i.e.,
machines belonging to the closed partition setRofWe define the Hamming distance [9] between each
r,rl e Xg, denotedd(r’,r!), as the number of machines iR that containr' andr! in different blocks
(separate ¥ andr/). The minimum Hamming distance across all such pairs is @ertti(R) or just dmin. In
Fig. 3, if R = {A B}, d(r°,r!) = 1 (B separates them), whilé(r% r’) = 0 and hencely;, = 0.

Given the state of the machines fhwe can determine the state Bfif there is at least one machine in
R to distinguish between each pair of statesXig or in other wordsdmin > 0. In Fig. 3 if R = {A, B} and
A andB are in stateg® = {r% r1,r7,r8 andb® = {r° r2 r7,r%, we cannot determine R is in stater® or r’
(intersection ofa® andb®). However, ifR = {A, B,C} (dmin = 1), then given tha#\, B andC are ina°, b° and
c®, we can determine tha& is in stater® (only state common ta®, b® and c®).

3) Fault Tolerance in DFSMsTo generate the backups (or fusions) for a set of machine$rsteonstruct
their reachable cross producGiven any two machines = (Xa, Za, aa, xg) and B = (Xg, Zg, aB, xg), their
reachable cross product, denoted R@PB}) is the machine which consists of all the states in the prbduc
set of Xp and Xg reachable from the initial state(OA, x%}, with the transition functionarcp({a, b}, o) =
{aa(a, o), ag(b, o)} for all reachable statega, b} € Xa x Xg ando € T U Xg. Given a set ofn primaries
P, their reachable cross product is denoted R&R:f,Z, arcp, %), whereX is the union of the event sets
of all primary machines. The machiin Fig. 3, is in fact the RCP of = {A, B,C} shown in Fig. 1. For
convenience, we label the states of the REP, .17, where each' € Xgcpis a tuple consisting of the primary
states (mapping shown in Fig. 3). The closed partition set ®REP always includes the primary machines
and its states correspond to the RCP states that containsFig. 3, a° = {a%b°c?, a’b'c?, a’blct, a®hlct).

Given the state of the RCP, the state of the primaries can leendieied. The basic goal of fault tolerance
is to generate a set of machings each less than the RCP, so that despitzash faults, there are Sicient

a()bﬂcﬂ a(]blc(] alb()cl alblcl alblCl] alb()C[] a[]blCl al]b()Cl

T'“ 7.1 T'Z 7.3 7.4 ,,,5 T"i 7.7

Mapping from states of R to states of A\B and C

0,1 <2

\ ¢
.

\
A \\\‘ \/;/J

Fig. 3. Set of Machines less thah(all machines not shown due to space constraint)

machines inP U ¥, i.e., among the primaries and backups, whadgg > 0. In other words, a set of machines
in P U ¥ can correctf crash faultsft d,in(P U F) > f. In Fig. 3, forP = {A, B,C} and¥ = {Fy, F5}, it can

be seen thatlhn(P U F) > 2. Consider the state of the machines after the applicatidgheoevent sequence
0, 1, 1 on the machines i® U #. Assume thaB andC crash and we need to recover their state. Given the
state ofA, Fy andF, asa® = {r%,r3,r%,r3}, 2 = {r%r%r% 1% and] = {r’,r?}, we can determine the state
of the RCP as? (only state common ta, f? and f.}). Sincer? = a'h’c!, we can recover the states Bfand

C asb® andc? respectively.

When|7| = f, we call it the f-fusion of # and call the machines i#, fused-backups or jugtisions An
f-fusion isminimal if there exists no othef-fusion G in which every machine is less than or equal to some
machine inF and at least one machine is strictly less than some machiffe im section VI, we describe
how an f-fusion can also detedt Byzantine faults or corredtf /2] Byzantine faults.

Coding theory is often used in data fault tolerance for ratycedundancy [18], [4]. In our previous work,
we present coding-theoretic solutions to fault toleranceéata structures [2] and infinite state machines [7].
However, a direct coding-theoretic approach to DFSMs, in Wwhie maintain the parity of the states of
each machine would be too expensive in terms of communitati@ computation, since after every event
transition, the machine needs to sends its state and thiy paeds to be recalculated. Instead, we use our
Hamming distance metric to construct backups that indeprthdact on events.

IV. EvenT-Basep DecomposiTION OF M ACHINES

In this section, we explore the problem of replacing a giveatihineM with two or more machines, each
containing fewer events thavl. We present an algorithm to generate such event-reducehimescwith time
complexity polynomial in the size oM. This is important for applications with limits on the numbar
events each individual process running a DFSM can servicee Matt, the contributions in this section are
independent of fault tolerance. We first define the notion ohebased decomposition.

Definition 1: A (k,e)-event decompositiasf a machineM(Xy, am, Zum, M°) is a set ofk machiness, each
less thanM, such thaity,in(€) > 0 andVP(Xp, ap, Zp, P°) € &, |Zp| < [Zm| —

As dnin(&) > 0, given the state of the machines &) the state ofM can be determined (section IlI-2).
So, the machines &, each containing at mo$Ey| — e events, can féectively replaceM. In Fig. 4, we
present theventDecompose algorithm that takes as input, machihg parametee, and returns ak(e)-event
decomposition oM (if it exists) for somek < [Xu/?.

In each iteration, Loop 1 generates machines that contaieaat bne event less than the machines of the
previous iteration. So, starting withl in the first iteration, at the end & iterations, M contains the set of
largest machines (according to the ordedefined in IlI-1) less tharM, each containing at mo$ty| — e
events. Loop 2, iterates through each mactirgenerated in the previous iteration, and usesrtiticeEvent
algorithm to generate the set of largest machines less Bhaontaining at least one event less tl&n To
generate a machine less thAnthat does not contain an evantin its event set, theeduceEvent algorithm
combines the states such that they loop onto themselves. ofhe algorithm then constructs the largest
machine that contains these states in the combined form.ritaghine, in &ect, ignoress. This procedure
is repeated for all events iBp and the incomparable machines among them are returned. Loops3ructs
an event-decompositiofi of M, by iteratively adding at least one machine frovf to separate each pair of
states inM, thereby ensuring thaty,i,(E) > 0 *.

eventDecompose
Input: MachineM (Xu, am, Zu, M), €
Output: (k,e)-event decomposition dfl for
somek < [Xul?;

M= {M};
for (j=1toe) //Loop 1
G <1
3 for (P e M) //Loop 2
x M G = G U reduceEvent(P);
M=g;
&1}

for (m, m; € Xu) //Loop 3

\ E < Any machine in M separating rfy, m;);

0,12 if (E=={}) return {};

return &;

M, (No event 3)
M, (No event 0) \ reduceEvent

Input: MachineP (Xp, ap,Zp, p°);
Output: Largest Machines P with < |Zp| -1

M; (No events 0,1) events;
. B={}

T for (o€ Zp)
N ML (self-loops on all events) Set of statesXg = Xp;
& for (se Xg) //combine states to self-loop an
S=sUap(s o),
B = BU {Largest machine consistent wiXg};
return Incomparable machines if;

Fig. 4. Event-based Decomposition

Let the 4-event machin®l shown in Fig. 4 be the input to theventDecompose algorithm withe = 1. In the
first and only iteration of Loop 1P = M and thereduceEvent algorithm generates the set of largest 3-event
machines less thall, by successively eliminating each event. To eliminate £0esincem® transitions tom®
on event 0, these two states are combined. This is repeatal fetates and the largest machine containing
all the combined states self looping on event GMsg. Similarly, the largest machines not acting on events

1Since each machine added &ocan separate more than one pair of states,facient way to implement Loop 3 is to check for
the pairs that still need to be separated in each iteration and add machinesgélrimremains.

6

3,1 and 2 areM,, M3 and M, respectively. ThereduceEvent algorithm returnsM; and M, as the only
incomparable machines in this set. TémentDecompose algorithm returnsS = {M;, My}, since each pair of
states inM are separated biyl; or M,. Hence, the 4-ever¥l can be replaced by the 3-evell; and M,
i.e., &= {Mz, My} is a (2,1)-event decomposition &. We show in appendix A that theventDecompose
algorithm has time complexit®(|Xu|*|Zm|€) and also present the proof for the following theorem.

Theorem 1:Given machineM (Xu, am,Zwm, M%), the eventDecompose algorithm generates &,€)-event
decomposition oM (if it exists) for somek < [Xu/?.

V. Srare-Event OpriMizep Fusions

genFusion
Input: PrimariesP, faults f, event deptlp;
Output: f-fusion of P;
F —{h
for i=1tof) //Loop 1
M — {RCRP)};
for (j =1 topB) //Loop 2
G —{}
for (M € M)
G = G U reduceEvent(M);

M « Any machine inM;
while (M # RCR%),) //Loop 3

C « reduceState(M);

M= Machine inC that increment®yn;
F —{MUF;

M = Machines inG that incrementdyn;

reduceState
Input: MachineP (Xp, ap, Zp, p°);
Output: Largest Machines witk |Xp| — 1 states;
B={}
for (s, sj € Xp)
//combine states; ands;
Set of statesXg = Xp with (s, s;) combined;
B = B U {Largest machine consistent wiXg};
return Incomparable machines i8;

incFusion
Input: PrimariesP, faults f, event depttg;
Output: f-fusion of P;
F —1{h
for each (P € P)
F « genFusion({P;} U RCR¥), f,B);

return F; return F;

Fig. 5. Optimized Fusion Algorithm

Given a set oh primaries?, we present an algorithm in [17] to generate a minirfiduision of #. In this
paper, we present an algorithm to generate fusions thatpimized for both states and events. We show that
if each fusion in our solution contains more thar g events, then nd-fusion of £ contains a machine with
less than or equal t& — B events, whergs is a user defined parameter. Further, we present an incremental
approach to this problem that improves the time complexjtyakfactor ofp", wherep is the average state
reduction achieved by fusion, i.e|RCRH/Average size of a fusion).

The genFusion algorithm that generates the fusion machines is shown ing-igtarting with the RCP of
the primariesRCH%), the algorithm generates one machine for each iteratidnoop 1 that increasegnin
by 1 and at the end of iterations we havd machines inF such thadmi,(PU¥) > f. Loops 2 and 3 reduce
the events and states of the fusion machines.

Loop 2, Event ReductiorBtarting with the RCP, which always increastyg, by one, Loop 2 uses the
reduceEvent algorithm in Fig. 4 to iteratively generate reduced eventhiraes that increasén, by one. In
each iteration of Loop 2, we generate the set of machines tmain one event less than the machines in the
previous iteration and increask,, by one. At the end opB iterations, we generate machiiv that increases
dmin by one and contains at most— 3 events, if such a machine exists. At any stage, if no valid himac
was found, we exit the loop and select a machine from the ueviteration.

Loop 3, State Reduction [17In Loop 3, we try to find a minimal machine less than the evedtcedM
that increasesy, by one. Starting withiM, the reduceState algorithm in Fig. 5 generates the set of largest
machines less thaM in which at least two states dfl are combined. We choose a machine in that set that
increasesdnin and reduce it until no further state reduction is possibletffe bottom machinlRCR%P),).

7

In Fig. 3, letP = {A,B,C}, f = 1,8 = 2. Since,dmin() = 1, we need to add a machine that increases
dmin to two. The set of machines containing one event less than @fe &eM; and M, among which only
M, increasednn. Reducing the event-set dfl,, at the end of3 = 2 iterations,M = F;. Since there is no
machine less thaf; that increaseslyin, No state reduction is possible and denFusion algorithm returns
F1. Note that, fos = 0 (no event-reduction), thgenFusion algorithm is identical to the one in [17]. However,
without event-reduction, the state reduction algorithm cambiner® andr?® into a single block and generate
F, as the largest machine containing this block. Since this isrénmal machine, thegenFusion algorithm
can return this 3-event machine. The event-reduction in thieent version forces the algorithm to pick the
1-event machiné . In appendix B, we show that the time complexity ggfinFusion is O(N?|Z/f f + N3|Z|f),
whereN = |RCR and present a proof for the following theorem.

Theorem 2:Given a set ofn machinespP, the genFusion algorithm generates a minimdkfusion (state
minimality) of £ such that if each machine ¥ contains more thaf¥| — 8 events, then nd-fusion of
contains a machine with less than or equal3io- 8 events (event minimality).

Given n primaries each of sizs, the genFusion algorithm generates their RCP, that has si{g"), and
hence the algorithm can have very high execution times. In Bjigve present an incremental approach to
generate the fusions, referred to as ilaeFusion algorithm in which we may never have to reduce the RCP
of all the primaries. In each iteration, we generate theofusiorresponding to a new primary and the RCP
of the (possibly small) fusions generated for the set of arigs in the previous iteration. In appendix C, we
illustrate this approach with an example, present the ppbabrrectness and show that it has time complexity
o" times better than that of thgenFusion algorithm, whereo is the average state reduction achieved by
fusion.

VI. DEetecTioN AND CORRECTION OF FAuULTS

In [17], the time complexity to detect and correct faultsOgvp + nof + N), wheren is the number of
primaries,f is the number of crash faults,is the size of each machinb, is the size of the RCP andlis the
average state reduction achieved by fusion. In this secti@nprovide algorithms to detect Byzantine faults
with time complexityO(nf), on average, and correct créBhizantine faults with time complexit(nof),
with high probability. Throughout this section, we refer t@F38, with primaries® = {A, B,C} and backups
F = {F1, F5}, that can correct two crash faults. The execution state optimearies is represented collectively
as an-tuple (rimary tuple while the state of each backup is represented as the setirofr tuples it
corresponds tot@ple-se}. In Fig. 3, if A, B, C and F; are in their initial states, then the primary tuple is
a’h’c? and the state oF; is f? = {a’h°c?, a'b’ct, a'b'c?, ab’ct} (which corresponds ter?, r2,r4,).

A. Detection of Byzantine Faults

Given the primary tuple and the tuple-sets correspondingedoackup states, thietectByz algorithm in
Fig. 6 detects up td Byzantine faults (liars). Assuming that the tuple-set afledackup state is stored in
a permanent hash table at the recovery agentdéhectByz algorithm simply checks if the primary tuple
r is present in each backup tuple-$etin Fig. 3, if the states of machines B, C, F; andF, are al, bt,
c?, f} and f} respectively, then the algorithm flags a Byzantine faultceia'b’c® is not present in either
fl = {a%b'c?, atblch, ath’c? a’b’c} or f} = {alb'c®, alb?%ct}. In the following theorem we show that if there
are liars in the system, then the primary tuple will not bespre in at least one of the backup tuple-sets.

Theorem 3:Given a set oh machinesP and anf-fusion# corresponding to it, thdetectByz algorithm
detects up tof Byzantine faults among them.

In appendix D we present the proof for this theorem and alsmvsthat the space complexity for the
detectByz algorithm isO(N fnlogs) while its time complexity iSO(nf) (on average). Even for replication,
the recovery agent needs to compare the state mimaries with the state of each of ifsreplicas, giving
time complexityO(nf).

B. Correction of Faults

Given the primary tuple and the tuple-sets of the backugstab correctf crash faults (ot f /2| Byzantine
faults), we first need to find the tuples among the backup tugtie-that are within Hamming distance 6f

8

detectByz correctByz
Input: set of of fusion state®, primary tupler; Input: set of of fusion state®, primary tupler;
Output: true or false Output: corrected primann-tuple;
for (b € B) D « {} //list of tuple-sets
if =(hash table(b)- contains(r)) for (b € B)
return false; //tuples inb within Hamming distancef /2] of r
return true; S « 1sh tables(b) - search(r, | f/2]);
D - add(S);
correctCrash G « Set of tuples that appear D;
Input: set of of fusion state®, primary tupler, V « \Vote array of sizgG|;
crash faults among the primarieg< f); for (ge G)
Output: corrected primann-tuple; /| get votes from fusions
D « {} //list of tuple-sets V[g] < Number of timesy appears irD;
for (b € B) // get votes from primaries
//tuples inb within Hamming distance of r for (i=1ton)
S « 1sh tables(b) - search(r,c); if(r[i] € 9
D - add(S); V[g] + +;
return Intersection of sets iD; // singleton w.h.p return Tupleg: V[g] = n+ | f/2];

Fig. 6. Detection and Correction of Faults

(Lf/2] for Byzantine faults) from the primary tuple (explained ecgons VI-B1 and VI-B2). In Fig. 3, the
tuples inf? = {a%b%C, a'b®ct, alb'c?, a’b'c} that are within Hamming distance one of a primary tuge®ct
are a%°c®, a'b®ct and alb'cl. An efficient solution to finding the points among a large set withiregain
Hamming distance of a query pointliscality sensitive hashing.SH) [1], [8]. Based on this, we maintain
hash tables{g; ... 9.}, for each fusion state at the recovery agent. The hash fumfiiog;, takes as input an
n-tuple, selectk coordinates uniformly at random from them and returns thecatenated bit representation
of these coordinates. In the example shown in Fig. 7(i), tipeta'b’c! of f2, is hashed into the" bucket
of g; and the 8' bucket ofg,.

g1 (Coordinates 0 and 1) g2 (Coordinates 0 and 2) g1 (Coordinates 0 and 1) 92 (Coordinates 0 and 2)
(a'b'c?) (a't’ct) (a'blch) (a'bleh)
(a'bc!) (a'b'c”)
011
(a%b'ch) (a%'ch)
(a"H0c) (a0 (@) (a'H0c0)
(i) Fusion State f) = {a%"c", a'b’c!, a'b'c", a"b'c!} ii) Fusion State f§ = {a"b’c’, a'b'c'}

Fig. 7. LSH Example for fusion states in Fig. 3 with=2, L =2

Given a pointq and distancef, we obtain the points found in the buckegq) for j =1...L, and return
those that are within distance df from q. For example, in Fig. 7(i), givelq = a’b*c®, f = 2, this point
hashes into thesbucket ofg; and the & bucket ofg, and hence the points returned af'c! anda’b°c®
respectively. If we set = log,_J, wherey = 1 - f/n, such that (- Yt < 6, then anyf-neighbor of a
point q is returned with probability at least-15 [1], [8]. In the following sections, we present algorithnts f
the correction of crash and Byzantine faults based on thesefuSé¢iions.

1) Crash Correction: Given the primary tuple (with possible gaps because of $aalhd the tuple-sets of
the available backup states, tberrectCrash algorithm in Fig. 6 corrects up tb crash faults. The algorithm
finds the tuples in the tuple-sets of each fusion stateat are within a Hamming distan@e(actual number
of faults) of the primary tuple using the LSH tables for each fusion state. If the interseatiothese sets is
singleton, then we return that as the correct primary tuMben the intersection is not singleton, we need to
exhaustively search each fusion state for points withitadisec of r (LSH has not returned all of them), but

this happens with a very low probability [1], [8]. In Fig. 3,sasne crash faults in primaridd andC among
{A, B,C}. Given the states oA, F; andF, asa’, fl0 and f2° respectively, the tuples within Hamming distance
two of r = a°{}{} among f? = {a%b°c?, a'b’c’, atb'c?, a%b’ct} and £ = {a’h%, a'b'c!} are {a’h°c?, a’blct}
and {a°b°c%} respectively. The algorithm returns their intersectia?h°c® as the corrected primary tuple. In
the following theorem, we prove that tl®rrectCrash algorithm returns a unique primary tuple.

Theorem 4:Given a set ofn machines? and an f-fusion ¥ corresponding to it, theorrectCrash
algorithm corrects up td crash faults among them.

In appendix E, we present the proof for this theorem and shatwthie space complexity of th@errectCrash
algorithm is O(N fnlogs) and its time complexity iO(nof) w.h.p. Crash correction in replication simply
involves copying the state of the replicas ofailed primaries which has time complexi@(f).

2) Byzantine CorrectionGiven the primary tuple and the tuple-sets of the backugstdhecorrectByz
algorithm in Fig. 6 corrects up tpf/2] Byzantine faults. The algorithm finds the set of tuples amomy th
tuple-sets of each fusion state that are within Hammingadist| f /2] of the primary tupler using the LSH
tables and stores them in liBt It then constructs a vote vectdrfor each unique tuple in this list. The votes
for each tupleg € V is the number of times it appears Iplus the number of primary states iothat appear
in g. The tuple with greater than or equal o+ | f/2] votes is the correct primary tuple. When there is no
such tuple, we need to exhaustively search each fusion fetamints within distance f/2] of r (LSH has
not returned all of them). In Fig. 3, let the states of machiAe8, C F, andF, area®, bt, c?, f? and f.
respectively, with one liar among therpf (2| = 1). The tuples within Hamming distance onerof a’b'c®
amongf? = {a°h°c’, a’h’c!, a’b’c®, alblc!} and) = {a’h°c?, alb'c!} are {a®hc, albc, a%blct} and{a’h°c’)
respectively. The algorithm returr@@b®c®, with four votes in total (one each from, C, F; andF»), since
n+|f/2] =3+1=4. We show in the following theorem that there are enough imashseparating each pair
of tuples and even with liars the true primary tuple will geffi€ient votes.

Theorem 5:Given a set oh machinesP and af-fusion # corresponding to it, theorrectByz algorithm
corrects up td f/2] Byzantine faults among them.

In appendix F, we present a proof for the following theorem ahdw that the space complexity of the
correctByz algorithm isO(N fnlog s) and its time complexity of i©O(npf) w.h.p. In the case of replication,
we just need to obtain the majority acroksopies of each primary with time complexi@(nf).

VII. EvaLuarion
A. Experimental Results

In [17], we evaluate fusion for simple examples such as aysrand dividers. In this section, we evaluate
fusion using the MCNC'91 benchmarks [23] for DFSMs, widely difer research in the fields of logic
synthesis and finite state machine synthesis [16], [24]. Welé@mented theincFusion algorithm of Fig. 5
in Java 1.6 and compared the performance of fusion with caftin for 100 diferent combinations of the
benchmark machines, with = 3, f = 2, 8 = 3 and present some of the results in Table Ill. The machine
descriptions, implementation and detailed results ardadola in [3].

Let the primaries be denoted;, P, and P; and the fused-backups; and F,. Column 1 of Table Il
specifies the names of three primary DFSMs. Column 2 specifiesatieup space required for replication
(Hiljf’ IPi|"), column 3 specifies the backup space for fusiﬂt& |[Fi]) and column 4 specifies the percentage
state space savings ((column 2-column 3)* /£@umn 2). Column 5 specifies the total number of primary
events, column 6 specifies the average number of events deraamsd F, and the last column specifies the
percentage reduction in events ((column 5-column 6)#¢80mn 5).

The average state space savings in fusion (over replicai@8% (range 0-99%) over the 100 combination
of benchmark machines, while the average event-reducsict? (range 0-45%). We also present results in
[3] that show that the average savings in time by the incréat@pproach for generating the fusions (over the
non-incremental approach) is 8%. Hence, fusion achieggsfgiant savings in space for standard benchmarks,
while the event-reduction indicates that for many caseshttkups will not contain a large number of events.

10

TABLE 1lI
EvaLuarioN or Fusion oN THE MCNC’91 BENCHMARKS

Machines Replication | Fusion % Savings Primary | Fusion | % Reduction
State Space | State Space | State Space | Events Events | Events
dk15, bbara, mc | 25600 19600 23.44 16 10 37.5
lion, bbtas, mc 9216 8464 8.16 8 7 12.5
lion, tav, modulo12 | 36864 9216 75 16 16 0
lion, bbara, mc 25600 25600 0 16 9 43.75
tav, beecount, lion | 12544 10816 13.78 16 16 0
mc, bbtas, shiftreg | 36864 26896 27.04 8 7 12.5
tav, bbara, mc 25600 25600 0 16 16 0
dk15, modulo12, mg 36864 28224 23.44 8 8 0
modulo12, lion, mc| 36864 36864 0 8 7 125

B. Practical Example: MapReduce

To motivate the practical use of fusion, we discuss its apfibn to the MapReduce framework which is
used to model large scale distributed computations. Tilgidhe Map-Reduce framework is built using the
master-worker configuration where the master assigns theantapeduce tasks to various workers. Due to high
cost of resources in replication, handling faults amongrifag workers is primarily based on checkpointing
in which the processes periodically write to permanentagier In the case of faults, the tasks are restarted
from the last available state. This approach increasesdatand may be inadequate for some applications.

Consider a distributed grep application over large files, r@htbe master assigns three map tasks, each
searching for one of the string patterns modeled{A&yB, C} in Fig. 1. When the input files are partitioned
into 200,000 chunks of data (the usual number in [5]), theenurcheckpointing-based approach requires
200,00*3= 600,000 tasks in total, while causing high latency. A regilmn-based solution for correcting just
one fault will involve creating a replica of each of the tagksB and C for each chunk of data, requiring
1200,000 tasks in total. A fusion-based approach needstomly one additional backup task for each chunk
of data, running~; shown in Fig. 1. Though recovery is costlier than replicatitins approach requires only
800,000 tasks with much better latency than checkpointing.

VIIl. ConcLusioN

We challenge the traditional approach of replication teguiresnf backups to correct crash faults among
n machines and present a fusion-based solution that reqoirlgsf backups consuming considerably lesser
state space. We present a problem that is fundamental to DRSAhswe replace a given DFSM with DFSMs
containing fewer events? To formalize this, we introduce tloncept of a (k,e)-event decomposition of a
given machine and presenffieient algorithms to generate such a decomposition. Basdtlisnwe describe
an algorithm to generate fused backups for a given set of imeglthat is optimized for both states and events.

Further, we presentfigcient algorithms to detect and correct faults in a systenm ised backups. The
algorithm for the detection of Byzantine faults has time pterity O(nf) (on average), which is the same as
that for replication. We apply the concept of locality séimei hashing to the correction of faults and the time
complexity for the correction of crash and Byzantine faigt€(npf) w.h.p. For relatively small values of
n andp, fusion causes almost no overhead for recovery. Finally, veduate fusion on standard benchmarks
for DFSMs and the results confirm that fusion achieves signifisantngs in space over replication. The
event-reduction algorithm ensures that for many examphesfused backups contain small event sets. Hence,
in addition to our results on the theoretical optimality bétfused backups, we have illustrated the practical
usefulness of fusion.

REFERENCES

[1] A. Andoni and P. Indyk. Near-optimal hashing algorithifits approximate nearest neighbor in high
dimensions.Commun. ACM51(1):117-122, 2008.

11

[2] B. Balasubramanian and V. K. Garg. A fusion-based apgror handling multiple faults in data
structures. Technical Report ECE-PDS-2009-001, Parallel asttitiuted Systems Laboratory, ECE
Dept. University of Texas at Austin, 2009.

[3] B. Balasubramanian and V. K. Garg. Fsm backup library (enpented in java 1.6). lirarallel and
Distributed Systems Laboratory, hifmaple.ece.utexas.edR011.

[4] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patter. Raid: high-performance, reliable
secondary storageACM Comput. Sury.26(2):145-185, 1994.

[5] J. Dean and S. Ghemawat. Mapreduce: simplified data priocess large clustersCommun. ACM
51:107-113, January 2008.

[6] M. J. Fischer, N. Lynch, and M. Paterson. Impossibilitydigtributed consensus with one faulty process.
Journal of the ACM32(2), Apr. 1985.

[7] V. K. Garg. Implementing fault-tolerant services usirsgate machines: Beyond replication. In
International Symposium on Distributed Computing (DISggges 450-464, 2010.

[8] A. Gionis, P. Indyk, and R. Motwani. Similarity search ingh dimensions via hashing. INLDB
'99: Proceedings of the 25th International Conference onyMearge Data Basespages 518-529, San
Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[9] R. Hamming. Error-detecting and error-correcting codas8ell System Technical Journalolume 29(2),
pages 147-160, 1950.

[10] J. Hartmanis and R. E. StearnsAlgebraic structure theory of sequential machines (Prenltied
international series in applied mathematic®rentice-Hall, Inc., Upper Saddle River, NJ, USA, 1966.

[11] J. E. Hopcroft. An n log n algorithm for minimizing statés a finite automaton. Technical report,
Stanford, CA, USA, 1971.

[12] D. A. Huffman. The synthesis of sequential switching circuits. Temimeport, Massachusetts, USA,
1954,

[13] L. Lamport. The implementation of reliable distributed ltiprocess systemsComputer network2:95—
114, 1978.

[14] L. Lamport, R. Shostak, and M. Pease. The byzantine generaldepn. ACM Transactions on
Programming Languages and Systess82—401, 1982.

[15] D. Lee and M. Yannakakis. Closed partition lattice andchiae decompositionlEEE Trans. Compuit.
51(2):216-228, 2002.

[16] A. Mishchenko, S. Chatterjee, and R. Brayton. Dag-aveagerewriting: A fresh look at combinational
logic synthesis. Inn DAC 06: Proceedings of the 43rd annual conference on Desaigomation pages
532-536. ACM Press, 2006.

[17] V. Ogale, B. Balasubramanian, and V. K. Garg. A fusi@séd approach for tolerating faults in finite
state machinesParallel and Distributed Processing Symposium, Internaaip0:1-11, 2009.

[18] D. A. Patterson, G. Gibson, and R. H. Katz. A case for neldunt arrays of inexpensive disks (raid).
In SIGMOD °’88: Proceedings of the 1988 ACM SIGMOD internatiooahference on Management of
data pages 109-116, New York, NY, USA, 1988. ACM Press.

[19] M. Pease and L. Lamport. Reaching agreement in the preséfemealts. Journal of the ACM27:228-234,
1980.

[20] F. B. Schneider. Byzantine generals in action: impletimgnfail-stop processorsACM Trans. Comput.
Syst, 2(2):145-154, 1984.

[21] F. B. Schneider. Implementing fault-tolerant serviceig the state machine approach: A tutoriCM
Computing Survey2(4):299-319, 1990.

[22] F. Tenzakhti, K. Day, and M. Ould-Khaoua. Replicatidgaithms for the world-wide web.J. Syst.
Archit., 50(10):591-605, 2004.

[23] S. Yang. Logic synthesis and optimization benchmarks gséle version 3.0, 1991.

[24] H. Youra, T. Inoue, T. Masuzawa, and H. Fujiwara. On thetlsgsis of synchronizable finite state
machines with partial scarBystems and Computers in Jap@9(1):53—62, 1998.

12

APPENDIX
A. Time complexity, Proof of Correctness f@rentDecompose

The reduceEvent algorithm visits each state of machimé to create blocks of states which loop to the
same block on event € Xy. This has time complexitYO(|Xwu|). The cost of generating the largest closed
partition corresponding to this block B(|1Xul|[Zml). Since we need to do this for all eventsiy, the time
complexity to reduce at least one evenO@Xu||Zul?). In the eventDecompose algorithm, the first iteration
generates at mogty| machines, the second iteration at m@si|? machines and the" iteration will contain
O(Zm®) machines. The time complexity to reduce at most one evem faoy machine iSO(XulIZml?).
Hence, the time complexity to generate the set of eventeestimachines in\V at the end ofe iterations is
O(Xml - ZmIP(Zml + 1ZmI? + ... +)1ZmI®) which reduces t@®(XwmlIZm|®).

To generate thek(e)-event decomposition from the set of machinespify we find a machine inM to
separate each pair of statesXg. Since there ar®(|Xy[?) such pairs, the number of iterations of Loop 3 is
O(IXm[?). In each iteration of Loop 3, we find a machine among @{w|®) machines ofM that separates a
pairm, m; € Xu. To check if a machine separates a pair of states just @f&s |) time. Hence the complexity
of Loop 3 isO(IXu[3ZI®), which is the overall time complexity of theventDecompose algorithm.

Theorem 1:Given machineM (X, am,Zm, M°), the eventDecompose algorithm generates &,€)-event
decomposition oM (if it exists) for somek < |Xu/?.

Proof: The reduceEvent algorithm exhaustively generates all incomparable mashthat ignore at least
one event inXy. After e such reduction in events, Loop 3 selects one machine (if gt&€xiamongM to
separate each pair of statesXg. This ensures that at the end of Loop 3, eittgin(E) > 0 or the algorithm
has returned} (no (k,e)-event decomposition exists). Since there are at Mgt pairs of states irXy, there
are at mostXy|? iterations of Loop 3, in which we pick one machine per itematiblence k < [Xu/?. [|

B. Time complexity Analysis, Correctness Proof jenFusion

We first analyze the time complexity of Loop 2. For each evers, teduceEvent algorithm iterates
through all the states in the RCP and forms the largest clpsetition corresponding to the set of blocks
generated. This has time complex@®N|X|), whereN = |RCR. Since this is done for all events k) the time
complexity of thegenFusion algorithm isO(N|Z[?) and the number of machines that it generate®(|5|). In
each iteration of Loop 2, we check to see if there is a machiatititreasesl,, by one which cost©(N?)
time per machine. The number of machines generated in eaealiote increases exponentially fsince we
may reduce the event set for each of the machines generatkd previous iteration. So, the cost of Loop 2
is O((N? + NIZ[2)(1 + [Z| + [Z2 + ... |Z/%), which reduces t@®(N2Z}). Loop 3 has time complexitP(N3|Z|)
[17]. The complexity of the loops dominate the complexity loé talgorithm. Since there areiterations of
these loops, the time complexity of thyeenFusion algorithm isO(N?f|Zff + N3f|Z)).

To prove theorem 2, we refer to relevant concepts introdircgti7]. To generate fusions, we add a machine
in each iteration which increases the minimum Hamming disteby one. Each machine added, increases the
weight of some pair of states,r! by one. If a machineM has the states' andr/ in distinct blocks, we
say thatM coversthe edge(,rl). It can be seen from thgenFusion algorithm that every machine added,
covers a set of edges, called the edge set of that machine.dfjeeset ofF; is denoted byE;. The weight of
an edge 1, rl) is dmin(r', r') and the weakest edge is the edge corresponding to the leasinihg distance
(dmin). We first state a lemma presented in [17].

Lemma 1:Given a set oin machinesP, and the seff returned by thegenFusion algorithm, letF; € ¥
be the machine returned in th iteration. ThenYF;, FieF:i<]j=ECE,.

Proof: If ¥ C ¥ is the current fusion set during the execution of gemFusion algorithm, then the
edge set for the next iteration consists of the minimal edgebe machines iP U . Every time a machine
is added toF”’, the weights of the edges can increase by at most one and igatve¢ every minimal edge
is incremented by exactly one. Hence, after every iterati@nedge set for the next iteration cannot decrease
in size. This impliesyFi,F; € ¥ :i < j = E CE;j. [

This implies the following two observations.

13

Observation 1:If an edgee occurs in the edge set of any machinefinand there ard& machines inf
that covere, then in any validf-fusion there are at leagktmachines that cover edge

Observation 2:The edge set of the fusiofR; added in the first iteration of thgenFusion algorithm has
to be a subset of the edge set of all machines part of any Vafigion.

We prove theorem 2 based on these observations.

Theorem 2:Given a set ofn machinesP, the genFusion algorithm generates a minimdHusion of £
such that if each machine 1A contains more thatk| — 8 events, then nd-fusion of # contains a machine
with less than or equal t{x| — g events.

Proof:

. |F| = f: Given a set of primaries, we can generate the RCP corresgptal them. Hencegyin(P) = 1
For each iteration of the outer loop, we add one maching that increasednn(P U F) exactly by one.
At the end off iterations we add exactly fusions such thath,n(P U F) = f + 1.

« ¥ is minimal [17]: Let there be arf-fusion G = {Gs,..Gt}, such thatG is less thanf-fusion ¥ =
{F2,F1,....F¢}. HenceV| : G; < Fj. LetG; < F; and letE; be the set of edges that needed to be covered
by F;. It follows from the genFusion algorithm, thatG; does not cover at least one edge say E;
(otherwise thegenFusion algorithm would have returne@; instead ofF;). From observation 1, ié is
covered byk DFSMs inF, thene has to be covered by machines ing. We know that there is a pair
of machinesF;, G; such thatF; coverse andG; does not covee. For all other pairsj,G; if G covers
e thenF; coverse (sinceG; < F;). Hencee can be covered by no more th&n- 1 in G. This implies
that G is not a valid fusion.

. If each machine inF contains more thaifk| — 8 events, then nd-fusion can contain a machine with
less than or equal tfx| — 8 events: Let there be aftfusion G that contains a machin® with < || -8
events. From observation & covers all edges in the edge $&t, that are covered b¥, € ¥ (the first
machine chosen by thgenFusion algorithm). Since thegenFusion algorithm could find no machine
covering the edges ik; at a depth of event reductidB| — 8, there cannot exist machines with events
less than or equal tfx| — 8 events that coveE;. Hence,G cannot exist.

C. Time Complexity Analysis, Correctness Proof facFusion

0,2

N
S i A
P’Lrlty of 0s,2s) PLEN ol ®/T’A
Vi/@
' o a
1.2 . vﬁ/@

P’Lrlty of 1s,2s) C' (Parity of 0s)

Fig. 8. Incremental Approach: First gener&eand thenF

In Fig. 8, rather than generate a fusion by reducing the & ®&P of{A, B, C}, we can reduce the 4-state
RCP of{A, B} to generate fusior’ and then reduce the 4-state RCP{GfF’} to generate fusiofr. Let the
number of states in each primary beThe genfusion algorithm has time complexit@(N3-|Z|- f) (assuming
B =1 for simplicity), whereN is the size of the cross product of the primaries. Ferl, genfusion takes
two machinesP; and P, as parameters each of sigeThe size of their RCP i§(s%) and the time complexity
for the first iteration isO(s? - || - f). Since we assume an average reductiop,ahe size of each fusion is
O(s/p). The size of the RCP of these fusions is bound by the size oR@BE of the input machines which
is O(s?) while it has a lower bound af(s?/p?). On average, it will bed(s?/p). The input state space for the
next iteration iSO(s®/p) and hence the time complexity &((s3/p)3-|Z|- f). The input state space for the next

14

iteration isO(s*/p?). Continuing this analysis, the time complexity of th& iteration isO((s"/p")3 - |Z| -).
The sum of these terms across all the iterations is a geonmet@gession dominated by the last term. Hence,
the time complexity theincFusion algorithm isO(N3/p" - [Z| - f).

Theorem 3:Given a set olhh machinesP, the incFusion algorithm generates &-fusion of £.

Proof: We prove it using induction on the iterations of the algarith

Base case: Foi & 1), let the f-fusion generated for the primari¢By, P»} be denoted*. For (= 2), let the
f-fusion generated fofP;, RCR¥ 1)} be denotedr2. We show thatF? is a f-fusion of {P1, P», P3}. There
can only be three cases:

. f machines amongP, P,} crash: Since by constructiofPs URCR¥%) U¥?} can correctf crash faults,
using the state ofPs U 72}, we can generate the stateRERF). Subsequently, using the state of the
remaining machines amor{®, P,} and the states of all the machines# we can generate the state
of the crashed machines amof#, P»}.

. f machines amon¢P3; U #2} crash: Since by constructiofP;, P, U ¥} can correctf crash faults, using
the state of machines ifP1, P>} we can generate the state of thenachines irnF*. Subsequently, using
the state of the remaining machines amdRg U 72} and the state of all the machines 4t we can
generate the crashed machiris U 72}.

« t machines amongP,, P,} crash { > 0) and f —t machine amongPs U 7?2} crash -t < f): Among
the f + 1 machines inNPs U 72} less thanf have crashed. So using the state of the remaining machines,
we can generate the state of the machinegtrand the state of the crashed machines an{®ag 72}.
Subsequently, using the state of the remaining machines@f®anP,} and the states of all the machines
in 71 we can generate the state of the crashed machines afResp}.

Induction Hypothesis: If the fusion sét' generated in iterationis a f-fusion of {P; ... P4} and if 7'+
is a f-fusion of {P;,», RCR¥™")}. To prove:#'*1 is a f-fusion of {P; ... Pi,»}. The proof is similar to that for
the base case. If machines crash amori@ ... Pi.1}, then we can generate the state of the machines' in
using the state of the machines amdiRy,, U #'*1} and then generate the state of therashed machines
among{P;...Pi.1} and F'. If f machines crash amon@;., U #'*1} then similarly you first generate the
state of the machines ifi* from the state of the remaining machines and then recovesttie of the failed
machines. The same argument works when the failures aredsporass the machines ;... Pj,1} and
{Pi.2 U F*1}. Hence the hypothesis is true. [|

D. Byzantine Detection Complexity Analysis

Theorem 4:Given a set oh machinesP and anf-fusion ¥ corresponding to it, thdetectByz algorithm
detects up tof Byzantine faults among them.

Proof: When machines lie about their state, we assume that theyitenwheir state set. For example,
in Fig. 3, suppose the true state Bf is f9. To lie, if F, says it state is any number apart froih, fZ and
f23, then that can be detected easily without a detection dlgoriWwe show that when there are liars in the
system, the primary tuple will not be present in the tuple-sets of at least one of théhss

If r is the correct tuple (without liars), then the liars among thsions will not contairr in their sets
because only one fusion state in each fusion machine cengaich primary tuple (fusion states are a partition
of the RCP state space). In Fig. 3,rit atb®c! (no liars) andF, is lying about its state afszo (truthful state
is 1), thenr is not present inf) = {a®b°c, alb'c?} since it is present irfy = {a%b'cP, atbct}.

If r is the incorrect tuple (with liars), then for the fault to godetectedy must be present in the tuple-
sets of all fusion states. The truthful backup tuple-set$ aldo contain the correct primary tuptgorrect.
Note that, like the fusion states, each primary state canxpeessed as a tuple-set that contain the RCP
tuples it belongs to. So, the truthful machines among the guigm will also containr, reorrectt i the same
tuple-set. For example, in Fig. 3, if= a’b%® andrcorrect = a°0°ct, thena® = {a%°c®, abc?, alblct, a’hlct)
contains{r, reorrectt in the same tuple-set. Hence, all the truthful machinesh(pdmaries and backups) contain
{r, reorrectt in the same tuple-set. Since the number of truthful machisegaater tham, at mostf machines
separatdr, reorrect). This contradicts the fact that is a f-fusion of P with dyin(P U F) > f. [|

15

Each tuple in a tuple-set of a fusion state containstates each of size I&y wheres is the maximum
number of states in any primary. For each fusion, we needte €i(N) such points in the hash table. Hence,
the space complexity for storage at the recovery age®{(Mfnlogs). Since each fusion state is maintained
as a hash table at the recovery agent, it can search for timangyrituple inO(n) time, on average. Hence, the
time complexity for thedetectByz algorithm isO(nf) on average.

E. Crash Correction Complexity Analysis

Theorem 5:Given a set ofn machines® and an f-fusion # corresponding to it, thecorrectCrash

algorithm corrects up td crash faults among them.

Proof: The tuples among the backup tuple-sets within a Hamming raist& of the primary tupler,
are essentially the tuples containing the incomptet&ince all available fusion-states contain the complete
primary tuple, denoted.orrect, We just need to prove that the intersection of the tuplesrantie fusion-states
containingr is singleton. If not, then there exists at least one othdetuypong in all the fusion states containing
r. Similar to the proof in theorem 4, since batkong and reorect CONtainr, these tuples will be present in
the same tuple-sets of the primaries as well. So, the minimumiber of machines containin@correct M'wrong}
in the same tuple-set are(primaries)+ available backups, which is greater than or equah.télence, the
number of machines separating them is at migstontradictingdmin(P U) > f. []

We maintainL hash tables per fusion state, each stogin¢average number of points in each fusion)
dimensional points, each containing lebits. Since the sum of all such pointsNs the total space complexity
of storage at the recovery agent@§N fnlogs).

Since the number of points per fusion state that are withitadgef of the primary tuple is O(p) (average
size of the list), the cost of hashimgand retrievingO(p) n-dimensional points fronO(f) fusion states is
O(nef) w.h.p (assuming, L for the LSH tables are constants). So, the cost of gener&irggO(np f) w.h.p.

In order to find the intersection in linear time, we can hasheleenents of the smallest set and check if the
elements of the other sets are part of this set. The elemeauntsl facross all sets is the intersection of the sets.
The time complexity to find the intersection among @ f) points in D, each of sizen is simply O(hof).
Hence, the overall time complexity of th@rrectCrash algorithm isO(npf) w.h.p.

F. Byzantine Correction Complexity Analysis

Theorem 6:Given a set oh machines? and af-fusion # corresponding to it, theorrectByz algorithm
corrects up td f/2] Byzantine faults among them.

Proof: We prove that the true primary tuple,rect Will uniquely get> n+ | f/2] votes. Since there are
at most| f/2] liars, reorrect Will be present in the tuple-sets of at least | f/2] truthful machines. Hence the
number of votes tO¢orrect, V[rcorrecd = N+1f/2]. An incorrect primary tuple,ong can get votes from at most
Lf/2] liars and the truthful machines that contain boghrect and rurong in their tuple-sets. Sincémin > f,
amongn+ f machines, less thamof them containrcorrect, F'wrong! iN the same tuple-set. The number of votes
tO rwrong V[rwrongl < N (truthful)+[/2] (liars) < n+ [f/2] < V[rcorrecd- [|

The space complexity analysis is similar to crash correcfidre time complexity to generat@, same as
that for crash faults, i©O(nof) w.h.p. If we maintainG as a hash table (standard hash functions), to obtain
votes from the fusions, we just need to iterate through ftteets inD, each containing points of sizen
each and check for their presence@nn constant time. Hence the time complexity to obtain votesnfthe
backups isO(nof). Since the size 06 is O(pf), the time complexity to obtain votes from the primaries is
againO(npf), giving over all time complexityO(nof) w.h.p.

16

