
Lucal Management of a Global Resource in a

Communication Network

YEHUDA AFEK

Tel-Atic Uniterrity, Tel-AIjiu, Israel

BARUCH AWERBUCH

Massachusetts Institute of Technology, Cambridge, Massachusetts

SERGE PLOTKIN

Stanford Unit’ersity, Stanford, California

AND

MICHAEL SAKS

Rutgem Unitemiry, New Brunswick New Jermzy

Preliminary versions of the results in this paper appeared in AFEK, Y., AWERBUCH,B,, PLOTKIN,
S., ANDSAKS,M. 1987. Local management of a global resource in a communication network. In
Proceedings of the 28th IEEE Annual Symposium on Foundations of Computer Science. IEEE, New
York, pp. 347-357; AFEK, Y., ANDSAKS,M. 1987. Detecting global termination conditions in the
face of uncertainty. In Proceedings of the 6th Annual ACM Symposium on Principles of Distributed
Computing (Vancouver, B.C., Canada, Aug. 10- 12). ACM, New York, pp. 109- 124; and AWER-
BUCH,B., AND PLOTKIN,S. 1987. Approximating the size of a dynamically growing distributed
network. Tech. Rep. MIT/ LCS/TM-328. MIT, Cambridge, Mass.
Part of the work of Y. Afek was done while he was with AT&T Bell Labs, 600 Mountain Ave.,
Murray Hill, NJ 07974.
The research of B. Awerbuch was supported by Air Force contract TNDGAFOSR-86-O078, ARO
contract DAAL03-86-K-0171, and National science Foundation (NSF) contract CCR 86-1144.
The research of S. Plotkin was supported by NSF grant CCR 93-04971, ARO grant DAAH04-95-
1-0121, and by Terman Fellowship. Part of this author’s work was done while he was at MIT,
Laboratory for Computer Science, and while be was with AT&T Bell Labs, Murray Hill, NJ.
The work of M. Saks was supported in part by NSF under grants DMS 87-03541, CCR 89-11388,
CCR 92-15293, and Air Force Office of Scientific Research (AFOSR) grant AFOSR-0271.
Authors’ present addresses: Y. Afek, Department of Computer Science, Tel-Aviv University,
Tel-Aviv, Israel 69978; B. Awerbuch, Department of Mathematics and Laboratory for Computer
Science, MIT, Cambridge, MA 02139; S. Plotkin, Department of Computer Science, Stanford
University, Stanford, CA 94305; M. Saks, Department of Mathematics, Rutgers University, New
Brunswick, NJ 08903.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is
given that copying is by permission of the Association for Computing Machinery (ACM), Inc. To
copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.
@ 1996 ACM 0004-5411/96/0100-0001 $03.50

Journalof theACM, Vol. 43, No. 1,Janumy1996,pp. I-19.

2 Y. AFEK ET AL.

Abstract. This paper introduces a new distributed data object called Resoume Controller that
provides an abstraction for managing the consumption of a global resource in a distributed
system. Examples of resources that may be managed by such an object include; number of
messages sent, number of nodes participating in the protocol, and total CPU time consumed.

The Resource Controller object is accessed through a procedure that can be invoked at any
node in the network. Before consuming a unit of resource at some node, the controlled algorithm
should invoke the procedure at this node, requesting a permit to consume a unit of the resource.
The procedure returns either a permit or a rejection.

The key characteristics of the Resource Controller object are the constraints that it imposes on
the global resource consumption. An (M, W)-Controller guarantees that the total number of
permits granted is at most M; it also ensures that, if a request is rejected, then at least M – W
permits are eventually granted, even if no more requests are made after the rejected one.

In this paper, we describe several message and space-eff]cient implementations of the Resource
Controller object. In particular, we present an (M, W)-Controller whose message complerdty is
O(n logzn log(M/(W + 1)) where n is the total number of nodes. This is in contrast to the
O(nM) message complexity of a fully centralized controller which maintains a global counter of
the number of granted permits at some distinguished node and relays all the requests to that
node.

Categories and Subject Descriptors: C.2.3 [Computer-Communication Networks]: Network Opera-
tions C.2.4 [Computer-Communication Networks} Distributed Systems F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algorithms and Problems; G.2.2 [Discrete
Mathematics]: Graph Theory

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Diffusing computations, distributed computation, distributed
network management, resource management

1. Introduction

Consider a distributed protocol that has an acceptable message complexity
under some reasonable assumptions (e.g., a constant-time transmission delay
assumption), but has a large or unbounded message complexity if these
assumptions are not met. In this case, it may be desirable to add some
mechanism that terminates the protocol if it sends too many messages. A
similar mechanism is necessary to prevent a protocol from spreading over too
many nodes in the network. Since sending a message or spreading to another
node can be viewed as consuming a unit of resource, the above examples
indicate a need for a mechanism to manage consumption of a global resource
in a distributed network.

In this paper, we present an efficient ecmstruction of a Resource Controller
distributed object that can be used to dispense “permits” to the processes
participating in a distributed protocol, where each such permit allows the
consumption of one unit of the resource. Examples of resources that can be
managed using Resource Controller object include number of messages sent in
a particular protocol, the total number of participating nodes, the total number
of disk blocks in use, etc.

The interface between the controlled protocol and the Resource Controller
is through the RESOURCE-REQUEST procedure, a copy of which resides at each
node. Before consuming a unit of resource at a node, the controlled protocol
should call the mOURCE-REQmT procedure at this node and wait until the
procedure returns a permit. If, instead, it returns r-eject, the controlled protocol
should interpret this as “request denied”, that is, the resource is exhausted.

Clearly, in order to be useful, the Resource Controller implementation
should not issue more permits than some given amount M. Furthermore, it

Local Management of Global Resource 3

should issue at least some minimum number of permits before it denies a
request for the first time. In fact, since a nonnegligible amount of time might
pass between requesting a permit and getting it, it is sufficient to require that
any execution sequence that includes rejections will include at least M – W
issued permits, even if these permits are physically issued only after the first
rejection. In other words, it is sufficient to require that a request for a permit is
rejected only if there are at least M – W requests that are going to be
el’entuahy satisfied, even if no more requests are made after the rejected one.
The W parameter is essentially the maximum number of “wasted” permits.

The main difficulty in implementing a Resource Controller is the fact that
resources are expended independently and asynchronously at different nodes
of the network. The simplest solution is to keep a counter at one distinguished
node, incrementing this counter for each permit issued. Observe that maintain-
ing such a counter in a large-diameter network can be prohibitively expensive.
In particular, it is easy to envision scenarios where such a Resource Controller
implementation sends O(n) messages for each issued permit, where n is the
number of nodes in the network.

The main contribution of this paper is the construction of a Resource
Controller whose message complexity is O(n log2n log(M/(W + l)). In the
case where W = M/2 (i.e., at most M permits are granted but no less than
M/2 in case there are rejections), we present a simpler controller whose
message complexity is O(n log2n). This should be compared to the fl(nM)
worst case message complexity of the implementation based on a centralized
counter.

Lynch et al. [1986] have studied a related resource management problem. In
their model, a f~ed amount of resource is initially scattered in some arbitrary
way over the nodes of the network. The problem is then to design an efficient
algorithm by which the requesting nodes can find available resources. Under
certain probabilistic assumptions, they show that the expected number of
messages used to find a unit of resource is constant, independent of the
network size. Under similar probabilistic assumptions on the request pattern, it
is possible to use their techniques to construct a resource controller with nearly
optimal message complexity. Without those probabilistic assumptions, that is,
for arbitrary request sequences, this controller might send Q(nM) messages,
like the controller based on a centralized counter.

Bar-Yehuda and Kutten [1988] considered a related problem, namely, elect-
ing a leader in a network that recovers from a complete crash. In this problem,
it is necessary to detect when at least n/2 nodes are in one ecmnected
component, that is, count the number of nodes. Their techniques can be used
to construct a controller with 0(n2) message complexity.

Our implementation of the Resource Controller object can be extended to
solve the following two related problems:

—@namic Name Assignment. Informally, the problem is to dynamically assign
short unique names (ID’s) to the nodes participating in some protocol. By
“short,” we mean that the number of bits used to represent a name is at
most the logarithm of the number of participating nodes plus a constant
additive term. We assume that nodes join the protocol dynamically, and
hence there is no way to preassign the names.

—-Distributed Bank. The problem is to monitor a pool of money, where nodes
may withdraw money from the pool and deposit new money into the pool.

4 Y. AFEK ET AL.

Section 2 presents the basic definitions and the model. The Resource
Controller object is defined in Section 3. Section 4 presents an algorithm to
implement a special case, the BASIC CONTROLLER, and Section 5 shows how to
use this controller as a building block to implement a full-fledged Resource
Controller. Section 6 presents several extensions.

2. Model

We consider the standard point-to-point message passing asynchronous com-
munication network model (see e.g., Gallager et al. [1973] and Awerbuch
[1975]). The network topology is described by an undirected communication
graph, where the set of nodes represents processors of the network and the set
of edges represents bidirectional noninterfering communication channels oper-
ating between neighboring nodes. No memory is shared by the node’s proces-
sors, and there is no notion of a global clock. Messages sent over a link incur
an arbitrary but finite delay.

We say that a distributed algorithm terminates when all the processes related
to this algorithm have terminated. We use the following complexity measures
to evaluate the performance of the distributed algorithms in this paper. The
Node Complexity is the maximum number of nodes participating in the algo-
rithm. The Communication Compla”ty is the worst-case total number of
elementary O(log n)-bit messages sent during the algorithm execution, where n
is the maximum number of participating nodes. The Bit Complexity is the
worst-case total number of bits sent during the algorithm execution.

The Time Compkxhy is usually defined as the worst case time taken by the
algorithm under the assumption that the maximum transmission delay is
bounded by 1. Since time complexity is always bounded by the message
complexity, we concentrate on the latter.

3. Resource Controller-Definition

A Resource Controller is a distributed object that is accessed through a call to
the RESOURCE-REQUEST procedure; this procedure can be invoked at any node
in the network. When the controlled protocol needs a unit of resource at some
node, it has to invoke the RESOURCE-REQUEST procedure at this node and to
wait until the procedure returns either a permit or a rejection.

Every execution of an algorithm that uses the Resource Controller can be
associated with an ordered sequence u of events corresponding to the interac-
tions between the controlled algorithm and the Resource Controller. The set of
events consists of a request at some node u = V (corresponds to a call to
RESOURCE-REQUEST), permit at u, reject at v, and a special “resource ex-
hausted” signal at a designated node r.

We use U(u) to denote the restriction of u to the events that occur at node
u = V. Sequence a is legal if, for all u, u(u) is either empty or (1) it starts with
a request event, (2) there is a permit or reject event between any two request
events, (3) there are no permit events after the first reject event and, (4) u(u)
ends with either a permit event or with a reject event at v. Thus we assume
that the controlled algorithm at a node u never issues a new request until the
previous request has been given a permit. The controller is required to issue an
answer to every reques~ no message is sent by the controller except in
response to a request.

Local Management of Global Resource 5

Any sequence u that corresponds to an execution of a Resource Controller
with parameters M and W and a distinguished node r should satisfy the
following conditions:

Definition 3.1 [Consumption Conditions].

(1) The total number of “permit events in u does not exceed M;
(2) Sequence u includes the “resource exhausted” signal event at the distin-

guished node r if and only if there exists a rejected request in a;
(3) If u include the “resource exhausted” signal event, then it includes at least

M – W “permit” events.

The last condition implies that at least M – W requests are going to be
eventually satisfied, (i.e., if M resources are available, then at most W are
“wasted’’-not granted at termination).

Observe that the above definition does not preclude the situation where the
“resource exhausted” signal is generated before the controller has actually
issued M – W permits. Instead, the requirement is that the permits will be
issued eventuah’y. By using “broadcast-and-echo” one can convert a controller
that complies with the above definition into a controller that generates the
“resource exhausted” signal only after at least M – W permits were actually
issued.

To simpli~ the description of the algorithms, we assume a “diffusing compu-
tation” model, as in the paper by Dijkstra and Schohen [1980], that is, we
assume that the controlled algorithm is a single initiator distributed algorithm
with new nodes dynamically joining the set of participating nodes. Our algo-
rithms can be converted to work in the case of multiple initiators, but this
changes the communication complexity. Specifically, if the nodes that partici-
pate in the controlled protocol induce several connected components (which
can happen if there are several initiators), we must use additional nodes to pass
information from one connected component to another. As a result, the bound
on the communication complexity of the controller will depend on the total
number of nodes in the network rather than on the number of participating
nodes.

We also assume that there exists a tree that spans the participating nodes,
with the initiator being the root of this tree. Every participating node knows
the length of the path from it to the root through the edges of the tree. This
assumption can be satisfied by an auxiliary process which dynamically con-
structs a spanning tree of the participating nodes [Dijkstra and Scholten 1980].
The Resource Controller implementations described below use only the edges
of this tree, disregarding the rest of the edges in the network.

4. The Basic Controller

This section describes the BASIC CONTROLLER, which operates under the
assumption that an upper bound U on the number of participating nodes is
known. In the following section we show how to relax this assumption, using
the BASIC CONTROLLERas a building block. As stated above, we assume that
there exists a spanning tree of the participating nodes rooted at the initiator r,
and denote by D(u) the distance in this spanning tree from the root r to u.

A naive approach for constructing a controller is to maintain a counter at
the root and to relay each request for a unit of a resource to the root. A simple
way to improve on this is to allocate at each node a “bin” that can hold

6 Y. AFEK ET AL.

permits, initially holding zero permits, and a special bin at the root, initially
holding M permits. When the R=OURCE-REQUEST procedure is called at some
node, it tries to satisfy the request from the local bin. If necessary, an empty
bin is replenished from the bin at the root. This strategy reduces the communi-
cation complexity as compared to the naive controller. Essentially, the reduc-
tion is due to the fact that we aggregate a large number (the size of the bin) of
requests/permits together, and represent them by a single message. By setting
the size of each local bin to lW/UJ, we can ensure that no more than W
permits are wasted. This leads to a controller with 0(MU2/W) communica-
tion complexity.

4.1. BIN HIERARCHY. In order to achieve better communication complexity
we maintain at every node u both a “local” bin bl(u) and a “global” bin b~(u).
The bins are organized in a hierarchical structure, where the size of each bin
bg(u) and its position in the hierarchy depends on D(u), the distance of u from
the root. The local bins are at the bottom of the hierarchy. The bin hierarchy
described below defines another tree rooted at r which is embedded in the
original spanning tree. In order to distinguish the parent relation in this tree
from the parent relation in the original tree, we will say that bin b is a
supervisor of bin b’ if b is a parent of b’ in the hierarchy tree. Note that since
each node holds two bins, there are twice as many nodes in the hierarchy tree
as there are nodes in the spanning tree.

Before presenting the specific hierarchy that is used in the Basic Controller
implementation, we would like to informally describe the way this bin hierarchy
is utilized. Each node has a RESOURCE-REQUESTprocedure that controls the
local bin b, of this node, and a DELIVERY-PROCESSthat manages the global bin
b~ of this node (see Figure 1). In addition to the physical communication links
attached to the node, we assume. the existence of an “internal link” that
connects the RJSSOURCE-REQmT and the DELIVERY-PROCESSat every node.
Roughly speaking, one can view this as logically splitting each node into two
parts connected by the internal link, where one part executes the
RESOURCE-REQUESTand the other executes the DELIVERY-PROCESS.

When the controlled algorithm invokes the RESOURCE-REQUESTprocedure
at node U, this procedure satisfies the request by using the permits from the
local bin bl(u), if this bin is not empty. If bl(u) is empty, an attempt is made to
replenish it from its supervisor bin Superui.sor(b,). This is done by the RE-
SOURCE-REQUESTprocedure sending a multi-permit resource-request via the
DELIVERY-PROCESS to Superuhor(bl). If bin Supeni.sor(bl) is empty, it is
replenished from its supervisor (Superuisor(Superuimr(b[))), and so on. The
root of the hierarchy is the b~(r) bin at the root of the spanning tree, which
initially holds M permits. All other bins are initially empty.

In general, if bin b does not have enough permits to satisfy an incoming
request, the algorithm always tries to refill this bin to its capacity and only then
tries to satis~ the request. This is done by sending a request to the process that
manages the Superui.ror(b) bin. When the refill arrives, the pending request is
satisfied and the remaining permits are left in bin b. When bin b (r) receives a
request that it cannot satisfy, the algorithm generates the ‘resources ex-
hausted” signal.

Before giving a formal description of the hierarchy, we would like to discuss
the intuition behind its construction. Replenishment of bin b can be done with

Local Management of Global Resource 7

v‘“.4$$;:~
DELIVERY-PROCESS /

..

A \
4 *I

w.+] ‘

FIG, 1. A schematic Diagram of a Basic Controller,

a single message propagating from the node holding Supenisor(b) to the node
holding b. Intuitively, since we always replenish the bin completely, having
large-capacity bins reduces message complexity. Unfortunately, permits that
are stored at some point in bins other than the bin bg(r) might never be used,
which implies that we cannot have many large-capacity bins. The idea is to
embed the bin hierarchy in a way such that both the bin capacities and the
distances in the spanning tree between the node holding bin b and the node
holding bin Superz’isor(b) are exponentially increasing as we climb up in the
hierarchy. The parameters in the algorithm are chosen in such a way that the
total capacity of the bins (not counting b~(r)) is smaller than W and that the
average “cost per permit” in terms of messages is small.

More precisely, for each node LI G {V – r} at distance (depth) D(P) from r,
the levels of its bins are defined as follows:

Definition 4.1.1. Levels of bins in node LI at depth D([1):

Lerel(b~(u)) = max{i12’ divides D([)},

Le~~el(b,(u)) = – 1

For each bin b at node ~, consider the path from 1’ to the root r of the
spanning tree. We set Superuisor(b) to be the bin b’ that is closest to b along
this path such that Le~’eKb’) = Leuel(b) + 1. If no such bin exists along the
path, then we set b~(r) to be Superuisor(b}. For example, if D(L,) = 52 (binary
110100), then Le[’et’(bx(L’)) = 2 and Supervi.sor(bJ L’)) is the b~ bin that resides
in the ancestor of [I at depth 40 (bina~ 101000). Note that this definition
implies that the supervisor of bin bl resides either in the same node as b, or in
the parent of this node in the spanning tree.

The level of a bin (except for the bin at the root) implicitly determines
whether this bin is of type bg or b,. Henceforth we omit the subscripts g and 1
unless it might cause confusion.

An example of the hierarchy for the case in which the spanning tree is a
chain is given in Figure 2. Circles represent nodes and the numbers inside the
circles represent the depth in the spanning tree. The bins of the hierarchy are
represented by “buckets” and are shown directly above the nodes in which they
reside.

8 Y. AFEK ET AL.

—

Level 2

Level 1

Level O

Level -1

// // /1

f /7 A A A
Vvvvvvvvvv

FIG.2. An example of the bin hierarchy for the case when the spanning tree consists of a single
path. Circled nodes represent the original nodes of the graph; “buckets” represent nodes of the
bin hierarchy.

The bin hierarchy has the following properties, which are central to its use in
the controller.

LEMMA 4.1.2

(1) The depth of the hierarchy tree is at most Iog U + 1;
(2) Zf Level(b) = 1, then the path from the node that holds bin b to the node that

holds bin Supervisor(b) has either [21] or [3 “2*J links,
(3) The number of bins at level 1 that are supervi.som (i.e., that supervire at least

one bin at level 1 – 1) is at most U/2:-1.

PROOF. The first two parts follow from the definition. To prove the third
part, consider two bins b and b’, where Supervisor(b) # Supervisor, and
both supewisors are at the same level L The paths from b to its supervisor and
the path from b’ to its supervisor are node disjoint and each contains at least
21-1 vertices. The claim follows since the total number of nodes is bounded by
u. ❑

To ensure that at most W resources are “wasted”, we choose the bin
capacities in such a way that the number of permits stored in bins outside the

Local Management of Global Resource 9

root never exceeds W. More precisely, let

1(
WI

)1A = 2 lg ‘218(U+1) .

We define the capacity of bin b at level Leuel(b) to be

Cap(b) = max{A . 2L’’’’~(b),1). (1)

The definitions of bin capacities imply the following lemma, which simplifies
the implementation.

hZk4MA 4.1.3. The capaci~ of a bin ii either 1 or half the capacity of its
supen vkor bin.

4.2. DESCRIPTION OF THE ALGORITHM. In the previous section, we defined
the bin hierarchy and gave an intuitive explanation of how to implement the
BASIC CONTROLLERusing this hierarchy. In this section, we show how to map
this intuitive explanation onto the underlying message-passing system and
present the pseudocode.

The BASIC CONTROLLER consists of three parts: the RESOURCE-REQUEST
procedure shown in Figure 3, the DELIVERY-PROCESSshown in Figure 4, and
the ROOT-DELIVERY-PROCESSshown in Figure 5. As we have mentioned above,
a copy of the RESOURCE-REQUEST procedure resides at every participating
node; it manages the local bin at this node. A copy of the DELIVERY-PROCESS
exists at every node except the root; it manages the global bin b~ at this node.
The bin b~(r) is controlled by the ROOT-DELIVERY-PROCESS.

We assume that each node maintains a queue for incoming messages
associated with the Basic Controller, Moreover, we assume that we have access
to the following system calls:

—GET-NEXT-MESSAGE: Dequeues the message at the front of the node’s
message queue and returns two variables, the first is the message (MSG),
and the second is the number of the link over which the message has arrived
(IJNK#). If the queue is empty, GET-NEXT-MESSAGE waits until a message
arrives. Formally, the syntax is:

MSG, LINK# - GET-NEXT-MESSAGE.

—WAIT-FoR-MEssAGE-FRoM-LINK(Link#): Removes from the message queue
the oldest message that came via link number LINK# and returns the
content of this message. If no such message exists in the queue, it waits until
such a message arrives, Any other message that arrives while this primitive is
waiting, is queued in the message queue.

—SEND-MESSAGE(MSG, Link#): Sends the message MSG on link Link#.
(Used to send messages over the internal link as well.)

Resource-Request: The pseudocode of the RESOURCE-REQUEST procedure is
shown in Figure 3. During initialization the size of the local bin is determined,
and its content is set to zero. Upon invocation, the procedure tries to satisfy
the request from the local bin. If the bin is empty, the RESOURCE-REQUEST
sends a message over the internal link to the DELIVERY-PROCESSat the same
node and waits on this link for a reply. As we will see below, the
DELIVERY-PROCESS either returns a “reject” or sends exactly as many permits
as can fit into the local (level = – 1) bin. Thus, there is no explicit “number of

10 Y. AFEK ET AL.

/* Initialization “/
Penrlita-fn-Bin + R
Mu-kuel t (- A);

/*lnitial(,, tt.e bin is ●mpty.*/
/*Local bins are on level-1 of the hierarchy.’,

Bin-Capacityt rnax{A/2, 1};
Not-l%hauatedt tru~

/*Capacityof the localbin*/
/“Reao.rce not exhauatedyat.”f

Procedure RESOURCE-REQUEST
if Pemnita-In-Bin = O & Not-Ezhmatad

then begin
$$END-MESSAGE(/@&ue&Internof-Link); /*Ask for a rafill.*/
Reply t WMT-FOR-MEsSAGE-FROM-fJNK(lntem~-Liti); /*Wait for reply.*/
if Rep/v = “permit” then Permits-In-Bin + Bin-Capocit~
end;

if Pemaita-In-Bin >0
then begin

Permite-ha-Bin+ Pewnita-h-Bin - 1;
return ‘tpermit”; /*Issue a permit.*/

elee bogiaa
Not-Ezhrauatedt folag
return “rejeet”; /*Rejection.*/

end:
c nd.

FIG. 3. The code of the RESOURCE-REQUESTprocedure.

permits” field in the messages that propagate between the RESOURCE-REQUEST
procedure and the DELIVERY-PROCESS. If the DELIVERY-PROCESSreturns a
“permit”, we refill the local bin, and return “permit” to the caller, decrement-
ing the number of permits in the bin by one. Otherwise, we return a rejection.
In order to eliminate unnecessary messages, we continue to reject eveq’
request after the first rejection message received from the DELIVERY-PRO~S.

The requests sent by the RESOURCE-REQUEST procedure are propagated
through the local DELIVERY-PROCESS in order to simplify the code and ensure
that only the DELIVERY-PROCESS accesses the physical communication links (as
opposed to the internal link). Recall that we have assumed that the controlled
algorithm always waits for the RESOURCE-REQUEST to complete before calling
h again, thus there can be no concurrent invocations of the RESOURCE-RE-

QUEST procedure at the same node.

Delivefy-Z+ocess: The pseudocode of the DELIVERY-PROCESS for bin bg(u)
which is at level L,euel(bg(u)) in the hierarchy appears in Figure 4. Initializa-
tion includes determining the capacity of bin b~(u) and setting its ecmtent to
zero. Recall that any request that should be satisfied out of bJu) is sent from a
bin at level Leuel(b.Ju)) – 1. Thus, all such requests are for the same number
of permits, which we precompute and store in Request-Size.

Once initialized, the DELIVERY-PROCESSenters the message-forwarding loop.
Upon receiving a message (on any link), it checks whether it is the addressee of
this message, that is, whether the message comes from a node at level
Leuel(bg(u)) – 1. If not, the message is fomarded through the Panmt-Link to
the node that is the parent of u in the spanning tree. Then, the
DELIVERY-PROCESS waits for the permits that are supposed to arrive as a
response via the parent of u. All the messages that arrive during this wait are
stored in the message queue. When the message carrying the permits (or the
rejeetion) arrives, it is forward to the appropriate child.

Local Management of Global Resource 11

Procedure DELIVERY-PROCESS
/“ Code for node u at level bvwl(v) of the hierarchy. “/

Bin-capocitvt max{A 2L’WJ(U),1}; /*Bin capacityof the Deli.e~-Praeeea bin at node ..”/
Permit.-In-Bin + 0; /*Initially,tk bin is empty.*/
Not-Ezhaueted+ truq /*initially w aaaumeraeo.rce not ahauated,*/
I?equest-Sizet max{A 2L’W1(”J-1, 1}; /*Permits willbe raq.tatad in multiplesof f?aqmt-Siza ‘/

Do forever
From-Level, Link+ GET-NEXT-MESSACE; /*Wait for the next raq.eat, whichoriginatedfrom a*/

/“rtode ●t levelFrom-Leveland ●rrivedan link number Link.”/

if L43vei(u)= l+om-Level +1
then begin /“We haveto aatiafythe raqueet,*/

/*try to aatiafyit from our bin.*/
if Permit. -In-Bin= Oend Not-Ezhmwted

then begin
/“Teat whetherthe bin is empty.*/

SENO-MESSAGE(Leve~u),%’ent-~ink);

/“ Bin empty - need ● refill.*/
/* Req.aat bin rapleni.hm.nt.*/

Answer = WAIT-FOR-MESSAGE-FROM-LINK(%rent-Link) ; /*Wait kx theretill.*/
if Answer = “permit” then Permit.-In-Bin + Bin- Copacit~
end;

if Permitd-In-Birr >0
then begin

Pennite-In-Bin t Pennite-in-Bin – Request-that
SEND-MESSAGE(“permit”, Link);
end;

elee
SEND-MESSAGE(”rejeet”,Link);
Not-EzAaueted+ fafa~
end;

/* Fonvardtha parmita.*/

/* Fonvardthe ,ejaetion.*/

end;
elee begin

sENO-MESSACJE(fim-kve/, Parent-Link); j“Rataythe rq.ast to the parent.”/
Anatuer= wAIT-FOR-MESSN3E-FROM-LINK(Parent-Li*); /*Wait for reply,*/
SEND-MEsSAQE(Anewer,Link); /*and relayit &w..”/
end;

end.

FIG. 4. The code of the DELIVERY-PROCESS

/* Initialization ●/
Signal + falati
Procedure ROOT-DELIVERY-PROCESS

/*Signal not generatedyet.*/

Pennita-In-Bin t M ;
do forever

/“ Alltk permits w have.*/

Level, Link t GET-NEXT-MESSAGE;
Requested-Permits = max{A 2Level,~}; /*The numberof permits rq.astad.*/
if Permit.-In-Bin z Requested-Permiti

then begin
Permits-in-Bin t Pennita-In-Bin - Requeated-Permita;
SEND-MESSAGE(“permit” ,Link);
end;

elee be&
SEND-MESSAGE(“rejeet”,Link); /* Tha Roc&Delivety-Procaaebin is empty.*/
if (not Sign@

then begin
generete “resource exheuated” signal;
Signal + trw

end;
end.

FIG.5. The code of the ROOT-DELIVERY-PROCESS.

12 Y. AFEK ET AL.

If the message is addressed to the DELIVERY-PROCESS,it tries to satisfi the
request from its bin b~(u). If this bin is empty and the DELIVERY-PROCESShas
not received any “reject” messages addressed to it yet, it sends a request for
permits to its supervisor through the Parent-Link and waits for a reply. All
messages that arrive during this wait are stored in the message queue. If the
reply is “permit”, b~(u) is refilled and the pending request is satisfied from it.
Otherwise, the DELIVERY-PROCESSreturns “reject” and sets a flag to make
sure that no more messages are sent to the supervisor.

Root-Delwe~-Process: The pseudocode of the ROOT-DELIVERY-PROCESS,
the process that manages bin b$r) at the root, is shown in Figure 5. It is
similar to the DELIVERY-PROCESSexecuting at the other nodes in the tree with
several important differences. First, it has to reply to all the messages since it
has no one to forward them to. Second, it generates the “resource exhausted”
signal when its bin is depleted.

We start by initializing the bin to M. Upon receiving a message, we compute
(from the level of the bin that originated this message) the number of
requested permits, and try to satisfy them from the bin. If there are not enough
permits, we generate the “resource exhausted” signal and reply with a “reject”.
The code ensures that the signal is generated only once.

4.3. THE BASIC CONTROLLER IS DEADLOCK FREE. Since there are “wait”
statements in the code h is necessary to prove that the algorithm is deadlock
free.

LEMMA 4.3.1. Any “request for permits” message that is generated by b,
eventfully reaches Supervisor(b).

PROOF. Such a message propagates along the path from v to r until it
either reaches r, or reaches a bin at level LeueJ(b) + 1, or gets “stuck”
(delayed indefinitely) in a message queue of one of the nodes along the path.
By the definition of the hierarchy, the node that stops propagating the message
and tries to satis~ it is indeed Supervisor(b).

We claim that a message cannot be delayed indefinitely in one of the
message queues. Indeed, let u be the node with the smallest D(v) that has a
message indefinitely delayed in its queue. From the pseudocode we can see
that the ROOT-DELIVERY-PROCESSnever waits, and hence indefinite delay can
happen only if one of the invocations of Wait-For-Message-From-Link by a
DELIVERY-PROCESSat u # r does not return, that is, there is no reply to the
message sent by Send-Message from u to v’s parent just before calling the
Wait-For-Message-From-Link. But this is impossible since v is the node with the
smallest D(u) that has a message “stuck” in its queue. ❑

The above lemma together with the observation that the propagation of
messages down the tree cannot be delayed, implies the following lemma.

LEMMA 4.3.2. lZoe~ call to a RESOURCE-REQUESTprocedure eventual~ re-
turns either a permit or a rejection.

Remark. Consider a bin b~ with capacity Cap(b~) > 1. Lemma 4.1.3 implies
that any request that has to be satisfied from this bin asks for exactly
Cap(b~)/2 permits. Therefore, exactly two requests can be satisfied for each
replenishment of b~, and thus there is no need to represent explicitly the

Local Management of Global Resource 13

number of permits stored in bg. All we need is a flag that says whether the bin
is empty of half full. A bin with capacity 1 can satis~ only one request; hence it
merely serves as a relay of requests and permits between the bins it supervises
and its supervisor. The only bins whose content need to be explicitly repre-
sented are the b, bins, controlled by the RESOURCE-REQUEST procedures, and
the b~(r) bin, controlled by the ROOT-DELIVERY-PROCESS.

4.4. ANALYSIS OF THE BASICCONTROLLER. In this section, we show that the
Basic Controller implementation described above satisfies the conditions of
Section 3. The legality of executions follows directly from the construction. In
particular, it follows from the fact that the Basic Controller never initiates any
actions on its own. The RESOURCE-REQUESTreturns a rejection only if it got a
“reject” message from the DELIVERY-PROCESS.The fact that DELIVERY PRO-
CESSat level f produces a reject message only if it got a reject message from a
process at level I + 1 implies that the first reject message is generated by the
ROOT-DELIVERY-PROCESS,that is, the second condition in Definition 3.1 is
satisfied. Thus, it remains to show that the Basic Controller satisfies the first
and the third conditions. Informally, these conditions state that the total
number of issued permits does not exceed M and that no requests are rejected
unless the number of issued permits exceed M – W.

LEMMA4.4.1. At most M permits are issued.

PROOF. The claim follows from the fact that initially all bins except bin
b~(r) are empty and that bin holds M permits. ❑

LEMMA4.4.2. If during the execution of the BASIC CONTROLLERthe number
of participating nodes does not exceed U, then the total number of permits in bins
outside the root is bounded in W.

PROOF. Initially all bins are empty except the global bin at the root. For a
bin to become nonempty, it has to receive’ a request for a permit. This can
happen only to a b~ bin that is a supervisor of some bin or to a b, bin.
Moreover, if the capacity of a bin is equal to 1, the bin always remains empty
since it serves only as a relay between the node it supervises and its supervisor.
Using Lemma 4.1.2 and the definition of the bin capacity (eq. (l)), the total
capacity of supervisor bins with capacity of at least 2 at level L is at most

w
&“A”2%

log fl+l”

Recall that the level of any bin b, is defined to be (– 1), implying that the
capacity of bf is equal to max{A/2, 1). Hence, if the capacity of each bin b, is
above 1, the total capacity of these bins is

w
u“:<

Iogu+l”

Thus, the total capacity of bins at any level that has bins with capacity above 1
is bounded by W/(log U + 1). The claim follows since, by Lemma 4.1.2, the

‘ In order to simplify notation, we say that “bin b sends a message to b’” when we mean that “the
process controlling b sends a message to the process controlling b’”.

14 Y. AFEK ET AL.

number of levels (apart from the root) in the bin hierarchy is at most
(log u + 1). •1

LEMMA4.4.3. If a legal execution of the BNIC CONTROLLERexecuting on at
most U nodes includes a rejected request, then it includes at least M – W satisfied
requests.

PROOF. Consider the moment when the last one of the message sent by the
BMIC CONTROLLERis received. (The fact that the number of these messages is
finite is proved below in Lemma 4.4.4.) At this time, every permit has either
been issued or is stored in bins of nonunit capacity. The fact that there exists a
rejected request implies that the bin of the root is empty. Hence, the number
of issued permits is at least M minus the total number of permits stored in the
rest of the bins. The claim follows from Lemma 4.4.2. ❑

LEMMA 4.4.4. The message complexity of the BASIC CONTROLLER is
o((N/w)u/og2u).

PROOF. The algorithm sends only three types of messages: requests, per-
mits, and rejections. Observe that the DELIVERY PROCESS running at node u
does not send a new request for permits until its previous request was fulfilled
or rejected. Moreover, it never tries to refill a bin after getting the first
rejection. This implies that the number of requests sent from b to Supervisor(b)
is at most one more than the number of permit messages sent from
Superui.sor(b) back to b. Therefore, it suffices to bound the number of permit
messages.

The total number of permits is at most M. The number of permits in any
message sent by b’ to b where b’ = Supervisor is equal to the capacity of b,
given by eq. (l). Hence, the total number of permit messages received by bins
at level Leuel(b) is at most

LLl=l M ls2~u(]0gu+1)2-Lm={A . z~-~(b), 1}

By Lemma 4.1.2, each one of these messages travels a distance of at most
3 s 2~e”’’(~). The claim follows since, by Lemma 4.1.2, the depth of the hierar-
chy tree is at most (log U + 1). u

A node queues all the messages from its children while waiting for a permit
(or a reject) from its parent. Since the BNtc CONTROLLERnever sends a new
message on a link to the parent before getting a reply to the previous message
it sent up, the number of messages queued at a node is bounded by its degree
in the spanning tree. A request message propagating up the tree from b to
Supervisor(b) consists only of a single field, containing the level of b, which can
be represented by O(log log U) bits; the permit and reject messages propagat-
ing down the tree can be represented by 0(1) bits. Thus, we have the following
lemma:

LEMMA4.4.5. The bit complexity of the BMC CONTROLLER is O((M/W)U
log2Uloglog U) and memory requirements are O(1% log U) bits per [ink plus
O(ZogM).

Remark 4.4.6. We have described a version of the controller that has very
low memory requirements at each node and very low bit message complexity.

Loca[Management of Giobai Resource 15

This is accomplished by allowing each bin to have at most one outstanding
request at a time. The drawback of this approach is that if requests occur at
many different nodes that share a supervisor, then this supervisor becomes a
bottleneck and some of these nodes may wait a long time for a response. An
alternative version of the controller can be devised that allows a bin to make
multiple requests, in order to reduce the delay incurred at any given node. This
approach requires more memory and has higher bit message complexity,
because we now must tag messages by the bin at which they originate. The
details are straightforward, and hence are omitted.

5. Main Controller

The previous section presented the BASIC CONTROLLERalgorithm which as-
sumed an a priori knowledge of an upper bound U on the number of
participating nodes. The complexity of the BASIC CONTROLLERis a function of
this upper bound regardless of the actual number of participating nodes. In this
section, we show how to relax this assumption and describe the MAIN CON-
TROLLERwhose complexity depends only on the actual number of participating
nodes.

The basis idea is to run two BAsrc CONTROLLERS concurrently. CONTROL-

LER-N monitors and controls the number of participating nodes; CONTROLLER-R
monitors and controls the resource consumption. We require that a new node
that wishes to join the controlled protocol does not join until it gets a permit to
do so from CONTROLLER-N. In fact, we need to slightly modify CONTROLLER-N.
When its bin at the root becomes empty, it does not start sending “reject”
messages. Instead, it produces the “resource exhausted” signal, sending it to
the MAIN CONTROLLER.

The MAIN-CONTROLLER,invoked with parameters (M, W), proceeds in itera-
tions. The idea is to use CONTROLLER-N to terminate the iteration when the
number of nodes has at least doubled compared to the number of nodes in the
beginning of the iteration. More precisely, denote the parameters of CoN-
TROLLER-Nand CONTROLLER-Rduring iteration i by (M,N, ~N) and (M,R, ~ R),
respectively. (Their numerical values will be defined below.) Denote by ~ the
upper bound on the number of participating nodes in iteration i; the value of
~ is used both by CONTROLLER-N and CONTROLLER-R. Let M,R be the
number of unused permits at the beginning of iteration i, initially M,R = M,
and let n, be the number of nodes participating in the controlled algorithm at
the beginning of iteration i. At the start of iteration i, we set the parameter as
follows:

(M?,WN) = (2n,, n,) (paEiIIEtf33 of CONTROI-I-EI+N),

(M~,~R) = (M~, W’) (parameters of CONTROLLER-R),

~ = 3ni.

Note that the “waste” parameter of CONTROLLER-Rdoes not depend on the
iteration number. If MiR s W, MAIN-CONTROLLERproduces a “resource ex-
hausted” signal at the root. If, during iteration i, CONTROLLER-R produces a
“resource exhausted” signal, the MAN-CONTROLLER produces “resources ex-
hausted” signal as well. Otherwise, the iteration continues until CONTROLLER-N
produces the signal. When this happens, the root initiates a “broadcast and

16 Y. AFEK ET AL.

echo” on all the participating nodes, making sure that all permits given out
during this iteration have reached their designations and counting the current
number of participating nodes ni+,. Then it collects the contents of all the bins
(including the mot bins) that belong to CONTROLLER-R and sets Mfl ~ to be
equal to this value.

Recall that CONTROLLER-N never sends rejections. Thus, at the end of an
iteration, there might be nodes waiting for a permit to join the controlled
protocol. Before proceeding with iteration (i + 1), the MAIN CONTROLLERuses
the broadcast-and-echo to identify unfulfilled requests of CONTROLLER-N at
iteration i and resubmits them to the new incarnation of CONTROLLER-N at the
next iteration.

LEMMA 5.1. The MAIN-CONTROLLER satisj?es the “consumption conditions”
(3.1).

PROOF. Properties (1) and (2) follow from the fact that the MAIN CON-
TROLLERnever generates new permits and from the correctness of the BASIC
CONTROLLER. Iteration i starts with ni participating nodes. Since CON-
TROLLER-Nallows at most 2rzi new nodes to join the controlled protocol during
iteration i, the total number of participating nodes during this iteration is
bounded by 3ni. Thus, ~ is a valid upper bound on the number of nodes
participating in the algorithm during iteration i. This fact, combined with
Lemma 4.4.3, implies property (3). ❑

THEOREM 5.2. The message complexity of the MAIN CONTROLLER is
0((A4/ W)n log ‘n) and the bit complexity is O((M/ W)n logzn log log n), where n
k the final number of participating nodes.

PROOF. The message complexity of the MAIN CONTROLLERk the sum of
the message complexities of CONTROLLER-Nand CONTROLLER-R.In iteration i,
these complexities are 0(~.log2~.) and O((A4i/ W)~.log2LJ), respectively. By
construction, M z ikfiR > W. Moreover, for each i, 3ni _ ~ > ni > 2ni _, and
~. = 3ni. The bound follows. Note that the communication complexity of
collecting the contents of all the bins over all the iterations is at most
O(n log n) messages or O(n log2n) bits. ❑

6. Extensions

In this section, we describe several controllers that are extensions of the MAIN
CONTROLLER.

6.1. THE “ZERO WASTE” CASE. Some applications require zero “waste”,
that is, W = O. For example, we might want to terminate an algorithm when
the number of participating nodes reaches exxzcdyM. If we have a controller
that works with constant W, we can distribute the remaining permits by
collecting them using a broadcast-and-echo technique and then using the naive
controller, described in the beginning of Section 4. Hence, in the presentation
below, we will assume that W >1. Observe that employing the MAIN CON-
TROLLERin cases where W is small compared to M leads to a large complexity.

In general, in order to deal with the cases where M/W is large, we use the
MODIFIED CONTROLLER.It iterates the MAIN CONTROLLER00og(M/ W + 1))
times. In each iteration the “waste” is at least halved. That is, we set MO = M.
In the ith iteration we execute the MAIN CONTROLLER with parameters

Local Management of Global Resource 17

(Mi, M,/2). When it terminates the root performs a “broadcast and echo” to
count the number of unused resources, which is Mi. ~ s M,/2. After
O(log(M/(W + 1))) iterations, the number of remaining unused resources is
within a constant multiplicative factor of W, and we can use the MAIN
CONTROLLER directly. Hence, we have the following lemma:

LEMMA 6.1.1. The communication complexity of the MODIFIED CONTROLLER
is O(n log2n /og(M/(w + l)).

6.2. DYNAMICNAME ASSIGNMENT. Many protocols assume that each node
in a network has a unique name (ID) and use these names to break symmetry.
The bit message complexity of these protocols is expressed in terms of the
number of bits needed to represent a name, which is usually assumed to be
equal to the logarithm of the number of nodes. 2 This assumption is correct
only if at least a constant fraction of the total number of named nodes are
participating in the protocol, which may not always be true.

We define the Dynamic Name Assignment problem as follows: As in the case
of the MAIN CONTROLLER,we consider a single-initiator protocol (the exten-
sion to multiple initiators is not difficult) that executes in a large network and
dynamically activates new nodes, which start participating in the protocol. The
goal is to assign unique integer names to all the participating nodes, such that
the largest name will be at most a constant factor larger than n, the number of
participating nodes.

To solve this problem, we use the BASIC CONTROLLERwith the following
change: the “permit messages” carry the range of allocated names instead of
carrying permits. Note, that as opposed to the case of the BASIC CONTROLLER,
every message in the Dynamic Name Assignment algorithm carries a range of
names, and hence it is O(log n) bits long. Moreover, since only contiguous
ranges can be represented concisely, we cannot reuse names that are in the
bins when the BASIC CONTROLLERis re-initialized (which happens each time
the number of participants has approximately doubled). This increases the
number of unused names, but only by a constant factor.

LEMMA 6.2.1. The message complexity of the @amic Name Assi@ment
algon”thm is 0(n log ~n) with messages of O(log n) bits, where n is the final number
of participating nodes.

PROOF. Similar to Theorem 5.2. ❑

6.3. DISTRIBUTEDBANK. The MAIN CONTROLLERdescribed in the previous
sections deals with resources that can be only consumed. Here we sketch the
main ideas of how to extend the MAIN CONTROLLER to the case where
resources are both consumed and generated.

A Distributed Bank Controller with parameter W is a distributed algorithm
which interacts with the controlled algorithm via the DEPOSIT-RESOURCE
and WITHDRAW-RESOURCEprocedures at the nodes. As in Section 3, each ex-
ecution can be associated with an ordered sequence of events CT,where the
events can be “deposit-request,” “deposit-ack,” “withdraw-request,” and
“withdraw-grant.” In what follows, unless it causes confusion, we refer to

2See, for example, Afe.k et al. [1988], Gallager et al. [1983], Goldberg and Plotkin [1987], and
Goldberg et al. [1988].

18

“ withdraw-reauest”

Y. AFEK ET AL.

and “deposit-request” as requests and to “deposit-ack”
and “withdraw-grant” as re”plies. & before, w: use U(U) to d~note the
subsequence of events in u that occurred at node u. A sequence is considered
legal only if for all u, the corresponding U(u) does not contain two adjacent
requests. In other words, the algorithm that uses the distributed bank object
should wait for a reply to each one of the requests before issuing a new one. In
addition, the following properties should be satisfied:

(1) For every u, O(u) contains a corresponding reply immediately after every
request; the only exception can be the last “withdraw-request” in a(u);

(2) In any prefix of m, the total number of withdrawal requests granted is at
most the total number of deposit requests;

(3) If a “withdraw-request” does not have a corresponding “withdraw-grant”
in u, then the number of “deposit-request” events less the number of
“withdrawal-grant” events in u is below W.

A Distributed Bank Controller can be built by combining two MAIN CoN-
TROLLERS, where one controls the withdraw requests and the other controls the
deposit requests. The main modification that is needed is to change the
controller responsible for withdrawals to never return a rejection. Instead, h
should try to satisfy the requests from the root bin of the controller responsible
for the deposits, waiting until this bin contains a sufficient number of deposits.

Let # be the total number of withdraw and deposit requests made.

LEMMA 6.3.1. The message complexity of the Dism”buted Bank Controller is
0((4/ W)n iog2n) and the bit complexity is O((&/ W)n log2n log log n).

PROOF. Similar to the proof of Lemma 4.4.4 and Theorem 5.2. ❑

7. Conclusions

The search for the right set of paradigms for designing efficient distributed
algorithms is an important task of the theory of distributed computation. The
resource controller object described in this paper has already been used as an
integral part of several distributed algorithms [Afek et al. 1981; Awerbuch
1988]. The controller is simple to implement and the constant factors involved
in the complexity computations are quite small. We believe that the Resource
Controller described in this paper can serve as a convenient building block for
design of efficient distributed algorithms that have to deal with global re-
sources.

ACKNOWLEDGMENTS.The authors wish to express their thanks to Paul Beame,
Eli Gafni, Andrew Goldberg, Oded Goldreich, Joe Green, Michael Merritt,
and Silvio Micali for useful discussions. We would also like to thank the
referees whose comments have greatly improved the presentation of the paper.

REFERENCES

AFEK,Y., AWERBUCH,B., ANDGAIN, E. 1987. Applyingstatic network protocols to dynamic
networks. In Roceedings of the 28th IEEE Annuo[Symposium on Foundations of Computer
Science. IEEE, New York, pp. 358-370.

AFEK, Y., LANDAU, G. M., SCHIEBER, B., AND YUNG, M. 1988. The power of Multimedia:
Combining point-to-point and multiaeeess networks. In Proceedings of the 7th Anmuzl ACM
Symposium on I%nciples of Distributed Computing. (Toronto, Ont., Canada, Aug. 15-1 7). ACM,
New York pp. 90-104.

Local Management of Global Resource 19

AWERBUCH, B. 1985. Complexity of network synchronization. J, ACM 32, 804-823.
AWERBUCH, B. 1988. On the effects of feedback in dynamic network protocols. In Proceedings of
the29th IEEE Annuol Symposium on Foundations of Computer Science. 231-245.

BAR-YEHUDA, R., AND KLTrTEN,S. 1988. Fault tolerant distributed majority commitment. J.
Algorithms 9, 568-582.

DIJKSTRA,E. W., ANDSCHOLTEN,C. S. 1980. Termination detection for diffusing computations,
Inf. Proc. Lett. 11, 1-4.

GALIAGER, R. G,, HUMBLET, P. A., AND SPIRA, P. M. 1983. A distributed algorithm for
minimum-weight spanning trees. ACM Tmns. I%og. Lung. Sysr. 5, 66-77.

GOLDBERG,A., ANDPLOTKJN,S. 1987. Parallel (A + 1) coloringof constant-degree graphs. hf.
Proc. Lett. 25,4, 241-245.

GOLDBERG,A. V., PLOTMN,S. A., ANDSHANNON,G. E. 1988. Parallel symmetry-breaking in
sparse graphs. SIMMJ. Disc. Math. 1, 434–446.

LYNCH, N. A., GRIFTWTH,N. D., FISCHER,M. J., ANDGumAs,L. J. 1986. Probabilistic analysis of
a network resource allocation algorithm. Inf. Cont. 68, 47–85.

RECEIVEDMARCH1988; REWSEDJUNE1995; ACCEPJ’EDAUGUST 1995

Journalof the ACM,Vol.43,No.1.January1996.

