
Controller and Estimator for Dynamic Networks

Amos Korman∗ and Shay Kutten†

Faculty of IE&M, Technion
Haifa, Israel

pandit@tx.technion.ac.il, kutten@ie.technion.ac.il

ABSTRACT
Afek, Awerbuch, Plotkin, and Saks identified an impor-
tant fundamental problem inherent to distributed networks,
which they called the Resource Controller problem. Con-
sider, first, the problem in which one node (called the ‘root’)
is required to estimate the number of events that occurred
all over the network. This counting problem can be viewed
as a useful variant of the heavily studied and used task of
topology update (that deals with collecting all remote infor-
mation). The Resource Controller problem generalizes the
counting problem: such remote events are considered as re-
quests, and the counting node, i.e., the ‘root’, also issues
permits for the requests. That way, the number of request
granted can be controlled (bounded).

An efficient Resource Controller was constructed in the
paper by Afek et al., which can operate on a dynamic net-
work assuming that the network is spanned by a tree that
may only grow, and only by allowing leaves to join the tree.
In contrast, the Resource Controller presented here can op-
erate under a more general dynamic model, allowing the
spanning tree of the network to undergo both insertions and
deletions of both leaves and internal nodes. Despite the
more dynamic network model we allow, the message com-
plexity of our controller is always at most the message com-
plexity of the more restricted controller.

All the applications for the controller of Afek et al. ap-
ply also for our controller. Moreover, with the same mes-
sage complexity, our controller can handle these applications
under the more general dynamic model mentioned above.
In particular, under the more general dynamic model, the
new controller can be transformed into an efficient size-
estimation protocol, i.e., a protocol allowing the root to
maintain a constant estimation of the number of nodes in

∗Supported in part by a grant from the Ali Kaufmann Post-
Doc fellowship and by a grant from the Israeli Ministry of
Science and Technology.
†Supported in part by a grant from the Israel Science Foun-
dation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’07, August 12–15, 2007, Portland, Oregon, USA.
Copyright 2007 ACM 978-1-59593-616-5/07/0008 ...$5.00.

the dynamically changing network. Informally, the resulted
new size-estimation protocol uses O(log2 n) amortized mes-
sage complexity per topological change (assuming that the
number of changes in the network size is “not too small”),
where n is the current number of nodes in the network. In
addition, with the same message complexity (as that of the
size-estimation protocol), the new controller can be used to
solve the name-assignment problem by assigning and main-
taining unique log n + O(1)-bit identifiers for the nodes of
the dynamic network.

The new size-estimation protocol can be used for other
applications, not mentioned in the paper by Afek et al..
Specifically, it can be used to extend many existing labeling
schemes supporting different queries (e.g routing, ancestry,
etc.) so that these schemes can now operate correctly also
under more general models. These extensions maintain the
same asymptotic sizes of the corresponding labels (or routing
tables) of the original schemes and incur only a relatively
low extra additive cost to the message complexity of the
corresponding original schemes.

Categories and Subject Descriptors: F.2.2: Analysis
oF Algorithms and Problem Complexity, C.2.2: Network
Protocols.

General Terms: Algorithms.

Keywords: Distributed algorithms, Labeling schemes, Asyn-
chronous protocols.

1. INTRODUCTION
In common sequential settings, an online algorithm (no-

tably, a competitive algorithm, such as those in [25]) must
make a decision based on past information, without know-
ing what the future holds. The main characteristic of a
network environment is an additional kind of uncertainty,
namely, some nodes may need to make a decision without
knowing what already happened in remote locations. The
common situation, where both kinds of uncertainties exist,
has received a very little attention in the literature.

One should stress that the study of each of the above
sources of uncertainty separately has been very extensive.
In particular, the problem of updating- learning what hap-
pened in remote places- may be the main type of distributed
algorithms actually used in networks. This is because after
such information has been learned, the distributed problem
is reduced to a better understood sequential one. For exam-
ple, when a network node has learned the current topology
of the network graph, it can compute the best routes to
remote nodes by applying (the non-distributed) Dijkstra’s

175

shortest path algorithm [10] on the graph represented in the
node’s own memory. This approach is the one used in the
Internet, See, e.g., the OSPF protocol [26].

This paper addresses problems affected by both kinds of
uncertainties. The token collection problem [3] is a vari-
ant of the updating problem: count (at one center node)
the (approximate) number of events that occur all over the
network. Another variant is the size-estimation problem, in
which it is required to maintain (at a center node) a constant
approximation to the number of nodes in the dynamic net-
works. It was shown in [1] that these two (and several other)
problems can be reduces to the following (M,W)-Controller
problem: when an event “wishes to occur” at some node,
the algorithm has to move either a permit or a reject from
some center to the node requesting the event. If the re-
questing node receives a permit, the permit is consumed at
the node and subsequently, the event occurs. An (M,W)-
Controller must guarantee that the total number of permits
granted is at most M . However, if a request is rejected, then
at least M − W permits are eventually granted (a formal
definition appears in Section 2.2). As shown in [1], the to-
ken collection and size-estimation problems can be reduced
to the (M,W)-Controller problems, even if the number of
events (or topology changes) is not bounded. Intuitively, the
reduction operates in iterations. When the controller needs
to give a reject, it refrains from giving it and instead, a new
iteration of the controller is initiated with a larger M .

Note, that the message complexity of a trivial controller
can be very high. That is, if the only case a permit is moved
is directly from the root to the requesting node, the message
complexity can reach Ω(nM), i.e., Ω(n) per request. On the
other hand, if all the requests are known in advance, it is not
hard to design an offline sequential algorithm whose message
complexity is O(n).

The controller of [1] was designed to work under the con-
trolled dynamic model, in which the topological changes do
not occur spontaneously. Instead, when an entity wishes
to cause a topology change at some node u, it enters a re-
quest at u, and performs the change only after the request
is granted a permit from the controller. This model was
rather visionary; today’s Peer to Peer applications that did
not exist then and, more generally, the now popular over-
lay networks, come to mind as examples of networks where
topological changes can be controlled (we discuss this sub-
ject in Subsection 1.1). In [1], it was also assumed that
the network is spanned by a tree that may only grow, and
only by allowing leaves to join the tree. I.e., only one type
of topology changes is allowed: an insertion of a leaf node.
Assuming that dynamic model, the message complexity of
their controller is O(N · log2N · log M

W+1
), where N is the

number of nodes ever to exist in the network.
In contrast, the resource controller presented here (still in

the controlled model) can be applied under the more general
dynamic model, allowing the spanning tree of the network
to undergo both insertions and deletions of leaves as well as
insertions and deletions of internal nodes. Despite the more
dynamic network model we allow, the message complexity
of our controller is always at most the message complexity
of the more restricted controller.

Intuitively, it is not clear how to adapt the previous con-
troller of [1] to handle these additional topology changes effi-
ciently. The reason is that the previous controller is based on
storing permits at very specific depths of a spanning tree.

Specifically, each node has a bin that may store permits.
The bins are organized according to an underlying structure
called the bin hierarchy. Each bin b at a node v has a level
and a size which are determined by the precise distance from
v to the root. Bin b also has a supervisor bin sup(b) whose
location with respect to b also depends on the precise dis-
tance from v to the root. A request always walks to a nearby
bin b to obtain a permit. If that bin is empty, it replenishes
itself from its supervisor bin sup(b) in the bin hierarchy. If
sup(b) is also empty then sup(b) tries to replenish itself with
permits taken from its supervisor sup(sup(b)), etc. It follows
that the behavior of a node depends strongly on its precise
distance to the root. The type of topology change consid-
ered in [1] (the insertion of a leaf node) is allowed since it
does not affect the depths of the existing nodes and, there-
fore, does not affect the locations and sizes of the existing
bins. However, in the more general dynamic model, a single
change in the topology may change many of the above dis-
tances, thus spoiling the beautiful combinatorial structure.
For example, an insertion of an internal node may move
many bins further away from the root without them even
knowing that fact. It is, therefore, not clear how to adapt
their controller so that it can operate efficiently under the
more general model.

In contrast to the controller of [1], our (M,W)-Controller
is based on different principles. These principles free the
controller from depending on precise distances from the root.
Hence, the new controller can deal with general insertions
and deletions. At the same time, we managed to match
the message complexity of the previous controller that was
designed for insertions of leaves only.

1.1 Motivating the model
As in [1], we too assume the controlled dynamic model, in

which a topological change does not happen instantaneously.
Instead, it is delayed until getting a permit to do so from
the resource controller. (See the model, Section 2.1.) Such
a model may be found useful e.g. in overlay networks. Con-
sider, for example, a Peer to Peer network (P2P) which is
dedicated to users who are interested in a certain subject.
When a user becomes non-interested in the subject, its node
leaves the network in a graceful manner. Similarly, when a
node becomes interested in the subject, its node joins the
network in a graceful manner. In this context, it seems rea-
sonable that the change can be delayed further (beyond the
inherent delay), so that our controller could be applied.

One can use, for example, a controller at a layer above the
overlay network (and below the application of that network).
This layer would present to the application a more orderly
overlay network, one for which the number of nodes is known
(and can be controlled), nodes are labeled economically to
support an efficient routing scheme, some queries can be
answered (e.g., a query about the lowest common ancestor
of given two nodes in a tree), etc.

As mentioned, this paper does not handle spontaneous
crashes. However, this seems to be less crucial in the case
of overlay networks, where most of the topology changes
are those decided upon by designers or by algorithms, as
opposed to changed caused by uncontrollable faults. (One
reason that in overlay networks there are more controlled
changes than uncontrolled ones is that, in overlay networks,
the cost of performing a desired change is relatively low,
compared to traditional networks; this has been motivating

176

many intentional changes; on the other hand, the reliability
of networks in general has increased, making spontaneous
faults more rare.)

From the theoretical point of view, the controlled dynamic
model lies between two extremes. On one extreme, lie the
static model (used in many studies) as well as the “enough
time” model, where the computations that follow one topo-
logical change are assumed to occur very fast and are com-
pleted before the next topological change occurs (see, e.g.
[17, 20, 21]). On the other extreme, lies the “chaotic” fully
asynchronous and adversarial model. The middle ground
controlled model has also a theoretical appeal, especially
since many problems cannot be solved, or can only be solved
partially in the “chaotic” model. For example, inserting in-
ternal nodes in a rapid succession may prevent any message
from reaching its destination, thus making updates impos-
sible.

1.2 Other related work
The controller problem bears similarities to the k-server

problem introduced originally in a sequential setting and
translated later to the distributed setting [9, 25]. There,
mobile servers reside in some nodes. When a request arrives
at some node v, the algorithm must decide which server δ
should be moved to node v. Server δ cannot serve a later
request that arrives at another node u without first moving
from v to u. The cost for moving a server from v to u is
the distance from v to u. The total cost of an execution
(the move complexity) is the sum of the costs of the moves.
The main difference between the k-server problem and the
controller problem is that in the latter, multiple “servers”
(permits) may be moved together without increasing the
cost. In addition, here the “server” is consumed by the
request. Finally, here, a request can also be rejected. We
treat a reject rather similarly to a permit. That is, a move
of a “reject” to the node with a request is also counted in
the move complexity. (However, the number of rejects is not
bounded.)

Algorithms that were both competitive and distributed
appear in [5, 8, 4] and in very few later papers.

The problem of counting the number of nodes in a grow-
ing tree network was suggested (but not solved efficiently)
in [23] where an algorithm that created such a growing tree
was presented to solve the majority commitment problem
in a network where some of the nodes failed before the algo-
rithm started. The complexity of the majority commitment
protocol of [23] is O(n2 log n) messages (each of O(log n)
bits). The majority commitment problem in such a setting
(of initial faults in an asynchronous network) was previously
presented in the famous paper of Fischer, Lynch, and Pa-
terson [11] and solved there with O(n2) messages, each of
O(n log n) bits. An O(n2) messages (each of O(log n) bits)
solution was given in [6] and an O(n log5 n) solution appears
in [3]. The solution for the majority commitment problem
in [3] was solved using a size estimation protocol for grow-
ing trees which uses O(n log4 n) messages (in the terms used
here).

The granting of permits to requests was studied in [24] in
the case that permits are distributed in the network nodes
originally, according to some probability distribution.

The problem of dynamically maintaining routing schemes
and other informative labeling scheme representations was
studied in [2, 17, 20, 21, 22].

1.3 Our contributions
In this paper, we consider dynamic networks which are

spanned by a spanning tree that may undergo both additions
and deletions of both leaves and internal nodes. For such
dynamic networks, we establish (M,W)-controllers which
are efficient in terms of their message complexity.

Motivated by similarities to the k-server problem, we first
present two efficient (M,W)-controllers for the sequential
setting. Those can be viewed as a high level description of
the distributed controller we present later. The first sequen-
tial controller has move complexity O(n0 log2 n0 ·log

M
W+1

)+

O(
P

j log2 nj ·log
M
W+1

), where nj is the number of nodes im-
mediately after the j’th topological change occurs, and n0 is
the initial number of nodes in the graph. The second sequen-
tial controller has move complexity O(N · log2N · log M

W+1
),

where N is the maximum number of nodes ever to exist
simultaneously in the network. We then translate the first
sequential controller to the distributed setting. The message
complexity of the resulting distributed controller is asymp-
totically the same as the move complexity of the sequential
one. Let us note that the message complexity of our dis-
tributed controller is always at most the message complexity
of the more restricted controller in [1] (however, we assume
that each message is encoded using O(log n) bits while the
controller in [1] assumes that each message contains only
O(log log n) bits).

In addition, under the more general dynamic model, our
controller can handle all the applications mentioned in [1] us-
ing the above mentioned message complexity. In particular,
under the more general dynamic model, the new controller
solves the size-estimation problem using message complexity
O(n0 log2 n0)+O(

P

j log2 nj). The same message complex-
ity is used to solve the name-assignment problem by as-
signing and maintaining disjoint log n+O(1)-bit identifiers
at the nodes of the changing network. Since many static
algorithms rely on processors having unique and short iden-
tifiers, our solution for the name-assignment problem may
be useful for constructing dynamic variants for these static
algorithms.

We also use the controller, especially as a size estima-
tor for shrinking trees, for additional applications, not men-
tioned in [1]. We extend many existing labeling schemes
supporting different queries (e.g routing, ancestry, etc.) so
that these schemes can now operate correctly also under
more general models. These extensions maintain the same
asymptotic sizes of the corresponding labels (or routing ta-
bles) of the original schemes and incur only a relatively low
extra additive cost to the message complexity of the cor-
responding original schemes. For example, we extend the
ancestry labeling schemes on trees mentioned in [14, 17, 20]
to support also controlled deletions of both leaves and in-
ternal nodes, and we extend the routing labeling schemes
on trees mentioned in in [2, 12] to support also controlled
deletions of leaves. All these extensions use the same asymp-
totic sizes of labels and incur only an extra additive cost of
O(n0 log2 n0)+O(

P

j log2 nj) beyond the message complex-

ity of the corresponding original schemes. (See Section 5 for
more details.)

1.4 Paper outline
The paper is organized as follows. The model, the prob-

lem and the intuition behind the solutions are presented in

177

Section 2. In Section 3, we describe and analyze the con-
trollers in a sequential form. These descriptions also serve
as a high level description of the distributed controller, and
expose the main ideas behind it. Section 4 highlights the
approach of the distributed implementation, as well as the
approach for analyzing the distributed controller by reduc-
ing it to a sequential one. Due to lack of space, the detailed
description and analysis of the distributed controller appear
in the full paper. The discussion regarding the applications
of the new controller appears in Section 5. Section 6 con-
tains a discussion and open problems.

2. PRELIMINARIES

2.1 The model
Except for the definition of topology changes, we consider

the standard point-to-point message passing asynchronous
communication network model. The network topology is
described by a general undirected graph (V, E), where the
vertices represent processors and the edges represent bidi-
rectional communication channels operating between neigh-
boring nodes. The messages, which are transmitted over
the links of the underlying network, incur an arbitrary but
finite delay. We assume that each message is encoded using
O(log n) bits, where n is the number of nodes in the network
at the time the message is sent.

Given a tree T , and a node v ∈ T , the depth of v is the
hop distance between v and the root r of T . The ancestry
relation is defined as the transitive closure of the parenthood
relation, in particular, a node is its own ancestor.

We assume that the (dynamic) network is spanned by a
spanning tree T that may undergo the following types of
topological changes.
Add-leaf: A new degree one vertex u is added as a neighbor
of an existing vertex v. The new node u is then considered
a child of v in the spanning tree T .
Remove-leaf: A (non-root) vertex v of degree one is deleted.
Add internal node (between neighbors v and w in T):
Edge e = (v, w) splits into two edges (v, u) and (u, w) for
a new node u. If v was w’s parent, then u is considered a
child of v and w is considered a child of u.
Remove internal node: A node u whose degree in T is
larger than one is deleted together with all its non-tree edges.
The nodes which were u’s children in the tree, become the
children of u parent.

Since all the messages sent by our controller are sent on
the edges of the spanning tree T , our controller (and also the
controller of [1]) is not affected by additions and removals
of non-tree edges, and therefore, such topology changes are
also allowed. In addition, we also allow to insert an internal
node u inside a non-tree edge (v, w), since this topology
change can be considered as composed of adding u as a leaf
of v and then adding the non-tree edge (u,w).

Recall, that as in [1], we assume the controlled model in
which the topology changes do not occur spontaneously. In-
stead, when an entity wishes to cause an event (including
a topology change) at some node u, it enters a request at
u, and performs the event only after the request is granted
a permit from the controller. A request to delete a node u
arrives at u. A request to add a node arrives at the node’s
parent to be. A request to add a non-tree edge arrives at
either one of its endpoints. When granted the permit, the
requesting entity in the requesting node u is assumed to

perform the topological change in a “graceful” manner. In
the distributed setting, this means that (1) no messages are
lost, and (2) any data belonging to the algorithm, stored at
a node u that is about to be deleted, is moved to the u’s
parent.

Incoming and outcoming links from every node are identi-
fied by so called port-numbers. It is maintained throughout
the dynamic scenario, that at any given moment, the port
numbers at each vertex v are distinct. We assume that at
any time during the execution, each node knows the port
number leading to its parent in the spanning tree T . When
a new edge is attached to a node v, the corresponding port
at v is assigned a unique (among v’s ports) port-number.
To make our results applicable for a wide range of models,
we assume the relatively wasteful model in which the port
numbers are assigned by an adversary [12, 17]. We note that
the sizes of the port numbers affect the memory complex-
ity of our algorithms, however, assuming these numbers are
relatively small (O(log n) bits per link), our algorithm uses
relatively small memory per node (see Section 6).

2.2 Problem Definition
The input of a controller arrives online in the form of re-

quests arriving at various nodes. Informally, in order to be
useful, the controller should not issue more permits than
some given amount M . One the other hand, it should issue
some minimum amount of permits before it denies a request
for the first time. In fact, since our setting is asynchronous,
and non-negligible time may pass between requesting and
receiving a permit, it is sufficient to require that if some re-
quest is rejected then at least M−W permits are eventually
issued to requests, even if these permits are physically issued
after the reject takes place. The W parameter is essential
the maximum number of ‘waisted’ permits.

Let us now describe the (M,W)-controller more formally.
Initially, an (M,W)-controller in a spanning tree T has a set
of M permits, and an infinite set of rejects, both considered
to reside at the tree root. Permits and rejects can be moved
by the controller to other nodes. When a request arrives at
a node u, the controller responds eventually by delivering ei-
ther a permit or a reject to the request. The delivered object
(a permit or a reject) is one of those that originally resided
at the root and is currently residing in u. The delivery to
the request consumes the object. A set (even infinite, in the
case of rejects) of objects may be moved from a node to one
of its neighbors in one message. An (M,W)-controller must
satisfy the following correctness conditions.
Correctness conditions
Safety: The total number of requests that were granted
permits is at most M .
Liveness: Every request receives either a permit or a reject
eventually. If a request is rejected, then the total number of
requests that will eventually be granted a permit is at least
M −W .

Let us note that a controller may control and count any
type of event, (e.g., sales of tickets by different nodes, or
even the number of messages sent by some other protocol
[1]) and not just topology changes. The description in this
paper emphasizes the measures the controller uses to handle
topological changes. This is because this is the most chal-
lenging task. Moreover, any algorithm to control other types
of events (non topological) in a dynamic network would have
to deal with the topological changes and the dynamic nature

178

of the network. For example, consider again the case that
a protocol sends a message from some node u to some node
v. If an adversary can insert internal nodes in an uncon-
trolled way, the message may never arrive to its destination.
Hence, even a controller for a non-topology related events
must somehow deal with (and possibly control) the topolog-
ical changes. The (M,W)-controller described in this pa-
per deals with all types of arriving requests together. That
is, the Correctness conditions described above, control and
bound the total number of granted requests, no matter to
which type of events they correspond.

2.3 Intuition and high level description
Permits are grouped in ‘packages’ of different sizes which

can be moved from one place to another. In contrast to the
controller of [1], our controller does not use predetermined
locations, and the location of a package has nothing to do
with its size. (In fact, a node may store several packages of
different sizes).

If a request arrives at a node u having a ‘small’ package,
then a permit from that package is granted to the request.
Otherwise, u may contain a package that is “too large”, or
may not contain a package at all. In either of these cases,
an agent is sent up the tree looking for the first package of
some size x, located at a distance about x from u. (We use
the terms “about” and “roughly” throughout this informal
part, in order to expose the intuition better; the exact details
of the algorithms appear in the next sections). If no such
package exists on the way from u to the root then a pack-
age of the appropriate size (roughly the distance between u
and the root) is created at the root. When an appropriate
package P of size x is found (or created) at a node w (whose
distance from u is also roughly x), its content is distributed
along the path from w to u, as follows. This x is roughly
2i for some i (we call P a level i package). Package P is
first moved to a node v at distance roughly 2i−1 above u,
and then splits into two level i − 1 packages. One of these
packages remains at v and the other, P2, is moved to some
node z at distance roughly 2i−2 above u. P2 is then split
into two packages of level i − 2, and the process continues
until one level zero package is moved to u. One permit from
this level zero package at u is then granted to the request.

To bound the message complexity, we bound the moves
of packages. Note, that a permit can be transferred from a
package P to a package P ′ only if P ′ is about half of the size
of P (a result of P ’s split). Hence, throughout the dynamic
scenario, a permit may belong only to a logarithmic number
of packages. Since a move of x permits is to a distance that is
about x (about one per permit in the package), the message
complexity is low.

The safety condition is satisfied since the root does not is-
sue more than M permits. In order to show that the liveness
condition holds, we show that the total number of permits
that remain in packages and are not assigned is small. For
that purpose, we associate each package P with a set of
nodes (some of them may have been deleted already) called
the ‘domain’ of P . The domains satisfy the following in-
variants. (1) The size of P ’s domain is about the size of P ,
and (2) the domains of two packages of the same level are
disjoint.

These invariants guarantee that at any time, the number
of of permits ‘stuck’ in packages of a given level (and size)
is small. Summing over the levels yields an upper bound

on the number of permits ‘stuck’ in packages at that time.
This yields a lower bound on the number of permits that
are granted to requests eventually.

Let us hint how we ensure that domains have the above
mentioned properties. Recall, that when a request arrived
at u, an agent found the smallest i such that there was a
package P of size about 2i at roughly distance 2i above u.
This means that for j < i, there was no packages of size
about 2j at distance about 2j above u. Hence, there was a
path of size roughly 2j at distance roughly 2j from u, which
is free from a package P ′ of size 2j . Some nodes in this path
may still belong to a domain of some level j package P ′, even
though P ′ itself does not reside in that path. However, using
a counting argument, we manage to locate a subpath of that
path that is also of size roughly 2j , and does not intersect
any domain of any existing package of level j. The algorithm
moves and splits the package P into smaller level packages
recursively. In particular, a level j package P ′ is located at
the topmost node of the subpath mentioned before, which
is considered as the domain of P ′.

When topology changes occur, we update the domains so
that the above mentioned domain invariants are maintained.
Updating of domains is done only for the sake of analysis,
therefore, in particular, the algorithm does not need to use
any communication for updating and does not need to notify
a nodes about their domain memberships.

3. A NON-DISTRIBUTED CONTROLLER
In this section, we present the new (M,W)-controller in

the setting that is similar to that of the sequential k-server
problem. In the following section, we show how to imple-
ment it distributively, using the non-distributed controller
as a high level description of the distributed one. The move
complexity used here will translate later into the message
complexity in the distributed setting.

3.1 The algorithm
Let us first assume that there exists a fixed and known

upper bound U on the number of nodes ever to exist in
the graph (including the deleted nodes). This assumption is
removed later (in Section 3.3).

The algorithm uses a dynamic data structure called pack-
ages. Each package resides at some node which is referred to
as the host node of the package. A node may store multiple
packages. There are two kinds of packages, namely permit
packages and reject packages. Each permit package contains
some finite number of permits, and each reject package con-
tains infinite number of rejects. (Rejects are identical to
each other, so a reject package can be represented by a con-
stant number of bits.) A permit package may be either static
or mobile. Informally, a static (permit) package is used to
grant requests for the node hosting it and a mobile (permit)
package is used to deliver sets of permits from place to place.
Each permit package (either static or mobile) has a size,
which is the number of permits in the package. The size of a
static package is between 1 and φ, where φ = max{⌊W

2U
⌋, 1};

the size of a mobile package is precisely 2iφ for some integer
i ≥ 0. Consider a mobile package of size 2iφ. For conve-
nience, we call i the level of the package. It will follow from
the description of the algorithm that the level of a (mobile)
package is between zero and logU + 1.

Initially, there are no packages anywhere. The following
actions are supported by the data structure:

179

(1) The creation of either a mobile or a reject package P
residing at the root.
- If a mobile package is created then it is created together
with a size (which determines a level). This operation in-
crements a variable called Issued by the size of P . Variable
Issued (initially zero) is kept at the root, and is used to
count the number of permits issued.
- If a reject package is created, it contains infinitely many
rejects.
(2) The split of a package into two packages.
- When a mobile package of level i > 1 splits, both resulting
packages are mobile packages of level i− 1. When a mobile
package of level 1 splits, one of the resulting package is a
mobile level zero package and the other is a static package
containing φ permits.
- When a reject package splits, it splits into two reject pack-
ages (each containing infinitely many rejects).
(3) The move of a package from its host node to a new host
node.
(4) The granting (respectively, delivering) of a permit (resp.
reject) from a static (resp. reject) package in a node u to a
request in the same node. The granting of a permit decreases
the size of the static package by one. If, consequently, the
size of the static package becomes zero then the package is
canceled, i.e., it no longer exists in the data structure.

We need the following definitions. Let ψ = 4⌈log(U)+2⌉ ·
max{⌈ U

W
⌉, 1}. Given a node u and a given time t, a filler

node w with respect to u is a node w satisfying the following
two conditions at time t:
a) w contains a mobile package P of level j.
b) if j = 0 then 0 ≤ d(u,w) ≤ 2ψ, otherwise, if j 6= 0, then
2jψ < d(u,w) ≤ 2j+1ψ.

We are now ready to describe Protocol GrantOrReject(u)
which is applied by the algorithm in response to an arrival
of a request at some node u.

Protocol GrantOrReject(u)

1. If there exists a reject package at u then the request is
rejected. Otherwise the following happens.

2. If there exists a static package P of size S > 0 residing
at node u, then a single permit in P is granted to the
request. Subsequently, the size of P is reduced to S−1.
If, consequently, the size of P becomes zero then P is
canceled. If the request is for a topological event τ
then consider the following cases.

• If τ is of type remove leaf or remove internal node
and u, the vertex to be removed, holds one or
more packages, then these packages are moved to
u’s parent. Subsequently, u is removed.

• Otherwise, the requested event takes place when
the request is granted the permit.

If there is no static package at u then the following
happens.

3. If there exists at that time an ancestor of u that is a
filler node with respect to u, then let ρ(u) be such a
filler node that is the closest to u (in the tree T). Also,
let P (u) and j(u) be such that ρ(u) has the package
P (u) of level j(u) satisfying the conditions mentioned
above, in the definition of a filler node.

Otherwise (no filler node exists), let j(u) be the small-

est integer such that d(u, r) ≤ 2j(u)+1ψ.
In this case, a mobile package P (u) of level j(u) is cre-
ated at the root r. Recall, that the creation of P (u)

increments the variable Issued by 2j(u)φ. If, subse-
quently, Issued > M , then the request is rejected. In
addition, a reject package is placed in every node. This
is done by first creating a reject package at the root,
and then using splitting and moving.

If the package was not rejected, then the handling of
the request proceeds as follows.

4. For each k ∈ {0, 1, 2, · · · , j(u) − 1}, let uk be the an-
cestor of u satisfying d(u, uk) = 3 · 2k−1ψ. Apply
the following procedure recursively such that initially,
P = P (u).
Proc(P): Given a package P of level k at a vertex w,
act as follows.

• If k > 0 then move P from w to vertex uk. Then,
split P into two packages P1 and P2, each of level
k − 1. Leave P1 at uk and apply the algorithm
recursively for P2.

• If k = 0 (including the case where j(u) = 0) then
package P is moved to u and becomes static. The
request is then granted to u from P according to
item 2 above.

3.2 Correctness and Complexity
Given a time t, an existing package (respectively, node) is

a package (resp., node) that exists in the graph at time t.
Every existing mobile package P is associated with a set of
(not necessarily existing) nodes, called the domain of pack-
age P , which may change from time to time. The domains
are used for analysis purposes only, therefore, in particular,
when a node joins or leaves some domain, no actions are
required by the algorithm to support the change. The fol-
lowing invariants are maintained:
The domain invariants
1) For every k, the domain of each existing mobile package
of level k contains 2k−1ψ nodes.
2) For every k, the domains of the existing mobile packages
of level k are disjoint.
3) At any time, the currently existing nodes in the domain of
each mobile package form a path hanging down (away from
the root) from some child of the node holding the package.

Below, we define the domains and show that the domain
invariants hold. Initially, there are no packages and no do-
mains. When a package is canceled or becomes static, its
domain is canceled. Similarly, when a package splits, its
domain is canceled and new domains are given to the new
packages that result from the split. A package is formed at
some time t if, at time t, the package is either created (at
the root) or results from a split. (Note, that this happens
only after a request arrives at some node u). We first define
the domain of a newly formed mobile package.
Let ρ(u) be the vertex defined in Item 3 of the description
above. Consider the following cases.
Case 1) If the filler node ρ(u) exists (item 3 of the protocol)
and j(u) = 0 then no package is formed.
Case 2) If ρ(u) does not exist and d(u, r) ≤ 2ψ then no new
mobile package results (indeed, a level zero mobile package

180

is created at the root, but it is then moved to u immediately
and becomes static).
Case 3) If ρ(u) exists and j(u) > 0 then let P (u) be the
level j(u) package residing at ρ(u). After the recursive pro-
cedure Proc(P (u)) is completed, we have the following. For
k ∈ {0, 1, 2, · · · , j(u) − 1}, one level k mobile package Pk is
located at uk above u, such that d(u, uk) = 3 · 2k−1ψ. For
every k, the domain Dom(Pk) associated with the package
Pk is the set of vertices w on the path connecting u and uk
which satisfy 1 ≤ d(w,uk) ≤ 2k−1ψ.
Case 4) If ρ(u) does not exist and d(u, r) > 2ψ then let P (u)
be the package created by the root. Recall, that Procedure
Proc(P (u)) is applied. The domains of the newly formed
mobile packages resulting from the recursive application of
Procedure Proc(P (u)) are defined as in the previous case
(assuming ρ(u) is the root and that package P (u) resides
at ρ(u)). Note, that we do not need to define a domain for
P (u) since it is split immediately after being created.

Let us now define how the domain of an existing mobile
package P may be affected by a topological event τ occur-
ring in the (existing) nodes in Dom(P).
Case 5) An event of type add leaf or of type add or remove
non-tree edge, has no affect on Dom(P).
Case 6) If τ is of type add internal node, and u, the added
vertex, belongs to Dom(P), then u is added to domain
Dom(P) and the bottom most existing node in Dom(P)
is removed from P ’s domain.
Case 7) If τ is of type remove leaf or remove internal node,
and u, the removed node, belongs to Dom(P), then u is
deleted but is considered to continues to belong to Dom(P).

Claim 3.1. The domain invariants hold at all times.

Proof: Clearly, the invariants hold initially when there are
no packages. Assume by induction, that they hold just be-
fore the next time t where either a package is formed or a
topological event occurs.

First, consider the case that at time t, a package is formed.
New domains are defined only due to an application of Pro-
cedure Proc(P (u)). After Procedure Proc(P (u)) is com-
pleted, for every k ∈ {0, 1, 2, · · · , j(u) − 1}, one level k new
mobile package Pk is located at vertex uk above u, such that
d(u, uk) = 3 · 2k−1ψ. The first and third domain invariants
follow directly from the description in Cases 3 and 4 in the
definition of the domains above. It is left to show that the
second domain invariant holds.

Fix some k ∈ {0, 1, 2, · · · , j(u) − 1}. Let Ik denote that
path containing the ancestors w of u satisfying 2kψ < d(u,w) ≤
2k+1ψ. The definition of j(u) implies that before Proc(P (u))
is applied, there is no mobile package of level k in path Ik,
including any vertex in Dom(Pk) ⊂ Ik. Therefore, by the
third domain invariant, Dom(Pk) does not intersect with
any other domain of a package of level k residing at a de-
scendant of uk. By the first and third domain invariants,
and by the fact that Ik \ Dom(Pk) does not contain any
mobile package of level k either, we obtain that Dom(Pk)
does not intersect any domain of any other level k package
residing at an ancestor of uk. Therefore, the second domain
invariant also holds at time t.

Now consider the second case where domains may change
at time t, that is, a topological event τ occurs. No change
in a domain is needed in case 5 or when the topological
event concerns nodes which are not in any domain and do
not hold any package. hence, assume that τ is of type add

internal node, and vertex u is added at time t between two
existing vertices u and w. Case 6 above is applied. P ’s
domain gains node u that is new, and hence has not belonged
to any domain in the level of P . Therefore, the first and
second domain invariants continue to hold. In addition, the
removal of the node from the domain does not disconnect
the path which is Dom(P) since the removed node is the
bottom most. Similarly, the addition of the new node u
keepsDom(P) as a path since u (and edges (v, u) and (u,w))
replace edge (v, w) on the path. Hence, the third invariant
continues to hold.

If τ is of type remove leaf or remove internal node, and
just before time t, the removed node u belonged to Dom(P)
for some package P , then u continues to belong to Dom(P).
Therefore, the first domain invariant holds. In addition,
no node was added to any domain, therefore, the second
domain invariant still holds as well. If, just before time t,
the removed node u did not have any package, then clearly,
the third domain invariant holds as well. If the removed
node u contained several packages, then they were moved
at time t to u’s parent, and since u’s children become the
children of its parent, the third domain invariant holds too.
This completes the proof.

3.2.1 Correctness

Lemma 3.2. The correctness conditions hold for the non-
distributed controller.

Proof: The safety condition for the number of grants issued
is clearly maintained, by item 3 in the description of the
algorithm. In addition, it is easy to show that every request
granted corresponds to a permit issued. Hence, the safety
condition holds for the requests granted too.

Now, consider the first time a request is rejected. Let us
first bound the sum of the sizes of the currently existing
mobile packages. By the first two domain invariants, the
number of level k mobile packages is at most U

2k−1ψ
. Note,

that max{W/2U,1}
max{U/W,1}

≤ W
U

. Therefore, the sum of the sizes of

the level k mobile packages is at most,

2kU

2k−1
·
φ

ψ
≤

2kU

2k−1
·

W

4U⌈log(U) + 2⌉
=

W

2⌈log(U) + 2⌉
.

By the first domain invariant, the domain of a level k pack-
age is 2k−1ψ and, therefore, 2k−1 ≤ U . It follows that
k ≤ logU+1, hence, the number of levels is at most logU+2.
It follows that the sum of the sizes of all the mobile packages
is at most W/2.

Let us now bound the sum of the sizes of the existing
static packages. If W < 2U then φ = 1, hence, there are no
static packages (once a static package of size 1 is formed, the
single permit in it is immediately granted and the package
is canceled immediately). If, on the other hand, W ≥ 2U ,
then φ ≤W/2U . Therefore, the sum of the sizes of the static
packages is, at most, U W

2U
= W/2.

It follows that the sum of the sizes of the all the packages
(both mobile and static) is at most W . Therefore, at any
given times, the total number of permits in all the currently
existing packages is at most W . Note, that if a request is
rejected then at least M permits were issued by the root.
It follows that at least M − W requests were granted to
requests. This proves the lemma.

181

3.2.2 Complexity

Lemma 3.3. The move complexity of the non-distributed
algorithm is O(U M

W
log2 U).

Proof: Permits and rejects move only in packages. Clearly,
the move complexity for all reject packages is at most U .
A package may be moved up the tree only as a result of a
deletion. Specifically, if a node u holds several packages and
is given a permit to delete itself, then it first moves its pack-
ages to its parent (see item 2 in the algorithm). Since the
number of deletions is at most U , the total move complexity
resulted from such moves is U .

The only other types of moves of permit packages are as a
result of applying procedure Proc(P). Therefore, through-
out the scenario, each mobile package P moves at most
twice. Once when P is created during the application of
some procedure Proc(P ′) and once if P is the level k pack-
age P (u) found at the filler node ρ(u) and moves to uk (if
k > 0) or to u (if k = 0). Both these moves are to dis-
tance O(2kψ) where k is the level of P . Since at most
M permits are issued, and since a permit may belong to
at most one level k package, the total number of pack-
ages of level k ever to exist is M

2kφ
. Therefore, the sum

of the costs of the moves made by packages of level k is
O(2kψ M

2kφ
) = O(M ψ

φ
) = O(U M

W
logU). Since there are

O(logU) levels k, the lemma follows.

The move complexity can be further reduced, as in Section
6 of [1]. In order to deal with the cases where M/W is large,
one can iterate the controller O(log M

W+1
) times. In each

iteration, the ‘waste’ is at least halved. First, set M0 =
M . In the i’th iteration the controller is initiated with the
parameters (Mi,Mi/2). When the i’th iteration terminates,
the algorithm counts the number L of unused permits in the
packages that exist at that time. Then, instead of rejecting
a request, the algorithm sets Mi+1 ← L and the i + 1’st
iteration starts. After i′ = O(log M

W+1
) iterations, Mi′+1,

the number of unused resources in the existing packages is
within a constant multiplicative factor of W and the i′ + 1
iteration is initiated with parameters (Mi′+1,W). This leads
to the following lemma.

Lemma 3.4. The move complexity of the non-distributed
algorithm is O(U · log2 U · log M

W+1
).

3.3 The case that no fixed U is known
We now handle the general case, where we do not assume

that we know in advance a fixed upper bound U on the
number of nodes ever existing in the graph. In the proof
of the following theorem, a controller for the general case
is constructed by running the above algorithm in iterations.
Since this idea is similar to the one described in Section 5
of [1], we defer the proof to the full paper.

Theorem 3.5. • There exists a non-distributed con-
troller whose move complexity is O(n0 log2 n0·log

M
W+1

)+

O(
P

j log2 nj · log
M
W+1

), where nj is the number of
nodes immediately after the j’th topological change oc-
curs.

• There exists a non-distributed controller whose move
complexity is O(N · log2N · log M

W+1
) where N is an

upper bound on the number of nodes. (It is not required
that N is known in advance).

4. AN OVERVIEW OF THE DISTRIBUTED
IMPLEMENTATION

The details and the analysis of the distributed implemen-
tation of the controller appear in the full paper because of
the lack of space. We note that the non-distributed con-
troller was constructed in such a way that it can be im-
plemented distributively. Moreover, the proof of the dis-
tributed version is by a reduction to the non-distributed
one. Let us give here an overview.

The arrival of a request at a node u creates a mobile agent
(see [16, 7]) at u. If there is no static package at u then the
agent climbs the tree (carried by messages) until it reaches
a filler node or the root. It then takes the package located
there and performs Proc(P) by walking down the tree.

The only real difference from the sequential setting is the
fact that an agent cannot act instantaneously on multiple
nodes, while in the sequential algorithm, each request is han-
dled fully before the next request arrives. To ease the proof,
the instantaneous action is simulated using locks, and using
the assumption that topology changes occur in a “graceful”
manner (see Section 2.1). An agent performs operations on
the data structure only after it has locked all the nodes it
needs to touch.

Finally, the distributed implementation is proved by map-
ping each distributed execution to an execution of the non-
distributed controller. In the simulation, a request that ar-
rives at some time t1 but is granted later at time t2 > t1
in the distributed execution, is mapped into a request that
arrives and granted at time t2 in the non-distributed execu-
tion. The following theorem then follows directly from the
analysis of the non-distributed controller.

Theorem 4.1. There exists a distributed (M,W)-controller
whose message complexity is
O(n0 log2 n0 · log

M
W+1

) +O(
P

j log2 nj · log
M
W+1

), where nj
is the number of nodes immediately after the j’th topological
change occurs, and n0 is the initial number of nodes in the
graph.

5. APPLICATIONS
In [1], the authors show how to use their (M,W)-controller

to construct several basic schemes on growing trees (allowing
only leaves to join). In particular, they show how to derive
a size-estimation protocol and a name-assignment protocol
(i.e., a protocol which assigns and maintains unique identi-
ties at the nodes of the changing tree, using log n+O(1) bits
bet identity). Both their protocols (on growing trees) use
O(N log2N) messages, where N is the maximum number of
nodes in the tree.

It can be easily shown that the methods used in [1] for
transforming their (M,W)-controller to protocols solving
the above mentioned problems on growing trees, hold also
for transforming our (M,W)-controller to protocols solving
these problems in the more general dynamic model consid-
ered in this paper. Both resulted protocols use message com-
plexity O(n0 log2 n0 +

P

i log
2 ni), where ni is the number

of nodes immediately after the i’th topological event takes
place. Note, that in the restricted case where the tree can
only grow, our protocols use the same message complexity
as the corresponding protocols of [1].

We now demonstrate the use of our controller for other ap-
plications beyond the ones described in [1]. Specifically, we
show how to use our size-estimation protocol for extending

182

various existing distributed data structures for local queries
to dynamic settings.

We consider data structures in which, when a node u asks
a query, it receives an answer without using any commu-
nication. In the query, u may specify some other node v.
Examples are routing (“which neighbor of u is the next on
the route to v?”), distance (from u to v), etc. Note, how-
ever, that constructing the data structure, or maintaining it
when the network graph changes, requires communication.
The efficiency of such a scheme is measured in terms of the
size of the memory required in each node and in terms of
the number (and sizes) of messages required to update the
data structure if the network graph changes. Multiple such
data structures are described in the literature, for static net-
works, or for limited dynamic networks. Using our controller
it is possible to extend many such data structures to oper-
ate efficiently also under controlled deletions of leaves and
sometimes also of internal nodes.

Consider, for example, a case where deletions of a certain
type do not affect the correctness of the data structure. For
example, deletions of degree one vertices do not affect the
distance between existing nodes, therefore, the correctness
of a given static distance labeling scheme (such as the ones
in [13]), is not affected by such deletions. At first glance,
it may seem that extending such a data structure to sup-
port also deletions of that type is trivial. Given such a data
structureD that does not support deletions, just use it when
deletions are allowed. I.e., in the case of an allowed event
that is not a deletion (say, an insertion of a leaf), take the
same update action taken in D, and in the case of a deletion
event, perform no data structure update action (though the
deletion of the node itself is performed). Unfortunately, this
approach is no longer efficient in terms of the size of the
memory required in a node. For example, consider a large
graph with optimal size routing tables TL. If the number
of nodes decreases significantly because of deletions, the op-
timal size routing tables TS for the resulting smaller graph
are much smaller than TL. If the algorithm that maintains
the routing tables (in this specific example) does not take
any action for deletions, then the data structure stays with
tables of size TL instead of the new optimal TS. Using our
controller, it is possible to estimate the number of nodes,
and recompute the data structure when the graph shrinks
significantly. (Of course, recomputation can be performed
after every deletion, but that would be inefficient in terms
of the number of messages).

The proofs of the following claims and lemmas are deferred
to the full paper.

Claim 5.1. The correctness of any ancestry labeling scheme
(either dynamic or static) on trees is not affected by dele-
tions of either internal nodes or leaves. (E.g., the dynamic
ancestry schemes in [17, 20], and the static ones in [14].).

Claim 5.2. The correctness of the following types of data
structures are not affected by deletions of degree one vertices.

• Any exact (stretch 1) routing scheme (either dynamic
or static and either labeled or name-independent) on
general graphs.

• Any labeling scheme on any type of graph family (closed
under deletions of leaves) which supports either the dis-
tance or the flow or the k-vertex connectivity functions.
(E.g., the distance labeling schemes in [13] and the

flow and vertex connectivity labeling schemes in [15,
18, 19]).

• Any nearest common ancestor (NCA) labeling scheme
(either dynamic or static) on trees.

For a dynamic labeling schemes, some studies distinguish
between two kinds of memory. One is used for the label L(v)
given to each node v to deduce the required information in
response to online queries. The other is used during updates
and maintenance operations. See, e.g. [17, 22]. For certain
applications (and particularly routing), the label L(v) is of-
ten kept in the router itself and used frequently, providing
fast calculations of the routes. On the other hand, the ad-
ditional storage Memory(v) may be kept on some external
storage device, and possibly used less frequently and less
urgently. This means that the size of labels seems to be a
more critical consideration than the total amount of storage
needed for the information maintenance. In the following,
when considering the memory complexity of a scheme, we
only consider the size of labels L(v) and ignore the external
memory Memory(v) used for maintenance.

Lemma 5.3. Let π is one of the (either static or dynamic)
data structures mentioned in either one of the above claims,
and let f(n) be an upper bound on the size of the labels (or
routing tables) used in π. Let M(π,n) be an upper bound
on message complexity used to assign the labels (or routing
tables) of π on a static n-node network. Assume that f(n)
and M(π,n) are reasonable1 functions. Then the following
holds.

1. If π is one of the schemes mentioned in Claim 5.1,
then there exists an extended scheme supporting also
controlled deletions of both leaves and internal nodes.
The extended scheme has label size O(f(n)) and addi-
tion additive factor of O(n0 log2 n0 +M(π,n0))+

O(
P

i(log
2 ni+

M(π,ni)
ni

)) to the message complexity of

π, per topological change.

2. If π be one of the schemes mentioned in Claim 5.2,
then there exists an extended scheme supporting also
controlled deletions of degree one vertices. The ex-
tended scheme has label size O(f(n)) and addition ad-
ditive factor of O(n0 log2 n0+M(π,n0)+

P

i(log
2 ni+

M(π,ni)
ni

)) to the message complexity of π, per topolog-

ical change.

Corollary 5.4. The ancestry schemes on trees mentioned
in [17, 20, 14] can be extended to support also controlled
deletions of both leaves and internal nodes, and the rout-
ing schemes on trees mentioned in [2, 12] can be extended
to support also controlled deletions of leaves. The extended
schemes have the same asymptotic label size of the original
schemes, and their message complexity incurs an extra addi-
tive cost of O(n0 log2 n0) +O(

P

j log2 nj) over the message
complexity of the original schemes, where nj is the number
of nodes in the tree immediately after the j’th topological
change.

1A reasonable function is a function f(n) satisfying that
there exists a constant c, such that for any n/2 < m < n,
f(n) ≤ c · f(m). This condition is satisfied by a function of

the form f(n) = αnǫ logβ n logγ log n, for α, ǫ, β, γ > 0

183

6. CONCLUSION
The memory complexity of the distributed controller de-

pends on the model to some degree. If a large number of
requests can be injected by the environment at once, a node
may need to use memory to hold all these requests. To ac-
count only for memory used by the algorithm, we prefer to
assume that a node can refuse to accept an additional re-
quest until it finishes handling the current one. In this case
it is possible to bound the memory to be logarithmic per
edge. Further reduction may be possible, depending on the
model of the port numbers.

The locking of nodes can increase the time complexity.
However, if nodes are not locked, it seems hard to ensure a
small message complexity in the face of the insertion of a
large number of internal nodes. Another reason for locking
is the saving of memory. We note that this is also one of
the reasons nodes are locked in [1] in one of their controllers
(the other reason is to save in message size).

The message size used in this paper is O(log n), while
the (locking version) controller of [1] uses messages of size
O(log log n). Intuitively, in our controller, an agent needs
to count the number of steps it moves. Such counting was
not necessary in the controller of [1] due to the fixed lo-
cations that it used for bins. Instead of counting steps, a
message just walked up until it reaches the supervisor bin.
An open problem is, can this be matched in a dynamic net-
work, where the locations cannot be fixed?

Another interesting question is whether the message com-
plexity of the controller can be reduced. Finally, we have
shown that it is possible to match the message complexity
of the controller of [1] in the more general setting. It would
be interesting to find out whether for optimal controllers
there exist inherent gaps in the complexities of controllers
for more limited dynamic models and the complexities of
controllers for more general dynamic cases.

7. REFERENCES
[1] Y. Afek, B. Awerbuch, S.A. Plotkin and M. Saks. Local

management of a global resource in a communication
network. J. ACM 43, (1996), 1–19.

[2] Y. Afek, E. Gafni, and M. Ricklin. Upper and lower bounds
for routing schemes in dynamic networks. In Proc. 30th
Symp. on Foundations of Computer Science (FOCS), 1989,
370–375.

[3] Y. Afek and M. E. Saks. Detecting Global Termination
Conditions in the Face of Uncertainty. In Proc. 6th Ann.
ACM SIGACT-SIGOPS Symp. on Principles of
Distributed Computing (PODC) ,1987, pp. 109-124.

[4] B. Awerbuch, Y. Bartal, and A. Fiat. Competitive
distributed file allocation. In Proc. 25th Annual ACM
Symposium on Theory of Computing (STOC), 1993, pp.
164-173.

[5] B. Awerbuch, S. Kutten, and D. Peleg. Competitive
Distributed Job Scheduling. In Proc. 24th Annual ACM
Symposium on Theory of Computing (STOC), 1992, pp.
571-580.

[6] R. Bar-Yehuda and S. Kutten. Fault-Tolerant Majority
Commitment. J. of Alg. Vol. 9, pp. 568–582, 1988.

[7] L. Barrire, P. Flocchini, P. Fraigniaud, and N. Santoro. Can
we elect if we cannot compare? In Proc. 15th ACM Symp.
on Parallelism in Algorithms and Architectures (SPAA),
2003, pp. 324-332.

[8] Y. Bartal, A. Fiat, and Y. Rabani. Competitive Algorithms
for Distributed data Management. J. Comput. Syst. Sci.
51(3): 341-358 (1995).

[9] Y. Bartal and A. Rosen. The Distributed k-Server
Problem- A Competitive Distributed Translator for
k-Server Algorithms. In Proc. 33rd Symp. on Foundations
of Computer Science (FOCS), pp. 344-354, 1992.

[10] E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Math. 1 (1959), S. pp. 269-271.

[11] M. J. Fischer, N. A. Lynch, and M. Paterson. Impossibility
of Distributed Consensus with One Faulty Process. J. ACM
32(2), pp. 374-382 (1985).

[12] P. Fraigniaud and C. Gavoille. Routing in trees. In Proc.
28th Int. Colloq. on Automata, Languages, and
Programming (ICALP). 2001, pp. 757–772.

[13] C. Gavoille, D. Peleg, S. Pérennes and R. Raz. Distance
labeling in graphs. In Proc. 12th ACM-SIAM Symp. on
Discrete Algorithms (SODA), 2001, pp. 210–219.

[14] S. Kannan, M. Naor, and S. Rudich. Implicit representation
of graphs. In SIAM J. on Descrete Math 5, (1992),
596–603.

[15] M. Katz, N.A. Katz, A. Korman and D. Peleg. Labeling
schemes for flow and connectivity. SIAM Journal on
Computing 34 (2004),23–40.

[16] E. Korach, S. Kutten, and S. Moran. A Modular Technique
for the Design of Efficient Distributed Leader Finding
Algorithms. ACM TOPLAS Vol. 12, No. 1,pp. 84–101,
1990.

[17] A. Korman. General Compact Labeling Schemes for
Dynamic Trees. In Proc. 19th International Symposium on
Distributed Computing (DISC), 2005.

[18] A. Korman. Labeling Schemes for Vertex Connectivity. In
Proc. 34th Int. Colloq. on Automata, Languages, and
Programming (ICALP), 2007.

[19] A. Korman and S. Kutten. Distributed Verification of
Minimum Spanning Trees. In Proc. 25th Ann. ACM
SIGACT-SIGOPS Symp. on Principles of Distributed
Computing (PODC), 2006.

[20] A. Korman, D. Peleg, and Y. Rodeh. Labeling schemes for
dynamic tree networks. Theory of Computing Systems
(ToCS) 37 (2004), pp. 49-75.

[21] A. Korman and D. Peleg. Labeling Schemes for Weighted
Dynamic Trees. In Proc. 30th Int. Colloq. on Automata,
Languages, and Programming (ICALP), 2003, pp. 369–383.

[22] A. Korman and D. Peleg. Dynamic Routing Schemes for
General Graphs. In Proc. 33rd Int. Colloq. on Automata,
Languages, and Programming (ICALP), 2006.

[23] S. Kutten. Optimal Fault-Tolerant Distributed
Construction of a Spanning Forest. Information Processing
Letters, Vol. 27, pp. 299–307,May 1988.

[24] N.A. Lynch, N.D. Griffeth, M.J. Fischer and L.J. Guibas.
Probabilistic Analysis of a Network Resource Allocation
Algorithm. Inf. Cont. 68, 47-85.

[25] M.S. Manasse, L.A. McGeoch, and D.D. Sleator.
Competitive Algorithms for On-Line Problems. In Proc.
20th Annual ACM Symposium on Theory of Computing
(STOC), 1988, pp. 322-333.

[26] J. Moy - 1994 - RFC 2328, April 1998.
[27] M. Thorup and U. Zwick. Compact routing schemes. In

Proc. 13th ACM Symp. on Parallel Algorithms and
Architectures (SPAA), 2001, pp. 1-10.

184

